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Abstract

Self-timed logic design methods are developed using Threshold Combinational Reduction (TCR) within the
NULL Convention Logic (NCL) paradigm. NCL logic functions are realized using 27 distinct transistor
networks implementing the set of all functions of four or fewer variables, thus facilitating a variety of gate-
level optimizations. TCR optimizations are formalized for NCL and then assessed by comparing levels of gate
delays, gate counts, transistor counts, and power utilization of the resulting designs. The methods are
illustrated to produce (1) fundamental logic functions that are 2.2–2.3 times faster and require 40–45% fewer
transistors than conventional canonical designs, (2) a Full Adder with reduced critical path delay and
transistor count over various alternative gate-level synthesis approaches, resulting in a circuit with at least
48% fewer transistors, half as many gate delays to generate the carry output, and the same number of gate
delays to generate the sum output, as its nearest competitors, and (3) time, space, and power optimized
increment circuits for a 4-bit up-counter, resulting in a throughput-optimized design that is 14% and 82%
faster than area- and power-optimized designs, respectively, an area-optimized design that requires 22% and
42% fewer transistors than the speed- and power-optimized designs, respectively, and a power-optimized
design that dissipates 63% and 42% less power than the speed- and area-optimized designs, respectively.
Results demonstrate support for a variety of optimizations utilizing conventional Boolean minimization
followed by table-driven gate substitutions, providing for an NCL design method that is readily automatable.
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1. Introduction

NULL Convention Logic (NCL) [1] offers a self-timed logic paradigm where control is inherent
with each datum. NCL follows the so-called ‘‘weak conditions’’ of Seitz’s delay-insensitive
signaling scheme [2]. As with other self-timed logic methods discussed herein, the NCL paradigm
assumes that forks in wires within basic components are isochronic [3,4]. The origins of various
aspects of the paradigm, including the NULL (or spacer) logic state from which NCL derives
its name, can be traced back to Muller’s work on speed-independent circuits in the 1950s and
1960s [5].
Earlier work by Seitz presents an extensive discussion of self-timed logic, illustrating its

advantages over traditional clocked logic, including reduced power, noise, EMI, and easier
component reuse, and includes one approach to designing such circuits [2]. Some other methods
of designing self-timed circuits are detailed in [6–9]. These techniques concentrate on developing
circuits from a standardized set of gates, while other techniques [10,11] emphasize formal logic
methods that directly yield designs at the transistor-level. In the application of CMOS technology,
processors implemented with this type of signaling scheme include the MIPS R3000 [12] and
another at Caltech [13], the FLYSIG processor at the University of Paderborn [14], the MSL16A
at the Chinese University of Hong Kong [15], and the TITAC processor at the Toyko Institute of
Technology [16].
NCL differs from the above mentioned methods in that they only utilize one type of state-

holding gate, the C-element [5]. On the other hand, all NCL gates are state-holding. Thus, NCL
optimization methods can be considered as a subclass of the techniques for developing self-timed
circuits using a pre-defined set of more complex components with built-in hysteresis behavior. In
functions that do not require full minterm generation, such attributes may allow optimizations
that produce smaller, faster self-timed combinational circuits. To demonstrate NCL’s viability,
the NCL08 microcontroller as described in [17] requires 40% less power and generates 10 dB less
peak EMI noise than its corresponding synchronous counterpart, the Motorola HCS08, while
achieving similar performance. Within the NCL paradigm, this paper illustrates circuit
minimization techniques to specifically target speed, area, or power, the application of these
techniques to design various NCL circuits, and their associated tradeoffs.

1.1. Previous work

Asynchronous circuits fall into two main categories: self-timed and bounded-delay models.
Paradigms, like NCL, assume delays in both logic elements and interconnects to be unbounded,
although they assume that wire forks within basic components, such as a full adder, are isochronic
[3,4]. Wires connecting components do not have to adhere to this assumption. This implies the
ability to operate in the presence of indefinite arrival times for the reception of inputs. Completion
detection of the output signals allows for handshaking to control input wavefronts. On the other
hand, bounded-delay models such as Huffman circuits [18], burst-mode circuits [19], and
micropipelines [20] assume that delays in both gates and wires are bounded. Delays are added
based on worse-case scenarios to avoid hazard conditions. This leads to extensive timing analysis
of worse-case behavior to ensure correct circuit operation. Since NCL exhibits neither of these
characteristics, bounded-delay models are not addressed further in this paper.
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Most self-timed methods combine C-elements [5] with Boolean gates for circuit construction.
A C-element behaves as follows: when all inputs assume the same value then the output assumes
this value, otherwise the output does not change. Seitz’s method [2] employs a sum of products
(SOP) network using AND and OR gates, combined with a network to OR both rails of all inputs
together. The output of the OR network is then combined with the SOP outputs, using C-
elements, to produce the circuit outputs. DIMS [9] and Anantharaman’s approach [7] are similar
to each other in that each produces an SOP circuit using OR gates and C-elements, instead of
AND gates. Singh’s method [8] combines small self-timed logic functions to produce the desired
functionality. While David’s method [6] produces self-timed circuits with n inputs and m outputs,
composed of four subnets, ORN, CEN, DRN, and OUTN. ORN consists of n 2-input OR gates,
which OR together both rails of each dual-rail input. CEN is an n-input C-structure, which is
equivalent to an n-input C-element, whose inputs are the n outputs from ORN. DRN is a
monotonic implementation of each rail of the dual-rail output(s). OUTN produces the circuit
output and consists of 2m 2-input C-elements, each with the output of CEN as 1-input, and an
output from DRN as the other input. Seitz’s method, Anantharaman’s approach, and DIMS
require the generation of all minterms to implement a function, where a minterm is defined as the
logical AND, or product, containing all input signals in either complemented or non-
complemented form. While Singh’s and David’s methods do not require full minterm generation,
they rely solely on C-elements for speed-independence.
Since Seitz’s and Anantharaman’s approaches, along with DIMS, require the generation of all

minterms, no optimization is possible. However, Singh’s and David’s approaches allow for some
Boolean optimization to be performed, but they may not facilitate the same potential for
optimization provided by NCL’s many state-holding gates, as will be shown in Section 4.

1.2. Overview of NCL

NCL threshold gates are a special case of the logical operators or gates available in digital VLSI
circuit design [21]. Such an operator consists of a set condition and a reset condition, which the
environment must ensure are not both satisfied at the same time. If neither condition is satisfied
then the operator maintains its current state. A number of NCL-based designs have been
commercially developed by Theseus Logic, Inc., which has formed strategic alliances with
Motorola for microcontroller design and Synopsys for NCL-based design tool development.
NCL uses symbolic completeness of expression [1] to achieve self-timed behavior. A symboli-

cally complete expression is defined as an expression that only depends on the relationships of the
symbols present in the expression without a reference to the time of evaluation. In particular,
dual-rail signals, quad-rail signals, or other Mutually Exclusive Assertion Groups (MEAGs) can be
used to incorporate data and control information into one mixed signal path to eliminate time
reference [22]. A dual-rail signal, D; consists of two wires, D0 and D1, which may assume any value
from the set {DATA0, DATA1, NULL}. The DATA0 state (D0 ¼ 1;D1 ¼ 0) corresponds to a
Boolean logic 0, the DATA1 state (D0 ¼ 0;D1 ¼ 1) corresponds to a Boolean logic 1, and the
NULL state (D0 ¼ 0;D1 ¼ 0) corresponds to the empty set meaning that the value of D is not yet
available. The two rails are mutually exclusive, so that both rails can never be asserted
simultaneously; this state is defined as an illegal state. A quad-rail signal, Q; consists of four wires,
Q0;Q1;Q2; and Q3; which may assume any value from the set {DATA0, DATA1, DATA2,

ARTICLE IN PRESS

S.C. Smith et al. / INTEGRATION, the VLSI journal 37 (2004) 135–165 137



DATA3, NULL}. The DATA0 state (Q0 ¼ 1;Q1 ¼ 0;Q2 ¼ 0;Q3 ¼ 0) corresponds to two Boolean
logic signals, X and Y ; where X ¼ 0 and Y ¼ 0: The DATA1 state (Q0 ¼ 0;Q1 ¼ 1;Q2 ¼ 0;Q3 ¼ 0)
corresponds to X ¼ 0 and Y ¼ 1: The DATA2 state (Q0 ¼ 0;Q1 ¼ 0;Q2 ¼ 1;Q3 ¼ 0) corresponds to
X ¼ 1 and Y ¼ 0: The DATA3 state (Q0 ¼ 0;Q1 ¼ 0;Q2 ¼ 0;Q3 ¼ 1) corresponds to X ¼ 1 and
Y ¼ 1; and the NULL state (Q0 ¼ 0;Q1 ¼ 0;Q2 ¼ 0;Q3 ¼ 0) corresponds to the empty set meaning
that the result is not yet available. The four rails of a quad-rail NCL signal are mutually exclusive, so no
two rails can ever be asserted simultaneously; these states are defined as illegal states. Both dual- and
quad-rail signals are space optimal 1-out-of-N delay-insensitive codes, requiring two wires per bit. Other
higher order MEAGs are not typically wire count optimal, however they can be more power efficient
due to the decreased number of transitions per cycle.
NCL uses threshold gates with hysteresis [23] for its composable logic elements. One type of

threshold gate is the THmn gate, where 1pmpn; as depicted in Fig. 1. A THmn gate corresponds
to an operator with at least m signals asserted as its set condition and all signals de-asserted as its
reset condition. THmn gates have n inputs. At least m of the n inputs must be asserted before the
output will become asserted. Because threshold gates are designed with hysteresis, all asserted
inputs must be de-asserted before the output will be de-asserted. Hysteresis is used to provide a
means for monotonic transitions and a complete transition of multi-rail inputs back to a NULL
state before asserting the output associated with the next wavefront of input data. In the symbol
for a THmn gate, each of the n inputs is connected to the rounded portion of the gate; the output
emanates from the pointed end of the gate; and the gate’s threshold value, m; is written inside of
the gate. Fig. 2 shows a static CMOS implementation of a TH23 gate, with inputs A; B; and C;
and output Z: Sobelman and Fant [23] detail various design implementations (static, semi-static,
and dynamic) of THmn gates.
Another type of threshold gate is referred to as a weighted threshold gate, denoted as

THmnWw1w2ywR: Weighted threshold gates have an integer value, mXwR > 1; applied to
inputR. Here 1pRon; where n is the number of inputs; m is the gate’s threshold; and
w1;w2;ywR; each >1, are the integer weights of input1, input2,yinputR, respectively. For
example, consider a TH34W2 gate, whose n ¼ 4 inputs are labeled A;B;C; and D: The weight of
input A; W ðAÞ; is therefore 2. Since the gate’s threshold, m; is 3, this implies that in order for the
output to be asserted, either inputs B; C; and D must all be asserted, or input A must be asserted
and any other input, B; C; or D must also be asserted.
Inputs are partitioned into two separate wavefronts, the NULL wavefront and the DATA

wavefront. The NULL wavefront consists of all inputs to a circuit being NULL, while the DATA
wavefront refers to all inputs being DATA, some combination of DATA0 and DATA1. Initially
all circuit elements are reset to the NULL state. First, a DATA wavefront is presented to the
circuit. Once all of the outputs of the circuit transition to DATA, the NULL wavefront is
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presented to the circuit. Once all of the outputs of the circuit transition to NULL, the next DATA
wavefront is presented to the circuit. This DATA/NULL cycle continues repeatedly. As soon as
all outputs of the circuit are DATA, the circuit’s result is valid. The NULL wavefront then
transitions all of these DATA outputs back to NULL. When they transition back to DATA
again, the next output is available. This period is referred to as the DATA-to-DATA cycle time,
denoted as TDD and has an analogous role to the clock period in a synchronous circuit.
The input-completeness criterion [1], which NCL circuits must maintain in order to be self-

timed, requires that:

1. the outputs of a circuit may not transition from NULL to DATA until all inputs have
transitioned from NULL to DATA, and

2. the outputs of a circuit may not transition from DATA to NULL until all inputs have
transitioned from DATA to NULL.

In circuits with multiple outputs, it is acceptable for some of the outputs to transition without
having a complete input set present, as long as all outputs cannot transition before all inputs
arrive. This signaling scheme is equivalent to the ‘‘weak conditions’’ of delay-insensitive signaling
defined by Seitz [2]. Consider the input-incomplete NCL AND function shown in Fig. 3. The
output can change from NULL to DATA0 without both inputs first transitioning to DATA. For
instance, if A=DATA0 and B=NULL then Z=DATA0, which breaks the completeness of input
criterion. Fig. 4 shows an input-complete NCL AND function since the output cannot transition
until both inputs have transitioned. Completeness of DATA can be ensured for an N input
function as shown in Algorithm 1.
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Algorithm 1. Input-completeness pseudocode.

for (i ¼ 1 to N) loop
INPUTi=NULL
group INPUTSj (1pjpN; jai) such that they form an N � 1 bit word called REMAINDER
for (k ¼ 0 to 2N�1 � 1) loop

REMAINDER=k

if (all output bits are DATA) then
return (INCOMPLETE)

end loop
end loop
return (COMPLETE)

If a function is complete with respect to DATA, it is also complete with respect to NULL due to
the hysteresis functionality of every NCL gate. This completeness check takes O(N � 2N�1);
however, this is unnecessary for many functions due to their inherent input-completeness. For
example, the XOR function, the full adder, and the increment circuitry, all are inherently complete
such that it is impossible to know the output without all of the inputs being known.
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There is one more condition that must be met in order for NCL to retain its self-timed nature.
No orphans may propagate through a gate within a basic component. An orphan is defined as a
wire that transitions during the current DATA wavefront, but is not used in the determination of
the output. Orphans are caused by wire forks and can be neglected through the isochronic fork
assumption [3,4], as long as they are not allowed to cross a gate boundary. This observability
condition ensures that every gate transition is observable at the output. Consider an incorrect
version of an XOR function shown in Fig. 5, where an orphan is allowed to pass through the
TH12 gate. For instance, when X=DATA0 and Y=DATA0, the TH12 gate is asserted, but does
not take part in the determination of the output, Z=DATA0. This orphan path is shown in
boldface in Fig. 5. A correct, fully observable version of the XOR function is shown in Fig. 6,
where no orphans propagate through any gate. Whereas previous work on optimization of
circuits constructed from logical operators has concentrated on transistor-sizing [24] and
decomposition of high fan-in operators [25], this paper will emphasize composable circuit
construction utilizing a predefined set of complex state-holding gates.

1.3. Paper outline

This paper is organized into six sections. In Section 2, the Threshold Combinational Reduction

(TCR) method for optimizing combinational NCL circuits is developed. The method
is demonstrated in Sections 3–5. Section 3 presents optimal input-complete AND/NAND,

ARTICLE IN PRESS

2

X0

X1

Y0

Y1

1 3 Z1

2 Z0

Fig. 5. Unobservable XOR function: Z ¼ X"Y (orphans may propagate through a gate).

2

X0

X1

Y0

Y1

2 2 Z1

2 Z0

Fig. 6. Observable XOR function: Z ¼ X"Y (orphans may not propagate through any gate).

S.C. Smith et al. / INTEGRATION, the VLSI journal 37 (2004) 135–165 141



OR/NOR, and XOR/NXOR logic functions, designed using TCR. Section 4 applies TCR to
produce a self-timed Full Adder that significantly reduces critical path delay and transistor count
over previous gate-level self-timed approaches. Section 5 illustrates the use of TCR to derive a
variety of time, space, and power optimized NCL increment circuitries for an up-counter with a
feedback circuit. Section 6 provides conclusions and outlines directions for future work.

2. TCR method definition

As depicted in Fig. 7, the design process begins with a specification of the circuit functional
behavior and desired optimization criteria. Circuit behavior is specified as Boolean logic
expressions, truth tables, and/or narrative descriptions. The optimization criteria include
parameters such as critical path delay, area, or power consumption, that are to be minimized
in the target design. Several alternate designs are generated which are then assessed against the
optimization criteria, allowing for the preferred design to be selected for implementation. The
TCR method is currently in the process of being automated through incorporation into the
Mentor Graphics design tool suite.
First, a logic encoding scheme is selected such as dual-rail, quad-rail, or other MEAG

representations, as depicted in Fig. 7. Typically either dual-rail or quad-rail is chosen since these
encodings yield the minimum of two wires per bit. If a dual-rail encoding is used, the next step is
to select the optimization space in which minimization will be performed. The proposed TCR
design methods have been numbered ‘‘1’’, ‘‘2’’, and ‘‘3’’, each with design steps labeled ‘‘A’’, ‘‘B’’,
or ‘‘C’’, appropriately.

2.1. Method 1: input-incomplete functions

As depicted in Fig. 7, Method 1 corresponds to Boolean optimization. Maximal use of input-
incomplete NCL logic functions generates the individual outputs, while maintaining the
completeness of input criterion for the circuit as a whole. For example, gates in Boolean designs
that target the basic logical operators (AND, OR, XOR, NAND, NOR, NXOR, NOT) are
directly mapped to an NCL design by using as many input-incomplete NCL functions as possible.
As described in Step 1A of Fig. 7, each Boolean gate is replaced with its NCL equivalent function,
using input-incomplete versions whenever possible. Step 1B ensures input-completeness for the
circuit as a whole by employing input-complete functions only for selected gates in the data path,
so that the computation of an entire output set implies that the complete input set has arrived.

2.2. Method 2: dual-rail optimizations

Method 2 is based on dual-rail optimization. In Step 2A, the NCL circuit is optimized by using
reduced sum-of-product (SOP) expressions for both rails of the output. These expressions are then
mapped to TH1n and THnn gates. As in Boolean circuits, a Karnaugh map can be constructed for
each output. The 0s in the Karnaugh map refer to a signal’s rail0 line and the 1s refer to a signal’s
rail1 line. Reduced SOP expressions for both the 1s and 0s in the Karnaugh map are derived. After
these expressions for the outputs have been obtained, an assessment must be made to ensure that
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the complete output set cannot be generated without all of the inputs being present. If under
any timing scenario, a complete output set can be generated without all of the inputs being
present, the missing logic terms must be added to the reduced expressions to guarantee that
the completeness of input criterion holds. This method will always generate two-level logic,
given that threshold gates with a sufficiently large number of inputs are available. The first level
will consist of THnn gates, to produce the required product terms; and the second level will
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consist of TH1n gates, which act to OR the product terms together to produce the desired
outputs. Step 2A is similar to Anantharaman’s approach [7] and DIMS [9]. In Step 2B, the
common sub-expressions are factored and consolidated to reduce the gate count. Finally, the
factored expressions for each rail are manipulated in Step 2C to obtain equations of the forms
contained in Table 1. The observability criterion must be ensured for every circuit output from
Steps 2A, 2B, and 2C.
Table 1 lists the 27 transistor networks, along with their corresponding Boolean equations, used

to construct NCL circuits. These 27 transistor networks, implemented as macros, constitute the
set of all functions consisting of four or fewer variables. Since each rail of an NCL signal is
considered a separate variable, a four variable function is not the same as a function of four
literals, which would normally consist of eight variables. Twenty-four of these macros can be
realized using complex threshold gates, identical to the standard threshold gate forms for
functions of four or fewer variables [26–28]. The other three macros could be constructed from
threshold gate networks, but have been implemented as transistor networks to reduce area and
delay. Table 1 also contains the transistor count for these 27 macros.
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Table 1

27 NCL macros

NCL macro Boolean function Transistor count

TH12 A+B 6

TH22 AB 12

TH13 A+B+C 8

TH23 AB+AC+BC 18

TH33 ABC 16

TH23w2 A+BC 14

TH33w2 AB+AC 14

TH14 A+B+C+D 10

TH24 AB+AC+AD+BC+BD+CD 26

TH34 ABC+ABD+ACD+BCD 24

TH44 ABCD 20

TH24w2 A+BC+BD+CD 20

TH34w2 AB+AC+AD+BCD 22

TH44w2 ABC+ABD+ACD 23

TH34w3 A+BCD 18

TH44w3 AB+AC+AD 16

TH24w22 A+B+CD 16

TH34w22 AB+AC+AD+BC+BD 22

TH44w22 AB+ACD+BCD 22

TH54w22 ABC+ABD 18

TH34w32 A+BC+BD 17

TH54w32 AB+ACD 20

TH44w322 AB+AC+AD+BC 20

TH54w322 AB+AC+BCD 21

THxor0 AB+CD 20

THand0 AB+BC+AD 19

TH24comp AC+BC+AD+BD 18

S.C. Smith et al. / INTEGRATION, the VLSI journal 37 (2004) 135–165144



2.3. Method 3: quad-rail optimizations

For some circuits, it may be advantageous to use quad-rail optimization, referred to as Method
3 in Fig. 7. Two dual-rail signals yield the same five logic states as one quad-rail signal, however
using quad-rail logic signals may lead to a more efficient design. Quad-rail optimization follows
the same steps as does dual-rail optimization. In Step 3A, the NCL circuit is optimized by using
reduced SOP expressions for all four rails of the output. These expressions are then mapped to
TH1n and THnn gates. As in dual-rail optimization, a Karnaugh map can be constructed for each
output, but instead of only 0s and 1s, corresponding to a signal’s rail0 and rail1, respectively, the
K-map also contains 2s and 3s, which correspond to a signal’s rail2 and rail3, respectively.
Reduced SOP expressions for the 0s, 1s, 2s, and 3s in the Karnaugh map are derived. After these
expressions for the outputs have been obtained, an assessment must be made to ensure that the
complete output set cannot be generated without all of the inputs being present. If under any
timing scenario, a complete output set can be generated without all of the inputs being present, the
missing logic terms must be added to the reduced expressions to guarantee that the completeness
of input criterion holds. This method will always generate two-level logic, given that threshold
gates with a sufficiently large number of inputs are available. The first level will consist of THnn
gates, to produce the required product terms; and the second level will consist of TH1n gates,
which act to OR the product terms together to produce the desired outputs. In Step 3B, the
common sub-expressions are factored and consolidated to reduce the gate count. Finally, the
factored expressions for each rail are manipulated in Step 3C to obtain equations of the forms
contained in Table 1. The observability criterion must be ensured for every circuit output from
Steps 3A, 3B, and 3C.

2.4. Performance assessment

To assess the performance of alternate designs, Mentor Graphics’ ModelSim tool was used to
simulate VHDL implementations of the circuits to generate their timing characteristics and
Mentor Graphics’ AccuSim tool was used to calculate each circuit’s power dissipation. All NCL
circuits presented herein have been exhaustively tested and their average cycle time, TDD; has been
reported. Furthermore, to highlight TCR’s effect on power dissipation, the average power per
operation, PDD; was calculated for the best dual-rail, quad-rail, and MEAG counter designs. The
technology library for the 27 macros is based on Spice simulations of static 0.5mm CMOS gates,
operating at 3.3V. Along with TDD and PDD; the number of gates and transistors has also been
tabulated for comparison for each test circuit, as shown in Sections 3, 4 and 5.5. The design that
best meets the desired criteria can then be selected for implementation.

3. Application to input-complete basic logic functions

Several optimizations can be used to generate designs that are very competitive in terms of
speed and area as compared to other self-timed approaches. For example, Figs. 4, 8 and 9 show
the conventional implementations of the logic functions: AND, OR, and XOR, respectively. Each
of these may be obtained directly from their canonical form. Method 2 is readily applicable.

ARTICLE IN PRESS

S.C. Smith et al. / INTEGRATION, the VLSI journal 37 (2004) 135–165 145



Dual-Rail Encoding Optimization achieves significant reduction in both area and speed. TCR
Step 2C can be applied directly from the canonical form to reduce the circuit complexity and
improve performance. Specifically, consider the objective of realizing an optimized input-complete
2-input OR function: Z ¼ X þ Y : The canonical expression for Z0 is given by: Z0 ¼ X 0Y 0; which
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directly maps to a TH22 gate in Table 1. The canonical expression for Z1 is given by: Z1 ¼
X 1Y 1 þ X 0Y 1 þ X 1Y 0; which directly maps to a THand0 gate. Similarly, an optimized input-
complete 2-input AND function: Z ¼ X � Y can be realized. The canonical expression for Z0 is
given by: Z0 ¼ X 0Y 0 þ X 0Y 1 þ X 1Y 0; which directly maps to a THand0 gate. The canonical
expression for Z1 is given by: Z1 ¼ X 1 � Y 1; which directly maps to a TH22 gate. The derivation
of an optimized 2-input XOR function: Z ¼ X"Y is a bit more complex. The canonical
expression for Z0 is given by: Z0 ¼ X 0Y 0 þ X 1Y 1; which directly maps to a THxor0 gate. The
canonical expression for Z1 is given by: Z1 ¼ X 1Y 0 þ X 0Y 1; which also directly maps to a
THxor0 gate. However, two transistors can be eliminated for each rail of Z by adding the two
don’t care terms, representing the cases when both rails of either X or Y are simultaneously
asserted. The new equations for Z0 and Z1 are as follows: Z0 ¼ X 0Y 0 þ X 1Y 1 þ X 0X 1 þ Y 0Y 1

and Z1 ¼ X 1Y 0 þ X 0Y 1 þ X 0X 1 þ Y 0Y 1; both of which now map to TH24comp gates.
As shown in Table 2, the AND, OR, and XOR functions produced using TCR outperform the

conventional canonical designs in terms of both area and throughput. In particular, the TCR
optimized AND and OR functions are 2.2-fold faster and require 45% fewer transistors than the
conventional canonical designs. Furthermore, the optimized XOR function is 2.3-fold faster and
requires 40% fewer transistors than the conventional canonical design. The inverse logic
functions, NAND, NOR, and NXOR, can easily be attained by exchanging the output rails of the
AND, OR, and XOR functions, respectively.

4. Application to full adder

The truth table for a full adder circuit is shown in Fig. 10, where X and Y denote the input
addends and Ci denotes the carry input. S and Co denote the sum and carry outputs, respectively.
This circuit can be extensively optimized using TCR Method 2. Applying TCR Step 2A, the K-
map for the Co output is obtained as shown in Fig. 11, yielding: C0

o ¼ X 0Y 0 þ C0
i X 0 þ C0

i Y 0 and
C1

o ¼ X 1Y 1 þ C1
i X 1 þ C1

i Y 1: Both functions directly map to a TH23 gate, so factoring in Step 2B
is not necessary. Since a TH23 gate does not produce an output which is complete with respect to
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Table 2

Performance characteristics of input-complete NCL logic functions

Component list Gate delays Gate count Transistor count TDD (ns)

Complete AND

Conventional 4�TH22, 1�TH13 2 5 56 1.58

TCR Method 2 1�THand0, 1�TH22 1 2 31 0.71

Complete OR

Conventional 4�TH22, 1�TH13 2 5 56 1.58

TCR Method 2 1�THand0, 1�TH22 1 2 31 0.71

XOR

Conventional 4�TH22, 2�TH12 2 6 60 1.70

TCR Method 2 2�TH24comp 1 2 36 0.75
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any of its inputs, there must be another output or set of outputs that enforce the completeness of
input criterion. As explained below, the sum output, S; will enforce the completeness of input
criterion for the circuit as a whole, thus allowing the carry output to be input-incomplete.
The K-map for S; based on X ;Y ;Ci; and the intermediate output Co; is shown in Fig. 12, with

essential prime implicants covered. This covering yields: S0 ¼ C1
oX 0 þ C1

oY 0 þ C1
oC0

i þ X 0Y 0C0
i

and S1 ¼ C0
oX 1 þ C0

oY 1 þ C0
oC1

i þ X 1Y 1C1
i ; both of which directly map to TH34W2 gates, so

factoring in Step 2B is not necessary. Co is taken as the A input such that W ðCoÞ ¼ 2; as shown in
Fig. 13. Checking input-completeness, the carry output requires at least two inputs to be
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Fig. 10. Truth table for full adder.
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generated and the sum output requires either the carry output and one more input, or all three
inputs to be generated; so all three inputs are needed to generate the sum output. Therefore, the
completeness of input criterion holds for the circuit as a whole.
As shown in Table 3, the NCL design of the full adder produced using TCR optimizations can

outperform those of other self-timed methods, such as Anantharaman’s and DIMS, Seitz’s,
David’s, and Singh’s approaches, shown in Figs. 14–17, respectively. Here n-input C-elements are
drawn as THnn gates since their functionality is identical. The NCL design has far fewer gates and
transistors, while requiring fewer logic levels to produce the carry output, Co: NCL also requires
fewer logic levels to produce the sum output, S; than three of the five other methods, and has the
same number of logic levels for S as the other two. Notice that the NCL full adder uses the carry
output as an input to compute the sum output, whereas the other methods compute the sum and
carry outputs independently. This is because for the other methods it is not practical to use the
carry output to help generate the sum output. For the other methods the carry output is generated
in the same number of logic levels, or more, as the sum output. Therefore, to use the carry output
as an input for calculating the sum output would require more logic levels, as well as more gates.
Besides NCL, only Seitz’s full adder can be designed such that Co can be computed before the Ci
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Fig. 13. Optimized NCL full adder [1].

Table 3

Full adder using various self-timed methodologies

Method Design level Gate delays for Co Gate delays for S Gate count Transistor count

Seitz [2] Gate 2 3 18 154

Anantharaman [7] Gate 2 2 12 168

DIMS [9] Gate 2 2 12 168

David [6] Gate 3 3 20 186

Singh [8] Gate 6 4 19 192

TCR (Method 2) Gate 1 2 4 80

Martin [29] Transistor 1 1 3 42 or 34

S.C. Smith et al. / INTEGRATION, the VLSI journal 37 (2004) 135–165 149



input is known for the cases A=DATA0, B=DATA0 and A=DATA1, B=DATA1. This
optimization is important if the full adder component is to be used to construct an N-bit ripple-
carry adder; since it allows the addition to be performed in O(Log2N) on average instead of OðNÞ:
This optimization could be applied to DIMS, Anantharaman’s approach, and David’s method, if
their signaling scheme was slightly changed such that it coincided with the ‘‘weak conditions’’ of
delay-insensitive signaling defined by Seitz [2] and used by NCL.
NCL circuits are often able to outperform other self-timed methods since NCL targets a wider

range of logical operators whereas other methods target a more standard, restricted set. However,
the full adder can be further optimized by design methods at the transistor level as demonstrated
by Martin [29]. His full adder requires three complex transistor networks: the first computes
both rails of the sum output, while the second and third each compute one rail of the carry output.
The resulting design consists of only 42 transistors, when the input and output inverters are
included, or 34 transistors otherwise. However, this method is not directly comparable to the
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other above-mentioned methods since it optimizes designs at the transistor level instead of
targeting a predefined set of gates.
As for general-purpose methods, DIMS, Seitz’s method, and Anantharaman’s approach

require functions in canonical form, so that no simplification is possible. DIMS and
Anantharaman’s approach cannot outperform NCL, and at best will be identical only if the
NCL design cannot be simplified beyond its canonical form. Seitz’s approach can outperform
NCL in terms of area, but not speed, for a limited class of circuits. These include functions with 4
or more inputs, with one or few outputs, that contain almost all 1s or 0s in their truth table. These
are the types of circuits that will receive little benefit from TCR optimizations. David’s and
Singh’s approaches also favor these same classes of functions, and typically produce more efficient
circuits than those obtainable by Seitz’s approach. Singh’s approach will require less area, but
more delay than TCR for these types of functions, whereas David’s approach will provide the
same speed with significantly less area. For example, consider the function: f ða; b; c; dÞ ¼ ab0cd 0

[6]. Table 4 shows that Seitz’s, David’s, and Singh’s circuits are all better than those obtainable by
TCR, in terms of area for this function and that Anantharaman’s approach is the same. However,
only David’s approach outperforms TCR in both area and speed. David’s approach is better
because this function, and others like it, cannot be simplified beyond their canonical form in NCL
to ensure input-completeness, so no simplification is possible by TCR methods.
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5. Application to up-counter

A number of experiments based on the 4-bit counter shown in Fig. 18 have been conducted. The
specifications for this counter included a full NCL interface with request and acknowledge signals
labeled Ki and Ko; respectively. Functionality was specified to reset count to 00002 when the reset

signal is applied, to increment count by 1 when inc=1, and to keep count the same when inc=0.
The counter will rollover to 00002 when count=11112 and inc=1.
The functional design of the 4-bit counter, shown in Fig. 19, will be the same for all counter

models considered herein. However, the Increment Circuitry will differ based on the particular
TCR optimization method that is used. Fig. 19 shows that there are three NCL registers to
feedback the current count to the increment circuitry. These Registration Stages act to control the
DATA/NULL wavefronts, through their request line, Ki; and their acknowledge line, Ko: The
completion logic (COMP) detects complete DATA and NULL sets, where all outputs are DATA
or all outputs or NULL, respectively, at the output of NCL registration. Three registers are used
to prevent handshaking lockup scenarios [1]. This technique of organizing registers into a ring is
fully discussed in [9,30].
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Table 4

Self-timed method comparison for f ða; b; c; dÞ ¼ ab0cd 0

Method Gate delays Gate count Transistor count

Seitz [2] 4 25 250

Anantharaman [7] 3 21 368

DIMS [9] 3 21 368

David [6] 3 9 88

Singh [8] 4 15 168

NCL 3 21 368

4-bit Counter
Count (3:0)

Ki

Inc

Ko

Reset

Fig. 18. A 4-bit up-counter block diagram.
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5.1. Method 1: input-incomplete functions

This technique was applied to the optimized Boolean increment circuitry of the 4-bit counter
shown in Fig. 20, which is based on a carry look-ahead adder. The Boolean XOR gates were
replaced with the XOR function described in Section 3, and the Boolean AND gates were replaced
with input-incomplete versions of the AND function shown in Fig. 3. The resulting logic diagram
is depicted in Fig. 21. The completeness of input criterion for the circuit as a whole is satisfied
since all of the inputs are needed to produce a complete output set, due to the inherent
completeness of input of an XOR function. This model has a worse-case path delay of two NCL
gates in the increment circuitry. It consists of 14 NCL gates and TDD was determined to be 4.81 ns
via simulation in the Mentor Graphics toolset.
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5.2. Method 2: dual-rail encoding optimizations

The resulting logic diagram after deriving reduced SOP expressions from Step 2A is shown in
Fig. 22. This model has a theoretical worse-case path delay of 2 threshold gates in the increment
circuitry. However, TH15 and TH55 gates are not supported in the 27 NCL macros, since they
require 5 inputs. Therefore, the TH15 gate was realized by connecting a TH14 gate in series with a
TH12 gate. However, this technique could not be applied to the TH55 gate, since this
decomposition would violate the observablity criterion. Instead the two TH55 gates were
decomposed into one TH44 gate and two TH22 gates, in order to maintain observability of every
gate transition at the output. This decomposition is valid since every transition of the TH44 gate
will result in exactly one of the two TH22 gates also transitioning. The decompositions caused the
worse-case path delay to be three NCL gates, instead of two. The reduced SOP model consists of
39 gates, but only 36 gates are necessary if TH55 and TH15 gates are used. From Synopsys
simulation, TDD was determined to be 5.34 ns.
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To further reduce the gate count, the expressions for S1;S2; and S3 can be factored using Step
2B. This factoring increases the worse-case path delay from two NCL gates to three NCL gates.
Since constructing TH55 and TH15 gates for the reduced SOP model from smaller gates caused a
worse-case path delay of 3 threshold gates, factoring did not increase the depth of the critical path.
The logic diagram for the increment circuitry factored form is shown in Fig. 23. The factored SOP
model consists of 28 gates, but only 27 gates are necessary if TH55 gates are used. From Mentor
Graphics simulation, TDD was determined to be 5.28 ns.
Step 2C maps the factored expressions to the full 27 macros in Table 1, reducing both the

number of gates and the number of logic levels. Note that the expressions for S0;S2; and S3 can be
mapped to TH24comp gates by adding two don’t care terms as for the XOR function explained in
Section 3. The logic diagram for the increment circuitry using complex gates is shown in Fig. 24. It
has a worse-case path delay of two NCL gates in the increment circuitry. The complex dual-rail
model consists of 13 gates, and from Mentor Graphics simulation TDD was determined to be
4.81 ns and PDD was calculated as 14.44 mW.
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5.3. Method 3: quad-rail encoding optimizations

Quad-rail optimizations proceed in a similar fashion to dual-rail optimizations. In Step 3A, the NCL
circuit is optimized by using reduced SOP expressions for all four rails of both outputs, S0 and S1; the
low order two bits and the high order two bits, respectively, derived from the Karnaugh map shown in
Fig. 25. Note that not all of the coverings that eliminate Inc are shown, so as not to clutter the drawing.
The reduced SOP expressions derived from these K-maps are as follows: S0

0 ¼ Inc0X 0
0 þ Inc1X 3

0 ;
S1
0 ¼ Inc0X 1

0 þ Inc1X 0
0 ; S2

0 ¼ Inc0X 2
0 þ Inc1X 1

0 ; S3
0 ¼ Inc0X 3

0 þ Inc1X 2
0 ; S0

1 ¼ Inc0X 0
1 þ X 0

0 X 0
1 þ

X 1
0 X 0

1 þ X 2
0 X 0

1 þ Inc1X 3
0 X 3

1 ; S1
1 ¼ Inc0X 1

1 þ X 0
0 X 1

1 þ X 1
0 X 1

1 þ X 2
0 X 1

1 þ Inc1X 3
0 X 0

1 ; S2
1 ¼ Inc0X 2

1 þ
X 0

0 X 2
1 þ X 1

0 X 2
1 þ X 2

0 X 2
1 þ Inc1X 3

0 X 1
1 ; S3

1 ¼ Inc0X 3
1 þ X 0

0 X 3
1 þ X 1

0 X 3
1 þ X 2

0 X 3
1 þ Inc1X 3

0 X 2
1 : These

equations can now be directly mapped to TH1n and THnn gates to produce the reduced SOP model.
This model has a theoretical worse-case path delay of two NCL gates in the increment circuitry.
However, TH15 gates are not supported in the 27 NCL macros, since they require 5 inputs. Therefore,
the actual worse-case path delay is three NCL gates. The reduced SOP model consists of 40 gates, but
only 36 gates are necessary if TH15 gates are used. From Mentor Graphics simulation, TDD was
determined to be 5.59ns. A logic diagram of this model has not been included in order to conserve
space.
To further reduce the gate count, the expressions for S1 can be factored using Step 3B. This

factoring increases the worse-case path delay from two NCL gates to three NCL gates. Since
constructing TH15 gates for the reduced SOP model from smaller gates caused a worse-case path
delay of 3 gates, factoring did not increase the depth of the critical path. The factored equations
for S1 are as follows: S0

1 ¼ X 0
1 ðInc0 þ X 0

0 þ X 1
0 þ X 2

0 Þ þ Inc1X 3
0 X 3

1 ; S1
1 ¼ X 1

1 ðInc0 þ X 0
0 þ X 1

0 þ
X 2

0 Þ þ Inc1X 3
0 X 0

1 ; S2
1 ¼ X 2

1 ðInc0 þ X 0
0 þ X 1

0 þ X 2
0 Þ þ Inc1X 3

0 X 1
1 ; S3

1 ¼ X 3
1 ðInc0 þ X 0

0 þ X 1
0 þ X 2

0 Þ þ
Inc1X 3

0 X 2
1 : The factored SOP model reduced the gate count to only 25 gates, and from Mentor

Graphics simulation, TDD was determined to be 5.57 ns. A logic diagram of this model has not
been included in order to conserve space.
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Step 3C maps the factored expressions to the full 27 macros in Table 1, reducing both the
number of gates and the number of logic levels. Note that the expressions for S0 and S1 can be
mapped to TH24comp gates by adding two don’t care terms as for the XOR function explained in
Section 3. The logic diagram for the increment circuitry using complex gates is shown in Fig. 26. It
has a worse case path delay of two NCL gates in the increment circuitry. The complex quad-rail
model consists of 10 gates and from Mentor Graphics simulation TDD was determined to be
5.47 ns and PDD was calculated as 9.30mW.

5.4. MEAG implementation

For comparison purposes a 16-rail MEAG implementation of the increment circuitry
was also designed, as shown in Fig. 27. Other MEAG optimization follows the same steps as
does quad-rail optimization, where the Karnaugh map(s) contain numbers in the range of
0 to N � 1; for an N-rail MEAG, yielding reduced SOP expressions for each rail, which can
then be factored, and finally mapped to the 27 NCL macros in Table 1. This design has a worse-
case path delay of one NCL gate in the increment circuitry; it consists of 16 gates; and from
Mentor Graphics simulation TDD was determined to be 8.77 ns and PDD was calculated as
5.37mW.
Since this increment circuitry has a worse-case delay of one gate, while both the dual- and

quad-rail versions require two gate delays, it would seem that the 16-rail MEAG counter
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should be faster. However, this is not the case because the 16-rail registers used in the feedback
loop require two gate delays to generate Ko; whereas both the dual- and quad-rail registers
only require one gate delay for Ko generation. Thus the larger register delay outweighs the
decreased increment circuitry delay, resulting in a greater average cycle time for the 16-rail
MEAG counter.
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5.5. Up-counter performance summary

Table 5 lists the timing and gate counts for each of the eight counter models. The theoretical
gate count is the number of gates that would be required if TH55 and/or TH15 gates were
used. Since these gates are not part of the 27 NCL macros, they have been constructed from
existing gates, as discussed in Section 5.2, to yield the actual gate count. Table 5 indicates that the
factored forms of both the dual- and quad-rail circuits yield fewer gates and transistors, as
well as smaller cycle times, compared to their original reduced SOP forms. However, the complex
gate models yield the best time and space performance for Methods 2 and 3, as expected. The
optimal design in terms of speed is generated from both Methods 1 and 2C, although the design
from Method 2C is preferred since it contains fewer gates and transistors. This design is 14% and
82% faster than the area- and power-optimized designs, respectively. The most area efficient
design is generated from Method 3C, requiring 22% and 42% fewer transistors than the speed-
and power-optimized designs, respectively. The 16-rail MEAG counter optimizes power
consumption, dissipating 63% and 42% less power than the speed- and area-optimized designs,
respectively.

6. Conclusion

When functions do not require canonical form for input-completeness, TCR can produce self-
timed circuits that require less area and fewer logic levels than alternative gate-level approaches.
TCR is applicable when composing logic functions where each gate is a state-holding element. The
TCR method combines techniques such as input-incomplete functions, dual-rail, quad-rail, and
other MEAG encodings, reduced SOP expressions, and factored SOP expressions for reducing
gate count. It then employs a mapping of the factored SOP equations to a set of 27 macros, which
constitute the set of all functions consisting of four or fewer variables. The TCR method has been
used to successfully design various delay-insensitive MACs [31], multipliers [32], and ALUs [33].
The results can also be extended to a gate-level pipelining strategy for circuits composed of state-
holding elements to maximize throughput of combinational circuits produced by TCR methods as
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Table 5

Alternate designs for NCL up-counter increment circuit

Model type Theoretical gate count Actual gate count Transistor count TDD (ns) PDD (mW)

(1) Incomplete AND 14 14 216 4.81

(2a) Reduced dual-rail 36 39 460 5.34

(2b) Factored dual-rail 27 28 308 5.28

(2c) Complex dual-rail 13 13 212 4.81 14.44

(3a) Reduced quad-rail 36 40 440 5.59

(3b) Factored quad-rail 25 25 266 5.57

(3c) Complex quad-rail 10 10 166 5.47 9.30

16-rail MEAG 16 16 288 8.77 5.37
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described in [34]. Furthermore, throughput of NCL circuits can be increased by applying the
NULL Cycle Reduction technique to reduce the NULL cycle time without compromising delay-
insensitivity [35].
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