
 

 
1

NULL Convention Multiply and Accumulate Unit  
with Conditional Rounding, Scaling, and Saturation 

 
S. C. Smith R. F. DeMara and J. S. Yuan 
University of Missouri � Rolla School of Electrical Engineering and Computer Science 
Department of Electrical and Computer Engineering Box 162450 
123 Emerson Electric Co. Hall University of Central Florida 
1870 Miner Circle Orlando, FL 32816-2450 
Rolla, MO 65409 Phone: (407) 823-5916 
Phone: (573) 341-4232 Fax: (407) 823-5385 
Fax: (573) 341-4532 E-mail: demara@mail.ucf.edu 
E-mail: smithsco@umr.edu      

 M. Hagedorn and D. Ferguson 
       Theseus Logic, Inc. 
       485 North Keller Road, Suite 140 
       Maitland, FL 32751 
       Phone: (407) 551-4697 
       Fax: (407) 551-4705 
       E-mail: dferguson@theseus.com 
 
KEYWORDS: Asynchronous circuit design, multiply and accumulate unit,  

Array multiplication, Modified Baugh-Wooley Algorithm, Booth�s Algorithm, 
gate-level pipelining, NULL Convention Logic. 

 
Abstract 

 Approaches for maximizing throughput of self-timed multiply-accumulate units (MACs) 

are developed and assessed using the NULL Convention Logic (NCL) paradigm. In this class of 

self-timed circuits, the functional correctness is independent of any delays in circuit elements, 

through circuit construction, and independent of any wire delays, through the isochronic fork 

assumption [1, 2], where wire delays are assumed to be much less than gate delays. Therefore 

self-timed circuits provide distinct advantages for System-on-a-Chip applications.  

First, a number of alternative MAC algorithms are compared and contrasted in terms of 

throughput and area to determine which approach will yield the maximum throughput with the 

least area. It was determined that two algorithms that meet these criteria well are the Modified 

Baugh-Wooley and Modified Booth2 algorithms. Dual-rail non-pipelined versions of these 

algorithms were first designed using the Threshold Combinational Reduction (TCR) method [3]. 

The non-pipelined designs were then optimized for throughput using the Gate-Level Pipelining 

(GLP) method [4]. Finally, each design was simulated using Synopsys to quantify the advantage 

of the dual-rail pipelined Modified Baugh-Wooley MAC, which yielded a speedup of 2.5 over its 

initial non-pipelined version. This design also required 20% fewer gates than the dual-rail 
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pipelined Modified Booth2 MAC that had the same throughput. The resulting design employs a 

three-stage feed-forward multiply pipeline connected to a four-stage feedback multifunctional 

loop to perform a 72+32×32 MAC in 12.7 ns on average using a 0.25 µm CMOS process at  

3.3 V, thus outperforming other delay-insensitive/self-timed MACs in the literature. 

 

1.0 Introduction 

 This paper evaluates a number of both bitwise and digitwise multiplication algorithms 

suitable for self-timed MAC design. The bitwise algorithms include Array multiplication [5] and 

multiplication using the Modified Baugh-Wooley algorithm [5]. Digitwise algorithms include 

Modified Booth multiplication [5] as well as combinational N-Bit × M-Bit multiplication. These 

algorithms are compared in terms of throughput and area to first maximize steady-state 

throughput, where inputs/outputs are being supplied/consumed as fast as requested, and then 

minimize total gate count within the NCL multi-rail paradigm, outlined in Section 1.1. This 

article considers 2s-complement operands with rounding, scaling, and saturation of the output. 

 

1.1 Overview  

 Self-timed designs of multipliers and Multiply-Accumulate units (MACs) have been of 

recent interest in the literature [6, 7, 8]. In this paper the objective of end-to-end pipeline 

optimization of MACs with large word widths is addressed. Currently, one of the more mature 

self-timed logic design paradigms that readily supports pipelining optimizations is NULL 

Convention Logic (NCL) [4]. Other self-timed approaches include Seitz�s method [9], 

Anantharaman�s approach [10], Singh�s method [11], David�s approach [12], and Delay-

Insensitive-Minterm-Synthesis (DIMS) [13]. By being self-timed, designs of these paradigms 

operate without global clock signals such that their functions produce outputs only when all input 

operands are present. Thus, this class of self-timed design implemented in CMOS technology 

offers reduced power consumption and noise margin compared to corresponding clocked 

Boolean designs. The potential for improved power characteristics has motivated recent interest 

in self-timed designs for applications in mobile electronics involving MACs. 

 The NCL self-timed design approach considered here follows the so-called �weak 

conditions� of Seitz�s delay-insensitive signaling scheme [9] and includes an assumption that 
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forks in wires are isochronic [1, 2]. NCL threshold gates are a special case of the logical 

operators, or gates, available in digital VLSI circuit design [14]. One type of NCL threshold gate, 

the THmn gate, has N inputs, 1 output, and a threshold value, M ≤ N. The output becomes 

asserted only when M or more inputs are asserted. Once the output becomes asserted, it does not 

become de-asserted until all inputs are de-asserted. This state-holding functionality is referred to 

as hysteresis. NCL gates are discussed in detail in [3]. 

 A number of NCL-based designs have been commercially developed by Theseus Logic, 

Inc., which has formed strategic alliances with Motorola for microcontroller design and 

Synopsys for NCL-based design tool development. An NCL-version of the 8-bit Motorola Star-8 

microcontroller was fabricated in 2000 and met or exceeded its performance targets [15]. Several 

other NCL-based designs have been completed with Lockheed Sanders for military applications 

while smartcards and other applications are currently under development. 

 

1.2 Previous Work 

 Approaches to self-timed MAC design are an area of recent interest [6, 7, 8]. The 

Modified Baugh-Wooley algorithm, the Array algorithm, and the Modified Booth algorithm for 

multiplication are all described in [5]. The Modified Baugh-Wooley algorithm removes the need 

for negatively weighted bits present in the traditional 2s-complement multiplication algorithm by 

modifying the most significant bit of each partial product and the last row of partial products, 

and by adding two extra bits to the partial product matrix. This allows for summation of the 

partial products without using special adders equipped to handle negative inputs and without 

increasing the height of a tree of 3-input, 2-output carry-save adders. 

 Array multiplication of 2s-complement numbers also begins with each partial product bit 

generated according to the Modified Baugh-Wooley algorithm. Array multiplication�s 

distinguishing characteristic is the technique for partial product summation. In the Modified 

Baugh-Wooley algorithm the partial products are summed using a Wallace tree [5], which reduces 

the number of partial products by a factor of 3
2  after each level of the tree and requires O(log2 N) 

time and O(N) space, where N denotes the number of partial products [16]. On the other hand, 

Array multiplication reduces the number of partial products by one at each level, and therefore 

requires both O(N) time and space [16]. 
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 The Modified Booth algorithms reduce the number of partial products to be summed by 

partitioning the multiplier into groups of overlapping bits, which are then used to select multiples 

of the multiplicand for each partial product. Consider, for example an N-bit by N-bit  

2s-complement multiply. In the Modified Booth2 algorithm the multiplier is partitioned into 

overlapping groups of three bits, each of which selects a partial product from the following list: 

+0, +M, +2M, -2M, -M, and -0, where M represents the multiplicand. This recoding reduces the 

number of partial products from N to  2
2+N . The tradeoff is more logic in the recoding portion of 

the multiplier in exchange for fewer partial products to sum. 

 

1.3 Paper Outline 

  This paper is organized into five sections. An overview of NCL is given in Section 2. In 

Section 3, the non-pipelined and pipelined versions of both the Modified Baugh-Wooley and 

Modified Booth2 MACs are developed; then their throughputs are estimated analytically and 

also through simulation. Section 4 then compares these designs, along with a variety of alternate 

designs, in terms of their gate count. Section 5 provides conclusions and compares the NCL 

MAC developed herein to other delay-insensitive/self-timed MACs. 

 

2.0 Overview of NCL 

2.1 Self-Timed Operation 

NCL uses symbolic completeness of expression [17] to achieve self-timed behavior. A 

symbolically complete expression is defined as an expression that only depends on the 

relationships of the symbols present in the expression without a reference to the time of 

evaluation. Traditional Boolean logic is not symbolically complete; the output of a Boolean gate 

is only valid when referenced with time. For example, assume it takes 1 ns for output Z of an 

AND gate to become valid once its inputs X and Y have arrived. Suppose X = 1, Y = 0, and Z = 0, 

initially. If Y changes to 1, Z will change to 1 after 1 ns; therefore Z is not valid from the time Y 

changes until 1 ns later. Hence, output Z not only depends on the inputs X and Y, but also time 

must be referenced in order to determine the validity of Z. An NCL AND function on the other 

hand only depends on the X and Y inputs and does not reference time. When X and Y are both 

DATA, Z becomes DATA (logic 0 or logic 1), which is a valid output; next when both X and Y 

become NULL (absence of DATA), Z becomes NULL, and the next valid output will occur only 
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after X and Y once again become DATA, causing Z to transition to DATA. Therefore, the 

validity of the output is determined by only considering the output itself. When the output is 

DATA, the output is valid, and when it is NULL, the output must first transition to DATA before 

it is again valid. No time reference is required.  

In particular, dual-rail signals, quad-rail signals, or other Mutually Exclusive Assertion 

Groups (MEAGs) can be used to incorporate data and control information into one mixed signal 

path to eliminate time reference [18], as described below. Time reference refers to the 

propagation delays of the logic components, necessary to determine the output validity in a 

traditional Boolean design. A dual-rail signal, D, consists of two wires, D0 and D1, which may 

assume any value from the set {DATA0, DATA1, NULL}. The DATA0 state (D0 = 1, D1 = 0) 

corresponds to a Boolean logic 0, the DATA1 state (D0 = 0, D1 = 1) corresponds to a Boolean 

logic 1, and the NULL state (D0 = 0, D1 = 0) corresponds to the empty set meaning that the value 

of D is not yet available. The two rails are mutually exclusive, so that both rails can never be 

asserted simultaneously; this state is defined as an illegal state. A quad-rail signal, Q, consists of 

four wires, Q0, Q1, Q2, and Q3, which may assume any value from the set {DATA0, DATA1, 

DATA2, DATA3, NULL}. The DATA0 state (Q0 = 1, Q1 = 0, Q2 = 0, Q3 = 0) corresponds to 

two Boolean logic signals, X and Y, where X = 0 and Y = 0. The DATA1 state (Q0 = 0, Q1 = 1, 

Q2 = 0, Q3 = 0) corresponds to X = 0 and Y = 1. The DATA2 state (Q0 = 0, Q1 = 0, Q2 = 1,  

Q3 = 0) corresponds to X = 1 and Y = 0. The DATA3 state (Q0 = 0, Q1 = 0, Q2 = 0, Q3 = 1) 

corresponds to X = 1 and Y = 1, and the NULL state (Q0 = 0, Q1 = 0, Q2 = 0, Q3 = 0) 

corresponds to the empty set meaning that the result is not yet available. The four rails of a quad-

rail NCL signal are mutually exclusive, so that no two rails can ever be asserted simultaneously; 

these states are defined as illegal states. Both dual-rail and quad-rail signals are space optimal 

delay-insensitive codes, requiring two wires per bit. Other higher order MEAGs are not typically 

wire count optimal, however they can be more power efficient due to the decreased number of 

transitions per cycle. Take for example a four-bit signal. This signal can be represented as four 

dual-rail signals, two quad-rail signals, or one 16-rail MEAG. Since each MEAG requires one 

wire to transition per DATA to NULL transition and NULL to DATA transition, the total 

number of wire transitions required for one complete cycle, DATA to NULL to DATA, is 8 for 

the dual rail design, 4 for the quad-rail design, and only 2 for the 16-rail MEAG. Each wire 

transition requires some power dissipation, therefore higher order MEAGs are more power 
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efficient for data representation; however, the overall power also depends on the combinational 

logic, therefore the use of higher order MEAGs may or may not be more power efficient. 

Logic elements are realized using 27 distinct transistor networks implementing the set of 

all functions of four or fewer variables [3]. Because NCL gates are designed with hysteresis, all 

asserted inputs must be de-asserted before the output will be de-asserted. Hysteresis ensures a 

complete transition of inputs back to the NULL state before the output associated with the next 

set of input data is asserted. 

  Inputs are partitioned into two separate wavefronts, the NULL wavefront and the DATA 

wavefront. The NULL wavefront consists of all inputs to a circuit being NULL, while the DATA 

wavefront refers to all inputs being DATA (i.e., some combination of DATA0 and DATA1 in 

the case of the dual-rail encoding). Initially all circuit elements are reset to the NULL state by a 

global reset signal to each NCL register. First, a DATA wavefront is presented to the circuit, by 

either another circuit or through external inputs. Once all of the outputs of the circuit transition to 

DATA, the NULL wavefront is presented to the circuit. Once all of the outputs of the circuit 

transition to NULL, the next DATA wavefront is presented to the circuit. This DATA/NULL 

cycle continues repeatedly, as controlled by the request and acknowledge lines, Ki and Ko, 

respectively. As soon as all outputs of the circuit are DATA, the circuit�s result is valid and the 

Ko line is set to request for NULL (rfn), by completion detection circuitry at the output of NCL 

registers [4]. The NULL wavefront then transitions all of these DATA outputs back to NULL 

and the Ko line is set to request for DATA (rfd), by the completion detection circuitry. When the 

outputs transition back to DATA again, the next output is then available. This period is referred 

to as the DATA-to-DATA cycle time, denoted as TDD, and has an analogous role to the clock 

period in a synchronous circuit. Figure 1 shows an NCL pipeline in a static state, such that no 

transitions can occur until the request input line, Ki, of the downstream register transitions to rfd, 

signifying that the NULL wavefront at the output of the downstream register has been received 

by the next register after the downstream register. 

  The input-completeness criterion [17], which NCL circuits must maintain in order to be 

self-timed, requires that: 

1. the outputs of a circuit may not transition from NULL to DATA until all inputs have 

transitioned from NULL to DATA, and 
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2. the outputs of a circuit may not transition from DATA to NULL until all inputs have 

transitioned from DATA to NULL. 

In circuits with multiple outputs, it is acceptable for some of the outputs to transition without 

having a complete input wavefront present, as long as all outputs cannot transition before all 

inputs arrive. There is one more condition that must be met in order for NCL to retain its self-

timed nature. No orphans may propagate through a gate. An orphan is defined as a wire that 

transitions during the current DATA wavefront, but is not used in the determination of the 

output. Orphans are caused by wire forks and can be neglected through the isochronic fork 

assumption, as long as they are not allowed to cross a gate boundary. This observability 

condition ensures that every gate transition is observable at the output, meaning that every gate 

that transitions causes at least one of the outputs to transition.  

 

2.2 Pipelining in NCL 

NCL systems consist of cascaded arrangements of three main functional blocks, 

Registration, Completion, and Combinational circuits [17]. The NCL Registration controls the 

DATA/NULL wavefronts. NCL Completion detects complete DATA and NULL sets, where all 

outputs are DATA or all outputs or NULL, respectively, at the output of every register stage. NCL 

Combinational circuits provide the desired input/output processing behavior, as detailed in [3].  

An NCL registration stage is similar in concept to a clocked Boolean register and can be 

inserted between two combinational logic blocks in order to increase the throughput of the 

design. An N-bit registration stage is comprised of N single-bit NCL registers and requires N 

completion signals, Ko, one for each bit. The NCL Completion component uses these N Ko lines 

to detect complete DATA and NULL sets at the output of every register stage and request the 

next NULL and DATA sets, respectively, from either the upstream registration stage or from the 

circuit input. Since the maximum input threshold gate currently supported is the TH44 gate, 

which is the same as a 4-input C-element [19], the number of logic levels in the completion 

component for an N-bit register is given by log4 N.  

All NCL systems have at least two register stages, one at both the input and output. 

Additionally, all NCL systems with feedback have at least three registration stages in the 

feedback loop [17]. This technique of organizing registration stages into a ring is fully discussed 

in [20, 13]. These registration stages interact through handshaking to prevent the next DATA 
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wavefront from overwriting the current DATA wavefront by ensuring that the two DATA 

wavefronts are always separated by a NULL wavefront. Even though these systems are self-

timed, it is possible to take advantage of pipelining techniques when interconnecting NCL 

registration, completion, and combinational circuits [4]. 

 

3.0 MAC Designs 

A block diagram for the MACs developed in this paper is shown in Figure 2. Each MAC 

unit performs a 32-bit by 32-bit fixed-point fractional multiply, accepting (signed × signed), 

(signed × unsigned), and (unsigned × unsigned) 2s-complement operands. The product may be 

added to or subtracted from the 72-bit accumulator. The MAC also supports 2s-complement and 

convergent rounding, up-scaling and down-scaling, output saturation, and includes a multiply 

only option. The output is the 72-bit 2s-complement result along with a bit to detect overflow. 

The taxonomy in Figure 3 is useful to illustrate relationships between some possible 

multiplication algorithms applicable when designing a MAC. These include bitwise algorithms 

such as Array multiplication and the Modified Baugh-Wooley algorithm; and digitwise 

algorithms such as Modified Booth as well as combinational N-Bit × M-Bit multiplication. The 

Modified Booth algorithms [5] considered were Booth2, Booth3, and Booth4, as higher radix 

Booth recodings incur an excessive number of gates, as discussed in Section 4.5. The  

N-Bit × M-Bit algorithms considered were 2-Bit × 2-Bit, 2-Bit × 3-Bit, 2-Bit × 4-Bit, and  

3-Bit × 3-Bit combinational multiplication, since larger operand implementations are not 

competitive in terms of gate count, as discussed in Section 4.9. For all of these algorithms both 

dual-rail and quad-rail encodings were assessed and compared in terms of throughput and area to 

determine that the dual-rail pipelined Modified Baugh-Wooley MAC achieves highest 

throughput with the fewest number of gates. The next best performing approach is pipelined 

dual-rail Modified Booth2, which was also implemented as a non-pipelined design for 

comparison. For each design in Section 3, the circuit operation, optimization, and performance 

are discussed in that order. Unless otherwise stated, designs are implemented in dual-rail logic. 

 

 

 

 



 

 
9

3.1 Non-Pipelined Modified Baugh-Wooley MAC 

3.1.1 Operation 

The structure of the non-pipelined Modified Baugh-Wooley MAC is shown in Figure 4. 

NCL enables several optimizations as discussed in Section 3.1.2. In Phase 1, the multiplication 

begins by generating all of the partial products that can be generated in one gate delay. Next, 

these partial products are used in the first level of the Wallace tree, while the last row of partial 

products and most significant bit of each partial product, requiring two gate delays, are 

generated. Concurrently, the previous value in the accumulator is shifted, if necessary, depending 

on the sign bits, to account for the type of multiplication being performed. It is complemented if 

the result is to be subtracted from the accumulator, or is zeroed if multiply only is specified. 

Next, the modified accumulator and the uncombined partial products are used, along with the 

output from the first level of the Wallace tree, as the input to the second level of the Wallace 

tree. After this, there are six more Wallace tree levels before the partial products are reduced to 

two 65-bit words, where a ripple-carry addition is performed. The rationale for selecting a ripple-

carry adder is detailed in Section 3.3.2. 

During the summation of the partial products in Phase 1, Phase 2 begins with the multiply 

sign and the accumulate sign being generated as inputs to overflow detection. Also, the control 

signals are ensured for input-completeness in order for the MAC to remain self-timed, as 

described in Section 2.1. After the ripple-carry addition, the result is again shifted if necessary to 

account for the type of multiplication being performed and is complemented if the result is to be 

subtracted from the accumulator. 

 In Phase 3, the result can then be rounded and saturated if required. To round the result it 

is determined if the lower portion (LSB) is greater than or equal to 0.5, greater than 0.5, or less 

than 0.5. The LSB is contained in either the lower 31, 32, or 33 bits, depending on whether  

up-scaling, no scaling, or down-scaling is selected, respectively, as shown in Figure 5. After the 

LSB is compared to 0.5, a rounding bit is generated to be added to the upper portion of the result 

(MSB), based on the LSB and the selected rounding algorithm, either 2s-complement or 

convergent rounding, described in Algorithm 3.1 and Algorithm 3.2, respectively. Next, this bit, 

selected from among RND31, RND32, or RND33, is added to the MSB of the result using a 

carry-lookahead adder. After the carry-lookahead addition, the result can then be saturated as 

shown in Table 1, by checking bits 71, 64, and 63. While the result is processed by the saturation 
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logic, the overflow bit is generated from bit 71 and the multiply and accumulate signs calculated 

earlier. The result is then output and fed back to the input register through an additional 

asynchronous register such that there are three registers in the feedback loop to prevent a lockup 

scenario as explained in Section 2.2. 

 

3.1.2 Design Optimizations 

 There are two optimizations considered: the first is architectural and the second is NCL-

specific. The first optimization deals with accumulation. The accumulator is shifted and 

complemented at the beginning and added to the second level of the Wallace tree, without 

increasing the overall delay of the Wallace tree. The result is then shifted and complemented 

again, following the ripple-carry addition, to reduce the critical path delay. The shifting accounts 

for the various multiply types: (signed × signed), (signed × unsigned), and  

(unsigned × unsigned), while the complementing is used for subtraction from the accumulator. 

The alternative is to shift and 2s-complement the two outputs of the Wallace tree and then 

accumulate. This approach results in four words to be summed before the ripple-carry addition: 

the accumulator, the two shifted and complemented partial products, and the extra bit to be 

added to the least significant bit of each partial product due to their required 2s-complementing. 

In the second approach, the four extra words that need to be summed before the ripple-carry 

addition can begin require two carry-save adders, which have a worse-case delay of two times 

the delay of a full adder. Therefore, this optimization will always reduce the critical path by 

twice the worst-case propagation delay of a full adder. In this design four gate delays were 

eliminated from the critical path. 

 Other optimizations include partial product generation facilitated through completeness 

optimizations in NCL, as discussed in Section 2.1. All partial products, except for the most 

significant bits and the last partial product, are directly generated by AND functions. To ensure 

completeness of the X and Y inputs only the XiYj partial products, where i = j and 30 ≥ i, j ≥ 0, 

require the use of complete AND functions [3], where both the X and Y input must be present to 

produce the output. The rest of the partial products, XiYj, where i ≠ j, can be generated using 

incomplete AND functions [3], where the output, Z = DATA0, can be generated if either X or Y is 

DATA0, even if the other input is NULL. Since the incomplete AND functions require 14 fewer 
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transistors than the complete AND functions, and can be used for 930 of the 961 AND functions 

required for partial product generation, a net total of 13,020 transistors were saved in this design. 

 

3.1.3 Average Cycle Time Determination 

 To determine the average cycle time for the MAC, the average cycle time for a ripple-

carry adder was required. A C-language program was written that calculates the number of 

occurrences of each possible number of gate delays for an N-bit ripple-carry adder, from the 

minimum number of three gate delays for no carries, to the maximum number of N+1 gate delays 

for a carry occurring at each adder. The program then calculates the weighted average of the 

number of occurrences of each scenario to determine the expected average number of gate delays 

for the N-bit ripple-carry adder, assuming that all inputs to the ripple-carry adder are 

equiprobable. With N = 65, as in this design, the program calculates TDD = 8.33 gate delays. 

With the average number of gate delays for the ripple-carry adder known, the calculation of TDD 

follows Algorithm 3.2 in [4], as the average number of gate delays through the combinational 

logic for both DATA and NULL plus the number of gate delays through the completion circuitry 

for both DATA and NULL. Since the delay in the completion logic is 4 gates (log4 73, where 

73 is the width of the output register) and the number of gate delays through the combinational 

circuitry is 34, as shown in Figure 4, plus the average delay of the ripple-carry adder, determined 

to be 8.33 from the program, TDD = (2 × 4) + (2 × (34 + 8.33)) = 92.66 gate delays, accounting 

for both the DATA and NULL cycle, which introduces the factor of 2. Simulation results are 

presented in Section 3.5. Experience with the program for a range of values of parameter N 

indicates logarithmic behavior for the ripple-carry addition as corroborated by [16]. 

 

3.2 Non-Pipelined Modified Booth2 MAC 

3.2.1 Operation 

The structure of the non-pipelined Modified Booth2 MAC is shown in Figure 6. In  

Phase 1, the multiplication begins by generating all of the partial products and the shifted and 

complemented, or zeroed, accumulator value, since both of these operations require three gate 

delays, as depicted in the figure. Next, the partial products and the modified accumulator are 

combined through the first of six levels of the Wallace tree. The two partial products output from 

the Wallace tree are used in a 67-bit ripple-carry addition. The Modified Booth2 MAC requires a 
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67-bit ripple-carry addition, versus the 65-bit ripple-carry addition required in the Modified 

Baugh-Wooley MAC, since the Modified Booth2 MAC has two less Wallace tree levels, each of 

which reduces the length of the ripple-carry addition by one.  

During the summation of the partial products in Phase 1, Phase 2 begins with the multiply 

sign and the accumulate sign being generated as inputs to overflow detection. Also, the control 

signals and the multiplier and multiplicand, X and Y, respectively, are ensured for completeness 

in order to maintain delay-insensitivity. Both X and Y must be ensured here because they are not 

implicitly complete in the partial product generation circuitry, as they are in the Modified Baugh-

Wooley design, ensured by selectively complete AND functions. After the ripple-carry addition, 

the result is again shifted, if necessary, to account for the type of multiplication being performed 

and is complemented if the result is to be subtracted from the accumulator. 

 In Phase 3, the result can then be rounded and saturated if required and the overflow bit 

generated in exactly the same manner as for the Modified Baugh-Wooley MAC. The result is 

then output and fed back to the input register through an additional asynchronous register such 

that the required three registers are present in the feedback loop. 

 

3.2.2 Design Optimizations 

 Optimizations for selecting multiplication type and adding/subtracting the partial 

products to/from the accumulator, applicable to the Modified Baugh-Wooley design and here, 

were implemented, as described in Section 3.1.2. 

 

3.2.3 Average Cycle Time Determination 

 TDD can be calculated in the same way as described in Section 3.1.3. Since the delay in 

the completion logic is 4 gates (log4 73, where 73 is the width of the output register) and the 

number of gate delays through the combinational circuitry is 32, as depicted on the left-hand side 

of Figure 6, plus the average of the 67-bit ripple-carry adder, determined to be 8.38 from the C-

language program, TDD = (2 × 4) + (2 × (32 + 8.38)) = 88.76 gate delays, accounting for both the 

DATA and NULL cycle. Subsequent simulations also indicate the Modified Booth2 design 

outperforms the Modified Baugh-Wooley design for the non-pipelined configuration only. 
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3.3 Pipelined Modified Baugh-Wooley MAC 

3.3.1 Operation 

The structure of the pipelined Modified Baugh-Wooley MAC is shown in Figure 7. The 

first stage begins by generating all of the partial products that can be generated in one gate delay. 

Next, these partial products are used in the first level of the Wallace tree, while the remaining 

partial products that require two gate delays are generated. The remaining partial products, along 

with the output from the first level of the Wallace tree, are then used as the input to the second 

level of the Wallace tree. Stage 1 also contains the third level of the Wallace tree along with the 

multiply sign generation. The second stage consists of four more levels of the Wallace tree. 

Stage 3 begins with the final level of the Wallace tree, followed by the shifting and  

2s-complementing of the Wallace tree output, if necessary, to account for the type of 

multiplication being performed and for subtraction from the accumulator. The third stage also 

contains another carry-save adder, required because of the 2s-complement operation. Stage 4 

begins the feedback loop and contains the circuitry to zero Ain for the multiply only function and 

the final carry-save adder to add Ain to the Wallace tree output. The fourth stage also generates 

the accumulate sign. The fifth stage consists solely of a 71-bit ripple-carry adder. Stage 6 

contains the first part of the rounding logic, while Stage 7 contains the remaining rounding logic 

along with the saturation circuitry, control signal completeness logic, and overflow detection 

circuitry, as explained in Section 3.1.1. 

 

3.3.2 Throughput Maximization 

An effective approach for pipelining a self-timed MAC begins with minimization of the 

feedback loop. This is in part because the feed-forward portion of the MAC can be pipelined to a 

fine granularity as long as completeness is ensured at each stage boundary. This enables the 

throughput of the feed-forward path to be at least equal to that of the feedback loop, if not 

greater. To do this, it is preferable to postpone the addition of Ain with the partial products until 

absolutely necessary. Moreover, the subtraction and multiply mode selection method can be 

revised such that it reduces the number of operations required in the feedback loop. To increase 

throughput in the non-pipelined design, Ain was complemented and shifted, or zeroed, and the 

result from the ripple-carry adder was complemented and shifted. However, for the pipelined 

design, the two outputs of the Wallace tree can be 2s-complemented and shifted, allowing the 
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shifting and complementing of Ain followed by the shifting and complementing of the result to 

be removed from the feedback loop. This is replaced instead by the 2s-complementing and 

shifting of the final two partial products, followed by an extra carry-save adder in the feed-

forward portion of the design. The zeroing of Ain for the multiply only function is still required 

to be performed within the feedback loop. In the pipelined implementation, this change 

eliminates five gate delays from the feedback path with no additional latency in the pipeline. The 

corresponding logic is relocated to the feed-forward portion of the design. Partitioning the feed-

forward portion into three stages with a maximum of 8 gate delays per stage allows the inclusion 

of the additional logic without decreasing overall throughput. 

 After the feedback logic of the MAC is minimized, it can be pipelined by inserting 

asynchronous registers [4]. It was shown in [21] that a feedback loop containing N tokens 

requires 2N bubbles for maximum throughput. A token is defined as a DATA wavefront with 

corresponding NULL wavefront; and a bubble is defined as either a DATA or NULL wavefront 

that occupies more than one neighboring stage (i.e. for the case of two adjacent DATA stages, 

stagei is the DATA wavefront and stagei-1 is a bubble). This allows for each DATA and NULL 

wavefront to move through the feedback loop independently. Since the feedback loop in the 

MAC design only contains one token, two bubbles are necessary to maximize throughput. A 

token requires two stages, one stage for the DATA portion and one stage for the NULL portion, 

while each bubble requires one stage. Therefore, the feedback loop was partitioned into four 

stages for maximum throughput.  

The front end of the feedback loop was partitioned as shown in Figure 7. Partitioning of 

the ripple-carry adder is not advisable since this would incur extra gate delays on the critical 

path. Inserting a register in the middle of the ripple-carry addition would tend to lessen the 

benefits of its asynchronous behavior by increasing the O(log2 N) average time for an N-bit 

ripple-carry addition, since log2 N1 + log2 N2 > log2 N, where N = N1 + N2, N ≥ 6, and  

N1, N2 ≥ 3. The last two stages were divided to minimize the worst-case delay of each stage. The 

Upper Rounding logic for the most significant 41 bits of the result can be partitioned into a  

5 gate delay circuit followed by a 1 gate delay circuit, without violating the input-completeness 

criteria. Alternately, inserting a register between this partition would result in Stage 6 having  

10 gate delays and Stage 7 having 4 gate delays. The 10 gate delays of Stage 6 in this alternate 
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design would exceed the 9 gate delays of Stage 7 in the current design. Furthermore, simulation 

shows both finer and coarser partitionings decrease throughput. 

 Throughput can be further increased using partial bitwise completion [4] where the feed-

forward output joins the feedback input. Two separate completion logic blocks are appropriate. 

The first, whose input is Ko1, only acknowledges the inputs from the feed-forward circuit; the 

second, whose input is Ko2, only acknowledges the feedback inputs. This optimization can 

decrease the inter-dependencies between the feedback loop and the feed-forward path to boost 

throughput an additional 2%. 

 Finally, the feed-forward portion is pipelined such that its throughput is at least as great 

as that of the feedback loop. In other words, the output from the feed-forward portion of the 

design must always be available when the feedback input is ready. Therefore, the minimum 

forward path through the feedback loop must be determined. Since the minimum delay through a 

ripple-carry adder is 3 gates and the delay for each register is 1 gate, the minimum forward path 

through the feedback loop is 3 + 3 + 5 + 9 + (5 × 1) = 25 gate delays, as calculated by the delays 

in the logic components of the feedback path in Figure 7, and indicated on the right side of the 

figure. In order to ensure that the feedback loop will never wait on input from the feed-forward 

portion, the maximum cycle time of the feed-forward pipeline must not exceed 25 gate delays. 

Decreasing the cycle time of the feed-forward portion to less than 25 gate delays will not 

increase the throughput as a whole. Therefore, this MAC optimization problem is transformed to 

ensuring a maximum cycle time of 25 gate delays for the feed-forward portion of the design, 

while adding as few asynchronous registers as possible. Following the method described in [4] 

for pipelining NCL circuits, it was determined that the addition of two asynchronous registers, as 

shown in Figure 7, would result in a maximum cycle time of 24 gate delays for the feed-forward 

circuitry. Furthermore, our simulations showed that finer partitioning does not increase 

throughput, while coarser partitioning decreases throughput.  

 

3.4 Pipelined Modified Booth2 MAC 

3.4.1 Operation 

The structure of the pipelined Modified Booth2 MAC is shown in Figure 8. The first 

stage begins by generating all of the partial products, which are then input to the first of two 

levels of the Wallace tree. Stage 1 also contains the multiply sign generation and the 
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completeness generation for the multiplier and multiplicand, X and Y, respectively, since they are 

not implicitly complete in the partial product generation circuitry. The second stage consists of 

three more levels of the Wallace tree. Stage 3 begins with the final level of the Wallace tree, 

followed by the shifting and 2s-complementing of the Wallace tree output, if necessary, to 

account for the type of multiplication being performed and for subtraction from the accumulator. 

The third stage also contains another carry-save adder, required because of the 2s-complement 

operation. Stage 4 begins the feedback loop and contains the circuitry to zero Ain for the 

multiply only function and the final carry-save adder to add Ain to the Wallace tree output. The 

fourth stage also generates the accumulate sign. The fifth stage consists solely of a 71-bit ripple-

carry adder. Stage 6 contains the first part of the rounding logic, while Stage 7 contains the 

remaining rounding logic along with the saturation circuitry, control signal completeness logic, 

and overflow detection circuitry, as detailed in Section 3.1.1. 

 

3.4.2 Throughput Maximization 

The throughput maximization procedure for the feedback loop follows that of the  

pipelined Modified Baugh-Wooley design, explained in Section 3.3.2. The minimum forward 

path through the feedback loop is also 25 gate delays, and is independent of the selected 

multiplication algorithm. Addition of as few as two asynchronous registers, as shown in  

Figure 8, results in a maximum cycle time of 24 gate delays for the feed-forward portion. Since 

the feedback loop for the pipelined Modified Booth2 and Baugh-Wooley designs are the same, 

and the feedback loop is the limiting factor of throughput maximization for each, the two designs 

should have the same throughput. 

 

3.5 Simulation Results 

 Representative MAC operations need to be selected to provide a basis for comparison of 

throughputs. A candidate operation is Aout = )(
0
∑
=

×
N

i
ii YX , where Xi = X0 + (2-21 × i) and  

Yi = Y0 + (2-11 × i) with N chosen to be 255. This allows a variety of computations to be 

performed such that any unusually short or long operations will not significantly skew the 

average cycle time. For instance, in our testbench X0 and Y0 were randomly selected such that  

X0 = A61C039Dh = -0.702270077076 and Y0 = F0046718h = -0.124865639955. Also,  

(signed × signed) multiplication was selected and rounding, scaling, and saturation were 
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disabled. The same operation was also performed in a C-language program and the result from 

this program agreed with the results from each of the simulated designs:  

Aout = 05A0B13C0E04A37000h = 11.2554087704. 

 Both the non-pipelined and pipelined Modified Baugh-Wooley and Booth2 MAC designs 

were simulated using Synopsys in order to compare their throughputs to ensure that the relative 

values were consistent with the predicted results. The Synopsys technology library for the NCL 

gates is based on static 3.3 V, 0.25 µm CMOS implementations. The average cycle time, TDD, for 

the non-pipelined Modified Baugh-Wooley MAC was determined to be 31.8 ns; while TDD for 

the non-pipelined Modified Booth2 MAC was determined to be 31.2 ns. Therefore, the non-

pipelined Modified Booth2 MAC is faster than the non-pipelined Modified Baugh-Wooley 

MAC, as anticipated in Section 3.2.3. As for the pipelined designs, the Modified Baugh-Wooley 

and Booth2 MACs were anticipated to run at the same speed due to the fact that the feedback 

path was the same in both designs. The simulations of the two pipelined designs indicate that 

they both have an average cycle time of 12.7 ns. 

 

4.0 Gate Requirements for the Proposed Designs 

 In Section 3.3.2 and Section 3.4.2 it was shown that the throughput of a pipelined self-

timed MAC design is limited by the feedback loop, independent of the feed-forward portion. 

This is due to the fact that the feed-forward portion can be readily pipelined to a fine granularity 

to match or exceed the throughput of the feedback loop. Since the feedback loop performs 

accumulation independent of the selected multiplication algorithm, the throughput of the MAC 

as a whole is independent of the multiplication algorithm. This is demonstrated by the pipelined 

versions of the Modified Baugh-Wooley and Booth2 MACs operating with the same cycle time. 

 The design objective stated in the abstract is to obtain the highest throughput MAC using 

the fewest gates. Since the throughput of the pipelined MAC does not depend on the 

multiplication algorithm, the MAC throughput optimization problem can be transformed into the 

selection of the multiplication algorithm that requires the least amount of area to implement. The 

following sections will compare various algorithms to determine which requires the least gate 

count. 
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4.1 Modified Baugh-Wooley MAC 

 Since both the non-pipelined and pipelined designs were implemented in VHDL, the 

actual number of gates can be tabulated. The non-pipelined design requires 10,703 gates, while 

the pipelined design uses 13,613 gates, as shown in Figure 3. For both of these designs 

approximately 2,048 gates were from partial product generation with 32 complete AND 

functions and 961 incomplete AND functions. 

 

4.2 Modified Booth2 MAC 

 Since both the non-pipelined and pipelined versions of this design were also implemented 

in VHDL, the actual number of gates can again be tabulated. The non-pipelined design used 

14,101 gates, while the pipelined design used 17,015 gates, as shown in Figure 3. For both of 

these designs approximately 7,854 gates were from the partial product generation. Even though 

the Booth2 recoding eliminates two levels in the Wallace tree, the additional gates required in the 

partial product generation outpace the savings. This causes the pipelined Modified Booth2 

design to contain 3,402 more gates than the pipelined Modified Baugh-Wooley design. The 

Modified Booth2 MAC requires 405 fewer adders, which is 1,620 fewer gates, since each adder 

contains four gates. However, it requires approximately 5,806 additional gates for partial product 

generation. Since both designs operate with the same cycle time, the preferred design is the 

pipelined Modified Baugh-Wooley MAC, since it requires less area. This is even more evident 

when the number of transistors for partial product generation is compared. Since the number of 

transistors for the Modified Baugh-Wooley partial product generation can be greatly reduced as 

explained in Section 3.1.2, even though the number of gates remain the same, the transistor 

requirement for partial product generation of the two designs magnifies this differential, as 

shown in Figure 3. The partial product generation for the Modified Booth2 design requires  

3.8-fold more gates than for the Modified Baugh-Wooley design, but 6.8-fold more transistors, 

due to the more sophisticated gates required in the recoding logic. 

 

4.3 Array MAC 

 Both the Array MAC and the Modified Baugh-Wooley MAC use the same logic to 

generate the partial products and both require O(N) area for the partial product summation, as 

explained in Section 1.1. However, the Modified Baugh-Wooley MAC only requires O(log2 N) 
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gate delays for the partial product summation, while the Array MAC requires O(N) gate delays. 

Therefore, many more asynchronous registers would be required to partition the feed-forward 

circuitry of the Array MAC than the two required for the Modified Baugh-Wooley MAC, in 

order to achieve the same throughput. Hence, the Array MAC would require approximately the 

same number of adders as the Modified Baugh-Wooley MAC, but would require many more 

asynchronous registers, causing it to contain many more gates than the Modified Baugh-Wooley 

MAC. However, the structure of the Array MAC is very regular compared to the irregular 

structure of the Modified Baugh-Wooley MAC, which could make it more desirable when layout 

is taken into consideration, despite its larger size. 

 

4.4 Modified Booth3 MAC 

 The Modified Booth3 multiplication algorithm partitions the multiplier into overlapping 

groups of four bits, each of which selects a partial product from the following list: +0, +M, +2M, 

+3M, +4M, -4M, -3M, -2M, -M, and -0, where M represents the multiplicand. For the  

32-bit × 32-bit multiplication, this decoding theoretically reduces the number of partial products 

from 17 for the Modified Booth2 algorithm to only 11. However, the +3M and -3M partial 

products cannot be obtained by simple shifting and/or complementing, like the others. These 

partial products are referred to as hard multiples. Therefore, two actual partial products must be 

used to represent each theoretical partial product to avoid the ripple-carry addition that would be 

required to compute both the +3M and -3M partial products. Any +3M partial product is 

represented by a +2M and a +M partial product, while any -3M partial product is represented by 

a -2M and a -M partial product. Since each theoretical partial product must be represented by two 

partial products, the actual number of partial products for the Modified Booth3 MAC is 22, and 

the number of Wallace tree levels required to sum these partial products is 7. This is more than 

the 17 partial products required for the Modified Booth2 design, which can be summed using 

only 6 Wallace tree levels. Therefore, a Modified Booth3 MAC requires more adders to sum the 

partial products than would the Modified Booth2 MAC. Furthermore, the partial product 

generation requires scanning four multiplier bits at a time for the Modified Booth3 algorithm, 

versus only three bits which are simultaneously scanned in the Modified Booth2 algorithm. This 

requires more complex recoding logic for the Modified Booth3 algorithm. Since the Booth3 
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algorithm requires more adders and more recoding logic than the Booth2 algorithm, and 

increases the depth of the Wallace tree, it requires more gates than the Modified Booth2 design. 

 

4.5 Modified Booth4 MAC 

 The Modified Booth4 multiplication algorithm also suffers from the problem of hard 

multiples. It partitions the multiplier into overlapping groups of five bits, each of which selects a 

partial product from the following list: +0, +M, +2M, +3M, +4M, +5M, +6M, +7M, +8M, -8M,  

-7M, -6M, -5M, -4M, -3M, -2M, -M, and -0, where M represents the multiplicand. The hard 

multiples are +3M, +5M, +6M, +7M, -7M, -6M, -5M, and -3M. However, if the hard multiples 

were to be generated through ripple-carry addition, the +6M and -6M multiples could be obtained 

simply by shifting the +3M and -3M multiples, respectively. For the 32-bit × 32-bit 

multiplication, this decoding theoretically reduces the number of partial products from 17 for the 

Modified Booth2 algorithm to only 9. However, since the hard multiples require two partial 

products to represent each theoretical partial product, the actual number of partial products 

required is 17. The most significant partial product cannot be a hard multiple and therefore only 

requires one partial product for its representation. The actual number of partial products for the 

Modified Booth4 MAC is the same as for the Modified Booth2 MAC. The only difference is the 

partial product generation, which requires scanning five multiplier bits at a time for the Modified 

Booth4 algorithm, versus only three bits that are simultaneously scanned in the Modified Booth2 

algorithm. This requires more complex recoding logic for the Modified Booth4 algorithm. 

Therefore, the Modified Booth4 MAC requires more gates than the Modified Booth2 MAC. 

Furthermore, higher radix Modified Booth algorithms can be expected to exhibit similar 

characteristics. 

 

4.6 Combinational 2-Bit × 2-Bit MAC 

 The 2-Bit × 2-Bit partial product generation partitions both the multiplier and 

multiplicand into 16 groups of two bits that do not overlap. Each 2-bit multiplier, 2-bit 

multiplicand pair generates 4 bits of partial product. Every 2-bit multiplier group generates two 

rows of partial products since each 2-bit multiplier, 2-bit multiplicand pair generates 4 bits and 

each consecutive group of 4 bits is shifted two places due to the 2-bit partitioning of the 

multiplicand. This results in consecutive groups of 4 bits generated from one 2-bit multiplier 
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group to be overlapped by two bits. Since there are sixteen 2-bit multiplier groups and each 

group generates two partial products, there are a total of 32 partial products. Since this number of 

partial products is the same as for the Modified Baugh-Wooley design, both designs will require 

the same amount of gates to sum the partial products. Therefore, the only difference between the 

two designs is the partial product generation. The 2-Bit × 2-Bit partial product generation 

requires approximately 2,816 gates, while the Modified Baugh-Wooley partial product 

generation only requires approximately 2,048 gates, as shown in Figure 3. Hence, the  

2-Bit × 2-Bit algorithm requires approximately 768 more gates than does the Modified Baugh-

Wooley algorithm, making it less area efficient. This is even more evident when the transistor 

count for the partial product generation is compared. The Modified Baugh-Wooley partial 

product generation requires approximately 18,880 transistors, while the 2-Bit × 2-Bit partial 

product generation requires approximately 38,400 transistors, more than twice as many. 

 

4.7 Combinational 2-Bit × 3-Bit MAC 

 The 2-Bit × 3-Bit partial product generation partitions the multiplier into 16 groups of 

two bits, and the multiplicand into 10 groups of three bits with 1 group of two bits, such that no 

groups overlap. Each 2-bit multiplier, 3-bit multiplicand pair generates 5 bits of partial product. 

Every 2-bit multiplier group generates two rows of partial products since each 2-bit multiplier,  

3-bit multiplicand pair generates 5 bits and each consecutive group of 5 bits is shifted three 

places due to the 3-bit partitioning of the multiplicand. All two-row partial products generated 

from one 2-bit multiplier group contain an unused slot every third bit position, such that every 

third bit position in a two-row partial product only contains one bit rather than two bits, as in the 

other bit positions. Since there are sixteen 2-bit multiplier groups and each group generates two 

partial products, 32 partial products are anticipated. However, because of the unused slots, there 

are actually only 26 rows of partial products, which can be summed in 7 Wallace tree levels. The 

multiplier could also be partitioned into 10 groups of three bits with 1 group of two bits, while 

the multiplicand was partitioned into 16 groups of two bits, such that no groups overlap. This 

alternate partitioning also produces 26 rows of partial products. Recall that the Booth2 design, 

which has 17 rows of partial products that can be summed in 6 levels of Wallace tree, saved 405 

adders or 1,620 gates in the partial product summation, as discussed in Section 4.2. Since the  

2-Bit × 3-Bit algorithm requires 26 rows of partial products, which can be summed in 7 Wallace 
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tree levels, this algorithm cannot utilize fewer adders than the Booth2 algorithm. Therefore, the 

number of gates saved by the reduced Wallace tree of the 2-Bit × 3-Bit algorithm is no more than 

1,620. The number of gates required to generate the partial products for the 2-Bit × 3-Bit 

algorithm is approximately 4,768, a difference of approximately 2,720 additional gates than for 

the Modified Baugh-Wooley partial product generation. Therefore, the 2-Bit × 3-Bit algorithm 

would require at least 1,100 more gates than the Modified Baugh-Wooley design since it can 

save no more than 1,620 gates in the Wallace tree and requires an additional 2,720 gates for 

partial product generation. 

 

4.8 Combinational 2-Bit × 4-Bit MAC 

 The 2-Bit × 4-Bit partial product generation partitions the multiplier into 16 groups of 

two bits, and the multiplicand into 8 groups of four bits, such that no groups overlap. Each 2-bit 

multiplier, 4-bit multiplicand pair generates 6 bits of partial product. Every 2-bit multiplier group 

generates two rows of partial products since each 2-bit multiplier, 4-bit multiplicand pair 

generates 6 bits and each consecutive group of 6 bits is shifted four places due to the 4-bit 

partitioning of the multiplicand. All two-row partial products generated from one 2-bit multiplier 

group contain two unused slots every fourth bit position, such that for every four bit positions in 

a two-row partial product only two contain two bits while the other two contain only one bit. 

Since there are sixteen 2-bit multiplier groups and each group generates 2 partial products, 32 

partial products are anticipated. However, because of the unused slots, there are actually only 23 

rows of partial products, which can be summed in 7 Wallace tree levels. The multiplier and 

multiplicand could also be partitioned vise-versa, resulting in the same number of partial product 

rows. Since this design also requires 7 Wallace tree levels, as did the 2-Bit × 3-Bit design, it 

could not possibly save more than 1,620 gates in the Wallace tree, as explained in Section 4.7. 

The partial product generation is also more complicated than for the 2-Bit × 3-Bit partial product 

generation since more inputs are required. Therefore, partial product generation for this design 

requires at least as many gates as for the 2-Bit × 3-Bit design. Hence, this design must require 

more gates than the Modified Baugh-Wooley MAC, following the logic of Section 4.7. 
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4.9 Combinational 3-Bit × 3-Bit MAC 

 The 3-Bit × 3-Bit partial product generation partitions both the multiplier and 

multiplicand into 10 groups of three bits, with one group of two bits, such that no groups overlap. 

Each 3-bit multiplier, 3-bit multiplicand pair generates 6 bits of partial product. Every 3-bit 

multiplier group generates two rows of partial products since each 3-bit multiplier, 3-bit 

multiplicand pair generates 6 bits and each consecutive group of 6 bits is shifted three places due 

to the 3-bit partitioning of the multiplicand, such that all consecutive groups of 6 bits generated 

from one 3-bit multiplier group overlap by three bits. The last multiplier group is only two bits, 

so for each 2-bit multiplier, 3-bit multiplicand pair, 5 bits of partial product are generated. This 

2-bit multiplier group generates two rows of partial products since each 2-bit multiplier, 3-bit 

multiplicand pair generates 5 bits and each consecutive group of 5 bits is shifted three places due 

to the 3-bit partitioning of the multiplicand. These last two rows of partial products contain an 

unused slot every third bit position, such that every third bit position in the last two-row partial 

product only contains one bit rather than two bits, as in the other bit positions. Since there are 10 

3-bit multiplier groups and one 2-bit multiplier group, each of which generates 2 partial products, 

22 partial products are anticipated. However, because of the unused slots generated by the 2-bit 

multiplier group, there are actually only 21 rows of partial products, which can be summed in  

7 Wallace tree levels. Since this design also requires 7 Wallace tree levels, as did the  

2-Bit × 3-Bit design, it could not possibly save more than 1,620 gates in the Wallace tree, as 

explained in Section 4.7. The partial product generation is also more complicated than for the  

2-Bit × 3-Bit partial product generation since more inputs are required. Therefore, partial product 

generation for this design requires at least as many gates as for the 2-Bit × 3-Bit design. Hence, 

this design must require more gates than the Modified Baugh-Wooley MAC, following the logic 

of Section 4.7. Furthermore, any larger sized N-Bit × M-Bit algorithms would not be likely to 

reduce the number of gates due to their increasing complexity. 

 

4.10 Quad-Rail MACs 

 To test the feasibility of quad-rail multiplication, a quad-rail 4-bit × 4-bit unsigned 

multiplier was designed, implemented, and tested. The resulting design operated with the same 

throughput as its dual-rail counterpart but required slightly more than twice as many gates, 

showing that a quad-rail encoding is not as efficient for realizing multiplication. Furthermore, 
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quad-rail partial product generation circuitry was designed for each of the algorithm types shown 

in Figure 3; and the resulting quad-rail designs required at least 2% more gates and 10% more 

transistors than their dual-rail counterparts. 

 

5.0 Conclusion 

5.1 Overview of the NCL MAC Design Process 

 In Section 3 it was shown how to design and then pipeline both a self-timed Modified 

Baugh-Wooley MAC and a Modified Booth2 MAC in order to achieve maximum throughput. 

Throughput maximization was accomplished by first minimizing the feedback loop and then 

partitioning the feed-forward path such that its throughput was at least equal to that of the 

feedback loop; since the feedback loop was determined to be the factor that limits increasing 

throughput. Section 3 also showed that the feedback loop did not depend on the chosen 

multiplication algorithm, and therefore the throughput also did not depend on the multiplication 

algorithm, although a faster multiplication algorithm would decrease latency of an isolated 

multiply. This was substantiated through simulations of both the pipelined Modified Baugh-

Wooley MAC and the pipelined Modified Booth2 MAC, which both had the same throughput.  

 Since it was shown that the throughput of the MAC did not depend on the multiplication 

algorithm, the self-timed MAC throughput optimization problem was transformed into selecting 

the multiplication algorithm requiring the fewest gates. Section 4 compared the area of multiple 

MAC designs using various multiplication algorithms. The best design is therefore the one that 

requires the fewest gates to implement. It was also shown in Section 4 that the pipelined 

Modified Baugh-Wooley design required the least area, and was therefore the best design based 

on the criteria of the highest throughput with the least area. The dual-rail pipelined Modified 

Baugh-Wooley MAC yielded a speedup of 2.5 over its initial non-pipelined version and required 

20% fewer gates than the dual-rail pipelined Modified Booth2 MAC, which had the same 

throughput. 

 

5.2 Comparison with Related Work 

 Table 2 compares this optimized NCL MAC to other delay-insensitive/self-timed MACs 

in the literature, showing that the 3.3 V, 0.25 µm CMOS NCL MAC outperforms the other 

designs. A serial-parallel MAC using the methods and tools developed at Caltech [22] for design 
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of delay-insensitive circuits is described in [6]. Using the Caltech approach an 8+4×4 MAC was 

fabricated with 5 V, 2 µm CMOS technology that operated at 37 ns; an extrapolation to larger 

word sizes was presented in [6]. Using this extrapolation it was determined that a 64+32×32 

MAC would operate at 901 ns, much slower than the NCL MAC, as expected, since the 

implemented algorithm is not fully parallel. A self-timed 16+8×8 MAC designed using SCCVSL 

(single-rail CMOS cascode voltage switch logic) and fabricated in 0.6 µm technology is 

described in [7]. This MAC employs the parallel Booth2 algorithm, and has an average cycle 

time of about 90 ns. A third self-timed MAC described in [8] was designed in single-ended 

dynamic logic [23], utilizing conditional evaluation along with the traditional Array 

multiplication algorithm. Conditional evaluation allows for rows with a zero bit product to be 

multiplexed around, to reduce energy and delay. In [8] a 16+8×8 MAC was simulated using  

3.3 V, 0.35 µm CMOS technology, to determine the average cycle time of 7.8 ns. This delay 

information was then used in [8] to estimate the average cycle time for a 32+16×16 MAC as 

approximately 24 ns. These comparisons indicate that the NCL-based dual-rail pipelined 

Modified Baugh-Wooley MAC developed herein outperforms the three above-mentioned 

methods, even after technology adjustments.  

 Furthermore, the NCL MAC supports conditional rounding, scaling, and saturation, 

whereas the other MACs discussed herein do not. Without the conditional rounding, scaling, and 

saturation the NCL MAC�s performance could be substantially increased, since the feedback 

path, which limits the MAC�s throughput, is dominated by this logic. Removing the conditional 

rounding, scaling, and saturation logic would result in a feedback path consisting only of the 

Zero Ain function, the CSA, the Calculate Accumulate Sign function, the 71-bit RCA, the 

Control Signal Completeness function, and the Overflow calculation, along with the five 

asynchronous registers to repartition the feedback path of Figure 7 as follows: Stage 4 and  

Stage 5 remain unchanged with a minimum of 3 gate delays each, Stage 6 now consists of the 

Control Signal Completeness function that has two gate delays, and Stage 7 consists solely of the 

Overflow calculation that is three gate delays. Therefore the minimum forward path of the 

feedback loop is reduced to: 3 + 3 + 2 + 3 + (5 × 1) = 16 gate delays. The feed-forward pipeline 

could then be repartitioned such that its maximum cycle time does not exceed 16 gate delays, as 

explained in Section 3.3.2. Hence, the throughput of the MAC without conditional rounding, 

scaling, and saturation is limited by the feedback path of 16 gate delays, versus the feedback path 
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of 25 gate delays for the MAC with conditional rounding, scaling, and saturation. Removal of the 

conditional rounding, scaling, and saturation logic provides a potential means to eliminate further 

gate delays in the feed-forward path. 
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Figure 2: MAC block diagram. 

 

 
Figure 3. Taxonomy of 72+32×32 MACs. 
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if (LSB >= 0.5) then else if (LSB = 0.5) and (the least significant bit of MSB = 0) then 
 MSB = MSB + 1  MSB = MSB 
else if (LSB < 0.5) then else if (LSB = 0.5) and (the least significant bit of MSB = 1) then 
 MSB = MSB  MSB = MSB + 1 
end if  end if 
LSB = 0 LSB = 0 
 

Algorithm 3.1: 2s-complement rounding.  Algorithm 3.2: Convergent rounding. 
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Figure 4. Non-pipelined Modified Baugh-Wooley MAC. 
 
 

 71   64 63       31 30   0 
a)   Extension     MSB         LSB   
            
 71   64 63     32 31     0 
b)   Extension     MSB         LSB   
            
 71   64 63   33 32       0 
c)   Extension     MSB         LSB   

  
Figure 5. Partitioning of the Output for a) up-scaling, b) no scaling, and c) down-scaling. 
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Figure 6. Non-pipelined Modified Booth2 MAC. 

 
 

Table 1. Saturation Table. 
 

B71 B64 B63 Saturated Result Saturated and Rounded Result 
0 0 0 No Change Result of Rounding Algorithm 
0 0 1 00 7FFF FFFF 00 7FFF 0000 
0 1 0 00 7FFF FFFF 00 7FFF 0000 
0 1 1 00 7FFF FFFF 00 7FFF 0000 
1 0 0 FF 8000 0000 FF 8000 0000 
1 0 1 FF 8000 0000 FF 8000 0000 
1 1 0 FF 8000 0000 FF 8000 0000 
1 1 1 No Change Result of Rounding Algorithm 
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Figure 7. Pipelined Modified Baugh-Wooley MAC. 
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Figure 8. Pipelined Modified Booth2 MAC. 
 

Table 2. MAC comparisons.  
 

MAC Type Algorithm Technology Avg. Cycle Time 
72+32×32 Modified Baugh-Wooley 3.3 V, 0.25 µm CMOS 12.7 ns 
64+32×32 Serial-Parallel [6] 5 V, 2 µm CMOS       901.0 ns 
16+8×8 Modified Booth2 [7] 0.6 µm CMOS         90.0 ns 
16+8×8 Conditional Evaluation [8] 3.3 V, 0.35 µm CMOS           7.8 ns 
32+16×16 Conditional Evaluation [8] 3.3 V, 0.35 µm CMOS         24.0 ns 
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