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 Communication bandwidth and latency reduction 
techniques are developed for Distributed Interactive 
Simulation (DIS) protocols. DIS Protocol Data Unit (PDU) 
packets are bundled together prior to transmission based on 
PDU type, internal structure, and content over a sliding 
window of up to C adjacent transmission requests, for 1 < C 
< 64. At the receiving nodes, the packets are replicated as 
necessary to reconstruct the original packet stream. 
Bundling strategies including Always- Wait, Always-Send, 
Type-Only prediction, Type-Length prediction, and Type-
Length-Time prediction are developed and then evaluated 
using both heuristic parameters and a gradient descent back-
propagation neural network. 
 Several communication case studies from the One 
Semi-Automated Forces (OneSAF) Testbed Baseline (OTB) 
are assessed for multiple-platoon, company, and battalion-
scale force-on-force vignettes consistent with Future 
Combat Systems (FCS) Operations and Organizations 
(O&O) scenarios. Traffic is modeled using the OMNeT++ 
discrete event simulator models and scripts developed for a 
hierarchical communication architecture consisting of eight 
enroute C-17 aircraft each carrying three Ethernet-
connected M1A2 ground vehicles, a wireless flying LAN 
based on Joint Forces Command’s Joint Enroute Mission 
Planning and Rehearsal System (JEMPRS) for Near-Term 
(JEMPRS-NT) and follow-on bandwidth capacities. The 
simulation traffic includes Opposing Force (OPFOR) 
control via a CONUS-based ground station via its 
corresponding satellite links. Different bandwidth capacities 
are simulated and analyzed PDU travel time and slack time, 
router and satellite queue length, and number of packet 
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collisions are assessed at 64 Kbps, 256 Kbps, 512 Kbps, and 
1 Mbps capacities. Results indicate that a Type-Length 
prediction strategy is capable of reducing travel time up to 
85%, slack time up to 97%, queue length up to 98% on 
bandwidth restricted channels of 64 Kbps. 
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PDU replication, PDU bundling, network bandwidth. 
 
INTRODUCTION  
 One Semi-Automated Forces (OneSAF) is a U.S. Army 
computer generated force simulation system capable of 
running training simulations and rehearsing missions within 
a digital environment [Witman 2001]. In this paper, a 
modeling environment for assessing OneSAF 
communication during mission rehearsal of Future Combat 
System (FCS) vignettes is developed and applied to 
optimize simulation communication traffic. Several 
different FCS vignettes were prepared and simulated using 
the OneSAF Testbed Baseline (OTB) on a Local Area 
Network. Traffic logs were created from the participating 
sites under the Distributed Interactive Simulation (DIS) 
protocol as defined in the IEEE Standards 1278.1 (1995), 
1278.2 (1995), 1278.3 (1996) and 1278.1a (1998). The 
fundamental communication elements under DIS, called 
Protocol Data Units (PDUs), were logged including relevant 
information about PDU type, length and timestamp then 
later extracted for modeling assessment of alternative 
transmission scheduling strategies. 
 In particular, the MR1 vignette illustrating a mission 
rehearsal operation while en-route to deployment was used 
to generate PDU traffic logs. This vignette was partly based 
on and extends TRADOC PAM 525-3-90 FCS Operations 
& Organizations (O&O) document, dated 22 July 2002, 
“Annex F – Unit of Action Vignettes.” The duration of the 
vignette is approximately 25 minutes of simulation time. It 
involves Entry Operations and Maneuver to Attack of a 
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battalion-sized unit tasked with pursuing an enemy delaying 
force immediately upon landing. The lead elements (Alpha 
Company) detect a fortified position between the main 
elements and the target enemy force. Four RAH-66 
Comanche helicopters are deployed and follow closely. 
Next, the East friendly forces, begin to advance on the 
enemy position, however, they must traverse minefields 
during their pursuit. The enemy force flees southward from 
the North and East force. The South force engages the 
enemy, and is assisted by the North and East forces. 
 The vignette was executed on OTB and a log file 
containing all the network traffic (PDUs) transmitted was 
recorded and used as input to a modeling environment for 
purpose of studying the communication traffic under several 
bandwidths. Figure 1 depicts the communication 
architecture of the model used for rehearsal and training 
with the MR1 vignette. It consists of eight airplanes flying 
in formation towards deployment to support En-route 
Mission Planning and Rehearsal (EMPR) while the vehicles 
are en-route to the combat destination. Each aircraft carries 
three ground vehicles, and each vehicle contains a 
simulation station executing the MR1 vignette using OTB. 
The number of planes and simulation stations onboard is 
variable in the model. The three simulation stations on each 
plane are connected via a hardwired Ethernet bus at 100 
Mbps. Connections from plane to plane are achieved via 
routers and wireless links. A ground station is connected to 
the flying network through the satellite link as shown. 
Possible values for wireless bandwidths range from 64 Kbps 
to 1024 Kbps. This communication model is consistent with 
the JEMPRS Flying LAN network described in [Frontlines 
2002]. The purpose of the research described in this paper is 
to assess the bandwidth required in the wireless links to 
support EMPR and develop improved strategies that more 
effectively utilize the bandwidth available.  
 

 
Figure 1. JEMPRS Flying LAN network for EMPR 

 
 In summary, the model consists of a collection of 
processing nodes and routers interconnected by different 
media at several bandwidths. The computer nodes broadcast 
packets at different rates. While it is possible to model the 
network traffic by creating an artificial packet generation 
that follows some probability distribution over time, a more 
representative approach was developed using the actual 

traffic generated by OTB during execution of the MR1 
vignette. A log of the actual packets generated by OTB 
included the PDU timestamp which is used for packet 
generation in the traffic modeling studies in place of a 
random distribution function. This provides much more 
realism to the communication traffic analysis, especially for 
the bursty nature of traffic observed during EMPR 
execution. 
 Although DIS traffic was simulated in this research, 
other protocols like High Level Architecture (HLA) have 
been proposed as alternatives to DIS. The Defense 
Modeling and Simulation Office (DMSO) developed HLA 
as part of their goal to increase interoperability and promote 
reuse of simulations and their components. HLA defines the 
concept of a federation, which is a subset of interacting 
simulations. Many features not found in DIS are included in 
HLA to reduce traffic network, like Data Distribution 
Management that improves scalability by limiting 

the network traffic each federate has to process 

[Ceranowicz 2002]. The federation network traffic 
is segmented such that federates receive 

messages from only those segments that can 

affect them. However, currently fielded 

simulators used during EMPR training utilize the 

DIS protocol studied here. 
 The OMNeT++ discrete event simulator [Varga 2003] 
was used as a platform for communication assessment. Each 
of the elements shown in Figure 1 was realized as a C++ 
module in OMNeT++. Figure 2 shows one screenshot of the 
OMNeT++ tool. In this screenshot, neither the ground 
vehicles carrying computer nodes, nor the LAN links 
connecting them, nor the routers in each plane are depicted. 
Instead, three horizontal bars represent wireless channels. 
The upper bar is used for Wireless Plane-to-Plane 
communications (WPP link), the middle bar represents 
Wireless Satellite-to-Plane communications (WSP link), and 
the lowest bar represents Wireless Ground-Station-to-
Satellite communications (WGS link). 
 

 
Figure 2. OMNeT window depicting JEMPRS network 

 



 The entities comprising the model include the four 
communication links (LAN, WPP, WSP, WGS), the 
computer nodes containing a generator and a sink for 
packets, routers connected to the LAN, WPP and WSP 
links, the satellite, and the ground station. The behavior of 
each of these objects is explained below. 
 
Communication Channels 
 Starting with the simplest element, the bus object is used to 
model all communication links and is considered ideal, with 
FIFO channels and zero message loss. A bus contains input 
and output connectors separated by known distances. The 
bus length does not attenuate transmitted signals, and there 
is no interference or noise between bus channels. Each bus 
is configured to operate with a specific bandwidth and 
propagation delay. When a message enters through one of 
its input connectors, the bus delivers it to each of the output 
connectors at different times depending on the distance and 
propagation delay of the medium. 
 If (  is a pair of input and output connectors 
located at a distance from one of the bus endpoints, p is 
the propagation delay of the bus (in seconds/meter), b is the 
bus bandwidth (in bps), and a message of length n bits 
arrives into  at time t, then at the time that message 
reaches an output connector OC  the following 
relationships can be defined: 

), ii OCIC

iIC

id

j

 
Distance traveled = | di – dj| 
Propagation delay = Distance traveled * p 
Transmission time = n / b 
Start time at OCj = t + Propagation delay = t + | di – dj| * p 
End time at OCj = start + transmission time = t + | di – dj| * p + n / b 
 
 The start and end times at OCj are useful to determine 
collisions between one or more PDUs. If a message has the 
same start and end times during the same interval as the start 
and end times at OCj of any other message, then a collision 
occurs. We adopted a strategy where collided packets are 
discarded to obtain a reasonable estimate of traffic after 
observing the relatively low number of collisions produced 
during the simulations, less than 8% in the worst case, as 
indicated in the Section “Collision Analysis” below. 
 
Routers and Satellite 
 There is a router onboard each airplane. A router is 
connected to the LAN, WPP and WSP links, as indicated in 
Figure 3. Because DIS traffic is broadcasted, a PDU coming 
from one input connector must be propagated to the other 
output connectors according to Table 1. 

Table 1. Routing table in broadcast mode 

Input link Output link 
LAN WPP and WSP 
WPP LAN 
WSP LAN 

 

 Routers maintain an M/M/1 queue of input messages. 
Every time a new message arrives, the router records 
statistics about the number of messages in the queue at that 
time. The message length, the IFS gap, and the output 
bandwidth determine the service time. 
 The satellite behaves like a router with only two links, 
namely the WSP and WGS links. The satellite also 
maintains a queue of messages and calculates statistics as 
does the other routers, for messages at the ground station. 
 

 
Figure 3. Router onboard a plane and its connections to the 
LAN, WPP and WSP links 
 
Flying LAN Nodes and CONUS Ground Station 
 Each workstation in the model consists of a computer 
node that contains two other sub modules: the generator and 
the sink of PDUs. These computer nodes are connected to 
the LAN link. 
 Packets to and from the CONtinental U.S. (CONUS) 
ground station are handled identically as the simulation 
stations aboard the flying LAN, except that links from the 
ground station are connected to the WGS channel only. 
 
 PDU Generator 
 This module reads in the PDUs from a summary file 
containing the type, length and timestamp. It outputs 
packets to the LAN or WGS link depending on the location 
of the workstation. After sending a packet, an inter-frame 
space (IFS) or time gap of 50 µs is added, in accordance 
with the ANSI/IEEE protocol 802.11 (1999). Also, a 5 µs 
delay corresponding to the generator service time is added 
to the transaction. 
 Generators do not use random numbers drawn from a 
particular distribution to simulate traffic. Instead, the 
original type, length and timestamp of PDUs logged by 
OTB are applied, giving more realism to the simulation and 
making them readily repeatable and also allowing them to 
be correlated with events in the EMPR training scenario. 
This approach is more representative for intervals when 
bursts of transmissions occur in real OTBSAF traffic, which 
cannot be modeled using any pre-existing normal or Poisson 
distribution function. 
 



 PDU Sink 
 The sink consumes PDUs and maintains statistics about 
the number of frames received, the latency of each frame, 
and number of collisions detected at each node. 
 
ANALYSIS OF LOGGED PDUs 
 The PDUs produced by OTB during the execution of 
the MR1 vignette represent 27 different types of varying 
lengths. Table 2 lists the PDU types, number of bytes sent, 
and the percentages of each one in the total sample, 
including the generators. It can be observed that Entity State 
PDUs (ESPDUs) make up the majority of the network 
traffic, reaching almost half (47.3%) of the total number of 
PDUs. This observation has been pointed out in [Bassiouni 
et al. 1997] where ESPDU traffic reached as high as 90% of 
the PDU traffic in some cases. OTB also uses a variety of 
Persistent Object (PO) PDUs. For the purpose of this 
research regarding communication traffic loading, the fields 
of interest in PO_PDUs are sufficiently comparable to IEEE 
standard PDUs so that the IEEE description can be applied. 

Table 2. PDU frequency and transmission volume 

PDU Type # 
PDUs 

#  
Bytes 

% #
PDUs 

 % # 
Bytes 

Laser  3 264 0.005 0.002 
start_resume  3 132 0.005 0.001 
stop_freeze  3 120 0.005 0.001 
po_task_authorization  6 388 0.010 0.003 
po_minefield  14 5384 0.023 0.043 
fire  23 2208 0.038 0.018 
detonation  25 2550 0.041 0.021 
acknowledge  36 1152 0.060 0.009 
po_delete_objects  110 4216 0.182 0.034 
minefield  117 42120 0.194 0.339 
po_message  119 69020 0.197 0.556 
signal  237 19896 0.393 0.160 
aggregate_state  256 37888 0.424 0.305 
po_simulator_present  370 34040 0.613 0.274 
po_task_frame  382 87984 0.633 0.709 
mines  386 396088 0.640 3.19 
po_point  659 55356 1.09 0.45 
po_objects_present  682 577952 1.13 4.65 
po_fire_parameters  713 376464 1.18 3.03 
iff  851 51060 1.41 0.41 
po_line  912 115524 1.51 0.93 
po_parametric_input  1196 165440 1.98 1.33 
po_unit  1793 1161864 2.97 9.36 
po_task  2274 399744 3.77 3.22 
transmitter  8642 898768 14.3 7.24 
po_task_state  11960 3052824 19.8 24.6 
entity_state  28569 4857328 47.3 39.1 
Totals  60341 12415774 100% 100% 

 
 Each type of PDU has its own internal structure 
consisting of fields and values of different sizes. A study of 
all the PDUs logged in the vignette indicated that if two 
PDUs are of the same type and length then they have 
consistent field types, but with different data contents in 
selected fields. 

 Another observation from the logged PDUs is the fact 
that OTB schedules some sequences of consecutive PDUs 
using timestamps over very narrow intervals, as in the 
sample sequence shown in Table 3. This can cause 
congestion from sending several packets within a short time 
interval, creating negative spikes in the slack time of the 
routers. In most cases, consecutive PDUs of equal type and 
length differed in a only few fields, yielding the possibility 
of bundling them in a single PDU to improve transmission 
characteristics. 

Table 3. Sample sequence of PDUs scheduled by OTB 
within a narrow time interval (shaded). Although the 
rightmost digit of time stands for milliseconds, OTB has 
microsecond timestamping resolution internally. 

PDU Type Byte Timestamp
po_task_state  152 33:18.776 
entity_state  176 33:18.821 
entity_state  144 33:18.825 
transmitter  104 33:18.825 
signal  72 33:18.825 
transmitter  104 33:18.825 
iff  60 33:18.825 
po_task_state  48 33:18.825 
po_task_state  1016 33:18.825 
po_task_state  1016 33:18.825 
po_task_state  1016 33:18.825 
entity_state  176 33:18.878 
po_task_state  480 33:18.894 
po_task_state  64 33:18.894 
po_task_state  64 33:18.996 
… … … 
po_task_state  64 36:38.043 
po_fire_parameters  528 36:38.043 
po_fire_parameters  528 36:38.043 
po_fire_parameters  528 36:38.043 
po_fire_parameters  528 36:38.043 
po_fire_parameters  528 36:38.043 
po_fire_parameters  528 36:38.043 
po_fire_parameters  528 36:38.043 
po_fire_parameters  528 36:38.043 
po_fire_parameters  528 36:38.043 
po_fire_parameters  528 36:38.043 
po_fire_parameters  528 36:38.043 
po_fire_parameters  528 36:38.043 
po_task_state  840 36:38.043 

 
REPLICATION OF PDUs 
 The observations and analysis of those PDUs 
participating in negative spikes lead to the proposal of a new 
scheme for bundling PDUs that can be seen as a kind of 
high-level lossless compression because the resulting block 
still conserves the characteristics of a PDU, perhaps of a 
different type, and so it is subject to further compressions. 
In fact, the proposed bundling does not remove the 
redundancy within the same PDU: fields filled with zeros in 
the reference PDU will continue being the same length of 
zeros. Only the redundancy resulting from the similarities 
between consecutive PDUs is removed. Therefore, other 



traditional compression mechanisms are applicable and 
recommended after bundling. 
 Replication is the inverse procedure of bundling. When 
a bundled block arrives to a destination, the individual 
PDUs are extracted or replicated from it. Replication is 
independent of other data compression techniques because it 
is targeted at the PDU level and the resulting traffic is of 
PDU type. Therefore, even if there are no plans to modify 
the transport protocol in effect (by compressing TCP/IP 
headers, for instance), the reduction of PDU packets to 
increment the bandwidth availability by using replication is 
still applicable. 
 Numerous results for latency and delay under similar 
configurations for 64 Kbps, 128 Kbps, 200 Kbps, 256 Kbps, 
512 Kbps, and 1024 Kbps are presented in [Vargas et al. 
2004]. A straightforward solution to the negative spikes in 
the slack time is to bundle PDUs of the same type and 
length into longer ones, thus eliminating redundancy in 
corresponding fields of consecutive PDUs. 
 
Specification of Bundling 
 Given a set N = {1, 2, …, n} of indexes and two 
consecutive PDUs A = (a1, a2, …, an) and B = (b1, b2, …, bn), 
where A and B are of the same type and the ai and bi 
represent PDU fields, and S ⊆ N is a subset such that ai = bi 
for all i ∈ S, then the bundle of A and B is defined as A&B = 
(a1, a2, …, an, [ (bj, j) j∈ N–S ] ). A is called the base PDU in 
the bundle. The definition can be extended to an arbitrary 
number of PDUs. For example, given the PDUs: A = (a1, a2, 
a3, a4), B = (b1, b2, b3, b4), and C = (c1, c2, c3, c4), such that 
a2 = b2 = c2, a3 = b3, a4 = c4, then the bundle A&B&C is the 
aggregate PDU such that A&B&C = (a1, a2, a3, a4,[(b1, 1), 
(b4, 4)], [(c1, 1), (c3, 3)]). 
 From the information contained in the n-tuple it is 
straightforward to reconstruct the original PDUs A, B, and 
C. Each component (bj, j) indicates that the value bj replaces 
the field j in the base PDU. In a practical implementation, j 
could be a pointer or an offset into the base PDU. 
 
Related Work 
 The above bundle differs from other proposed 
transmission aggregations in several ways. First, the 
resulting bundle conserves the basic characteristics of the 
base PDU and can be subject to further bundling and/or 
compression algorithms. In [Bassiouni et al. 1997] 
consecutive PDUs are concatenated in a single packet even 
if their types are different, and field redundancy is not 
eliminated. A delta-PDU encoding technique is mentioned 
in [OTA 1995] consisting of PDUs that carry changes 
respect to a reference PDU initially given. [Wills et al. 
2001] describes several bundling techniques generally 
applicable to Web pages under the TCP/IP protocol suite, 
but none are specific to the DIS protocol. A protocol called 
DIS-Lite developed by MäK Technologies [Taylor 1995, 
Taylor 1996a, Taylor 1996b, Purdy and Wuerfel 1998] 
splits the Entity State PDU into static and dynamic data 
PDUs, so that the static information is sent once and the 

changes (dynamic PDUs) are subsequently transmitted as 
separate PDUs. According to [Fullford 1996] by eliminating 
redundancy, DIS-Lite can perform between 30% and 70% 
more efficiently than DIS. DIS-Lite includes also several 
other improvements not related to the combination of 
individual fields from a set of similar PDUs. These 
improvements complement related predictive strategies 
developed for conserving simulation bandwidth [Bahr 96] 
[Henninger 01]. DIS-Lite was designed to take optimize 
ESPDUs. Our bundling approach can optimize any 
consecutive PDUs of equal type and length. Also, the 
reference PDU is included in the bundle in our approach, so 
that the delta-PDUs are not sent separately incurring 
additional header overhead. 
 
Input Data 
 When OTB is executing a vignette, its logger records 
all the generated PDUs into an output file for analysis. The 
OMNeT model reads relevant PDU data from a text file 
created from the OTB transmission log. AWK scripts were 
written to read this file and extract the type, length and 
timestamp of each PDU into a summary PDU file, along 
with two counters. One counter represents a local PDU 
identifier for the generating site, and the other is a global 
identifier from among all the participating sites. Figure 4 
depicts a general view of the steps involved in the traffic 
modeling process. 
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Figure 4. Overview of the simulation process 

 
 For the particular vignette used in this report, six 
summary files were generated, having 7382, 1056, 483, 553, 
637 and 50230 PDUs, respectively. The largest file was 
assigned to the generator at the ground station, because the 
generator is directly connected to a slow wireless link, 
imposing a high load to it, and permitting a more realistic 
study of the performance of congested wireless channels 
under different bandwidths. This also corresponds to the 
case where the opposing force in the OTB simulation is 
controlled at the CONUS ground station. 
 Besides the PDU counters, two other characters, S for 
send and W for wait, were appended to the summary PDUs 
to provide information about the strategy to follow after 
processing each PDU. Four possible strategies are Neural 



Network prediction and three variants of Ideal Prediction 
which will be described below. Table 4 shows a sample of 
summary PDUs. 

Table 4. Sample of summary PDUs 

Hex time Size Decimal 
Time 

Local 
ID PDU Type Global 

ID Prediction

59e1a736 100 21:03.957 15 objects_ 
present 4721 SSSS 

5a8738fc 92 21:13.052 16 simulator
_present 5039 SWWS 

5c357768 92 21:36.686 17 simulator
_present 5728 SSSS 

5c357768 100 21:36.686 18 objects_ 
present 5729 SSSS 

5ca513f0 84 21:42.817 19 point 5972 WWWW 
5ca513f0 84 21:42.817 20 point 5973 WWWW 
5ca513f0 84 21:42.817 21 point 5974 WWWW 
5ca513f0 84 21:42.817 22 point 5975 WSSS 
5ca513f0 80 21:42.817 23 task_ 

state 5976 SSSS 
5ca513f0 96 21:42.817 24 task 5977 SSSS 
 
Implementation of PDU Bundling 
 The basic idea behind the PDU bundling strategy is that 
if consecutive PDUs of the same type and length are 
scheduled within some predefined time interval, they can be 
bundled and delivered as a single packet. This timeout value 
was set to 0.1 seconds after an analysis of traffic bursts to be 
optimized indicated a burst duration less than 0.1 seconds. 
Analysis of PDUs in the log file for a given vignette also 
indicated that the type and the size of a PDU are good 
indicators of feasibility for bundling. In other words, assume 
that PDUs A = (a1, a2, a3, …, an) and B = (b1, b2, b3, …, bm) 
are such that type(A) = type(B) and length(A) = length(B), 
then n = m and field-type(ai)= field-type(bi), where type, 
length and field-type are functions that return the type, the 
length in bytes and the type of a field in a PDU, 
respectively. If two PDUs are of the same type and length, 
they are referred to as compatible and are candidates to be 
bundled.  
 The pseudo-algorithm of this PDU bundling strategy 
can be described as follows: 
 

1) Wait until next PDU is ready for delivery. Let A 
denote that PDU. 

2) Bundle = A. This is the first PDU (base PDU) in 
the bundle. 

3) Set timeout = maximum time A will wait in the 
bundle (default is 0.1 seconds). 

4) While (timeout not expired) { 
a. If next PDU is ready for delivery, let B be 

that PDU, otherwise repeat the while-loop; 
i. If A and B are compatible PDUs { 

Bundle = Bundle & B; 
B = ∅;} 

else break the while-loop} 

5) Transmit Bundle as a single packet. 
6) If B = ∅ then repeat from step 1) 

else A = B and repeat from step 2). 
 
This algorithm is called Always-Wait because after 
processing a PDU, the algorithm waits for the next PDU 
unless a timeout is detected. When the next PDU is 
obtained, its type is inspected and if it is different from the 
type of the base PDU then the time waited was wasted. 
From this reasoning we can conclude that Always-Wait is 
not optimal. If there were a means to accurately predict the 
type and length, or at least the type, of the next PDU and the 
prediction indicates a type different from the type of the 
current base PDU, then the current bundle could be sent 
immediately, saving the waiting time. Such a variation of 
the above algorithm is introduced below. 
 One way to predict the next PDU based on the recent 
history is by using a Neural Network (NN) approach. A 
neural network was used to find patterns in sequences of 
PDUs that were observed to occur during negative spikes. 
These patterns can be used as a basis for predicting the type 
of the next incoming PDU. In this research, we set up a 
gradient descent back-propagation neural network that 
predicts the next type based on the types of the previous 44 
PDUs. The neural network predicted the next PDU type 
with a certainty of near 70 %. Considering that there are 27 
different PDU types, this percentage is significant. If NN 
prediction indicates that the next PDU type is the same as 
the current one then a “W” (for Wait) character is appended 
to the summary file, otherwise an “S” (for Send) is 
appended to it. 
 In this research, the comparison took place in the pre-
processing stage shown in Figure 4 using actual PDU fields, 
which resulted in three ideal prediction methods in addition 
to the NN-based prediction. The ideal prediction methods 
calculate the next PDU type with 100 % certainty because 
they know the PDUs in advance and are referred to as off-
line algorithms. Off-line algorithms have the luxury of 
making bundling decisions based on future packets that 
have not yet arrived by knowing the entire packet stream 
during off-line analysis. On-line algorithms see only the 
dynamic stream of incoming packets in the order of 
transmission. The first ideal prediction method we 
compared to considers the PDU type only, the second one 
considers the type and length, and the last one considers the 
type, length and timestamp. Given any PDU, if the next one 
can be bundled to it because its type (method 1), and length 
(method 2), and timestamp (method 3) are equal then it is 
held for bundling. Table 4 shows four columns with the “S” 
and “W” characters resulting from the application of the 
bundling strategies. The first column corresponds to the 
neural network prediction and the other three correspond to 
each of the perfect prediction methods. Only one column is 
processed during each run by the OMNeT simulator.  
 In addition to the four predictive methods already 
described, there are two others called Always-Wait and 



Always-Send, realized by filling the decision column with 
all “W” or “S” characters, respectively. 
 
Slack Time Analysis 
 The slack time for each node generator is defined as the 
difference between the timestamp of each PDU and the 
current simulator time at the moment the PDU is read from 
the input file. If tPDU represents the timestamp of a PDU and 
tread represents the time when the PDU was read, then tslack = 
tPDU – tread. If the difference is positive (tslack > 0) then the 
router or transmitter is ahead of the planned schedule, 
otherwise it is behind it. Thus, a negative slack time 
indicates that the channel bandwidth is insufficient to 
transmit the required PDUs without incurring delay. 
 Figure 5 shows the slack time of the generator at the 
ground station for different predictive algorithms. The 
 

 
Figure 5. Slack time at ground station for several predictive 
strategies (64 Kbps) 

 
graph was created assigning 64 Kbps to all wireless links 
and 100 ms to the timeout period. As seen in the diagram, 
up to second 1600 of the simulation, all of the algorithms 
behaved similarly, but at that point negative slack started to 
accumulate. The Always-Send algorithm incurred in the 
largest slack, followed by Type, Type-Length, and Type-
Length-Time predictions. Curve 6 shows that the generator 
in ground station could not accomodate the traffic demands 
with only a 64 Kbps channel. Increasing delay in timeliness 
to send PDUs builds up such that over 75 seconds of latency 
are encountered. However, latency of more than just a few 
seconds would make a distributed training exercise 
unusable. The neural network approach performed relatively 
well, although not optimally because its predictions are not 
entirely correct. The other algorithms are among the best in 
this simulation, and so a close-up of their performance is 
shown in Figure 6. Results indicate that the neural network 
approach could be improved by using a better learning 
mechanism and/or neural network configuration. Another 
observation is that the decision of sending the current 
bundle based solely on the upcoming PDU type, is as good 
as the one that considers the type and the length of each 

PDU. Therefore, a NN approach could benefit from this 
observation by concentrating the effort in predicting the 
type only, instead of the type and the length. However, the 
most interesting observation comes from the fact that the 
Always-Wait algorithm is almost as good as those that 
consider PDU type and length, yet it is the simplest of the 
strategies. Because Type and Type-Length strategies are 
offline algorithms, they are not applicable during actual 
OTB simulations to predict future PDUs. On the other hand, 
Always-Wait, Always-Send and Neural-Network prediction 
could be used because they are online algorithms. 
 

 
Figure 6. Comparison of negative slack for the four best 
algorithms 

 
 Table 5 shows the average and standard deviation in 
slack time for all of the combinations of algorithms and 
bandwidths measured at the ground station. The larger the 
average slack is, the better the algorithm is performing. The 
average was calculated considering all of the PDUs 
generated during the EMPR training exercise.  
 

Table 5. Slack time average and standard deviation for all 
the studied algorithms and bandwidth combinations 
measured at the ground station 

Avg: 
Std. Deviation: 64 Kbps 128 Kbps 256 Kbps 512 Kbps 

Type – 0.758 
1.600 

– 0.017 
0.109 

0.015 
0.073 

0.024 
0.066 

Type-Length – 0.760 
1.601 

– 0.018 
0.110 

0.015 
0.073 

0.024 
0.066 

Always-Wait – 0.802 
1.689 

– 0.017 
0.109 

0.016 
0.073 

0.024 
0.066 

Neural Net. – 1.579 
2.638 

– 0.044 
0.162 

0.008 
0.085 

0.022 
0.069 

Always-Send – 26.181 
26.033 

– 0.054 
0.176 

0.006 
0.085 

0.021 
0.069 

 
 The Always-Send algorithm, which is used in DIS, is 
the worst of the five algorithms, and Always-Wait is among 
the best. Because, Always-Send corresponds to the non-



bundling algorithm case, we can infer that the type of 
bundling proposed here can be applied advantageously to 
DIS traffic. Another observation is the fact that at 64 Kbps 
and 128 Kbps, the average slack time was negative for all 
the algorithms, and for 256 Kbps and above it is positive. A 
negative average indicates that the corresponding bandwidth 
is insufficient to handle the PDU traffic. Therefore, for the 
EMPR vignette being studied, the wireless bandwidth 
should be at least 256 Kbps in this simulation to avoid 
incurring detectable transmission delays. 
 
Travel Time Analysis 
 The travel time is the difference between the sending 
time of a PDU from a generator and the arrival time at the 
sink. All the transmission times, propagation times, and 
waiting times in router queues contribute to the travel time. 
If ts, ta and tt represent the sending time, the arrival time and 
the travel time of a given PDU, then the travel time is 
defined as tt = ta - ts. Every time a bundle is sent, the current 
time (ts) is associated with it, allowing the destinations to 
calculate tt. 
 Figure 7 shows the travel time as calculated at one of 
the sinks (sink # 0 onboard plane # 0), using 64 Kbps and 
128 Kbps wireless links. It is clear that 64 Kbps is 
insufficient to handle the traffic required during EMPR 
simulation. As seen, during the interval from second 2000 to 
second 2400, many of the PDUs took almost 40 seconds to 
arrive at their destinations, which is completely 
unacceptable for maintaining the required fidelity during the 
training simulation. 

 
Figure 7. Travel time for the Always-Wait strategy, at 
destination 0 onboard plane 0, using 64 and 128 Kbps 
wireless links  

 However, a substantial improvement is obtained at 128 
Kbps where the latency drops closer to 1 second. Figure 8 
zooms in on the data shown in Figure 7, eliminating the 64 
Kbps curve from the graph. It shows that most of PDUs take 
less than 0.4 seconds to reach their destinations. It is 
interesting to note the large concentration of PDUs near 
0.25 seconds. This is because any message sent from the 
ground station to an airplane via satellite takes at least that 
duration. The distance traveled by the signals at the speed of 
light is near 76600 Km (2·[35800 Km of satellite height + 
2500 Km of ground displacement]), giving a propagation 

delay of approximately 0.255 seconds. The graph also 
shows that some PDUs take less than 0.1 seconds of travel 
time. Those PDUs correspond to messages sent between 
simulation stations onboard en-route planes without passing 
through the satellite. 

 
Figure 8. Close-up of travel time at sink 0, plane 0 (128 
Kbps) 
 
 Table 6 shows the average and standard deviation of the 
travel time for each combination of algorithm and 
bandwidth, measured at sink #0 onboard plane #0. 
Considering that approximately 83 % of the PDU traffic 
received at sink #0 is transmitted by the ground station via 
satellite, and that for those PDUs 0.255 seconds is an 
unavoidable delay, the table shows, the table shows a very 
good behavior of the algorithms at 256 Kbps or more, 
giving a slight advantage to Always-Wait bundling. 
 

Table 6. Average and standard deviation of travel time 
measured at sink #0 

Avg: 
Std. Deviation: 64 Kbps 128 Kbps 256 Kbps 512 Kbps

Type 9.20 
13.2 

0.304 
0.099 

0.262 
0.069 

0.249 
0.064 

Type-Length 9.24 
13.2 

0.306 
0.101 

0.262 
0.069 

0.249 
0.064 

Always-Wait 9.43 
13.5 

0.303 
0.099 

0.261 
0.069 

0.249 
0.064 

Neural Net. 28.7 
33.2 

0.314 
0.119 

0.261 
0.069 

0.248 
0.064 

Always-Send 64.0 
58.0 

0.333 
0.153 

0.263 
0.062 

0.251 
0.057 

 
Queue Length Analysis 
 The satellite and the routers each contain a message 
queue to store incoming PDUs that are pending service. 
Every time a PDU arrives at a router or satellite, the number 
of other messages in the system is counted, including the 
PDUs already in the queue, plus any one being serviced. 
The value of this counter is recorded in an OMNeT statistics 
file along with the arrival time of the incoming PDU. When 
the simulation ends, a post-processing program reads the file 
to obtain the statistics on queue length distribution. 



 Due to the nature of the PDU traffic in the simulation, 
two queues to focus attention on are the router queue 
onboard any aircraft, for instance airplane #0, and the 
satellite queue. Figure 9 shows the satellite queue at 64 
Kbps and 128 Kbps. 

 
Figure 9. Messages in satellite at 64 and 128 Kbps showing 
the impact of a higher bandwidth on queue length 
 
 It is clear from the graph that 64 Kbps is an insufficient 
bandwidth from the perspective of queue length as well, 
causing the satellite queue to grow unbounded. The reason 
for its reaching a maximum of about 6000 messages, 
followed by a descent when the simulation is approaching 
its end, is that at that time no additional messages are sent 
from the generators. At 128 Kbps, a significant change in 
the queue length is observed, with it maintaining reasonably 
low values. Another observation is that the graph does not 
reach the zero axis. This occurs because the queue status is 
reported only if another message enters the queue. After the 
arrival of the last message to the queue, the messages 
already stored there are consumed without being reported.
 Table 7 lists a summary of the average and standard 
deviation of the satellite queue length obtained for 
combinations of different algorithms and bandwidths. 
 

Table 7. Average and standard deviation in the satellite 
queue length for combinations of algorithm and bandwidth 

Avg: 
Std. Deviation: 64 Kbps 128 Kbps 256 Kbps 512 Kbps

Type 316.97 
411.43 

2.38 
3.97 

0.91 
1.72 

0.56
1.23

Type-Length 318.154 
412.273 

2.44 
4.13 

0.92 
1.75 

0.56
1.26

Always-Wait 327.278 
421.161 

2.30 
3.88 

0.85 
1.69 

0.49
1.16

Neural Net. 1028.47 
1045.26 

3.58 
6.37 

1.24 
2.18 

0.79
1.52

Always-Send 2962.94 
2236.83 

5.40 
10.78 

1.22 
2.55 

0.63
1.57

 
Collision Analysis 
 The satellite and routers keep separate counters of 
collisions on each of the links that they are connected to. 
The satellite is connected to two wireless links (WSP and 
WGS in Figure 2) and the routers are connected to one LAN 

and two wireless links (LAN, WSP and WPP in Figure 3). 
Each time a collision is detected, the corresponding counter 
is incremented and its new value along with the current 
simulation time is recorded for future processing. Again, 
Always-Wait performed well, closely followed by Type and 
Type-Length prediction bundling strategies. 
 The simulation results shown in Figure 10 indicate that 
at 64 Kbps the highest collision rate measured at the router 
aboard airplane #7 was close to 12 collisions per second and 
it occurred in WSP, the link connecting the satellite to the 
planes, during the time interval [2050, 2100]. At 64 Kbps, 
fewer than 4800 collisions were detected in total for the 
Always-Send algorithm, which represents less than 8% of 
the total number of PDUs. On the other hand, at 256 Kbps 
the total number of collisions for the Always-Wait algorithm 
was close to 2100, or 5.3 % of all transmissions. Collision 
accumulation in plane #7 at different bandwidth rates is 
given in Figure 10.  
 

 
Figure 10. Collision accumulation as counted in router at 
airplane 7 for combinations of the Always-Send and Always-
Wait algorithms at 64 and 128 Kbps 
 
 As Figure 10 shows, at 128 Kbps and 256 Kbps there is 
roughly a total difference of 1000 fewer collisions for the 
Always-Wait than for the Always-Send algorithm. As the 
bandwidth increases, the number of collisions decreases 
because at higher bandwidths the packets require less 
transmission time, and so the corresponding probability of a 
collision is reduced. 
 
CONCLUSIONS 
 There are three sets of conclusions that can be drawn 
from the communication modeling study of DIS traffic 
under EMPR. The first set corresponds to observations 
about the required bandwidth in the wireless channels 
required to carry out an OTB simulation training exercise. 
The second set corresponds to conclusions about the 
effectiveness of the bundling techniques. The third set 
corresponds to research extensions not fully developed 
herein and thus potential future work. 
 
Required Bandwidth 
 One goal of this research was to estimate the required 
bandwidth needed by wireless channels for communication 



between the OTB stations in the JEMPRS flying network 
depicted in Figure 1. A vignette was prepared and executed 
in OTB, generating the traffic transmitted between the 24 
flying sites plus the CONUS ground station. The PDU 
traffic generated was captured and used as input to the 
OMNeT discrete event simulator, preserving the original 
PDU timestamps, types, and lengths. The OMNeT model 
was executed under several combinations of wireless 
bandwidths (64K, 128K, 256K, 512K) and the bundling 
techniques developed (Always-Send, Neural Network, Type, 
Type-Length, Always-Wait). 
 From the results of the OMNeT traffic model, it can be 
concluded that 64 Kbps wireless links are not sufficient to 
handle the required PDU traffic for an EMPR vignette, due 
to the large negative slack reported in the generators (Figure 
5), the large travel time latency for transmissions involving 
the ground station (Figure 7), and the excessive satellite 
queue length (Figure 9). However, at 128 Kbps the situation 
improves dramatically. It seems that an average of 0.26 
seconds in the travel time and 2.3 messages in the satellite 
queue are good indicators of performance. However, the 
negative average slack time of –0.017 seconds indicates that 
128 Kbps represents a slightly insufficient bandwidth to 
complete handle some traffic bursts during EMPR 
scenarios. Therefore, the conclusion is that to not incur 
unnecessary delays then the required bandwidth should be at 
least 256 Kbps in the JEMPRS network for this type of 
training exercise. 
 
Effectiveness of Bundling 
 All of the statistics presented indicate that bundling can 
be effective for reducing PDU traffic and improving 
utilization of available bandwidth. The reductions in 
negative slack (Figures 5 and 6), travel time (Table 6), 
satellite queue length (Table 7), and number of collisions 
(Figure 10) are all indicators in that sense. Table 8 shows 
the total number of bundles and total number of bytes 
transmitted by the Always-Wait strategy at different 
bandwidths. In all cases, the number of PDUs read from the 
summary files is 60,341 PDUs equivalent to 12,415,774 
bytes, which corresponds to the non-bundling strategy. 
Therefore, Always-Wait presents an approximate reduction 
of 35 % in the number of PDUs transmitted and 21 % in the 
number of bytes transmitted. 
 The replication of PDUs through bundling presented in 
this research differs from other proposals [ATO 1995, 
Taylor 1995, Taylor 1996a, Taylor 1996b, Fullford 1996, 
Bassiouni et al. 1997, Purdy and Wuerfel 1998, Wills et al. 
2001] in several ways. Bundling strategies used here take 
into account the internal structure of each PDU; only PDUs 
of the same type and length are combined together into a 
bundle. The proposed bundling algorithms are 
straightforward to implement, as well as the extraction of 
individual PDUs at the destination. Bundles are independent 
of each other so the information required to extract the 
PDUs is contained in the same bundle. Thus, during packet 

switched transmission the bundles can arrive out-of-order 
without impacting the replication strategy at the receiver. 
 
Table 8. Number of bundles and number of bytes 
transmitted by Always-Wait at different bandwidths 

Kbps # of Bundles Number bytes

64 38,708 9,778,978 

128 39,319 9,837,114 

256 39,554 9,860,433 

512 39,619 9,866,762 
 
Future Work 
 Several possibilities for future work are open. The 
bundling algorithm could be extended to consider PDUs of 
different length as candidates to be included in the bundle. 
Also, the bundling of PDUs of different types might be 
investigated as long as the resulting bundle still maintains 
the underlying structure, or other extensions to publish-
subscribe protocols similar to HLA. 
 Another branch of research could be based on further 
improvement of the prediction of the type for upcoming 
PDUs. The neural network developed in this study was 
rudimentary, having prediction accuracy close to 70 %. If an 
improved neural network is used, it could outperform the 
Always-Wait strategy, which is not necessarily optimal. 
However, a comparison of the CPU overhead incurred by 
both algorithms would be appropriate to justify if the use of 
improved prediction is warranted given the benefits. 
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