
 PDU Bundling and Replication for
Reduction of Distributed Simulation Communication Traffic1

Juan J. Vargas2, Ronald F. DeMara2, Michael Georgiopoulos2, Avelino J. Gonzalez2, Henry Marshall3

2 Department of Electrical and Computer Engineering
University of Central Florida

Orlando, FL 32816-2450
jvargas@ucf.edu, demara@mail.ucf.edu, michaelg@mail.ucf.edu, gonzalez@ucf.edu

3 Simulation & Training Technology Center

RDECOM, AMSRD-STTC
12423 Research Parkway

Orlando, FL 32826
Henry.A.Marshall@us.army.mil

 Communication bandwidth and latency reduction
techniques are developed for Distributed Interactive
Simulation (DIS) protocols. DIS Protocol Data Unit (PDU)
packets are bundled together prior to transmission based on
PDU type, internal structure, and content over a sliding
window of up to C adjacent transmission requests, for 1 < C
< 64. At the receiving nodes, the packets are replicated as
necessary to reconstruct the original packet stream.
Bundling strategies including Always- Wait, Always-Send,
Type-Only prediction, Type-Length prediction, and Type-
Length-Time prediction are developed and then evaluated
using both heuristic parameters and a gradient descent back-
propagation neural network.
 Several communication case studies from the One
Semi-Automated Forces (OneSAF) Testbed Baseline (OTB)
are assessed for multiple-platoon, company, and battalion-
scale force-on-force vignettes consistent with Future
Combat Systems (FCS) Operations and Organizations
(O&O) scenarios. Traffic is modeled using the OMNeT++
discrete event simulator models and scripts developed for a
hierarchical communication architecture consisting of eight
enroute C-17 aircraft each carrying three Ethernet-
connected M1A2 ground vehicles, a wireless flying LAN
based on Joint Forces Command’s Joint Enroute Mission
Planning and Rehearsal System (JEMPRS) for Near-Term
(JEMPRS-NT) and follow-on bandwidth capacities. The
simulation traffic includes Opposing Force (OPFOR)
control via a CONUS-based ground station via its
corresponding satellite links. Different bandwidth capacities
are simulated and analyzed PDU travel time and slack time,
router and satellite queue length, and number of packet

1 This work was supported in part by the U.S. Army
Research Development and Engineering Command (RDE-
COMM) as part of the Embedded Combined Arms Team
Trainer and Mission Rehearsal (ECATT-MR) Science and
Technology Objective (STO) contract N61339-02-C-0097.

collisions are assessed at 64 Kbps, 256 Kbps, 512 Kbps, and
1 Mbps capacities. Results indicate that a Type-Length
prediction strategy is capable of reducing travel time up to
85%, slack time up to 97%, queue length up to 98% on
bandwidth restricted channels of 64 Kbps.

Keywords: DIS protocol, OneSAF Testbed Baseline OTB,
PDU replication, PDU bundling, network bandwidth.

INTRODUCTION
 One Semi-Automated Forces (OneSAF) is a U.S. Army
computer generated force simulation system capable of
running training simulations and rehearsing missions within
a digital environment [Witman 2001]. In this paper, a
modeling environment for assessing OneSAF
communication during mission rehearsal of Future Combat
System (FCS) vignettes is developed and applied to
optimize simulation communication traffic. Several
different FCS vignettes were prepared and simulated using
the OneSAF Testbed Baseline (OTB) on a Local Area
Network. Traffic logs were created from the participating
sites under the Distributed Interactive Simulation (DIS)
protocol as defined in the IEEE Standards 1278.1 (1995),
1278.2 (1995), 1278.3 (1996) and 1278.1a (1998). The
fundamental communication elements under DIS, called
Protocol Data Units (PDUs), were logged including relevant
information about PDU type, length and timestamp then
later extracted for modeling assessment of alternative
transmission scheduling strategies.
 In particular, the MR1 vignette illustrating a mission
rehearsal operation while en-route to deployment was used
to generate PDU traffic logs. This vignette was partly based
on and extends TRADOC PAM 525-3-90 FCS Operations
& Organizations (O&O) document, dated 22 July 2002,
“Annex F – Unit of Action Vignettes.” The duration of the
vignette is approximately 25 minutes of simulation time. It
involves Entry Operations and Maneuver to Attack of a

mailto:jvargas@ucf.edu
mailto:demara@mail.ucf.edu
mailto:michaelg@mail.ucf.edu
mailto:gonzalez@ucf.edu
mailto:Henry.A.Marshall@us.army.mil

battalion-sized unit tasked with pursuing an enemy delaying
force immediately upon landing. The lead elements (Alpha
Company) detect a fortified position between the main
elements and the target enemy force. Four RAH-66
Comanche helicopters are deployed and follow closely.
Next, the East friendly forces, begin to advance on the
enemy position, however, they must traverse minefields
during their pursuit. The enemy force flees southward from
the North and East force. The South force engages the
enemy, and is assisted by the North and East forces.
 The vignette was executed on OTB and a log file
containing all the network traffic (PDUs) transmitted was
recorded and used as input to a modeling environment for
purpose of studying the communication traffic under several
bandwidths. Figure 1 depicts the communication
architecture of the model used for rehearsal and training
with the MR1 vignette. It consists of eight airplanes flying
in formation towards deployment to support En-route
Mission Planning and Rehearsal (EMPR) while the vehicles
are en-route to the combat destination. Each aircraft carries
three ground vehicles, and each vehicle contains a
simulation station executing the MR1 vignette using OTB.
The number of planes and simulation stations onboard is
variable in the model. The three simulation stations on each
plane are connected via a hardwired Ethernet bus at 100
Mbps. Connections from plane to plane are achieved via
routers and wireless links. A ground station is connected to
the flying network through the satellite link as shown.
Possible values for wireless bandwidths range from 64 Kbps
to 1024 Kbps. This communication model is consistent with
the JEMPRS Flying LAN network described in [Frontlines
2002]. The purpose of the research described in this paper is
to assess the bandwidth required in the wireless links to
support EMPR and develop improved strategies that more
effectively utilize the bandwidth available.

Figure 1. JEMPRS Flying LAN network for EMPR

 In summary, the model consists of a collection of
processing nodes and routers interconnected by different
media at several bandwidths. The computer nodes broadcast
packets at different rates. While it is possible to model the
network traffic by creating an artificial packet generation
that follows some probability distribution over time, a more
representative approach was developed using the actual

traffic generated by OTB during execution of the MR1
vignette. A log of the actual packets generated by OTB
included the PDU timestamp which is used for packet
generation in the traffic modeling studies in place of a
random distribution function. This provides much more
realism to the communication traffic analysis, especially for
the bursty nature of traffic observed during EMPR
execution.
 Although DIS traffic was simulated in this research,
other protocols like High Level Architecture (HLA) have
been proposed as alternatives to DIS. The Defense
Modeling and Simulation Office (DMSO) developed HLA
as part of their goal to increase interoperability and promote
reuse of simulations and their components. HLA defines the
concept of a federation, which is a subset of interacting
simulations. Many features not found in DIS are included in
HLA to reduce traffic network, like Data Distribution
Management that improves scalability by limiting

the network traffic each federate has to process

[Ceranowicz 2002]. The federation network traffic
is segmented such that federates receive

messages from only those segments that can

affect them. However, currently fielded

simulators used during EMPR training utilize the

DIS protocol studied here.
 The OMNeT++ discrete event simulator [Varga 2003]
was used as a platform for communication assessment. Each
of the elements shown in Figure 1 was realized as a C++
module in OMNeT++. Figure 2 shows one screenshot of the
OMNeT++ tool. In this screenshot, neither the ground
vehicles carrying computer nodes, nor the LAN links
connecting them, nor the routers in each plane are depicted.
Instead, three horizontal bars represent wireless channels.
The upper bar is used for Wireless Plane-to-Plane
communications (WPP link), the middle bar represents
Wireless Satellite-to-Plane communications (WSP link), and
the lowest bar represents Wireless Ground-Station-to-
Satellite communications (WGS link).

Figure 2. OMNeT window depicting JEMPRS network

 The entities comprising the model include the four
communication links (LAN, WPP, WSP, WGS), the
computer nodes containing a generator and a sink for
packets, routers connected to the LAN, WPP and WSP
links, the satellite, and the ground station. The behavior of
each of these objects is explained below.

Communication Channels
 Starting with the simplest element, the bus object is used to
model all communication links and is considered ideal, with
FIFO channels and zero message loss. A bus contains input
and output connectors separated by known distances. The
bus length does not attenuate transmitted signals, and there
is no interference or noise between bus channels. Each bus
is configured to operate with a specific bandwidth and
propagation delay. When a message enters through one of
its input connectors, the bus delivers it to each of the output
connectors at different times depending on the distance and
propagation delay of the medium.
 If (is a pair of input and output connectors
located at a distance from one of the bus endpoints, p is
the propagation delay of the bus (in seconds/meter), b is the
bus bandwidth (in bps), and a message of length n bits
arrives into at time t, then at the time that message
reaches an output connector OC the following
relationships can be defined:

), ii OCIC

iIC

id

j

Distance traveled = | di – dj|
Propagation delay = Distance traveled * p
Transmission time = n / b
Start time at OCj = t + Propagation delay = t + | di – dj| * p
End time at OCj = start + transmission time = t + | di – dj| * p + n / b

 The start and end times at OCj are useful to determine
collisions between one or more PDUs. If a message has the
same start and end times during the same interval as the start
and end times at OCj of any other message, then a collision
occurs. We adopted a strategy where collided packets are
discarded to obtain a reasonable estimate of traffic after
observing the relatively low number of collisions produced
during the simulations, less than 8% in the worst case, as
indicated in the Section “Collision Analysis” below.

Routers and Satellite
 There is a router onboard each airplane. A router is
connected to the LAN, WPP and WSP links, as indicated in
Figure 3. Because DIS traffic is broadcasted, a PDU coming
from one input connector must be propagated to the other
output connectors according to Table 1.

Table 1. Routing table in broadcast mode

Input link Output link
LAN WPP and WSP
WPP LAN
WSP LAN

 Routers maintain an M/M/1 queue of input messages.
Every time a new message arrives, the router records
statistics about the number of messages in the queue at that
time. The message length, the IFS gap, and the output
bandwidth determine the service time.
 The satellite behaves like a router with only two links,
namely the WSP and WGS links. The satellite also
maintains a queue of messages and calculates statistics as
does the other routers, for messages at the ground station.

Figure 3. Router onboard a plane and its connections to the
LAN, WPP and WSP links

Flying LAN Nodes and CONUS Ground Station
 Each workstation in the model consists of a computer
node that contains two other sub modules: the generator and
the sink of PDUs. These computer nodes are connected to
the LAN link.
 Packets to and from the CONtinental U.S. (CONUS)
ground station are handled identically as the simulation
stations aboard the flying LAN, except that links from the
ground station are connected to the WGS channel only.

 PDU Generator
 This module reads in the PDUs from a summary file
containing the type, length and timestamp. It outputs
packets to the LAN or WGS link depending on the location
of the workstation. After sending a packet, an inter-frame
space (IFS) or time gap of 50 µs is added, in accordance
with the ANSI/IEEE protocol 802.11 (1999). Also, a 5 µs
delay corresponding to the generator service time is added
to the transaction.
 Generators do not use random numbers drawn from a
particular distribution to simulate traffic. Instead, the
original type, length and timestamp of PDUs logged by
OTB are applied, giving more realism to the simulation and
making them readily repeatable and also allowing them to
be correlated with events in the EMPR training scenario.
This approach is more representative for intervals when
bursts of transmissions occur in real OTBSAF traffic, which
cannot be modeled using any pre-existing normal or Poisson
distribution function.

 PDU Sink
 The sink consumes PDUs and maintains statistics about
the number of frames received, the latency of each frame,
and number of collisions detected at each node.

ANALYSIS OF LOGGED PDUs
 The PDUs produced by OTB during the execution of
the MR1 vignette represent 27 different types of varying
lengths. Table 2 lists the PDU types, number of bytes sent,
and the percentages of each one in the total sample,
including the generators. It can be observed that Entity State
PDUs (ESPDUs) make up the majority of the network
traffic, reaching almost half (47.3%) of the total number of
PDUs. This observation has been pointed out in [Bassiouni
et al. 1997] where ESPDU traffic reached as high as 90% of
the PDU traffic in some cases. OTB also uses a variety of
Persistent Object (PO) PDUs. For the purpose of this
research regarding communication traffic loading, the fields
of interest in PO_PDUs are sufficiently comparable to IEEE
standard PDUs so that the IEEE description can be applied.

Table 2. PDU frequency and transmission volume

PDU Type #
PDUs

Bytes

% #
PDUs

 % #
Bytes

Laser 3 264 0.005 0.002
start_resume 3 132 0.005 0.001
stop_freeze 3 120 0.005 0.001
po_task_authorization 6 388 0.010 0.003
po_minefield 14 5384 0.023 0.043
fire 23 2208 0.038 0.018
detonation 25 2550 0.041 0.021
acknowledge 36 1152 0.060 0.009
po_delete_objects 110 4216 0.182 0.034
minefield 117 42120 0.194 0.339
po_message 119 69020 0.197 0.556
signal 237 19896 0.393 0.160
aggregate_state 256 37888 0.424 0.305
po_simulator_present 370 34040 0.613 0.274
po_task_frame 382 87984 0.633 0.709
mines 386 396088 0.640 3.19
po_point 659 55356 1.09 0.45
po_objects_present 682 577952 1.13 4.65
po_fire_parameters 713 376464 1.18 3.03
iff 851 51060 1.41 0.41
po_line 912 115524 1.51 0.93
po_parametric_input 1196 165440 1.98 1.33
po_unit 1793 1161864 2.97 9.36
po_task 2274 399744 3.77 3.22
transmitter 8642 898768 14.3 7.24
po_task_state 11960 3052824 19.8 24.6
entity_state 28569 4857328 47.3 39.1
Totals 60341 12415774 100% 100%

 Each type of PDU has its own internal structure
consisting of fields and values of different sizes. A study of
all the PDUs logged in the vignette indicated that if two
PDUs are of the same type and length then they have
consistent field types, but with different data contents in
selected fields.

 Another observation from the logged PDUs is the fact
that OTB schedules some sequences of consecutive PDUs
using timestamps over very narrow intervals, as in the
sample sequence shown in Table 3. This can cause
congestion from sending several packets within a short time
interval, creating negative spikes in the slack time of the
routers. In most cases, consecutive PDUs of equal type and
length differed in a only few fields, yielding the possibility
of bundling them in a single PDU to improve transmission
characteristics.

Table 3. Sample sequence of PDUs scheduled by OTB
within a narrow time interval (shaded). Although the
rightmost digit of time stands for milliseconds, OTB has
microsecond timestamping resolution internally.

PDU Type Byte Timestamp
po_task_state 152 33:18.776
entity_state 176 33:18.821
entity_state 144 33:18.825
transmitter 104 33:18.825
signal 72 33:18.825
transmitter 104 33:18.825
iff 60 33:18.825
po_task_state 48 33:18.825
po_task_state 1016 33:18.825
po_task_state 1016 33:18.825
po_task_state 1016 33:18.825
entity_state 176 33:18.878
po_task_state 480 33:18.894
po_task_state 64 33:18.894
po_task_state 64 33:18.996
… … …
po_task_state 64 36:38.043
po_fire_parameters 528 36:38.043
po_fire_parameters 528 36:38.043
po_fire_parameters 528 36:38.043
po_fire_parameters 528 36:38.043
po_fire_parameters 528 36:38.043
po_fire_parameters 528 36:38.043
po_fire_parameters 528 36:38.043
po_fire_parameters 528 36:38.043
po_fire_parameters 528 36:38.043
po_fire_parameters 528 36:38.043
po_fire_parameters 528 36:38.043
po_fire_parameters 528 36:38.043
po_task_state 840 36:38.043

REPLICATION OF PDUs
 The observations and analysis of those PDUs
participating in negative spikes lead to the proposal of a new
scheme for bundling PDUs that can be seen as a kind of
high-level lossless compression because the resulting block
still conserves the characteristics of a PDU, perhaps of a
different type, and so it is subject to further compressions.
In fact, the proposed bundling does not remove the
redundancy within the same PDU: fields filled with zeros in
the reference PDU will continue being the same length of
zeros. Only the redundancy resulting from the similarities
between consecutive PDUs is removed. Therefore, other

traditional compression mechanisms are applicable and
recommended after bundling.
 Replication is the inverse procedure of bundling. When
a bundled block arrives to a destination, the individual
PDUs are extracted or replicated from it. Replication is
independent of other data compression techniques because it
is targeted at the PDU level and the resulting traffic is of
PDU type. Therefore, even if there are no plans to modify
the transport protocol in effect (by compressing TCP/IP
headers, for instance), the reduction of PDU packets to
increment the bandwidth availability by using replication is
still applicable.
 Numerous results for latency and delay under similar
configurations for 64 Kbps, 128 Kbps, 200 Kbps, 256 Kbps,
512 Kbps, and 1024 Kbps are presented in [Vargas et al.
2004]. A straightforward solution to the negative spikes in
the slack time is to bundle PDUs of the same type and
length into longer ones, thus eliminating redundancy in
corresponding fields of consecutive PDUs.

Specification of Bundling
 Given a set N = {1, 2, …, n} of indexes and two
consecutive PDUs A = (a1, a2, …, an) and B = (b1, b2, …, bn),
where A and B are of the same type and the ai and bi
represent PDU fields, and S ⊆ N is a subset such that ai = bi
for all i ∈ S, then the bundle of A and B is defined as A&B =
(a1, a2, …, an, [(bj, j) j∈ N–S]). A is called the base PDU in
the bundle. The definition can be extended to an arbitrary
number of PDUs. For example, given the PDUs: A = (a1, a2,
a3, a4), B = (b1, b2, b3, b4), and C = (c1, c2, c3, c4), such that
a2 = b2 = c2, a3 = b3, a4 = c4, then the bundle A&B&C is the
aggregate PDU such that A&B&C = (a1, a2, a3, a4,[(b1, 1),
(b4, 4)], [(c1, 1), (c3, 3)]).
 From the information contained in the n-tuple it is
straightforward to reconstruct the original PDUs A, B, and
C. Each component (bj, j) indicates that the value bj replaces
the field j in the base PDU. In a practical implementation, j
could be a pointer or an offset into the base PDU.

Related Work
 The above bundle differs from other proposed
transmission aggregations in several ways. First, the
resulting bundle conserves the basic characteristics of the
base PDU and can be subject to further bundling and/or
compression algorithms. In [Bassiouni et al. 1997]
consecutive PDUs are concatenated in a single packet even
if their types are different, and field redundancy is not
eliminated. A delta-PDU encoding technique is mentioned
in [OTA 1995] consisting of PDUs that carry changes
respect to a reference PDU initially given. [Wills et al.
2001] describes several bundling techniques generally
applicable to Web pages under the TCP/IP protocol suite,
but none are specific to the DIS protocol. A protocol called
DIS-Lite developed by MäK Technologies [Taylor 1995,
Taylor 1996a, Taylor 1996b, Purdy and Wuerfel 1998]
splits the Entity State PDU into static and dynamic data
PDUs, so that the static information is sent once and the

changes (dynamic PDUs) are subsequently transmitted as
separate PDUs. According to [Fullford 1996] by eliminating
redundancy, DIS-Lite can perform between 30% and 70%
more efficiently than DIS. DIS-Lite includes also several
other improvements not related to the combination of
individual fields from a set of similar PDUs. These
improvements complement related predictive strategies
developed for conserving simulation bandwidth [Bahr 96]
[Henninger 01]. DIS-Lite was designed to take optimize
ESPDUs. Our bundling approach can optimize any
consecutive PDUs of equal type and length. Also, the
reference PDU is included in the bundle in our approach, so
that the delta-PDUs are not sent separately incurring
additional header overhead.

Input Data
 When OTB is executing a vignette, its logger records
all the generated PDUs into an output file for analysis. The
OMNeT model reads relevant PDU data from a text file
created from the OTB transmission log. AWK scripts were
written to read this file and extract the type, length and
timestamp of each PDU into a summary PDU file, along
with two counters. One counter represents a local PDU
identifier for the generating site, and the other is a global
identifier from among all the participating sites. Figure 4
depicts a general view of the steps involved in the traffic
modeling process.

OTB
Simulation

PDU Log
file

Pre-
process

Summary
PDUs

Generator k

Summary
PDUs

Generator j

Summary
PDUs

Generator i

OMNeT
Simulator

Simulator
Results and

Statistics

…
…

Figure 4. Overview of the simulation process

 For the particular vignette used in this report, six
summary files were generated, having 7382, 1056, 483, 553,
637 and 50230 PDUs, respectively. The largest file was
assigned to the generator at the ground station, because the
generator is directly connected to a slow wireless link,
imposing a high load to it, and permitting a more realistic
study of the performance of congested wireless channels
under different bandwidths. This also corresponds to the
case where the opposing force in the OTB simulation is
controlled at the CONUS ground station.
 Besides the PDU counters, two other characters, S for
send and W for wait, were appended to the summary PDUs
to provide information about the strategy to follow after
processing each PDU. Four possible strategies are Neural

Network prediction and three variants of Ideal Prediction
which will be described below. Table 4 shows a sample of
summary PDUs.

Table 4. Sample of summary PDUs

Hex time Size Decimal
Time

Local
ID PDU Type Global

ID Prediction

59e1a736 100 21:03.957 15 objects_
present 4721 SSSS

5a8738fc 92 21:13.052 16 simulator
_present 5039 SWWS

5c357768 92 21:36.686 17 simulator
_present 5728 SSSS

5c357768 100 21:36.686 18 objects_
present 5729 SSSS

5ca513f0 84 21:42.817 19 point 5972 WWWW
5ca513f0 84 21:42.817 20 point 5973 WWWW
5ca513f0 84 21:42.817 21 point 5974 WWWW
5ca513f0 84 21:42.817 22 point 5975 WSSS
5ca513f0 80 21:42.817 23 task_

state 5976 SSSS
5ca513f0 96 21:42.817 24 task 5977 SSSS

Implementation of PDU Bundling
 The basic idea behind the PDU bundling strategy is that
if consecutive PDUs of the same type and length are
scheduled within some predefined time interval, they can be
bundled and delivered as a single packet. This timeout value
was set to 0.1 seconds after an analysis of traffic bursts to be
optimized indicated a burst duration less than 0.1 seconds.
Analysis of PDUs in the log file for a given vignette also
indicated that the type and the size of a PDU are good
indicators of feasibility for bundling. In other words, assume
that PDUs A = (a1, a2, a3, …, an) and B = (b1, b2, b3, …, bm)
are such that type(A) = type(B) and length(A) = length(B),
then n = m and field-type(ai)= field-type(bi), where type,
length and field-type are functions that return the type, the
length in bytes and the type of a field in a PDU,
respectively. If two PDUs are of the same type and length,
they are referred to as compatible and are candidates to be
bundled.
 The pseudo-algorithm of this PDU bundling strategy
can be described as follows:

1) Wait until next PDU is ready for delivery. Let A
denote that PDU.

2) Bundle = A. This is the first PDU (base PDU) in
the bundle.

3) Set timeout = maximum time A will wait in the
bundle (default is 0.1 seconds).

4) While (timeout not expired) {
a. If next PDU is ready for delivery, let B be

that PDU, otherwise repeat the while-loop;
i. If A and B are compatible PDUs {

Bundle = Bundle & B;
B = ∅;}

else break the while-loop}

5) Transmit Bundle as a single packet.
6) If B = ∅ then repeat from step 1)

else A = B and repeat from step 2).

This algorithm is called Always-Wait because after
processing a PDU, the algorithm waits for the next PDU
unless a timeout is detected. When the next PDU is
obtained, its type is inspected and if it is different from the
type of the base PDU then the time waited was wasted.
From this reasoning we can conclude that Always-Wait is
not optimal. If there were a means to accurately predict the
type and length, or at least the type, of the next PDU and the
prediction indicates a type different from the type of the
current base PDU, then the current bundle could be sent
immediately, saving the waiting time. Such a variation of
the above algorithm is introduced below.
 One way to predict the next PDU based on the recent
history is by using a Neural Network (NN) approach. A
neural network was used to find patterns in sequences of
PDUs that were observed to occur during negative spikes.
These patterns can be used as a basis for predicting the type
of the next incoming PDU. In this research, we set up a
gradient descent back-propagation neural network that
predicts the next type based on the types of the previous 44
PDUs. The neural network predicted the next PDU type
with a certainty of near 70 %. Considering that there are 27
different PDU types, this percentage is significant. If NN
prediction indicates that the next PDU type is the same as
the current one then a “W” (for Wait) character is appended
to the summary file, otherwise an “S” (for Send) is
appended to it.
 In this research, the comparison took place in the pre-
processing stage shown in Figure 4 using actual PDU fields,
which resulted in three ideal prediction methods in addition
to the NN-based prediction. The ideal prediction methods
calculate the next PDU type with 100 % certainty because
they know the PDUs in advance and are referred to as off-
line algorithms. Off-line algorithms have the luxury of
making bundling decisions based on future packets that
have not yet arrived by knowing the entire packet stream
during off-line analysis. On-line algorithms see only the
dynamic stream of incoming packets in the order of
transmission. The first ideal prediction method we
compared to considers the PDU type only, the second one
considers the type and length, and the last one considers the
type, length and timestamp. Given any PDU, if the next one
can be bundled to it because its type (method 1), and length
(method 2), and timestamp (method 3) are equal then it is
held for bundling. Table 4 shows four columns with the “S”
and “W” characters resulting from the application of the
bundling strategies. The first column corresponds to the
neural network prediction and the other three correspond to
each of the perfect prediction methods. Only one column is
processed during each run by the OMNeT simulator.
 In addition to the four predictive methods already
described, there are two others called Always-Wait and

Always-Send, realized by filling the decision column with
all “W” or “S” characters, respectively.

Slack Time Analysis
 The slack time for each node generator is defined as the
difference between the timestamp of each PDU and the
current simulator time at the moment the PDU is read from
the input file. If tPDU represents the timestamp of a PDU and
tread represents the time when the PDU was read, then tslack =
tPDU – tread. If the difference is positive (tslack > 0) then the
router or transmitter is ahead of the planned schedule,
otherwise it is behind it. Thus, a negative slack time
indicates that the channel bandwidth is insufficient to
transmit the required PDUs without incurring delay.
 Figure 5 shows the slack time of the generator at the
ground station for different predictive algorithms. The

Figure 5. Slack time at ground station for several predictive
strategies (64 Kbps)

graph was created assigning 64 Kbps to all wireless links
and 100 ms to the timeout period. As seen in the diagram,
up to second 1600 of the simulation, all of the algorithms
behaved similarly, but at that point negative slack started to
accumulate. The Always-Send algorithm incurred in the
largest slack, followed by Type, Type-Length, and Type-
Length-Time predictions. Curve 6 shows that the generator
in ground station could not accomodate the traffic demands
with only a 64 Kbps channel. Increasing delay in timeliness
to send PDUs builds up such that over 75 seconds of latency
are encountered. However, latency of more than just a few
seconds would make a distributed training exercise
unusable. The neural network approach performed relatively
well, although not optimally because its predictions are not
entirely correct. The other algorithms are among the best in
this simulation, and so a close-up of their performance is
shown in Figure 6. Results indicate that the neural network
approach could be improved by using a better learning
mechanism and/or neural network configuration. Another
observation is that the decision of sending the current
bundle based solely on the upcoming PDU type, is as good
as the one that considers the type and the length of each

PDU. Therefore, a NN approach could benefit from this
observation by concentrating the effort in predicting the
type only, instead of the type and the length. However, the
most interesting observation comes from the fact that the
Always-Wait algorithm is almost as good as those that
consider PDU type and length, yet it is the simplest of the
strategies. Because Type and Type-Length strategies are
offline algorithms, they are not applicable during actual
OTB simulations to predict future PDUs. On the other hand,
Always-Wait, Always-Send and Neural-Network prediction
could be used because they are online algorithms.

Figure 6. Comparison of negative slack for the four best
algorithms

 Table 5 shows the average and standard deviation in
slack time for all of the combinations of algorithms and
bandwidths measured at the ground station. The larger the
average slack is, the better the algorithm is performing. The
average was calculated considering all of the PDUs
generated during the EMPR training exercise.

Table 5. Slack time average and standard deviation for all
the studied algorithms and bandwidth combinations
measured at the ground station

Avg:
Std. Deviation: 64 Kbps 128 Kbps 256 Kbps 512 Kbps

Type – 0.758
1.600

– 0.017
0.109

0.015
0.073

0.024
0.066

Type-Length – 0.760
1.601

– 0.018
0.110

0.015
0.073

0.024
0.066

Always-Wait – 0.802
1.689

– 0.017
0.109

0.016
0.073

0.024
0.066

Neural Net. – 1.579
2.638

– 0.044
0.162

0.008
0.085

0.022
0.069

Always-Send – 26.181
26.033

– 0.054
0.176

0.006
0.085

0.021
0.069

 The Always-Send algorithm, which is used in DIS, is
the worst of the five algorithms, and Always-Wait is among
the best. Because, Always-Send corresponds to the non-

bundling algorithm case, we can infer that the type of
bundling proposed here can be applied advantageously to
DIS traffic. Another observation is the fact that at 64 Kbps
and 128 Kbps, the average slack time was negative for all
the algorithms, and for 256 Kbps and above it is positive. A
negative average indicates that the corresponding bandwidth
is insufficient to handle the PDU traffic. Therefore, for the
EMPR vignette being studied, the wireless bandwidth
should be at least 256 Kbps in this simulation to avoid
incurring detectable transmission delays.

Travel Time Analysis
 The travel time is the difference between the sending
time of a PDU from a generator and the arrival time at the
sink. All the transmission times, propagation times, and
waiting times in router queues contribute to the travel time.
If ts, ta and tt represent the sending time, the arrival time and
the travel time of a given PDU, then the travel time is
defined as tt = ta - ts. Every time a bundle is sent, the current
time (ts) is associated with it, allowing the destinations to
calculate tt.
 Figure 7 shows the travel time as calculated at one of
the sinks (sink # 0 onboard plane # 0), using 64 Kbps and
128 Kbps wireless links. It is clear that 64 Kbps is
insufficient to handle the traffic required during EMPR
simulation. As seen, during the interval from second 2000 to
second 2400, many of the PDUs took almost 40 seconds to
arrive at their destinations, which is completely
unacceptable for maintaining the required fidelity during the
training simulation.

Figure 7. Travel time for the Always-Wait strategy, at
destination 0 onboard plane 0, using 64 and 128 Kbps
wireless links

 However, a substantial improvement is obtained at 128
Kbps where the latency drops closer to 1 second. Figure 8
zooms in on the data shown in Figure 7, eliminating the 64
Kbps curve from the graph. It shows that most of PDUs take
less than 0.4 seconds to reach their destinations. It is
interesting to note the large concentration of PDUs near
0.25 seconds. This is because any message sent from the
ground station to an airplane via satellite takes at least that
duration. The distance traveled by the signals at the speed of
light is near 76600 Km (2·[35800 Km of satellite height +
2500 Km of ground displacement]), giving a propagation

delay of approximately 0.255 seconds. The graph also
shows that some PDUs take less than 0.1 seconds of travel
time. Those PDUs correspond to messages sent between
simulation stations onboard en-route planes without passing
through the satellite.

Figure 8. Close-up of travel time at sink 0, plane 0 (128
Kbps)

 Table 6 shows the average and standard deviation of the
travel time for each combination of algorithm and
bandwidth, measured at sink #0 onboard plane #0.
Considering that approximately 83 % of the PDU traffic
received at sink #0 is transmitted by the ground station via
satellite, and that for those PDUs 0.255 seconds is an
unavoidable delay, the table shows, the table shows a very
good behavior of the algorithms at 256 Kbps or more,
giving a slight advantage to Always-Wait bundling.

Table 6. Average and standard deviation of travel time
measured at sink #0

Avg:
Std. Deviation: 64 Kbps 128 Kbps 256 Kbps 512 Kbps

Type 9.20
13.2

0.304
0.099

0.262
0.069

0.249
0.064

Type-Length 9.24
13.2

0.306
0.101

0.262
0.069

0.249
0.064

Always-Wait 9.43
13.5

0.303
0.099

0.261
0.069

0.249
0.064

Neural Net. 28.7
33.2

0.314
0.119

0.261
0.069

0.248
0.064

Always-Send 64.0
58.0

0.333
0.153

0.263
0.062

0.251
0.057

Queue Length Analysis
 The satellite and the routers each contain a message
queue to store incoming PDUs that are pending service.
Every time a PDU arrives at a router or satellite, the number
of other messages in the system is counted, including the
PDUs already in the queue, plus any one being serviced.
The value of this counter is recorded in an OMNeT statistics
file along with the arrival time of the incoming PDU. When
the simulation ends, a post-processing program reads the file
to obtain the statistics on queue length distribution.

 Due to the nature of the PDU traffic in the simulation,
two queues to focus attention on are the router queue
onboard any aircraft, for instance airplane #0, and the
satellite queue. Figure 9 shows the satellite queue at 64
Kbps and 128 Kbps.

Figure 9. Messages in satellite at 64 and 128 Kbps showing
the impact of a higher bandwidth on queue length

 It is clear from the graph that 64 Kbps is an insufficient
bandwidth from the perspective of queue length as well,
causing the satellite queue to grow unbounded. The reason
for its reaching a maximum of about 6000 messages,
followed by a descent when the simulation is approaching
its end, is that at that time no additional messages are sent
from the generators. At 128 Kbps, a significant change in
the queue length is observed, with it maintaining reasonably
low values. Another observation is that the graph does not
reach the zero axis. This occurs because the queue status is
reported only if another message enters the queue. After the
arrival of the last message to the queue, the messages
already stored there are consumed without being reported.
 Table 7 lists a summary of the average and standard
deviation of the satellite queue length obtained for
combinations of different algorithms and bandwidths.

Table 7. Average and standard deviation in the satellite
queue length for combinations of algorithm and bandwidth

Avg:
Std. Deviation: 64 Kbps 128 Kbps 256 Kbps 512 Kbps

Type 316.97
411.43

2.38
3.97

0.91
1.72

0.56
1.23

Type-Length 318.154
412.273

2.44
4.13

0.92
1.75

0.56
1.26

Always-Wait 327.278
421.161

2.30
3.88

0.85
1.69

0.49
1.16

Neural Net. 1028.47
1045.26

3.58
6.37

1.24
2.18

0.79
1.52

Always-Send 2962.94
2236.83

5.40
10.78

1.22
2.55

0.63
1.57

Collision Analysis
 The satellite and routers keep separate counters of
collisions on each of the links that they are connected to.
The satellite is connected to two wireless links (WSP and
WGS in Figure 2) and the routers are connected to one LAN

and two wireless links (LAN, WSP and WPP in Figure 3).
Each time a collision is detected, the corresponding counter
is incremented and its new value along with the current
simulation time is recorded for future processing. Again,
Always-Wait performed well, closely followed by Type and
Type-Length prediction bundling strategies.
 The simulation results shown in Figure 10 indicate that
at 64 Kbps the highest collision rate measured at the router
aboard airplane #7 was close to 12 collisions per second and
it occurred in WSP, the link connecting the satellite to the
planes, during the time interval [2050, 2100]. At 64 Kbps,
fewer than 4800 collisions were detected in total for the
Always-Send algorithm, which represents less than 8% of
the total number of PDUs. On the other hand, at 256 Kbps
the total number of collisions for the Always-Wait algorithm
was close to 2100, or 5.3 % of all transmissions. Collision
accumulation in plane #7 at different bandwidth rates is
given in Figure 10.

Figure 10. Collision accumulation as counted in router at
airplane 7 for combinations of the Always-Send and Always-
Wait algorithms at 64 and 128 Kbps

 As Figure 10 shows, at 128 Kbps and 256 Kbps there is
roughly a total difference of 1000 fewer collisions for the
Always-Wait than for the Always-Send algorithm. As the
bandwidth increases, the number of collisions decreases
because at higher bandwidths the packets require less
transmission time, and so the corresponding probability of a
collision is reduced.

CONCLUSIONS
 There are three sets of conclusions that can be drawn
from the communication modeling study of DIS traffic
under EMPR. The first set corresponds to observations
about the required bandwidth in the wireless channels
required to carry out an OTB simulation training exercise.
The second set corresponds to conclusions about the
effectiveness of the bundling techniques. The third set
corresponds to research extensions not fully developed
herein and thus potential future work.

Required Bandwidth
 One goal of this research was to estimate the required
bandwidth needed by wireless channels for communication

between the OTB stations in the JEMPRS flying network
depicted in Figure 1. A vignette was prepared and executed
in OTB, generating the traffic transmitted between the 24
flying sites plus the CONUS ground station. The PDU
traffic generated was captured and used as input to the
OMNeT discrete event simulator, preserving the original
PDU timestamps, types, and lengths. The OMNeT model
was executed under several combinations of wireless
bandwidths (64K, 128K, 256K, 512K) and the bundling
techniques developed (Always-Send, Neural Network, Type,
Type-Length, Always-Wait).
 From the results of the OMNeT traffic model, it can be
concluded that 64 Kbps wireless links are not sufficient to
handle the required PDU traffic for an EMPR vignette, due
to the large negative slack reported in the generators (Figure
5), the large travel time latency for transmissions involving
the ground station (Figure 7), and the excessive satellite
queue length (Figure 9). However, at 128 Kbps the situation
improves dramatically. It seems that an average of 0.26
seconds in the travel time and 2.3 messages in the satellite
queue are good indicators of performance. However, the
negative average slack time of –0.017 seconds indicates that
128 Kbps represents a slightly insufficient bandwidth to
complete handle some traffic bursts during EMPR
scenarios. Therefore, the conclusion is that to not incur
unnecessary delays then the required bandwidth should be at
least 256 Kbps in the JEMPRS network for this type of
training exercise.

Effectiveness of Bundling
 All of the statistics presented indicate that bundling can
be effective for reducing PDU traffic and improving
utilization of available bandwidth. The reductions in
negative slack (Figures 5 and 6), travel time (Table 6),
satellite queue length (Table 7), and number of collisions
(Figure 10) are all indicators in that sense. Table 8 shows
the total number of bundles and total number of bytes
transmitted by the Always-Wait strategy at different
bandwidths. In all cases, the number of PDUs read from the
summary files is 60,341 PDUs equivalent to 12,415,774
bytes, which corresponds to the non-bundling strategy.
Therefore, Always-Wait presents an approximate reduction
of 35 % in the number of PDUs transmitted and 21 % in the
number of bytes transmitted.
 The replication of PDUs through bundling presented in
this research differs from other proposals [ATO 1995,
Taylor 1995, Taylor 1996a, Taylor 1996b, Fullford 1996,
Bassiouni et al. 1997, Purdy and Wuerfel 1998, Wills et al.
2001] in several ways. Bundling strategies used here take
into account the internal structure of each PDU; only PDUs
of the same type and length are combined together into a
bundle. The proposed bundling algorithms are
straightforward to implement, as well as the extraction of
individual PDUs at the destination. Bundles are independent
of each other so the information required to extract the
PDUs is contained in the same bundle. Thus, during packet

switched transmission the bundles can arrive out-of-order
without impacting the replication strategy at the receiver.

Table 8. Number of bundles and number of bytes
transmitted by Always-Wait at different bandwidths

Kbps # of Bundles Number bytes

64 38,708 9,778,978

128 39,319 9,837,114

256 39,554 9,860,433

512 39,619 9,866,762

Future Work
 Several possibilities for future work are open. The
bundling algorithm could be extended to consider PDUs of
different length as candidates to be included in the bundle.
Also, the bundling of PDUs of different types might be
investigated as long as the resulting bundle still maintains
the underlying structure, or other extensions to publish-
subscribe protocols similar to HLA.
 Another branch of research could be based on further
improvement of the prediction of the type for upcoming
PDUs. The neural network developed in this study was
rudimentary, having prediction accuracy close to 70 %. If an
improved neural network is used, it could outperform the
Always-Wait strategy, which is not necessarily optimal.
However, a comparison of the CPU overhead incurred by
both algorithms would be appropriate to justify if the use of
improved prediction is warranted given the benefits.

ACKNOWLEDGEMENTS
The authors would like to thank the U.S. Army Program
Executive Office for Simulation, Training, &
Instrumentation (PEO STRI) for their support of this
research.

REFERENCES
 [Bahr and DeMara 96] Bahr, H. A. and DeMara, R. F., “A
Concurrent Model Approach to Reduced Communication in
Distributed Simulation,” in Proceedings of 15th Annual
Workshop on Distributed Interactive Simulation, Orlando,
FL, U.S.A., Sept., 1996.

[Bassiouni et al. 1997] Bassiouni M., Chiu M., Loper M.,
Garnsey M., and Williams J. “Performance and Reliability
Analysis of Relevance Filtering for Scalable Distributed
Interactive Simulation,” ACM Transactions on Modeling
and Computer Simulation (TOMACS), Vol. 7, No. 3, pp
293–331, July 1997.

[Ceranowicz 2002] Ceranowicz A., Torpey M., Helfinstine
B., Evans J., and Hines J. “Reflections on Building The
Joint Experimental Federation”, in Proceedings of the 2002
I/ITSEC Conference, Orlando, FL, U.S.A., Dec., 2002.

[Frontlines 2002] Microsoft Frontlines “JBC Initiative
Delivers High-Bandwidth Collaboration Tools to Austere

Locations”, Summer 2002. Available from
http://www.larstan.net/Published_work/PDF_Q302_WP/Fro
ntlines2%200702.pdf

 [Fullford 1996] Fullford D. “Distributed Interactive
Simulation: It’s Past, Present, and Future.” In Proceedings
of the 1996 Winter Simulation Conference, Coronado, CA,
U.S.A., Dec. 8 - 11, 1996. Available from
http://portal.acm.org/ft_gateway.cfm?id=256601&type=pdf
&coll=GUIDE&dl=ACM&CFID=17089419&CFTOKEN=
3244421

 [Henninger 01] A. E. Henninger, A. J. Gonzalez, M.
Georgiopoulos, and R. F. DeMara, “Human Performance
Models for Embedded Training: A Novel Approach to
Entity State Synchronization,” in Proceedings of the '01
Advanced Simulation Technology Conference - Military,
Government, and Aerospace Conference (ASTC-MGA),
Seattle, WA, U.S.A., April 22 - 26, 2001.

[IEEE/ANSI 1985] IEEE/ANSI STANDARD 8802/3.
Carrier sense multiple access with collision detection
(CSMA/CD) access method and physical layer specification.
IEEE Computer Society Press, 1985.

[IEEE/ANSI 1999] IEEE/ANSI STANDARD 8802-11.
Wireless LAN Medium Access Control (MAC) and Physical
Layer (PHY) specifications. IEEE Computer Society Press,
1999.

 [Purdy and Wuerfel 1998] Purdy S., and Wuerfel R.
“Comparison of HLA and DIS Real-Time Performance,” In
Proceedings of 1998 SPRING SIW Conference, Orlando,
FL, U.S.A., March 9-13, 1998. Available from http://
www.sisostds.org/doclib/doclib.cfm?SISO_FID_975

 [Srinivasan 1996] Srinivasan S. “Efficient Data
Consistency in HLA/DIS++,” In Proceedings of the 1996
Winter Simulation Conference, Coronado, CA, U.S.A., Dec.
8 - 11, 1996., pp 946 – 951.

[Taylor 1995] Taylor, D. “DIS-Lite & Query Protocol,” in
Proceedings of the 13th DIS Workshop on Standards for the
Interoperability of Distributed Simulations, Orlando, FL,
U.S.A., Sept., 1995.

[Taylor 1996a] Taylor, D. “The VR-Protccol” in
Proceedings of the 14th DIS Workshop on Standards for the
Interoperability of Distributed Simulations, Orlando, FL,
U.S.A., March, 1996.

[Taylor 1996b] Taylor, Darrin. 1996. “DIS-Lite and Query
Protocol: Message Structures.” in Proceedings of the 14th
DIS Workshop on Standards for the Interoperability of
Distributed Simulations, Orlando, FL, U.S.A., March, 1996.

[OTA 1995] Office of Technology Assessment - U.S.
Congress, “Distributed Interactive Simulation of Combat,”
OTA-BP-ISS-151, Washington, DC: U.S. Government
Printing Office, September 1995. Available at
http://www.wws.princeton.edu/cgi-
bin/byteserv.prl/~ota/disk1/1995/9512/9512.PDF

[Varga 2003] Varga, A. “OMNeT++” In the column
“Software Tools for Networking", IEEE Network
Interactive, Vol. 16, No. 4, July 2002.

 [Vargas et al. 2004] Vargas J., DeMara R., Gonzalez A.,
and Georgiopoulos M. 2004 “Bandwidth Analysis of a
simulated Computer Network Running OTB.” In
Proceedings of the Second Swedish-American Workshop on
Modeling and Simulation (SAWMAS 2004), Cocoa Beach,
FL, February, 2004.

 [Wills et al. 2001] Wills C., Mikhailov M., and Shang H.
“N for the Price of 1: Bundling Web Objects for More
Efficient Content Delivery.” in Proceedings of the Tenth
International Conference on World Wide Web, ISBN 1-
58113-348-0, Hong Kong, Hong Kong, 2001, pp 257-265.

[Witman 2001] Witman, R. and Harrison, C., “OneSAF: A
Product Line Appraoch to Simulation,” Technical Report,
Contract Number DAAB07-01-C-C201. The Mitre
Corporation, 2001.

BIOGRAPHY
Juan J. Vargas was born in Costa Rica in 1956. He has a
BS (1977) in Computer Science and a BS (1988) in
Mathematics from the University of Costa Rica (UCR), and
an MS (1991) from the University of Delaware. Currently,
he is pursuing Ph.D. studies in Computer Engineering at the
University of Central Florida while employed as a visiting
lecturer there. His research interests include parallel and
distributed processing, computer networks and computer
architecture. He has served as Chair and Program
Coordinator of “Telematics,” and MS program at UCR, and
Vice Chair in the School of Computer Science at UCR.

Ronald F. DeMara is an Associate Professor in the
Department of Electrical and Computer Engineering at the
University of Central Florida. He earned a BS (1987) in
Electrical Engineering from Lehigh University, MS (1989)
in Electrical Engineering from the University of Maryland,
and Ph.D. (1992) in Computer Engineering from the
University of Southern California. Prior to joining UCF, he
was an Associate Engineer at IBM Corporation in
Manassas, Virginia. His research interests include design
and performance analysis of Computer Architecture and
Distributed Systems. He has published over 70 papers in
these areas. He is a registered Professional Engineer in
California, member of IEEE, ACM, and ASEE.

Michael Georgiopoulos received a diploma in Electrical
Engineering from the National Technical University in

http://www.larstan.net/Published_work/PDF_Q302_WP/Frontlines2 0702.pdf
http://www.larstan.net/Published_work/PDF_Q302_WP/Frontlines2 0702.pdf
http://portal.acm.org/ft_gateway.cfm?id=256601&type=pdf&coll=GUIDE&dl=ACM&CFID=17089419&CFTOKEN=3244421
http://portal.acm.org/ft_gateway.cfm?id=256601&type=pdf&coll=GUIDE&dl=ACM&CFID=17089419&CFTOKEN=3244421
http://portal.acm.org/ft_gateway.cfm?id=256601&type=pdf&coll=GUIDE&dl=ACM&CFID=17089419&CFTOKEN=3244421
http:// www.sisostds.org/doclib/doclib.cfm?SISO_FID_975
http:// www.sisostds.org/doclib/doclib.cfm?SISO_FID_975
http://www.wws.princeton.edu/cgi-bin/byteserv.prl/~ota/disk1/1995/9512/9512.PDF
http://www.wws.princeton.edu/cgi-bin/byteserv.prl/~ota/disk1/1995/9512/9512.PDF

Athens in 1981. He also received his M.S. and Ph.D.
degrees in Electrical Engineering from the University of
Connecticut, Storrs, CT, in 1983 and 1986, respectively. In
1987, he joined the University of Central Florida, where he
is currently a professor in the Department of Electrical and
Computer Engineering. Dr. Georgiopoulos has been
conducting research in the area of neural networks and
applications for over 10 years now, and he has published 41
journal papers and over 120 conference papers/book
chapters.

Avelino J. Gonzalez received his bachelors and masters
degree in electrical engineering from the University of
Miami in 1973 and 1974 respectively. He received his
doctoral degree from the University of Pittsburgh in
electrical engineering in 1979. He had held various
administrative and technical positions in Westinghouse
Electric Corp., until 1986 after which he joined the
University of Central Florida where he is now a professor in
the Department of Electrical and Computer Engineering. Dr.
Gonzalez holds three patents and has co-authored two books
and has published numerous articles in technical journals
and conferences on artificial intelligence, context based
behavior and representation, temporal reasoning intelligent
diagnostics and expert systems.

Henry Marshall is the Principal Investigator for Mounted
Embedded Simulation Technology at the Research,
Development and Engineering Command (RDECOM)
Simulation and Training Technology Center (STTC). Prior
to this assignment he worked at the Simulation, Training
and Instrumentation Command (STRICOM) where he spent
11 years as lead for the CGF/SAF, HLA and Linux Porting
developments on the Close Combat Tactical Trainer
(CCTT) system in addition to being a OneSAF team
member. His twenty years with the Government have been
mainly in CGF and Software acquisition. He received a BSE
in Electrical Engineering and an MS in Systems Simulation
from the University of Central Florida.

This document is an author-formatted work. The definitive version for citation appears as:

J. Vargas, R. F. DeMara, A. J. Gonzalez, M. Georgiopoulos, and H. Marshall, “PDU Bundling and Replication for
Reduction of Distributed Simulation Communication Traffic,” Journal of Defense Modeling and Simulation, Vol. 1, No. 3,
August, 2004, pp. 167 – 185.

