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Abstract

A Replicated Concurrent-Read (RCR) architecture was developed which is cost- 

effective, yet adequately scalable. First, the role of the common memory space is 

re-evaluated from the viewpoint of actual multiprocessor memory reference charac­

teristics. Second, the most frequent memory operations are optimized based on the 

availability of inexpensive storage technologies. Third, aggregrate storage require­

ments axe minimized by devising a spatial caching technique by replicating only the 

current working set. The resulting design leverages reference behavior and component 

expense by using broadcasting to update replicated memories in 0(1) time while al­

lowing read references to be performed locally without delay. Thus, W  simultaneous 

writes require [ " memory cycles using d-port memory components. However, read 

bandwidth of a full N  words/cycle is obtained for N  processors.

Analytical models were developed and simulations of memory latency were per­

formed for Uniform Memory Access (UMA), Non-Uniform Memory Access (NUMA), 

Local-Remote-Global (LRG), and RCR architectures for hit rates from 0.1 to 0.9 in 

steps of 0.1, memory access times of 10 nsec to 100 nsec, proportions of read/write 

access from 0.01 to 0.1, and block sizes of 8 to 64 words. The RCR architecture 

provides favorable performance over UMA and NUMA architectures for all ranges 

of application and system parameters. RCR outperforms LRG architectures when 

the hit rates of the processor cache exceed 80% and replicated memory exceed 25%. 

Thus, inclusion of a small replicated memory at each processor significantly reduces 

expected access time since all replicated memory hits become independent of global 

traffic. For configurations of up to 32 processors, results show that latency i3 further 

reduced by distinguishing burst-mode transfers between isolated memory accesses and 

those which are incrementally outside the working set.
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1 Introduction

Rapid changes in the cost and density of semiconductor memory technology have 

made the previously preferred multiprocessor design approaches obsolete. In particu­

lar, traditional interconnection strategies between multiple processors and a common 

memory regard the storage space as a very scarce resource. These conventional ap­

proaches restrict scalability by requiring latency to transfer data whenever and wher­

ever remote memory references occur. Previous designs have addressed this problem 

by including local caches, multistage combining networks, and elaborate referenc­

ing schemes, but require sophisticated hardware to maintain coherence between the 

physically-distinct memories.

We present a novel multiprocessor architecture which is cost-effective, yet suf­

ficiently scalable. Our approach involves a complete re-evaluation of the common 

memory space based on actual multiprocessor memory reference behavior and the 

availability of inexpensive memory devices. Our technique leverages these character­

istics by broadcasting memory updates in constant-time while allowing read references 

to be performed locally with zero access latency.

1.1 O verview o f Parallel Com puter Architectures

Historically, digital computer systems containing one or more processors have been 

classified into four categories according to the number of simultaneous instructions 

performed and data items which axe operated on concurrently [FLYNN66]:

1. Single Instruction stream, Single Data stream (SISD),

2. Single Instruction stream, Multiple Data stream (SIMD),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



3. Multiple Instruction stream, Single Data stream (MISD),

4. Multiple Instruction stream, Multiple Data stream (MIMD).

SIMD, MISD and MIMD machines are considered parallel machines, but since 

SIMD and MISD classes are mainly suitable for special purpose computations, MIMD 

machines axe more popular.

MIMD machines, operate on multiple instruction streams and multiple data sets 

as shown in Figure 1. Every processor (Pt) is capable of fetching its own instruction 

streams (IS)  and required data (DS) from shared memory and execute the program. 

Figure 1 illustrates the general architecture of a MIMD multiprocessor. We can divide 

this class of computers into two major groups:

1. Shared-memory multiprocessors

2. Message-passing multicomputers

The basic difference between these two groups lies in their memory architecture 

and interprocessor communication mechanisms. The processors in shared-memory 

systems communicate with each other through shared variables stored in a common 

memory space. If at least some physical memory exists which can be accessed by more 

than one processor then the system is classified as a shared-memory machine, regard­

less of the other communication facilities which may be provided. This characteristic 

is the rationale for referring to shared-memory multiprocessors as tightly-coupled sys­

tems.

In a message-passing multicomputer, communication is done by exchanging mes­

sages among the computer nodes. Each computer node (PEi) has only private local 

memory which is not shared with other processors, a control unit (CU{), a private 

local memory (LM{), and perhaps even attached disks or I/O  peripherals. Since to­

tal memory space is contibuted among all memory modules, processors do not have 

equal access time to a given word in memory. Figure 2 shows a typical architecture 

of message-passing multicomputers or Loosely-Coupled Systems.

2
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Figure 1: MIMD architecture.
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Figure 2: Message passing multicomputer.

A significant limitation of message passing is the transfer of large amounts of data 

between processes which require a number of message exchanges. This limitation 

not only degrades the system throughput, but also requires sophisticated proces­

sor interconnection. On the other hand, shared-memory can be considered a more 

flexible means of interprocessor communication, due to the ease at which communi­

cation of results generated by one task need not specify the destination of the recipi­

ents [KESSLER89]. Thus, the architectural trend for future scalable general-purpose 

computers is toward MIMD configurations with distributed memories as in message-

3
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passing machines, yet providing a globally-shared virtual address space [HWANG93]. 

With respect to design of a shared-memory multiprocessor, the primary challenge is 

to avoid contention during access to the common memory space.

1.2 Desirable M ultiprocessor Characteristics

For many years, designing a scalable, affordable, and programmable parallel computer 

which satisfies the needs of sophisticated computation problems has been an illusive 

goal. The majority of existing programs axe still written in sequential languages. 

Their most direct and efficient conversion to a parallel form is via the shared-memory 

programming model. Consequently, there is a need to design architectural support for 

this model that possesses a reasonable balance between cost and performance. The 

design criteria should include the following principles:

1. The design should be simple and inexpensive to build,

2. Coherence among the distributed memories must be maintained, and

3. The design should be optimized for typical memory reference characteristics.

The first criteria can be met in part by using multiple physically-distinct memory 

units organized hierarchically. By adding small, fast cache memories, a considerable 

performance improvement is obtained for a negligible increase in system cost.

However, in the memory hierarchy of a multiprocessor computing system, data 

inconsistency may occur between adjacent levels of different processors or even within 

the same level of the memory hierarchy. As fax as the second criteria is concerned, the 

main memory and caches may contain inconsistent copies of the same data, refered to 

as the cache coherency problem. In particular, multiple caches may contain different 

copies of the same memory block. This coherence problem generally arises dur­

ing asynchronous and independent operations of multiprocessors having physically- 

distributed memories.

4
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While the third criteria can have a very significant impact on system performance, 

it has essentially been neglected for many yeaxs because multiprocessor READ and 

WRITE latencies were identical, as in uniprocessors. In practice however, their differ­

ence in frequency of occurance turns out to be the key to solving the multiprocessor 

design problem. Specifically, READ operations on a uniprocessor typically constitute 

90% of all memory references leaving only 10% of accesses as WRITE operations. 

Moreover, when the transition is made to a multiprocessor environment, this effect 

is further amplified by the nature of sharing which provides the opportunity to al­

low data written by at most one processor, to be read by at least one processor. In 

general, the data will be read by more than one processor.

1.3 Cost-Effective Design Criteria

Cost-effectiveness of an architecture concerns the relative benefits of tangible and in­

tangible performance characteristics. The tangible chaxacteristics of cost-effectiveness 

can be expressed in terms of MIPS obtained per dollar. For instance, many applica­

tions can be executed on an ensemble of slow processors more cost-effectively than 

on a single extremely fast uniprocessor.

Within the shared-memory multiprocessor domain, the best overall system price- 

performance will be determined primarily by the memory architecture. This is be­

cause powerful microprocessors have become off-the-shelf commodities. Thus, the 

memory system design is at the forefront of importance to obtaining a cost-effective 

system design.

1.4 O utline o f Dissertation

This dissertation presents the memory system design for a novel shared-memory mul­

tiprocessor system. The Replicated Concurrent-Read (RCR) architecture takes advan­

tage of a distributed multiported memory organization. It avoids coherence problems

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



by performing READ operations locally while broadcasting all memory updates. By 

design, this system places greater emphasis on optimization of READ memory refer­

ences. The RCR memory system eliminates contention by providing independent local 

READ buses to every processor. This results in zero overhead for frequent READ 

references, at the expense of potentially slower yet typically infrequent WRITE access.

Chapter 2 investigates shared-memory multiprocessor organizations and their char­

acteristics. In this chapter, currently existing shared-memory models are described 

and characterized. Diverse interconnection networks axe examined and their advan­

tages and disadvantages axe also reviewed. We study the locality of memory refer­

ences, and how private memories could improve overall average memory access time 

by taking advantage of this phenomenon. Finally, memory consistency models are 

discussed.

Chapter 3 describes a representative sample of previous scalable axchitectures. 

The Stanford DASH and Kendall Square Research (KSR-1) axe covered as examples 

of directory-based schemes. The Harris Nighthawk is presented as an example of the 

snooping-based approach. Advantages and disadvantages of directories and snooping 

buses are discussed.

In Chapter 4, we analyze memory access behavior in shared-memory multiproces­

sors. We categorize memory references into global vs. local memory references, and 

READ vs. WRITE memory accesses.

Chapter 5 derives and evaluates the analytical model of RCR architecture. We 

define the RCR memory model, and discuss statistical distributions. This chapter 
estimates the probability of read and write occurrences.

Chapter 6 presents the hardware design of the RCR shared-memory system.

6
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Chapter 7 describes the development of a software simulator for the RCR archi­

tecture. This chapter illustrates the result of simulations, validates the analytical 

models, and provides new insight into components of expected access time.

Chapter 8 discusses overall conclusions, and outlines topics for possible future 

work.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 Shared-M emory Organizations and Their Char­

acteristics

2.1 Overview

Distributed shared-memory multiprocessors communicate using mutually accessible 

stored data structures called shared variables, with READs and WRITEs of multiple 

CPUs capable of accessing the shared data. The memory design objective is to match 

the effective memory bandwidth with the peak processor throughput, so that the max­

imum demand for memory words can be satisfied. Ideally, the memory bandwidth 

would match the transfer rate demanded by each processor even after coherence and 

contention are taken into account.

The basic characteristics of shared-memory multiprocessors can be studied under 

two separate, though inter-related, organizations. The first takes a logical viewpoint 

called the conceptual organization, while the other deals with the physical design of 

the shared-memory system. Moreover, to design an efficient shared-memory system, 

it is necessary to study and quantify the behavior of memory modules as observed 

from the processor’s point of view.

2.2 Conceptual Organizations for M ultiprocessor Architec­

tures

There axe three primary conceptual organizations for shaxed-memory multiprocessors:

1. Uniform Memory Access model,

2. Non-Uniform Memory Access model, and

3. Cache Only Memory Architecture.

Each model offers distinct performance and design advantages, as discussed below.

8
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Interconnection Network

Figure 3: The UMA Multiprocessor Model.

2.2.1 Uniform M emory Access Model

In the Uniform Memory Access (UMA) multiprocessor model shown in Figure 3, 

all processors, P,-, experience an equal expected, access time to all shared-memory 

modules, M j, for all 1 <  i , j  < N. In this model, each processor, P,-, is attached to 

a private cache, C,-, so that it can take advantage of locality of reference of the data 

and/or instructions which axe currently used. All Processors may access their private 

cache in tc time with hit rate h. In case of a miss, Pi may have to compete with 

other processors to access global memory. The waiting time to access shaxed-memory 

is dependent on the number of pending memory references and their characteristics. 

Processing elements also share peripheral devices in some fashion. When all processors 

equally shaxe all peripherals, the system is called a symmetric multiprocessor. In such 

a system, every processor is capable of running operating system executives or I/O 

service routines.

9
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Interconnection Network

r  igure 4: The NUMA Multiprocessor Model.

2.2.2 Non-Uniform  M emory Access M odel

In a Non-Uniform Memory Access (NUMA) multiprocessor model shown in Figure 4, 

The shaxed-memory is physically divided into smaller regions and each is assigned 

to a processor (Pi) forming an ensemble of local memories, LMi, where 1 <  i < N. 

Together, these local memories (LM{) comprise the global address space accessible 

to all processors. In a NUMA multoprocessor model the processor’s access time to 

main memory varies with the location of the memory word within the global space. 

Every Pi is attached to a private cache, C,-. In case of a miss, then P, may have 

to access local or remote memories. In this shared-memory model, access time of a 

local processor to a local memory is less than the same processor’s access time to 

any remote memory. The increase in access time results from the added delay and 

possible contention within the interconnection network.

10
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Interconnection Network

Figure 5: The COMA Multiprocessor Model.

2.2.3 Cache-Only Memory M odel

In the Cache-Only Memory Model {COMA) multiprocessor model, shown in Figure 5, 

each processor (P,) has its own cache (Ct) and it is the collection of these fast memories 

which enables them to form a global address space. In a COMA machine there 

is no memory hierarchy nor access by any processor to a remote memory device. 

We can consider a COMA model a special case of NUMA, in which the distributed 

main memories are converted into caches. Data which resides in remote caches is 

forwarded to local caches upon a miss from the local cache. Typically, distributed 

cache directories (Dir,) are used to assist accessing the remote caches.

Besides these primary models, there are other models which can usually be con­

sidered some combination of UMA, NUMA, and COMA machines. Figure 6 exhibits 

a model which has combined the NUMA with a UMA model. In this model, a glob­

ally shared memory is added to a multiprocessor system. The processors are divided

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



© - *

®-v *-*

CSM -------------------- ® * -» i CSM

CSM
I

CSM*

CSM © ~
l * - * CSM

Global Interconnection Network

GSM GSM GSM

Figure 6: Hierarchical cluster model.

into severed clusters. The clusters are connected to globally shared-memory modules. 

Each cluster could be designed as a UMA or NUMA machine while the system as a 

whole is considered a NUMA machine.

Regardless of the model used, each design possesses memory coherence and syn­

chronization requirements. In the upcoming chapters, a new shared memory multi­

processor model, that solves the named problems using replicated shared memories 

together with distributed local memories, will be introduced.

2.3 V iable Physical Designs

The interconnection network between components of a multiprocessor have been con­

structed using several diverse designs. These networks provide the means for internal 

connections among processors, memory modules, and I/O devices. Thus, the commu­

nication efficiency of the network is critical to system performance. The ultimate goal

12
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is to provide a low-latency network with a high data-transfer rate while providing a 

wide communication bandwidth to all devices simultaneously.

There axe four basic organizations for the interconnection network:

1. Bus-based strategies,

2. Static interconnection networks,

3. Dynamic interconnection networks, and

4. Multiport memory-based schemes.

2.3.1 Bus-Based Interconnection Strategies

The simplest interconnection system for shaxed-memory multiprocessors employs a 

single common communication path called the bus which connects all devices. An 

example of a multiprocessor system using a bus interconnection is shown in Figure 7. 

The traffic generated per processor and the bus bandwidth provided, will determine 

the number of processors which can be adequately supported in such a shaxed-memory 

system. Since the overall transfer rate within the system is limited by the bandwidth 

and the speed of the bus, use of private memories is highly advantageous. Figure 8 

shows such a multiprocessor system.

A bus-based memory system is the most frequently used interconnection in com­

mercially available multiprocessors because it is a relatively inexpensive interconnec­

tion. However, a shaxed-bus interconnection exhibits two major deficiencies:

1. It provides low effective bandwidth available to each processor, and

2. It creates a single point-of-failure in the interconnection network.

Moreover, system expansion use of additional processors or memory modules, 

further increases the bus contention, which decreases system throughput and increases

13
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Main Memory

Figure 7: Single-bus multiprocessor.

arbitration logic. For this reason, bus-based interconnection alone is not considered 

scalable.

2.3.2 S ta tic  In terconnection  N etw orks

Static networks consist of point-to-point dedicated links between individual processors 

or memories which remain fixed once the machine is built. Figure 9 shows such a 

system with 16 processors (N  =  16). Each Pi is capable of sending data to any one of 

P,+1 , P{-1 , Pi+r, and Pi-r where r  =  \ /N  in one circulation step through the network. 

This example of static interconnection network topology (Wrapped-Around Mesh) is 

defined by four routing functions:

72+1 (2 ) =  (2  +  1) mod N  

R~i(i)  =  (2  — 1) mod N  

14
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Figure 8: Single-bus multiprocessor with local caches.

R+r(i) =  (i +  r) mod N

R -r(i) =  (i — r) mod N

where 0 < i < N  — 1. This type of network is more suitable for providing repeated 

regular connections among components. Static networks could be very expensive 

especially if the system employs a large number of processors and memory modules.

2.3.3 Dynamic Interconnection Networks

Dynamic interconnection networks are realized using switched channels, which are dy­

namically configured to match the communication requirements demanded by the con­

current tasks. Dynamic networks include multistage networks and crossbar switches, 

which are often used in shared-memory multiprocessors. Figure 10 depicts a shared- 

memory multiprocessor with a crossbar-based interconnection. As shown in Figure 10,

15
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Figure 9: Static interconnection network.

a n ■processor system with n memory module has been implemented with n x n  cross­

bar network which connects n processors to n memory modules. Although the highest 

bandwidth and interconnection capability are provided by crossbax network, it is the 

most expensive to build, due to the fact that its complexity increases (iV2) for a 

system containing N  processors.

2.3.4 M ultiported M em ory Modules

Since the bandwidth of single-ported memory systems is limited, more scalable al­

ternatives have been sought out. However, the recent availability of multiport mem­

ory chips has allowed multiple simultaneous access to individual memory devices 

[STODLECK89]. Figure 11 illustrates a multiport memory organization. By provid­

ing multiple simultaneous access, multiport memories can help mitigate the band­

width mismatch between main memory and the processor by increasing the effective

16
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Figure 10: Crossbar-Connected Shared-Memory Multiprocessor, 

memory bandwidth, and reducing contention.

As Figure 11 shows, multiple processors could access multiport main memory 

simultaneously. Multiport-memories axe becomming popular among computer system 

designers because of their simplicity and low cost factor. In upcoming chapters, we 

introduce a computer design that takes advantage of multiport memories to improve 

total performance.

2.4 Private Cache M emories to  Capture Locality

As previously mentioned, private cache memories can be employed to increase per­

formance. Specifically, as a program executes its memory references over a given 

period, it tends to be confined to a few localized areas of the entire address space. 

This occurrence is referred to as the locality of reference property [MAN082]. Since

17
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Figure 11: Multiport memory organization.

memory references are generated for both instruction and data fetches, a typical com­

puter program may spend the majority of its execution time in only a fraction of the 

total code, such as a nested loop operation. This phenomenon is referred to as ”90-10 

rule” since 10% of the total code takes 90% of the execution time in a typical program 

[HENNESSY90]. Three types of locality of reference behavior have been identified 

[HWANG84]:

1. Temporal locality,

2. Spatial locality, and

3. Sequential locality.

Temporal locality refers to the inclination for programs to reference memory loca­

tions which have been accessed in the recent past. This is often caused by program

18
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constructs such as loops, stacks, and temporary variables. By moving recently ac­

cessed memory blocks from remote memory into the fast memory, overall computer 

performance can be significantly improved. Spatial locality refers to the tendency 

of programs to access items whose addresses are near one another. For example, 

searching through a field of data, or operations on arrays. Sequential locality refers 

to a case when a typical program, fetches the instructions in sequential order unless 

branch instructions create out-of-order executions. The ratio of in-order execution to 

out-of-order execution is approximately 5-to-l in typical parallel numeric programs 

[HWANG93]. Since 80 to 85 percent of the total code of a typical program executes 

in sequential order, then only 15 to 20 percent of the code contains branch instruc­

tions. As a result, by moving continuous blocks of memory space to local caches, a 

significant performance improvement can be observed.

Taking advantage of the principal of locality, by designing the memory of a multi­

processor as a memory hierarchy, results in a substantial reduction in average memory 

access time. Figure 12 depicts the basic structure of a memory hierarchy. Because of 

the differences in access time and cost, it is useful to build memory as a hierarchy of 

levels, with the faster memory close to the processor and the slower, less expensive 

memory below that, as illustrated in Figure 12. Caches are the fastest and closest 

memory modules to processors. A typical cache access time is in the range of 8 to 35 

ns, while typical access time to the main memory is between 90 to 120 ns. Connect­

ing a local memory directly to a processor will reduce the frequency of access to the 

shared memory space interconnection networks, and therefore, will decrease the total 

interconnection network traffic. As a result, caches increase the overall performance 

of a system, while reducing the interconnection network contention.

2.4.1 Data U pdating and Coherence

Effective caching techniques are indispensable in distributed shared-memory systems, 

since providing high-speed caches for each processor significantly mitigates the over­

head in referencing main memory. However, this improvement in performance is not
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Figure 12: Basic Structure of a Memory Hierarchy.

cost free. Employing multiple caches gives rise to the problem of cache coherence.

The cache coherence problem is an undesirable, but surmountable side-effect which 

results from the use of a hierarchical memory design in a distributed shaxed-memory 

system [CRAWFORD94]. Since multiple caches are allowed to hold simultaneous 

copies of an assumed memory location’s content, some techniques must exist to ensure 

consistency of all copies when one is modified. Simply, maintaining multiple copies 

representing the content of the same memory location implies the urgency to know 

which copy is valid.

Figure 13 illustrates a n processor distributed shared-memory system with coher­

ent caches. Cache 1 and n each hold a copy of the shared variable, A. When Processor 

1 updates its copy of variable A, the copy stored in Cache n is no longer valid, creat­

ing a cache coherency problem, as shown in Figure 14. To correct this inconsistency, 

Cache n's copy must either be updated or marked as invalid.

20
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Figure 13: Coherent Caches Before Modification Occurs.

The performance of a cache design depends on two important factors:

1. Cycle Count: number of processor cycles required to locate, fetch, and deliver 

the data to the requesting PE, and

2. The Hit Ratio: an important factor in determining how effectively the cache 

can reduce the total memory-access time.

The cycle counts includes the number of total machine cycles needed for lower-level 

cache misses, cache updates, and consistency control.

The hit rate refers to a situation when a memory reference can be satisfied by the 

cache which is called a data reference hit. If the data is not found in the cache, it is 

refered to as a miss. Generally, a miss necessitates a search at the next higher level 

of memory hierarchy. The hit ratio between two adjacent levels is defined as the ratio 

of number of hits to number of references. Let Hrati0, h denote the hit rate, and the 

number of hits respectively. Let’s assume A  represents number of references then:
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Figure 14: Inconsistent Caches after Modification by Processor 1.

HTatio — . ( 1)

where the number of references includes both hits and misses. If m denotes the 

number of misses then:

Hr.,,. =  (2)
ft +  77X

Hit ratios above 0.99 have been observed, with typical hit ratios above 0.9, vali­

dating the locality of reference principle.

2.4.2 Cache U pdates In Distributed Shared-M emory Systems

A major characteristic of any multilevel memory system is the way it handles WRITE 

operations. Basically, there are two distinct alternatives to update memories:
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1. Write through - whenever there is a need to update a memory block, the update 

will be done to blocks, both in the cache and in the lower level memory unit at 

the same time.

2. Copy back - the WRITE is performed only to the block in cache and whenever 

there is a need to replace that block then the modified block is written to the 

lower level memory.

Both of these update schemes are associated with certain advantages and disadvan­

tages. The main advantages for write-through policy are:

1. READ misses never cause WRITEs to lower level memory, and

2. It is less complex to implement than the copy-back scheme.

The key advantages of copy-back policy are:

1. A single word can be written to the cache at processor speed rather than memory 

speed,

2. Several updates to the same block in the cache require only one WRITE oper­

ation to the lower level memory, and

3. Whenever blocks are written back, the system can take advantage of a wide 

lower level, since the entire block is being updated.

Generally, the copy-back policy requires a more complex and sophisticated hardware 

system, while the difference in the speed of processors and main memories, favors a 

trend towards the copy-back scheme. Very often, a write-through policy is adopted 

in the first level cache, and the copy-back scheme is used in the second level cache 

[Hwang93]. However, both of these update policies require hardware support, which 

is avoided totally in the Replicated Concurrent-Read (RCR) memory hiararchy sys­

tem design. Since RCR performs all READ operations locally, while it broadcasts 

WRITEs globally, all caches will have a valid copy of data.
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2.4.3 Coherence Strategies

Even though, the cache coherency problem has been the subject of much research, 

there is very little literature discussing cache coherency in multiport-based distributed 

shared-memory systems. Previously defined strategies to ensure cache coherency 

generally fall into two major categories:

1. haxdware-based strategies, and

2. software solutions.

Hardware-based techniques were implemented without any support from software. 

These techniques maintain cache consistency by adopting one of the following proto­

cols:

1. Directory based - The physical memory is divided into equal-size blocks. The 

sharing status of a block is kept in just one location, called the directory.

2. Snooping - In this protocol the sharing status of memory blocks is not kept in 

a centralized location. Snooping protocol is based on monitoring the shared- 

memory bus, since processors share a common memory via a single bus. This 

scheme could also be applied to mutiple buses in a system with moderate cost 

[O’KRAFKA90] [BERT0NI91].

While hardware-based techniques are efficient, they add to system hardware complex­

ity. Our proposed Replicated Concurrent-Read architecture requires no hardware 

support in order to maintain cache coherency. Software techniques, rely solely on' 

the compiler or programmer to maintain cache coherency. These schemes could be 

categorized in two classes:

1. Static placement - at compile time, all shared writable data are tagged as non- 

cashable. Thus, any memory block that can be modified by more than one 

processor, will be stationary in the main memory. This protocol is considered 

the simplest to implement.
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2. Software-based protocols - this scheme depends on a sophisticated compiler to 

insert cache control instructions at compile time to maintain data consistency.

Replicated Concurrent-Read architecture does not require any software support to 

eradicate the coherency problem because of its unprecedented design. There are 

advantages and disadvantages associated with each one of these coherence strate­

gies. Crawford examined and analyzed the effect of four coherence schemes on mul­

tiport memory systems. Namely, No-cache, Synapse (snooping), Firefly, and Di­

rectory schemes were analyzed and simulated for a multiport system. The result 

of the analytical model and simulation were in favor of Firefly techniques in terms 

of memory average access time [CRAWFCRD94]. However, this technique requires 

extensive hardware, since cache-to-cache transfers demand four dedicated paths be­

tween caches. Such hardware costs become enormous as the number of processors 

grows large, making the Firefly less scalable than other techniques. Our proposed 

Replicated Concurrent-Read architecture virtually requires no adoption of coherence 

strategies in any form. Broadcasting all WRITE operations will solve this unwanted 

problem at minimal cost.

2.5 M em ory C onsistency M odels

The memory model characterizes the behavior of a shared-memory system as observed 

by the processors. The problem of memory inconsistency emerges when the memory- 

access order differs from the program execution order. A memory model specifies 

three fundamental perspectives:

1. Behavior of a shared-memory multiprocessor,

2. Coverage of all contingencies, and

3. Behavior of processors and shared-memory systems to ensure consistent adher­

ence to the expected behavior of the multiprocessor.

In general, choosing a memory model is a process of making a compromise between 

a robust model minimally restricting the software or a relaxed model offering. The
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Figure 15: Intuitive Definition of Four Memory Consistency Models.

quality of a memory model is evaluated by software/hard ware efficiency, simplicity, 

and bandwidth performance. Most multiprocessors have implemented the strong 

consistency model because of its simplicity. Memory accesses for this model are atomic 

and strongly ordered, and confusion can be avoided by having all processor/caches 

sufficiently wait during unexpected run-time events. However, the model may lead to 

poor memory performance due to the imposed strong ordering of memory events. This 

is especially true when the shared-memory system becomes very large. Therefore, a 

strong consistency model makes a scalable design more difficult to obtain. On the 

other hand, relaxed consistency models may offer increased performance by hiding 

as much write latency as possible. The main disadvantage is increased hardware 

complexity and a more complex programming model. Figure 15 summarizes four 

memory consistency models [HWANG93].

Shared-memory systems can be further classified into two behavioral categories:
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1. Only atomic memory accesses are supported, and

2. Non-atomic memory accesses axe also allowed.

A memory access is atomic if the memory updates axe known to all processors at the 

same time, and it is non-atomic if coherence mechanism does not necessarily inform 

all processors at the same time. A strong consistency model can support atomic ac­

cess and a relaxed consistency model usually conforms with non-atomic accesses.

Three primitive memory operations have been defined for the purpose of specifying 

memory consistency models [DUBOIS86]:

1. A READ by processor Pi is considered performed with respect to the processor 

Pk at a point of time when the issuing of a WRITE to the same location by Pk 

can not affect the value returned by the READ.

2. A WRITE by Pi is considered performed with respect to Pk at one time when 

an issued READ to the same address by Pk returns the value by this store.

3. A READ is globally performed if it is performed with respect to all processors 

and if the WRITE, that is the source of the returned value, has been performed 

with respect to all processors.

The Replicated Concurrent-Read (RCR) memory consistency model supports 

atomic memory accesses by broadcasting WRITE operations globally. Since READs 

axe performed locally in one cycle, then an issued WRITE to the same address by 

any processor can not affect the value returned by the READ. The RCR memory 

consistency model is simple and efficient.

2.5.1 Sequential Consistency Model

Sequential Consistency is the most widely implemented model by multiprocessor de­

signers. Figure 16 illustrates this memory model where the READ, WRITE, and
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Figure 16: Sequential Consistency Memory Model

swap of all processors are performed serially in a single global memory order that 

conforms to the individual processor’s program orders.

Lamport has defined Sequential Consistency as follows: a multiprocessor system 

is sequentially consistent if the result of any exection is the same as if the operations 

of all the processors were executed in some sequential order, and the operations of 

each individual processor appeax in this sequence in the order specified by its program 

[LAMPORT79].
Dubois, Scheurich, and Briggs have stipulated the following two sufficient conditions 

to reach sequential consistency in shared-memory access [DUBOIS86]:

1. Before a READ is allowed to perform with respect to any other processor, all 

previous READ accesses must be globally performed and all previous WRITE 

accesses must be performed with respect to all processors.

2. Before a WRITE is allowed to perform with respect to any other processor, all
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previous READ accesses must be globally performed and all previous WRITE 

accesses must be performed with respect to all processors.

Sindhu, Frailong, and Cekleov have defined the sequential consistency memory model 

with the following five propositions [SINDHU92]:

1. A READ by a processor always returns the value written by the latest WRITE 

to the same location by other processors.

2. The memory order conforms to a total binary order in which shaxed-memory is 

accessed in real time over all READs and WRITEs with respect to all processor 

pairs and location pairs.

3. If two operations appear in a particular program order, then they appear in the 

same memory order.

4. The swap operation is atomic with respect to other WRITEs. No other WRITE 

can intervene between the READ and WRITE parts of a swap.

5. All WRITEs and swaps must eventually terminate.

The RCR memory consistency model is comparable to the sequential consistency 

model.

2.5.2 Relaxed Consistency Models

Memory consistency models, as stated before, can range from strong to various de­

grees of relaxed consistency. Figure 17 exhibits an example of a relaxed model, the 

total store order (TSO) Weak Consistency model developed by Sun Microsystems’ 

SPARK Architecture Group (1990). Dubois, Scheurich, and Briggs have developed 

a relaxed consistency memory model by relating memory access request ordering to 

synchronization points in the program. This model indicated by the following three 

conditions [DUBOIS86]:
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Figure 17: TSO Weak Consistency Model.

1. All previous synchronization accesses must be performed, before a load or a 

WRITE access is allowed to perform with respect to any other processor.

2. All previous READ and WRITE accesses must be performed, before a synchro­

nization access is allowed to perform with respect to any other processor.

3. Synchronization accesses are sequentially consistent with respect to one another.

By applying different restrictions on memory-access ordering, we may define multi­

form weak memory models.

Sindhu, Frilong, and Cekleov have provided the TSO Weak Consistency (WC) 

model with six behavioral axioms [SINDHU92]. The following is an intuitive descrip­

tion of their abstracted axioms by Kai-Hwang [HWANG93]:

1. A READ access is always returned with the latest store to the same memory 

location issued by any processor in the system.
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2. The memory order is a total binary relation over all pairs of WRITE operations.

3. If two WRITEs appear in a particular program order, then they must also 

appear in the same memory order.

4. If a memory operation follows a load in the program order, then it must also 

follow the READ in memory order.

5. A swap operation is atomic with respect to other stores. No other store can 

interleave between the READ and WRITE parts of a swap.

6. All WRITEs and swaps must eventually terminate.

The RCR memory consistency model, without relating memory access request order­

ing to synchronization points in the program, offers the same efficiency as the above 

memory model without any increase in hardware complexity.

The Processor Consistency (PC) model, introduced by Goodman (1989), notes 

that WRITEs issued by each processor, are always in program order. However, the 

WRITEs issued by two different processors can be out of program order. The order of 

READs issued by each processor is not restricted as long as they do not involve other 

processors. This model relaxes from the sequential consistency model by removing 

some restrictions on WRITEs from different processors. Thus, it creates more oppor­

tunities for the buffering and piplining of WRITEs. Two conditions must be required 

for insuring processor consistency:

1. Before a READ is allowed to perform with respect to any other processor, all 

previous READ accesses must be performed.

2. Before a WRITE is allowed to perform with respect to any other processor, all 

previous READ or WRITE accesses must be performed.

Release Consistency (RC), introduced by Gharachorloo et al.(1990), is one of the 

most relaxed memory models available. In this consistency model, the synchroniza­

tion accesses in the program must be identified as either acquire (e.g.,locks) or release
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(e.g., unlock). An acquire is a READ operation that attains permission to access a 

set of data, while a release is a WRITE operation that grants such permission. There 

axe three conditions that ensure release consistency:

1. Before an ordinary READ or WRITE access is allowed to perform with respect 

to any other processor, all previously acquired accesses must be performed.

2. Before a release access is allowed to perform with respect to any other processor, 

all previous ordinary READ and WRITE accesses must be performed.

3. Special accesses axe processor-consistent with one another. The ordering re­

strictions imposed by weak consistency axe not present in release consistency. 

Instead, release consistency requires processor consistency and not sequential 

consistency.

Stanford reseaxchers have reported results for evaluating these memory models un­

der three applications [GUPTA91]. They include a particle-based three-dimentional 

simulator used in aeronautics(MP3D), a LU-decomposition program (LU), and a dig­

ital logic simulation program (PTHOR). Their research illustrates the breakdown 

of execution times under the sequential and relaxed models for the three bench­

marks. Relaxed models remove all idle time due to write-miss latency. Based on the 

same model, the READ operation cannot be performed in parallel with a single port 

shaxed-memory holding the global data. Thus, the execution time has increased for 

benchmarks MP3D and LU, while, a very slight improvement of 52.9% to 49.0% is 

shown for PTHOR.

The key point being that the major processor’s time is spent stalling for a READ 

miss.
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2.6 Summary

The architecture of a multiprocessor refers to the relationship between processors, 

memory modules and I/O  devices. In this chapter, UMA, NUMA and COMA, archi­

tectures were introduced. In UMA architecture all processors are attached to their 

private caches while sharing a global memory. The advantage of this architecture 

is the simplicity of design and ease of programming. The major drawback of the 

UMA machine is contention in global traffic, as the number of processors grows. The 

NUMA architecture is a distributed shared-memory machine. Every processor can 

address its own local memory as well as any remote memory module. The advantage 

of this machine is its ability to support a large number of processors. COMA archi­

tecture is very similar to NUMA machines except that distributed memory modules 

are replaced with caches.

The communication efficiency of a network is essential to system performance. 

There are four major organizations for the interconnection network:

1. Bus-based strategies,

2. Static interconnection networks,

3. Dynamic interconnection networks, and

4. Multiport memory-based schemes.

Memory references tend to be confined to a few localized areas of the entire address 

space As a program executes these references over a given period of time. This 

phenomenon is known as locality of references. Three types of locality of reference 

behavior have been identified:

1. Temporal locality,

2. Spatial locality, and

3. Sequential locality.
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One of the major characteristics of any multiprocessor system is the way it han­

dles WRITE operations.

The memory model characterizes the behavior of a shared-memory system as seen 

by the processors. The problem of memory inconsistency emerges when the memory- 

access order differs from the program execution order.
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3 Previous Scalable Architectures

In this Chapter, we review some of the most recent approaches based on maintaining 

coherence through demand-driven movement of data when it is referenced. Several 

approaches have been used, including directory structures which maintain a list of 

which memories hold the valid copy and snooping strategies which avoid the bottleneck 

of a centralized directory, but require many-to-many monitoring of each processor’s 

update traffic. We discuss advantages and disadvantages of each scheme to provide 

the basis for a totally new architecture.

3.1 Overview

Since we are primarily interested in designs which are scalable in the number of 

processors they can support, we present four examples of the most scalable designs 

which have been proposed. We show two directory-based architectures, one snooping- 

based architecture, and a rudimentary replicated-memory architecture.

3.2 The Stanford DA SH  Architecture

The DASH multiprocessor system has been under development by John Hennessy and 

co-workers at Stanford University since 1988 [HWANG93]. ”DASH” is an acronym for 

Directory Architecture for Shared Memory. It combines the scalability of message- 

passing machines, by distributing the shared memory space among PEs with the 

programmability of a single address space through directory-based coherence pro­

tocols. Processing clusters share a single global address space interconnected by a 

scalable interconnection network.

The architecture is composed of two structural levels. The first level consists of 

a set of processing clusters, each set is a bus-based multiprocessor with primary and 

secondary caches. Coherence within this cluster is supported using a snoopy bus- 

based protocol. The second level is a mesh interconnected network connecting the 

clusters together. Within this level, inter-cluster cache coherence is maintained by a
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Figure 18: Stanford’s DASH architecture.

distributed directory-based cache coherence protocol. The interconnection network 

among the 16 multiprocessor clusters is a pair of wormhole-routed mesh networks. 

One mesh network is used to request remote memory, and the other is a reply mesh. 

Figure 18 depicts at a high level organization of the Stanford’s DASH architecture.

Caches within the clusters are designed to match the processor speed and support 

snooping from the bus to maintain the coherency. Intra-cluster coherence implements 

the Illinois or modified, exclusive, shared, invalid (MESI) protocol.

3.2.1 DASH M em ory Hierarchy

The Stanford DASH implements an invalidation-based cache-coherence protocol. A 

memory location may be in one of three states:

1. Uncached: not cached by any cluster,
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2. Shared: in an unmodified state in the caches of one or more clusters, or

3. Dirty, modified in a single cache of some cluster.

The directory keeps the summary information for each memory block, specifying its 

state and the clusters that are caching it. The four levels of the DASH memory 

hiererchy are shown in Figure 19.

The first-level cache is designed to match the processor speed. If any request is 

not satisfied at this level then it is routed to the second level. It takes 30 processor 

clock cycles to access this level. The second-level consists of other processor’s caches 

within the local cluster. If the data is locally cached at this level, the request can be 

satisfied within the cluster, otherwise the request is sent to the home cluster level. 

The home-level consists of the cluster that contains the directory and physical mem­

ory for a given memory address. It takes 100 processor clock cycles to access the 

directory in this level.
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For many accesses, most private data references, local and home clusters, are the 

same and the hierarchy can be collapsed to just three levels. In general however, 

a request will travel through the interconnection network to the home cluster. The 

home cluster can usually satisfy the request immediately, but if the directory entry is 

in a dirty state, or in a shared state when the requesting processor requires exclusive 

access, the fourth level must also be accessed which requires 135 clock cycles. The 

remote cluster level for a memory block consists of the clusters marked by the directory 

as holding a copy of the block.

3.2.2 Cache Coherence M ethod in DASH

Two levels of local cache axe used per processing node as shown in Figure 18. One can 

assume a write-through primary cache and a write-back secondary cache. READS 

and WRITES axe separated with the use of WRITE buffers for implementing weaker 

memory consistency models. The main memory is shared by all processing nodes in 

the same cluster. To facilitate prefetching and the directory-based coherence protocol, 

directory memory and remote-access caches are used for each cluster. The remote- 

access cache is shared by all processors in the same cluster.

The directory memory relieves the processor caches of snooping on memory re­

quests by keeping track of which caches hold each memory block. Figure 20 illustrates 

a directory structure per cluster. As proposed by Censier and Feautrier, each entry 

contains one presence bit per processor cache. In addition, a state bit indicates 

whether the block is uncached, shared in multiple caches, or held exclusively by one 

cache; if the block is dirty. By inspecting the state and presence bits, the memory can 

become aware of which caches need to be invalidated when a location is written. This 

facilitates the scalability of the DASH by reducing the demand on available memory 

bandwidth.
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3.3 T he K endall Square Research KSR-1

The Kendall Square Research KSR-1 is the first commercial attempt at building a 

COMA-style scalable multiprocessor. Scalability in the KSR-1 is obtained by con­

necting 32 processors to assemble a ring multi (search engine 0 in Figure 21) operating 

at 128 million accesses per second. As shown in Figure 21, the KSR-1 uses a two-level 

hierarchy to interconnect 34 Ring:0s by a top-level Ring:l. Each node consists of a 

32-Mbyte primary high-speed memory, and a 64-bit superscalar processor. The super­

scalar processors are designed for both scalar and vector operations. Each processor 

comprises 64 floating-point and 32 fixed-point registers of 64 bits.

3.3.1 KSR-1 M emory Hierarchy and Coherence Strategy

The KSR-1 offers a single-level memory, named ALLCACHE by its designers. As a 

result of this, the KSR-1 eliminates the memory hierarchy present in conventional
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Figure 21: The Kendall Square Research KSR-1 architecture.

computers and the corresponding physical memory addressing overhead. The KSR-1 

maintaines data consistency by replication of data throughout the distributed pro­

cessor memory nodes.

3.3.2 KSR-1 Programming M odel

The KSR-1 machine provides a strictly sequential consistent programming model and 

dynamic management of memory through hardware migration and replication of data 

throughout the distributed processor memory nodes using its ALLCACHE mechanism 

and a sequential consistency model. With ALLCACHE, an address becomes a data 

name, and this name automatically migrates throughout the system and is associated 

with a processor in a cache-like fashion as needed. Copies of a given cell are made by 

the hardware and sent to other nodes to reduce access time. A processor can prefetch 

data into a local cache and poststore data for other cells. The hardware exploits
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temporal and spatial locality.

Figure 22 illustrates the situation when the requester and responder reside in dif­

ferent ring:0s. The top level, Ring:l, consists entirely of Ring Routing Cells(RRCs), 

each containing a directory for the Ring:0 to which it is connected. Each RRC direc­

tory on Ring:l is essentially a duplicate of the RRC directory on the corresponding 

Ring:0. When a packet reaches an RRC on Ringrl, it will be moved to the next RRC 

on the ring of the RRC directory indicating that the requested data is not on the 

corresponding ring. Otherwise, the packet is routed down to the RRC on Ring:0. 

Ring:0 has the capacity of processing 8 million packets per second, and Ring:l could 

handle 8, 16, 32, or 64 million 1024-bit packets per second.
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Figure 23: The Night Hawk System Block Diagram[Harris]

3.4 The Nighthawk 6800-Series M ultiprocessor

The Nighthawk multiprocessor is a  shared-memory system specifically for Real-Time 

applications. The system is composed of CPU modules, Global Memory modules and 

I/O  Interface modules. A maximum system consists of 6 modules. Up to 4 modules 

can be CPU modules, and up to 2 modules can be Global Memory modules. One 

of the modules can be a secondary I/O Interface module. This system supports up 

to 8 processors as a tightly-coupled multiprocessor. Figure 23 depicts the Nighthawk 

simplified system block diagram.

3.4.1 Local-Remote-Global M emory Hierarchy

The Nighthawk memory system can be decomposed into four levels of hierarchy, as 

illustrated in Figure 24. The first level is the primary cache which is within the PE, 

and matches the processor speed.
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A request that cannot be serviced by the primary cache is sent to secondary cache. 

Designers have estimated a 95% hit rate at this level for typical real-time tasks. If 

there is a miss, then snooping the local bus and system bus takes place until the 

request is satisfied.

3.4.2 CPU -Level Local and R em ote  M em ory Design

Each CPU board could have 1 or 2 IBM/Motorola 604 processors supporting 100 

MHz and 150 MHz clock rates.

A separate direct-mapped secondary cache is used for each processor and these 

caches support copyback and write-through protocols. The processor bursts data 

(operands and instructions) to/from the secondary cache at the rate of 400 MB/sec. 

The CPU burst size is one cache line which consists of 4 (64-bit) double words. The 

write-through mode is used only by the operating system and is not available to the
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users. The secondaxy cache RAMs axe packaged as a single daughter board with the 

RAMs for both processors. The RAM module supports a 1 Megabyte direct-mapped 

secondaxy cache for each processor.

The Nighthawk 6800 includes a cache snoop filter at the frontplane interface. This 

filter consists of two cache tag sets (one for each processor) that keeps track of global 

memory reads into the processors on the boaxd. The filter tags then indicate if a 

snoop request from other boaxds can possibly be in the caches on this board. If 

the snoop request address is not on the filter tags, then the filter responds to this 

miss status, of the frontplane, without bothering the caches or the processors. If the 

filter tags show a hit, then the snoop request is passed to the secondaxy caches and 

processors. The filter tags accommodate the secondaxy cache size defined above.

The Night Hawk 6800 supports two types of local memory, one using static RAM’s 

for higher performance and one using dynamic RAM’s for higher capacity. Local 

memories are packaged as daughter caxds, and its size may be upgraded by replacing 

the daughter caxd.

3.4.3 Global Memory Design

The global memory system consists of one or two global memory boaxds and may 

contain a combined total of 1 gigabyte of storage. The memory boaxd is a two ported 

dynamic RAM memory device that can service either the HVME backplane or the 

system frontplane. It consists of a mother boaxd and a Memory Daughter Card 

(MDC). The daughter caxd allows for different memory densities using a common 

mother boaxd and the capability of memory expansion.

The global memory boaxd insures system-wide cache coherency by broadcasting 

primary I/O  accesses to the frontplane for snooping.

3.5 M ultiprocessors Em ploying Globed D ata  Replication

Concept of data replication refers to a multiprocessor system where each processor 

has its own local memory and the shared data are replicated in each of the local mem-

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ones. This scheme is somewhat orthogonal to the DASH and the KSR-1 axchitectures 

discussed earlier in this chapter. Although both architectures support data replica­

tion and process migration, they do not replicate the shared data over the processor 

memory pairs. It can be used to implement Uniform Memory Access (UMA) systems 

if all memory addresses axe replicated, or it can be used to implement Non-Uniform 

Memory Access (NUMA) systems if only some addresses axe replicated. However, this 

implies a cost disadvantage of requiring redundant memories that contain identical 

data.

Various aspects of data replication in multiprocessor systems have been described 

in United States patent documents, numbers 4928224, 5214776, 5247629, 5247673, 

and 5274789 of different applicants. Figure 25 illustrates an architecture (Patent No: 

5214776) under the title name ” Multiprocessor System Having Global Data Replica­

tion”. It is comprised of four identical control processing units, CPU 0 to 4. The 

detail is shown for CPU 0 only. All units communicate with each other through a 

system bus. They also share peripheral units and common memory resources through 

the system bus. Its designers claim this architecture provides remarkable advantages 

in terms of performance because each processor has access to global data for read 

operations without needing access to the system bus. However, this architecture 

requires that the global data be replicated in each of the several local memories.

Coherence problems could be solved using several techniques based on the type of 

replication. There are three types of replication that can solve this coherence problem:

1. Global data replication,

2. Dynamic data replication, and

3. Selective data replication.

3.5.1 Global D ata Replication

The global data replication approach replicates shared data over entire local memories. 

This way each processor may read the global data in its related local memory without
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Figure 25: Multiprocessor system having global data replication.

accessing the system bus. In the event of a write operation on global data, access to 

the system bus is required to write the data in all local memories to assure consistency. 

This architecture demands a large amount of local memory, adequate for storing all 

the global data which may be required for parallel processing. To keep the size of 

the local memories economically feasible, it is important to keep the local data and 

replication at a minimal level.

3.5.2 Dynam ic D ata Replication

Dynamic data replication is performed at the page level, only when global data is 

requested by several processors. First, the data is treated as local then converted to 

global, and vice versa, to be replicated dynamically at run time. As long as the data 

is considered local, it is not necessary to allocate memory space in each and all of 

the local memories. This limits the bus access operations by maintaining coherence
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among the copies of the data and size of the local memories required to run a particular 

application.

3.5.3 Selective D ata Replication

Selective data replication uses local memories efficiently by further limiting the repli­

cation of the global data. It is necessary to perform replication according to selective 

criteria. This type of approach would require the development of complex and sophis­

ticated replication mechanisms, which would permit control of WRITE operations in 

selected local memories. However, the drawback of costly memory replication, must 

be weighed against the resulting advantages. The outcome would limit the replication 

of data and the problems of global and dynamic type replication, and thus reduce the 

size of required local memories.
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3.6 Sum m ary

In this chapter, four scalable shared-memory multiprocessors were reviewed. DASH 

architecture implements an invalidation-based cache coherence protocol. Directory- 

based architectures, such as DASH, maintain the summary information for each mem­

ory block, specifying its state and the clusters that are caching it. KSR-1 architecture 

also relies on directory-based schemes to maintain data coherency. KSR-1 is an exam­

ple of COMA architecture. The Nighthawk multiprocessor uses snooping strategies 

which avoid the bottleneck of a centralized directory, but require the monitoring of 

each processor’s update traffic. Finally, a multiprocessor system having global data 

replication was introduced. This architecture requires that the global data be repli­

cated in each of the several local memories. The multiprocessor system, having global 

data replication, maintains data consistency by employing several techniques based 

on the type of replication.
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4 A nalysis o f M emory Access Behavior in M ulti­

processors

4.1 O verview

Previous multiprocessor designs have viewed memory as a scarce resource which must 

contend for simultaneous READ access by storing only one valid copy of each updated 

data item. While this approach was economically necessary several years ago, it cre­

ated a cache coherence problem. Advancement of memory technology has opened up 

new opportunities by optimizing memory system design for the most frequently used 

operations.

The principle of locality of references has demonstrated that, roughly 90% of 

memory accesses axe local memory references. Also true is that, 80 to 90% of memory 

references are READ operations, thus, the concentration of our research is of these 

memory reference behaviors. In the next two sections, we will analyze these memory 

access behaviors.

4.2 G lobal vs. Local M em ory References

A memory reference that can be satisfied by the local memory is called local memory 

reference. Likewise, an access to main memory is known as global memory reference. 

The principle of locality of reference states that, local memory references constitute 

90% of all memory accesses. Since local memory access time is shorter than referenc­

ing global memory modules, then the emphasis should be placed upon the design of 

memory hierarchy systems, in order to minimize the total memory access time.

A memory hierarchy system consists of multiple levels of memory modules with 

different speeds and sizes. Fast memories axe more expensive per bit than slower 

memories and axe usually smaller. The ultimate design goal is to minimize the cost
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Table 1: Memory Technologies.

Memory technology Typical access time $ per MByte in 1993

SRAM 8 - 35 ns $100 - $400

DRAM 90 - 120 ns $25 - $50

Magnetic disk 10,000,000 - 20,000,000 ns $1 - $2

per bit of the total memory system while maximizing the speed of memory references. 

High speed memories are approximately four to ten times faster than main memories, 

while they axe four to eight times more expensive than slow memories. Main mem­

ories use DRAM (dynamic random access memory), while caches axe implemented 

from SRAM (static random access memory). Today, the three major technologies 

used to build memory units axe DRAM, SRAM, and disk. Table 1 illustrates the 

access time and costs pertaining to these technologies [HENNESY94].

So fax, by providing a local memory to every processor, average memory access 

time has been notably reduced. Generally, minimizing the number of global memory 

references while reducing the cost per bit of memory units will result in a more 

effective shared-memory system. By employing multiported memories in a replicated 

fashion, the total memory access time can be improved even further. Our proposed 

memory hierarchy system not only shows an improvement over existing systems, but 

that it is also free of cache coherency problems.

4.3 R E A D  vs. W RITE D istribution  o f M emory A ccesses

While the majority of all memory references axe READ operations [HWANG84], it is 

surprising that no experimental studies, examining the impact of 0(1) READ mem­

ory access without overhead cost, have been done. This reality has been neglected for 

many yeaxs, due to the fact READ and WRITE latencies axe identical in uniproces­

sors. The ratio of READ/WRITE operations increases even more when the transition
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Table 2: General Statistics on the Benchmark Applications.

Application

Instructions

Executed

(millions)

Shared Data 

References 

(millions)

percentages of 

shared data 

references

OCEAN 120 16.5 13.8%

PTHOR 86 15.8 18.4%

MP3D 209 22.4 10.7%

CHELOSKY 1302 217.2 16.7%

LU 50 8.2 16.4%

LOCUS 897 130.3 14.5%

BARNES 337 44.9 13.3%

WATER 2165 195.3 9%

is made to multiprocessors. Since in a shared-memory system, a WRITE operation 

will be followed by at least one READ memory reference, this actuality is further 

amplified. Table 2 shows the statistics taken from the execution of benchmark appli­

cations on the SPLASH architecture [GHARACH0RL0095]. These general statis­

tics exhibit that only a small percentage of all memory references are shared data 

references. Let A,- and A* denote the number of memory accesses and shared data 

references, respectively. The weighted average of shared references (A?) is:

A ;  =  § 1 7  * 100 (3)

By substituting the values of A,- and A? in equation 3, we have:

650.6M 
A‘ -  5l66M  * 100 =  li6 %

These statistics amplify the fact that only small percentages of all memory accesses

are shared data references.
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Table 3: Statistics on Shared Data References and Their Characteristics.

READs WRITEs R/W

Application X1000 X1000 Ratio

OCEAN 12.280 4.255 2.9

PTHOR 14.516 1.316 11.0

MP3D 16.965 5.468 3.1

CHELOSKY 193.216 24.049 8.0

LU 5.478 2.727 2.0

LOCUS 117.440 12.847 9.1

BARNES 34.121 10.765 3.2

WATER 146.376 48.91 3.0

Table 3 shows statistics on shared data references and their characteristics [GHARA- 

CH0RL0095]. Let R* and W* denote the number of shared READs and shared 

WRITEs, respectively. Based on the statistics of table 3, 52 R* =  540.392, and 

J2W* =  66.318 for an aggregate R /W  ratio of 8.1 on shared memory references. 

These numbers imply that only a small (1.37%) percentage of all memory references 

are shared WRITEs. (89.1%) of shared references are READ accesses.

If 10% of all memory references are WRITE, which is likely the case for multipro­

cessors [HWANG84], then a greater focus must be placed on the READ capabilities 

of multiprocessor computers since it holds 90% of all memory references. Let us 

emphasize that 10% of WRITEs are composed of shared and local WRITEs. Typ­

ical multiprocessor applications have 1 to 5% shared WRITEs, and therefore, less 

emphasis can be placed upon WRITE operations.

By this analysis, we could say that the upper limit for the number of WRITE 

memory references in a typical application, is 50% of the total memory references, 

while the lower limit could be very close to zero. Since the total number of WRITEs 

can not exceed 50% of the total number of memory accesses, then, READ operations
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have a lower limit of 50% with an upper limit of close to 100% of all memory accesses.

Let A{ denote the number of memory accesses by processor i in a given time in­

terval. If Wi and R{ denote the number of READ and WRITE references respectively 

during that interval, then

Ai = Wi + Ri, (4)

1 < i < N .

Thus, for all N processors in the system,

+ (5)
i'=i i'=i

Thus,
N  N  N
£ *  =  £ *  +  £ » ;  (6)
i= l  t'= l i= l

T heorem  1 : Visibility of Shared Updates: For a shared-memory update to be visible 

to at least one other processor, the following inequality holds:

N  Y ' n  A  •
(7)

«=1 z
Proof: (by contradiction)

at AiAssume 5Zi=i Wf > ■*. This imphes that at least one superfluous WRITE oc-

cured then by equation 6 we have, J2iLi Ri < Wj. This implies that data has 

been written unnecessarily since it is never read. □

C oro llary  1 : Cummutative READ vs. WRITE Ratio: Since theorem 6 dictates

N  a .
(g)

t= l  Z

and substituting 6
N  N  N

i=i i=i {=1
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in equation 8, then.
- . W S  +  S g , *  (#)

i=i 2

N  N  N

2 E ^ < E ^ + E ^  (10)
t=i t=i i=i

Or AT AT
E ^ < X >  (n )i=i i=i

Thus, the number of READs is always at least as large as the number of WRITEs, 

yielding the READ vs. WRITE ratio,

-  ° '50 (12)

Indicating that READs axe more important to optimize, than WRITEs. □

Equation 12 expresses that the total number of WRITE references can not be 

greater than 50% of all references. Therefore, the number of READs will constitute

at least above 50% of the total memory references. Because of the nature of sharing in

multiprocessors, this lower limit of number of READs will be well above 90%. Thus, 

it is time to place greater emphasis on READ operations.

Our design objective which is ambitious though feasible, is to attain zero memory 

access overhead on all READ operations. Replication is the most feasible solution to 

this problem, however it is not an economical approach. To design a cost effective high 

performance multiprocessor, a combination of replication and multiport memories will 

offer an acceptable solution.
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4.4 Sum m ary

In depth research of memory reference behavior has inspired us with new ideas about 

multiprocessor architecture. WRITE operations can account for 0% to 50% of all 

memory references. Since READ operations constitute the majority of memory refer­

ences, improvement of READ references has a great impact on overall multiprocessor 

performance.
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5 A Scalable Replicated Concurrent-Read M em ­

ory M odel

To evaluate the Replicated Concurrent-Read (RCR) architecture, an analytical model 

was developed. In order to compare the RCR approach with existing architectures, 

models were also developed for typical Uniform Memory Access (UMA), and Non- 

Uniform Memory Access (NUMA) machines along with the Local-Remote-Global 

(LRG) multiprocessor. Since hardware configurations of computer systems could 

vary among different models, consistent assumptions have been made.

5.1 A ssum ptions

It is assumed that the workload will be evenly distributed between processors in all 

models. This implies that each processor has the same chance to perform READ/WRITE 

to shared/private data. If there is a READ miss, a block of data will be transfered 

to the cache. In case of a WRITE request, write-through policy will be assumed. For 

the sake of simplicity, it is assumed that block sizes are the same between all levels 

of caches. The models do not employ the concept of finite population of Processing 

Elements. In other words, in these models, all of N processors could make N memory 

references at every clock cycle. Thus, no processor is idle at any given time due to 

competition for accessing memory. Developed models project the expected memory 

access time for each architecture.

5.2 R C R  A nalytical M odel

In this architecture, every processor is attached to a private cache, a local cache, and 

a replicated memory module as shown in Figure 26.

A READ hit fetches data from the cache in tc time or in a one clock cycle. Let hc 

denote the probability of a cache hit. A READ miss with the probability of (1 — hc) 

will cause an access to replicated memory in search of a requested word. The time
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Figure 26: The RCR configuration.

required to access such a word is simply the replicated memory cycle time, t^j- Let 

ha denote the probability of a replicated memory hit. In the case of a miss, the pro­

cessor has to access the auxiliary memory in taux time. The auxiliary memory space 

is partitioned into addresses in the working set and addresses outside the working set. 

Replicated memories axe images of the working set. A reference to auxiliary memory 

addresses axe distinguished between isolated memory accesses and those which are 

incrementally outside the working set by some distance 8 such that L —8 < X  < H +6 

where L and H  axe the lowest and highest addresses currently stored in replicated 

memory, respectively. If an access is to an isolated memory address, then the re­

quested word will be directly transfered from the auxiliary memory to the processor 

immediately. In the case of a reference being Incrementally Outside the Fence (IOF) 

such that X  < L  — 8 o r X > H + 8 , a .  quantity of D iof words will be transfered to the 

processor. Let P i o f  denote the probability of a memory access being incrementally 

outside the fence.
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The time it takes to fetch a word from the auxiliary memory also depends on the 

global bus traffic. Every processor is equally likely to reference memory address space. 

The chance of a READ memory access is (1 — Ac)(1 — Hr). A processor may have 

to wait for other READs or WRITEs to complete their execution. The time penalty 

associated with the duration of wait, depends on the number of pending READs and 

WRITEs in the bus queue. Let N  and P, denote the total number of processors 

and processor #  i respectively. At any given time, the number of pending memory 

accesses is between 0 — N  inclusively. As a result, Pi may have to wait for 0 — ( N  — 1) 
memory references to be completed before its turn. Let t̂ ait-giobai-bus denote the wait 

time. The WRITE access time depends on whether it is a shaxed or private WRITE. 

A private WRITE takes place in t c time to the private cache of the writing PE. On 

the other hand, Shared WRITEs axe broadcasted to all replicated memories via the 

global bus. A WRITE to memory takes place in t w time. Let denote the average 

READ time which be expressed as the sum of products for each access type and time 

mentioned above:

-  *c + (1 -  hc) tMB  + (1 -  hc)( 1 -

+{PlOF)t aux D iof  + (1 — PiofY  aux } (13)

Equation 13 could be simplified as:

+ taux[PlOF(DlOF — 1) +  1]] (14)

The value of twait-giobaiJmai depends on the number of pending accesses in the queue 
and the time penalty associated with it. This can be approximated by scaling the 

probability of each individual processor requesting global access by the expected num­

ber of requests pending from other processors which is The time penalty with 

accesses in the queue depends on the characteristics of each access:
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1. whether the memory access is a READ or WRITE,

2. whether a requested word is in incrementally outside the fence or it is in isolated 

memory space.

The probability of a READ memory reference to be in the queue is (1 — hc)( 1 — hn). 

Let Pshared-rtrrite denote the probability of a shared-write memory access such that

Pshared—write "1“ Pprivatc-write "I" Pread =  1* The Value of twait_globalJbus expressed
as:

rcr N  — 1
ûia.it-global-bus =  ^  shared-write^w (1 ^ c)(l ^ r ) P read

[ P lO F D lO F t aux “f" (1 -  PlOF)t aux ]} (15)

Equation 15 may be simplified as:

A T -  1 
2

[taux(PlOF(DlOF ~  1) +  1)]} (16)

t wait-global-bus — o shared-writê w (1 ^c)(l hfl)Preaj

Hence, the may be expressed as:

r̂ead =  +  (1 — hc)tf4 B  +  (1 — Ac)(l — ^J?)[------  [Pshared-writetw +

(1 — A c)(l — hR)Pread[taux(PlOF(DlOF ~  1) +  1)]]

+taux[PlOF(DlOF ~  1) +  1]] (17)

The WRITE access time depends on whether it is a shared or private WRITE. A 

private WRITE takes place in tc time while a shared WRITE is broadcasted to all 

replicated memories via the global bus. In the case of a shared WRITE, P,- may 

have to wait for 0 — (N  — 1) memory references to be completed before its turn. The 

average WRITE time, may be written as:
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^ write — Pthared-write[t wait-global Jbua "h "b Pshared-write)^c ( IS )

By substituting the value of calculated t̂ aitigiobaiJms iQ equation 18, t ^ Re becomes:

N  — 1
tw rite  =  P i  hared-w rite[  ̂ ihared-write^w d* (1 ^c)( 1 hptjP read

[taux(PlOF(DlOF ~  1) +  1)] +  tw] +  (1 — Pshared-write)tc ( 19)

Let tR̂eR be the average memory access time. The overall expected memory access 

time depends on the percentages of READ/WRITE operations with respect to total 

memory references. By adding average READ/WRITE access time with respect to 

probability of an access being READ/WRITE, the overall expected memory access 

time becomes:

t?ZR = Pr-dt£%  + (1 -  S2 (20)

5.3 U M A  A nalytical M odel

In the UMA machine, all processors share a global memory module, while every 

processor is attached to a local cache and a seperate private cache. Every memory 

access starts with searching data in either a local cache or private cache, depending 

upon the address of the access. In the case of a miss, global memory is accessed. 

Let hc denote the cache hit rate. A READ hit fetches data directly from the cache 

in tc time, if there are no pending WRITEs since only one invalidation can occur 

at a time. The probability of having to wait for a pending write to complete, may 

be expressed as P3hared-write• The time penalty involved depends on the number of 

pending WRITEs in the queue. Let t^upending-write denote the time a processor may 
have to wait before accessing data from the cache. A READ miss requires checking 

the global memory for a copy of the data. The time required to access any such 

data is simply the global memory cycle time, tm. The chance of having to wait for 

another memory reference to complete its execution is (1 — hc). The wait time also
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depends on the number of pending memory accesses. Let t^ugiobaiJms denote the 
time a processor may have to wait for accessing global memory. The average READ 

time may be expressed as:

+  <c +  (1 -  A c ( 21)

twaiupending-write can be approximated by scaling the probability of each individual 
processor requesting global access by the expected number of requests pending from 

other processors which is Thus, the expected value of t™ t%ending-write may be 
calculated as follows:

t wait-pending-write (Behared-writet  ̂ (““ )

The waiting time for global bus is dependent on whether other processors are trying 

to access global memory. t™t̂ giobaiJbus may be expressed as:

N - l ,
t wait-global-bus ~   2  \^shared-writetm +  (1 — hc)PreadBtm] (23)

A private WRITE takes place in tc time plus waiting time for any other pending 

WRITEs. Any update to shared-data, also requires updating the global memory. As 

a result, any shared-write memory accesses may have to wait for global traffic. The 

average WRITE time may be expressed as:

1.UMA   p . fi j . +UMA ,write *3narcd-write\l'C 1 wait-pending-write ■wait-pending-write
lUMAtwait-global-bus "b ^m) "b (1 Pshared-write) X

t UMA \wait-pending-write)(tc +  t ending-write) (24)

The overall memory access time is dependent on the probabilty of an access being 

READ or WRITE. Let t^ve denote the overall memory access time. t^ve may be 

expressed as:
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+UMA    p  f U M A  i f I    p  \AJ M A
Lave ~  * re a d t read f  VA r  read 1L write )

As seen in equation 25, the expected memory access time is the total of average 

READ/WRITE time with respect to the probability of an access being READ/WRITE

5.4 N U M A  Analytical M odel

Since global memory is distributed among processors, every processor is attached to its 

own private cache and a memory module, which is considered as local memory for the 

respected processor. If an access is not satisfied by the cache, then distributed shared- 

memory modules will be accessed. A READ hit is answered in tc time plus the waiting

time for pending invalidation WRITEs, if any. A READ miss requires checking the

distributed memory modules. Let Pl denote the chance of having requested data in 

the local memory module. Fetching a word from local memory takes place in tl, time 

plus the time spent in local memory traffic. If the data is in a remote memory module, 

then the time required to fetch a word is demote plus the waiting time in global traffic. 

Let twctit̂ pending.write denote the time a processor may have to wait for accessing the 

cache, tw a it^en d in g .w rite  depends on the number of pending invalidation WRITEs. Let 

twaitJocaiJbus  denote the time a processor may have to wait for accessing local memory. 

Finally, let tZ ^u g io b a iJm s  be time spent in global traffic. The average READ time 

may be expressed as:

J.NUMA _  f N U M A  , f  i f i  _  l  Up (+NUMA ,
read wait ^pending—write  ' c  ' \  wait-local-bus

BtL) +  (1 -  + Bt,w . ) ]  (26)

The waiting time for pending .write times depends if other processors are trying to 

invalidate a shaxed-word in the private cache. Also the number of pending-write 

accesses in the queue effects the duration of waiting time to access the cache. This 

can be approximated by scaling the probability of each individual processor requesting
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global access by the expected number of requests pending from other processors which 

is Thus, twait̂ pending-write could be calculated as:

t wait-pending-write ~~ 9  {Pshared-write^c) (2 7 )

The waiting time for local bus depends on the number of remote accesses by other 

processors and characteristics of those remote references. Thus, t^tJocaiJbus may be 

expressed as:

tZ S u L l J to  =  + (1 -  *«)( 1 -  hL) P , ^ B t L) (2 8 )

where is the local memory hit rate.

The waiting time for global bus is the function of the number of remote accesses in 

the global traffic and also local traffic in a specified remote memory module. The 

characteristics of pending accesses in local and global traffic is also a factor in the 

calculation of waiting time for global bus. Thus, t^aiujiobai-bus could be calculated as:

N -  1 ,  
2

P l { P shared -w rite^L  +  (1  ~  h c ) P Teai B t l )  (2 9 )

^ w ait-global-bus ~  ( 9  )[P sh a red -u rr ite t Rem ote  d" (1  ^ c ) ( l  PreadBt Remote\ +

A private WRITE access takes place in t c time plus the waiting time in the cache 

queue. A shared-write also requires updating the distributed memory module. The 

average WRITE access may be expressed as:

J.NUMA — p  , U 1 +NUMA , » ( i N U M A  , i  \ ,
^ w rite  * shared-write\}'C  T  *> w ait-pending -w rite  ' " 'L  Kuwait Jo ca l-bus  * ’•L )  1

(1 h£,)(t wait-global -bus d" R̂emote)] d" (1 P sh a red -w rite) X

ttw a iU p en d in g -w rite  d* ĉ) (30)

The overall memory access time may be obtained by combining expected READ and
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WRITE access times with respect to the probability of an access being READ or 

WRITE. The expected memory access time may be expressed as:

+NUMA _  p  + N U M A . C ,  p  \+NUM A  / q 1 n
l’ave *  r read<-ri:ad i* r Tead)f-WTit t

As seen in the equation 31, the overall access time is a function of average READ 

and WRITE times plus the probability of an access being READ or WRITE.

5.5 Local-Rem ote-G lobal Analytical M odel

Local-Remote-Global (LRG) architecture consists of several clusters with every clus­

ter containing two processors and a shared local memory as shown in Figure 27. 

Each processor on the board is attached to a private cache. The LRG architecture

also provides a global memory module which is uniformly accessible by all processors.
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A READ hit is answered in tc time. A READ miss requires checking the local memory 

for a copy of the data. The time it takes to fetch a word from local memory is t i  plus 

the waiting time for the local bus. Let hc and h i  denote the probability of cache and 

local memory hit rates, respectively. The chance of having to access global memory 

is (1 — hc)(l — hi). Let ttait-giobaiJms denote the waiting time for the global bus. The 

average READ time may be expressed as:

+ +  *!.) +

(1 -  hc)( 1 -  + B tm] (32)

The waiting time for the local bus is dependent on whether the other processor on 

the board is accessing the local memory and also on the characteristics of its access. 

A processor will access local memory if:

1. the processor is performing a sharedjwrite, and

2. there is a cache read-miss.

twaUJocaiJ,™ maY be expressed as:

 ̂wait-local-bus ~  'ha.Tcd-.writct L "t* (1 hc)PTeadBtl\ (33)

The waiting time for global bus is dependent on the number of pending global memory 

accesses by other processors and characteristics of those accesses in the queue. A 

processor will access the global memory if:

1. the processor is performing a sharedjwrite, and

2. there is a read-miss on local memory.

iwait-giobaiJ,™ could be calculated as:
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i LRG — ~  r n  , s ,wait-global-bus — 2 shared-ruriteLm T

(1 -  hc)( 1 -  hL)PreadB tm] (34)

The average WRITE time is dependent on whether a WRITE is on a private or 

shared word. A private WRITE takes place in tc time. A shared WRITE requires 

also updating local and global memories. The average WRITE time may be expressed 

as:

-̂write =  Pshared-vrrite{ ĉ 4* PL{tWaitJocalJ>us 4* ^l ) 4*

(1 P î^wait-global-bus 4" ^m)} 4“ (1 Piharcd-write)tc (35)

The overall memory access time is dependent on average READ and WRITE times 

with respect to the probability of an access being READ or WRITE. Let t ^ G be the 

expected memory access time, t ^ G may be expressed as:

t™G = PreadttSZ + i1 ~  Pread)trurite (36)

Equation 36 reflects the fact that the average memory access time is directly 

function of number of memory accesses with respect to their characteristics at any 

given time.
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5.6 Summary

By employing a preset distribution of memory accesses throughout the address space, 

analytical models were developed. The READ time in the RCR configuration is 

proportional to replicated memory hit rate. The READ time in a UMA architecture 

is strictly greater than that of the RCR architecture because UMA configurations 

must wait for global bus for all READs that are not satisfied by cache. The READ 

time in a NUMA machine depends upon the location of the requested word whether 

it is:

• in local distributed memory module, or

• in a remote memory module.

The expected READ time in the RCR architecture is less than NUMA configuration 

since the RCR performs majority of its READs locally. The READ time in LRG 

configuration is greatly dependent on local memory hit rate since READ misses are 

very costly. The RCR architecture with replicated memory hit rate of 80% and above 

has less READ time than LRG configuration with the same hit rate.
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6 A Scalable R eplicated  Concurrent-Read A rchi­

tectu re

Demand to design a high performance computing system, capable of handling today’s 

complicated engineering problems, continues to grow exponentially. In recent years, 

processing element’s speed and overall performance has reached a point in which phys­

ical limitations restrict further improvements. This has captivated a great amount of 

attention to the re-evaluation of current memory hierarchy systems.

6.1 O verview

One of the major factors which effects the performance of a distributed shared- 

memory system is the strength of its memory hierarchy design. The primary memory 

hierarchy design goal is to increase the effective memory bandwidth so that more 

memory words can be referenced per unit time. Previous designs provided high­

speed caches to every processor to alleviate processor memory bandwidth mismatches. 

While this approach was impelling, it had an undesirable side-effect of data inconsis­

tency, which resulted in more complex hardware designs in order to secure correctness 

of execution. On the other hand, interconnection network systems started to experi­

ence a new problem called contention.

In this chapter, a new approach in multiprocessor design will be introduced. The 

Replicated Concurrent-Read (RCR) architecture demonstrates a unique characteristic 

in dealing with READ and WRITE operations. This design has not inherited the 

short comings of previous approaches while remaining simple, cost-effective, and a 

considerably scalable system.
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6.2 Hardware D esign

The foundation of the proposed design is based on extensive investigation of previously 

designed memory hierarchy architectures. The proposed concept increases efficiency 

of READ operations while decreases deficiencies of previous designs. To achieve this 

goal, two major components of multiprossesors were the center of our consideration, 

Memory units and interconnection network system. These components had to be 

designed in such a way that optimizes the READ operation while the probability of 

data inconsistency and contention is minimized.

6.2.1 M emory U nits and the Interconnection Network

Multiported memories have been developed to support concurrent access to memory. 

Availability of these memory units would allow us to READ and WRITE the same 

memory unit simultaneously. By assigning each memory port to only one type of 

memory reference operation, it is possible to READ through one port while updating 

data through the other. In our proposed shared-memory multiprocessor system, each 

processor will be connected to its own dual-port memory unit. Thus, it is possible to 

read N  different memory words by N  processors simultaneously in one memory cycle 

with no delay. WRITE operations axe accomplished by broadcasting over a system 

bus which will be connected to the other port of these memory units. This technique 

will allow us to WRITE to all memory units simultaneously, therefore, eliminating 

the cache coherence problem. Together, the dual-port high-speed memories form a 

global address space available to all processors simultaneously.

Since every memory unit will have a designated port for READ operations, then 

each processor could perform READ locally with zero overhead. All of processors will 

be connected to a system bus which is also connected to the other port of the memory 

units. In this fashion, we could broadcast all the WRITE operations. Therefore, this 

system will perform write operations in 0(1) time while READs are done locally.
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Thus, all memory units axe replications of each other. Figure 28 illustrates the basic 

components of this design.

Multiported memories, currently available on the market, are an essential factor in 

the cost-effectiveness of this design. A dual-port Static RAM (SRAM), with an access 

time of 10 ns, provides two independent ports with separate control, address, and I/O 

pins that permit independent and asynchronous access for READ or WRITE to any 

location in the memory. Currently dual-port semiconductor memories axe available 

in a wide range of speeds. Their cycle times range from a few hundred nanoseconds 

(ns) to less than 10 nanoseconds. These memory modules axe in a wide range of sizes 

up to 1M. The RCR design employs 16K  x 32 dual port static RAM module. This 

module holds 16K  words of 32 bits. The replicated memory module is packaged in a 

ceramic 121 pin PGA (PinGridArray) 1.35 inches on a side.
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6.2.2 Auxiliary M emory Unit

Since every memory unit is a replication of each other, the expansion of the shared 

memory space will be costly, and have an effect on the scalability of the system. 

Thus, by providing an auxiliary Dynamic RAM memory unit, which is part of gen­

eral shared-memory space, we could increase scalability of the system. By having 

a controller chip monitoring the addresses that are being accessed, we could move 

blocks of data in or out of replicated memories based on the spatial locality of refer­

ence. Since more than 90% of all references will be done locally, then, the movement 

of these blocks of data will not cause or add to system bus contention. It only in­

creases the effective utilization of the system bus. Figure 29 exhibits the memory

configuration of the Replicated Concurrent-Read system. As shown in Figure 29,

total global memory space is consist of replicated space and auxiliary space. Each 

processor is equally close to every memory word in global memory. Every processor 

is attached to a local memory, so that private data and programs could be stored.

Addition of auxiliary memory will effect two essential factors in the Replicated 

Concurrent-Read shared-memory system design:

1. It will increase scalability of the system, and

2. It will increase cost-effectiveness of the system.

Increasing size of replicated memories will effect scalability of the system, thus, by 

adding a spatial cache (auxiliary memory), the system maintains its scalability. Since 

replicated memories are expensive static RAMs increasing the size of these memory 

units is very costly. Thus, the addition of inexpensive auxiliary memory (DRAMs) is 

cost-effective, and at the same time, it will not significantly increase expected memory 

access time because of the spatial locality of reference, which will be shown later in 

this section.

Figure 30 exhibits the architecture of the Replicated Concurrent-Read system. A 

private READ/WRITE is done locally by a processor with no delay. A shared READ

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Memory
Map

Physical
S to rage

lower
replicated

fence

upper
replicated

fence

Data/Code

Aux Data 
Gower region)

RepGcated
Data

Aux Data 
(upper region)

Private r 

■< Memory ^

Shared

W ==i>J
Memory

Local RAM

Aux DRAM

DP DP DP
SRAM SRAM SRAM

Lower region 

Upper region

(Replicated 
r Region

Figure 29: Memory Configuration of Replicated Concurrent-Read architecture.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Address
b ro a d  c a s

SCCMux

Data

Auxiliary
Memory Demux

D ataw

Address ofence

A ddr.
Demux

Dataw
Addr.

Mux Mux Mux

Buffer
Miss
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will take place in one clock cycle since each processor is attached to a replicated 

memory module. A READ miss will cause an access to auxiliary memory through 

write or read bus. If the word is located incrementally outside the fence then a block 

of data will be transfered to all replicated memories, otherwise the intended word will 

be loaded to the requesting processor immediately. Simultaneously, the spatial cache 

controller (SCC) is monitoring all addresses being accessed, so that it can broadcast 

blocks of data to replicated memories in slow traffic time. In the case of shared 

WRITEs, all replicated memories will be updated cocurrently. A demux is attached 

to write or read bus, so that it determines whether the address is in auxiliary memory 

or it is in replicated meories as shown in in Figure 30.

In order to calculate the cost decrease by employing the spatial cache, we need to 

compute the total memory system cost with and without the auxiliary memory. Let 

Mrep denote the percentage of shared memory that is spatially cached. Let M , and N
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denote shared memory size and number of processors respectively, and also, let Cs, 

and Cd denote cost in $/word for SRAM, and cost in $/word for DRAM respectively. 

Then, with a spatial cache, the memory system cost will be:

Memory System Cost = Cost Spatial cache + Cost all Replicated Memories 

Let Cm  denote the memory system cost then:

Cm  =  [Mrep x M  x Cd) +  [(1 -  M rep) x M  x N  x Cs] (37)

As illustrated in Figure 30, total memory includes N  replicated memory units with 

size M  plus spatial cache, thus the memory system cost is the total of the spatial 

cache and all replicated memories. If we do not employ the spatial cache, then the 

memory system cost will be:

Cm -  M  x N  x C s  (38)

As shown in Figure 28, the total memory consists of only high-speed replicated 

memory units. Since SRAMs axe four to eight times more expensive than DRAMs 

(table 1), the memory system cost will be a function of shared memory size, number of 

processors, and percentage of shared memory that is spatially cached. By subtracting 

equation 37 from equation 38, we can calculate amounts of cost savings. Let Csaving 
denote the cost savings, then

Csaving =  M  x N  x Cs -  [Mrep x  M  x Cd + (1 -  Mrep) x M  x  N  x Cs] 

by factoring out the M, we have

Csaving = M  X [N x Cs -  M rep X CD -  (1 -  Mrep) X N  X Cs] 

we can also factor out N  x Cs

Csaving = M  X  [N X  CS X (1 -  (1 -  Mrtp)) -.Mrep X CD] 

by further simplification, we have

Csaving =  M  x [N x Cs x Mrep -  Mrep x Cd]
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Table 5: Cost Savings Factor For Various Numbers of PEs.

M rep N  = 4 N  = 8 N  =16 N  = 32 N  =  64 IV =  128

0.1 9.6% 9.8% 9.9% 9.9% 10.0% 10.0%

0.2 19.2% 19.6% 19.8% 19.9% 19.9% 20.0%

0.5 47.9% 49.0% 49.5% 49.7% 49.9% 49.9%

0.9 86.2% 88.1% 89.1% 89.5% 89.8% 89.9%

by factoring out Mrep, we have

Csaving =  M  X Mrep X.[N x C s -  Cd] (39)

Equation 39 calculates the amount of cost savings associated with the total mem­

ory system cost for a different percentage of shared memory that is spatially cached. 

As a result, we can design the memory system with minimal required expenses while 

optimizing the memory access operations. Since WRITE bus is not utilized 100% of 

the time, then copying blocks of data in and out of the auxiliary memory will not 

effect the overall performance of the memory system.

Let’s assume the shared-memory size (M) is 1 Gbyte. Since the cost of SRAM is 

approximately 4 to 8 times higher than DRAM (table 1), then let’s assume the cost 

of DRAM is 6 times higher than SRAM. If DRAM =  1, then SRAM =  6. Table 5 

shows the cost savings for different percentages of shared memory that is spatially 

cached with respect to a different number of processors.

The Replicated Concurrent-Read (RCR) architecture is a hardware solution for 

Scalable multiprocessors, under the shared bus category. This system offers an effec­

tive memory reference mechanism. Any processor can broadcast the data through the 

bus and update the related block in the entire shared-memory space with a constant 

time complexity. With this capability of the system, the private memories become the 

exact replica of one another. Thus, consistency of the shared data is guaranteed at
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any given time. Figure 31 shows the Replicated Concurrent-Read system’s memory 

consistency model.

The Replicated Concurrent-Read architecture offers several distinct advantages 

over existing multiprocessors:

1. Cost-effectiveness and simplicity of design,

2. Zero overhead memory read operations, and

3. Data consistency by broadcasting updates globally with a constant time com­

plexity.

6.3 M ultiport M em ory Replication Characteristics

Performance of a distributed shared-memory system greatly depends on the char­

acteristics of its memory modules. Since advancement of memory technology has
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provided designers with the option of fast multiported memories, concurrent memory 

references have been feasible. It is essential to analyze the performance of systems 

employing multiported memories with different numbers of ports.

Multiported memories provide a means to READ concurrently different or same 

memory locations by various numbers of processors. The maximum number of words 

that can be read simultaneously in one memory cycle is equal to the number of pro­

cessors in the system. Thus, as the number of processors grows larger, the capability 

of referencing different memory locations increases linearly. The number of memory 

ports assigned for read operations has no effect on the total number of concurrent 

READs, since any processor can issue only one memory reference instruction per ma­

chine clock cycle.

The capability of performing more than one W RITE operation simultaneously 

in only one memory cycle, depends on the number of ports that are designated for 

WRITE references. The Replicated Concurrent-Read system utilizes dual-ported 

memory units. This architecture allows for only one WRITE operation without over­

head in every memory cycle by one of the processors. Figure 32 illustrates an archi­

tecture using dual-ported memories.

If we replace these dual-ported memories with 4-ported memory units, it will 

increase the number of concurrent WRITEs in one memory cycle by two. Figure 33 

demonstrates a system with 4-ported memories. Since there will be only one port 

assigned to READ operations, the rest of ports will be exclusively for WRITE memory 

accesses.

Let d denote the number of ports in a multiported memory unit, then it will be 

possible to perform (d — 1) concurrent WRITEs without overhead. This increase 

in number of concurrent WRITEs is not cost free since the system will require more 

system buses to perform simultaneous WRITE memory references. A d-ported system 

will require (d — 1) system buses in order to perform (d — 1) simultaneous WRITEs
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as exhibited in Figure 34.

While increasing the number of ports illustrates an improvement in the number 

of concurrent WRITEs, it has a direct relationship with hardware complexity. Since 

the number of processors in the system is usually greater than the number of ports, 

this system will require demultiplexers to route the WRITE operations to different 

busses. This is because each bus is capable of accommodating only one WRITE in 

each cycle. This requirement is not necessary with the dual-ported memories.

Choosing the right multiported memory with respect to the number of ports 

greatly depends on the applications. An ordinary application’s memory reference be­

havior demonstrates only 10% or less WRITE operations comparing to 90% READ 

operations. The speedup of different multiported systems will depend on the per­

centage of WRITE operations with the available number of ports and processors.
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Figure 33: Four-Ported Memory RCR Architecture.

Therefore, it is possible to study scalability of such systems by the ability to calculate 

their speedup. Higher speedup will be observed when an application requires less 

WRITE operations in a system with a laxge number of ports.

6.3.1 M ultiport Arbiter Design Characteristics

The number of concurrent WRITEs that can be performed in one memory cycle 

depends on the number of available ports in a multiport memory unit. Therefore, a 

d-ported system can accommodate only (d — 1) WRITEs simultaneously, where d is 

the number of ports in a multiported memory unit. Since a dual-ported system can 

grant bus access to only one processor at a time, there is a need to employ an arbiter 

to issue bus access grants to processors. Generally, as long as the number of processors 

in a system is greater than (d — 1) ports, there is a need for an arbiter to regulate 

the system bus accesses. The logical function of this arbiter can be realized using

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



DemuxDemux Demux

d-Port
Memory

d-Port
Memory

d-Port
Memory

d Bus

Figure 34: d-Ported Memory RCR Architecture.

off-the-shelf devices such as PLA, PAL, field-programmable ROM, or by designing a 

customized combinational logic system.

Any time a processor needs to write, it will have to request the arbiter for permission 

to access the WRITE bus. However, if there are no other requests in the queue, then 

permission will be granted immediately. Therefore, in a dual-ported memory system 

expected delay for bus access will be equal to the number of requests in the queue in 

terms of memory cycles. These requests can be handled based on first in first out 

(FIFO) or could be based on a priority scheme. If a WRITE request is on a shared 

data, then we may assign a higher priority to that request. The choice of a policy for 

the arbiter would greatly depend on the applications. In most applications, WRITE 

operations constitute only 10% of their total memory references, thus, a simple arbiter 

design is appropriate for a general purpose multiprocessor.
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6.4 M ultiport M em ory C ycle A nalytical Representation

The number of concurrent memory references, that can be performed simultaneously 

is directly dependent upon the number of ports in a multiported memory unit. In 

such a system, all processors can read simultaneously in one memory cycle with no 

delay. WRITE operations could experience some delay depending on the number of 

processors trying to access the WRITE bus and the number of ports designated for 

update operations. In the case of a dual-ported memory system, only one processor 

can perform a WRITE operation in each memory cycle. Thus, if two processors 

attempt to update their replicated memories, then one of them will experience one 

memory cycle of delay. Generally, the expected delay will depend on the exceeding 

number of WRITEs that can not be accommodated in one memory cycle. Thus, for a 

dual-ported memory, the number of needed cycles is equal to the number of WRITEs, 

and the expected delay would be the number of memory cycles left off after the initial 

execution.

By consideration of all these elements, we can formulate the needed memory cycles, 

and expected delays of WRITE operations using dual-ported memory units. Since, 

in a dual-port memory unit, there is only one port for WRITE purposes, the total 

number of required memory cycles is equal to the total number of WRITEs. Let Mc, 

and W  denote the number of memory cycle and total number of writes respectively, 

then the total number of memory cycles needed for W  WRITEs is:

MC = W  (40)

where

W  = W0 + W1 + W2 + ... + Wn (41)

where n is the number of processors that requesting WRITE access at any given time 

interval, n =  0,1,2,..., N . Thus,

W  = X ,W i  (42)
i=0

where W{ is a WRITE by processor P,-, and N  is the total number of processors in 

the system. Therefore, in a dual-ported memory system, the total number of memory
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cycles needed to perform W  WRITEs is:

Mc = j^ W i  (43)
i—0

Therefore, at any give time, the total number of memory cycles needed to complete 

the toted number of WRITEs is equal to the total number of WRITEs issued by all 

processors.

Since, in a dual-port memory only one WRITE access will be granted, there will 

be a delay in accessing the WRITE bus if there are more than one WRITE requests 

in one memory cycle. Let’s assume that there axe two WRITE requests, then one 

of the requests will be granted with no delay and the second one, with one memory 

cycle delay, will be granted. Thus, the expected delay, D , is equal to:

Delay =  (0) x Do + (1) x D\

where D{ is the delay related to W{.

Thus, we can generalize this equation for W  WRITEs at any given time. If there are 

n WRITEs, then there axe (n — 1) memory clock cycles delay to accommodate all 

memory WRITE requests. Let D denote the expected delay, then

D =  (0).Do +  (l)-Di +  (2)Z?2 +  ••• +  {n)Dn (44)

where

n =  0,1,2,..., W

Equation 44 can be rewritten as

D =  (1 -  1)Dq +  ( 2  -  l)Dx + (3 -  1)D2 +  ... +  (n -  1 )Dn (45)

Thus, we can calculate expected delay for n WRITEs in terms of memory clock cycle 

as

D  =  £ (<  -  1) (46)
1= 1

In case of a four-ported memory system, three WRITEs can be accommodated 

at each memory cycle, and an additional memory cycle will be required for every
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multiple of three WRITEs thereafter. Therefore, we can formulate needed memory 

cycles, and expected delays for such a system in terms of memory cycles.

„  rW0 + Wi + W7 + ... + Wm
Mc = f-------------3 -------------------1 (47)

We can rewrite the equation 47 as

W-
Me = — 11 (48)

Since W  =  E"=o then
W

Mc =  T y l (49)

Equation 49, calculates the total number of memory cycles required to accommodate 

all memory WRITE access requests in a four-ported memory system.

Since three WRITEs can be performed in each memory cycle, the fourth WRITE

request will experience one memory cycle delay. As the number of WRITEs grows

larger, the number of delays will grow one cycle for every three WRITE requests. 

Therefore, we can formulate delays as below

D =  (0)[Z?o +  D\ +  D2] +  (1)[1?3 +  D4 +  D5\ + ... -f [_(—)J \Dn-2  +  Dn - 1 +  Dn] (50)

We can rewrite the equation 50 as follow

(5 i)
t= 0  j =0 0

Therefore, the expected delay time in terms of memory cycles at any given time 

interval is

£  = (52)
.'=0 j=Q 0

As the number of ports increases, the ability to perform more concurrent WRITE 

operations grows laxger. For d-ported memory systems, the maximum number of 

concurrent WRITEs is equal to (d — 1), the minus one indicates designation of one 

port to READ operations. If more than (d — 1) processors request to update memory, 

they will experience delays based on the number of requesting processors. We can
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calculate the total number of required memory cycles to perform W  WRITEs in a 

d-ported memory system as follows

„ rw0 + wl + w2 + ... + wni
Mc = f-------------------  1 (o3)

We can rewrite equation‘53 as

Y'? W-Mc =  (54)

Since W  =  Wi, thus
W

Mc =  r ^ - 1  (55)

Therefore, the number of required memory cycles to perform W  WRITEs in a d- 

ported memory system can be calculated by using equation 55. Table 6  shows the 

required number of memory cycles for W  WRITEs with different numbers of port 

memory systems.

In a d-ported memory system, (d — 1) WRITEs can be accommodated at each 

memory cycle, and an additional memory cycle will be required for every multiple of 

(d— 1 ) WRITEs thereafter. Therefore, if there are more than (d— 1) WRITEs at any 

given time, then there will be a delay time to accommodate all the WRITEs accesses.

D =  (0)[Z?o +  D\ +  . . .  +  Dd-2] +  

( l ) [ A i _ l  +  Dd  +  . . . +  Z?2d-l] +

— + UjrylJ P --*-1 + D " - i  + ••• + £»] (s6)

We can rewrite equation 56 as follows

• o  =  E E l ( j r r ) J A - - i w  ( 5 7 >
t=o j =0 a  i

Therefore, we can calculate the expected delays in terms of memory cycles at any 

given time as follows:

a - E E K j r r J J  <5 8 >1=0 j= 0 a  L
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Table 6 : Memory Cycles Required for W  Simultaneous Waits Using d-ported Memory 

Components

w dual-port four-port eight-port 16-port d-port

0 I 1 1 1 1

I 1 1 1 1 1

2 2 1 1 1 1

3 3 1 1 1 1

4 4 2 1 1 1

5 5 2 1 1 1

• I I I • I .

N - 2 N - 2 r ^ i r ^ i r ^ i r £ ? i
N -  1 N -  1 r ^ i r ^ i r ^ i r 4 ? i

N N r f i r f i r s i r £ r i

6.5 Perform ance Behavior and M etrics

In chapter 2 we defined four shared memory models ranging from sequential consis­

tency to release consistency memory models. In this section, we will examine the 

effects of these memory models on execution time.

Our perspective is to balance software with haxdwaxe by the program’s degree of 

parallelism. We have set our objective in the efficient utilization of the hardware. 

Several parameters have been defined for evaluating parallel computations by Ruby 

Lee [LEE80]. Let O(N) denote the total number of unit operations performed by a 

AT-processor system and let T(N) denote the execution time in unit time steps. Let’s 

assume T (l) =  0(1) in a uniprocessor. The speedup factor is defined as [HWANG93]

S(N) —
1  > T (N )

then we can define the system efficiency for a iV-processor system as

E ( N ) = m
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Where:

E  =  efficiency,

S  =  speedup, and

N  =  number of processors.

Amdahl's law defines speedup that can be gained by using a particular feature. Thus, 

speedup is the ratio

Where:

Pe =  performance for the entire task using the enhancement when possible, and 

Pne =  performance for the entire task without using the enhancement.

Since:

performance =  ^

Where:

T  =  execution time.

Thus
T{ 1)
T (N )

Therefore

E(N) =  
v ’ N .T (N )

For RCR architecture, let:

tbuay =  processor busy time in memory cycles,

=  read-miss time in memory cycles, 

tmiss =  write-miss time in memory cycles, and
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taync =  synchronization time (time spent by a processor idling while waiting for 

the program order) in memory cycles.

We have:

E ( N )  =  p tbuayw -----------
tbuay + ̂ m isa + ̂ m ias + taync

Substituting from the equation above, we have:

+ < * . * + >  + t  )N'"buay i Lmtaa “  mtaa ' Laync

tmiaa = tmiaa = t*ync =  0, then we can scale linearly. But **•„, and t3ync
increase with the number of processors.

In this model, we can eliminate t^ iaa and also relax t™iaa by buffering an 0(1) 

WRITE. However, buffering can increase synchronization overhead time when mul­

tiple writes occur simultaneously. We can read with zero overhead, but in the case 

when the data to be read is still in the buffer, the processor(s) has to be idle for 

a fraction of the time (if the system does not support process migration and inter­

leaving) which will add to the synchronization time. As t%{33 and taync increase with 

the number of processors, the number of computing nodes that can be added to this 

system, in order to get the best possible performance, is crucial.

Calculation of efficiency and speedup for Replicated Concurrent-Read architecture 

based on needed memory cycles and expected delays axe as follow:

M c = tfiujy + m̂ijs "b t miaa + taync 

Since t * {aa = 0 for RCR, and D  = t™isa +  t 3ync, then

£  _  tbuay

tbuay + D

E  =
M c -  D

M c

Speedup for Replicated Concurrent-Read is

5(JV) =  n ^ (A,)
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Table 7: RCR Speedup for Various Number of Ports in Multiported Memories.

N

<MII II"<3

00II

8 0 2.67 4

16 0 2.67 5.33

32 0 2.91 6.4

Speedup for RCR architecture is function of the number of WRITEs issued simul­

taneously by processors, since READs axe done locally with no overhead. Table 7 

shows speedup for RCR with dual-ported, 4-ported, and 8 -ported memories when all 

processors attem pt to perform WRITE simultaneously for various N.

Table 7 shows that if 100% of total memory accesses are WRITE operations, there 

is 0 speedup if dual-ported memories are used, since only 1 WRITE can take place 

in one clock cycle.
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6.6 Sum m ary

This architecture, allows READ operations to be performed locally with zero overhead 

while performing WRITEs globally. Since increasing the size of replicated memory 

modules affects the overall cost of the system, by adding auxiliary memory the scal­

ability of the system is increased. RCR architecture by taking advantage of spatial 

caching, allows for greater performance with small sized replicated memories. Since 

RCR architecture performs the majority of memory references locally, this reduces 

system bus traffic while improving overall memory access time.

d-ported memories support d — 1  WRITE operations at every single clock cycle. 

Thus, if there are more than d — 1 WRITEs concurrently, D number of clock cycles 

delay will be experienced, where D  =  — 1 . Thus, by having larger number

of ports on multiported memories, an overall improvement is expected. By using 

4-ported memories instead of dual-ported memories, there is a 71% improvement in 

number of delay in the worse case when there are N  WRITEs simultaneously. In 

order to experiment and compare the effectivenss of RCR design in the worse case, 

dual-ported memories are chosen.
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7 Sim ulator D evelopm ent and Perform ance Com­

parisons

A simulator has been developed in order to study and analyze the behavior of mem­

ory references in Replicated Concurrent-Read (RCR) Architecture. For comparable 

analysis purposes, simulators for Uniform Memory Access (UMA) Architecture, Non- 

Uniform Memory Access (NUMA) and Local-Remote-Global (LRG) Architecture, 

have also been developed.

The simulation code consists of a series of functions in C programming language 

which are included in Appendix section. The main program contains a FOR loop 

which allows for simulations in ten nano second iterations per cycle. Within the 

FOR loop, memory references axe issued by calling related routines. Each memory 

reference could be a READ or WRITE access. As simulation progresses, the total 

memory access time is recorded and finally, expected access times are computed.

In the following sections, simulator design and analysis of RCR, UMA, NUMA 

and LRG architectures are discussed. In the final section, comparisons of these ar­

chitectures will be presented. A few assumptions have been made in order to resume 

consistency in analyzing generated data from the simulators. If there is a READ 

miss, then a block of data will be copied to the cache. In the case of a shared-write 

then write-through policy is implemented.

7.1 Replicated Concurrent-Read (RCR) A rchitecture

In the RCR, a READ miss will cause an access to replicated memory in search of a 

requested word. If the search of replicated memory is unsuccessful, then the auxilary 

memory will be referenced. Let P, denote processor #  i. The probability of a cache 

hit is hc and the replicated memory hit is hi,. Pi with ( 1  — hc) probability will face a 

cache miss and has (1 — h£) chance of replicated memory miss. Therefore, the chance 

of having to access auxilary memory is (1 — hc) ( 1  — hm). P,- will have to wait until 

this data is transfered to C, (P,-’s private cache). During this time P,- will be inactive.
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Table 8: RCR System. Parameters.
Input Parameter Value Range

P i 1 0 ns/cc N /A

P read 0.90 0.75 -  0.95

P tharcd-w rite 0.0164 0.01 -  0.5

hc 0.50 0.10 -  0.95

flL 0.50 0 . 1 0  -  0.80

Words per Block 8 8 - 6 4

Pi has to compete with other processors to access the global bus. As a result, Pi may 

have to wait for its turn to access the auxilary memory.

A WRITE access is treated differently in RCR architecture. Every shared-write access 

is broadcasted to all replicated memories. The simulator determines all memory 

reference characteristics:

• whether the memory access is a READ or WRITE,

• if memory access refers to shared data,

• if memory access is a cache hit or miss,

• is a replicated memory hit or miss.

The simulator also generates the number of other memory references pending for 

bus access in order to compute the wait time for P,-. table 8  lists the input to the 

simulator.

7.1.1 Varying Cache and R eplicated Memory Hit R ate

Various cache hit rates, with respect to 10%, 20%,. . . ,  80% replicated memory hit 

rates, have been studied. Figure 35 shows the average access time of RCR with a

cache hit rate of 1 0 % in conjunction with various replicated memory hit rates.
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Figure 35: RCR architecture. Expected access time for various replicated memory 

hit rates.
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Figure 36: RCR architecture. Expected access time for various h i  with 80% hc.

This experiment has been conducted for 8 , 16, 32 and 64 processor systems. Average 

access time decreases as the replicated memory hit rate increases, as is shown in 

Figure 35. Let N denote the totcil number of processors. When N= 8 , there is more 

than a 64% improvement in access time as replicated memory hit rates increase from 

10% to 80%. Systems with 16, 32 and 64 processors also demostrate an improvement 

in average access time by over 6 8 %.

Figure 36 shows the expected access time for the cache hit rate (hc) of 80% for 

various replicated memory hit rates. This figure shows expected access time im­

proves over 72% as hi, increases from 10% to 80% for N  = 8 . For N  =  16,32, and 

64, expected memory access time improves over 84%, 89%, and 89%, respectively. 

Comparing Figure 36 with Figure 35 shows the effect of hc on average memory access 

time (tave)- As more memory accesses are satisfied by cache and replicated memory, 

better average access time and more CPU utilization results.
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Table 9: UMA System Parameters.
Input Parameter Value Range

Pi 1 0 ns/cc N /A

tc 1 0 ns/cc N /A

tm 1 0 0 ns/cc N /A

Pread 0.90 0.75 -  0.95

Pshared-write 0.0164 0 . 0 1  - 1 . 0

hc 0.50 0.10 -  0.95

Words per Block 8 8 - 6 4

7.2 Uniform  M em ory Access (U M A ) A rchitecture

In UMA architecture, all processors share a global memory which is equally close to 

all processing elements, while every processor is attached to a private cache. A READ 

hit feches data from the cache in t c time. The probability of a cache hit is denoted as 

hc. A READ miss will cause Pt- to access the global memory in order to fetch data. 

The probability of having to access global memory is ( 1  — hc). P, may have to wait 

to access the cache if there are a number of pending WRITEs since only 1 validation 

can occur at a time.

Since every processor in the system with a probability of ( 1  — hc) will have to 

access shared-memory, a delay in accessing the shared-memory will be inevitable. 

In UMA architecture, as the number of processors increases, undesirable delays will 

increase average memory access time. As a result, UMA architecture can support 

only a small number of processors. UMA simulators will generate access to memory 

and will also define the characteristics of all memory accesses.
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Figure 37: Expected access time vs. hc for UMA configuration.

7.2.1 UM A Sim ulation Results

In UMA architecture, since there is no local memory other than cache, the cache hit 

rate is a major concern in regard to its performance evaluation. Figure 37 shows 

the results of a simulation as the cache hit rate increases from 10% to 90%. The 

simulation has been repeated for a various number of processors in the system. The 

average access time shows an improvement of over 85% as hc increases from 10% to 

90%. The effects of other parameters of simulation will be discussed as RCR, UMA, 

NUMA and LRG simulation results are compared.
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7.3 N on-Uniform  M em ory A ccess (N U M A ) A rchitecture

In NUMA architecture, shared memory is distributed among all processors. Every 

processor can address its local memory or remote memories of other processors. Every 

Pi is also attached to a private cache. A READ hit fetches data from the cache in tc 

time. The cache hit rate is denoted as hc.

A cache miss with a probability of ( 1  — hc) will cause tin access to local memory. 

Fetching data from local memory may be delayed if there are other pending READ or 

WRITES by other processors. In the case of a local memory miss, remote memories 

will be accessed. This NUMA simulator generates memory references as it defines 

their characteristics, whether the access :

• is a READ or WRITE;

• is a cache hit or miss,

• is a local memory hit or miss, or

• refers to shared or private data.

7.3.1 N U M A  Simulation Results

The cache hit rate hc and local memory hit rate h i  are two major parameters in the 

performance evaluation of NUMA machines. Figure 38 shows results of simulation 

for hc =  0.50 and varying h i  percentages.

There is a direct relationship between average access time and h i. An increase in h i  

will decrease tave directly as shown in Figure 38. This experiment is repeated with 

hc =  0.90 for varying percentages of h i  in order to study the effects of higher hc. As 

shown in Figure 39 with hc =  0.90, a  77% improvement, in average memory access 

time, is achieved over hc =  0.50. The effects of other parameters of simulation will 

be discussed as RCR, UMA, NUMA and LRG simulation results are compared.
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Table 8: NUMA System Parameters.

Input Parameter Value Range

Pi 1 0  ns/cc N /A

tc 1 0  ns/cc N /A

t l 1 0 0 ns/cc N /A

tG 2 0 0 ns/cc N /A

Pread 0.90 0.75 -  0.95

Piharcd-urrite 0.0164 0 . 0 1  - 1 . 0

hc 0.50 0.10 -  0.95

hi 0.50 0 . 1 0  -  0.80

Words per Block 8 8 - 6 4
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Figure 38: Expected access time vs. h i  when hc = 0.50 for NUMA configuration.
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Figure 39: Expected access time vs. hr, when hc =  0.90 for NUMA configuration.
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7.4 Local-Rem ote-Global (LRG) A rchitecture

Local-Remote-Global Architecture is a combination of UMA and NUMA machines. 

Every cluster contains two processors and a  shared local memory. Each processor 

on the cluster is attached to a private cache. LRG also provides a global memory 

accessible by all processors.

A READ hit with a probability of hc fetches data directly from the cache in tc 

time. In the case of a cache miss, the local memory is referenced. Let h i denote the 

local memory hit rate. The probability of accessing global memory is (l — hc)(l —hi). 

As a result, the average access time is a function of hc and hi. This simulator will 

study and analyze various percentages of hc and h i.

7.4.1 Local-Remote-Global (LRG) Sim ulation Results

For a complete analysis of the effects of hc and h i  on expected memory access time, 

various percentages of hc and h i  are studied. Figure 40 shows the average access time 

as h i  increases from 10% to 90% for various cache hit rates. The cache hit rate has a 

more drastic effect on expected access time than the local memory hit rate. As shown 

in figure 40, the local memory hit rate also has a significant effect on the expected 

memory access time. The effects of other parameters of simulation will be discussed 

as RCR, UMA, NUMA and LRG simulation results are compared.

7.5 Perform ance Comparisons

For the purpose of comparing these machines, the effect of numerous varying pa­

rameters will be examined. As shown in figure 41, the effect of various cache hit 

rates is illustrated. As expected, the NUMA machine has shown great improvement 

in average access time, with respect to varying cache hit rates. The reason being, 

that the delays caused by the interconnection network is decreased. All of the other
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Figure 40: LRG architecture. Expected access time for various local memory hit 

rates.

Table 9: LRG System Parameters.
Input Parameter Value Range

Pi 1 0  ns/cc N /A

tc 1 0 ns/cc N /A

tL 1 0 0  ns/cc N /A

tG 2 0 0 ns/cc N /A

Pread 0.90 0.75 -  0.95

Pshared-write 0.0164 0 . 0 1  - 1 . 0

hc 0.50 0.10 -  0.95

hi. 0.50 0 . 1 0  -  0.80

Words per Block 8 8 - 6 4
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Figure 41: Expected access time for various cache hit rate percentages.

machines have shown improvement as hc is increased from lOWhen hc is above 75%, 

RCR delivers a lessened memory access time. When hc is below 75%, RCR’s memory 

access time is comparable to LRG’s average access time.

Figure 42 shows the effect of vaxying local memory hit rates on expected memory 

access time. Since the UMA machine does not have local memory, its average memory 

access time does not vary. RCR demonstrates a direct effect as a result of increasing 

the replicated memory hit rate. The NUMA machine demonstrates a better perfor­

mance as hit rate increases. The LRG machine is less affected by the local memory 

hit rate than the RCR and NUMA machines.

Figure 43 illustrates the effect of varying local memory hit rates when the cache 

hit rates increase. The effect of vaxying local memory hit rates, accompanied by 

higher cache hit rates, is more pronounced with the RCR and NUMA machines. The 

other machines did show improvement, but not as significantly as that of the rate of
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Figure 42: Expected access time for various h i when hc = 0.25.
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Figure 43: Expected access time for various when hc =  0.80. 

the RCR machine.

Figure 44 also illustrates the effects of varying local memory hit rates in conjunc­

tion with a 90% cache hit rate. The RCR, LRG, and NUMA machines demonstrates 

an improvement as local memory hit rates increase.

The effect of varying shared-write percentages on these machines have been ana­

lyzed. Let Ptkared-write denote the probability of a shared-write memory access such 

that Pikared-write + Pprivate.write + P — read =  1. The results, shown in figure 45, 
illustrate a slight increase in the average memory access time as the probability of 

shared-writes increases from 0.0 to 0.5.

Figure 46 shows the effect of varying block sizes on expected memory access time 

on the RCR, UMA, NUMA, and LRG machines. The NUMA machine demonstrates 

a drastic increase in memory access time as the block sizes increase from 8 to 64. The 

main reason for this significant increase in memory access time is due to the transfer
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Figure 44: Expected access time for various hi, when hc =  0.90.
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Figure 46: Expected access time for various block sizes.

of blocks of data from remote memories. The UMA machine also experienced a 

significant increase in memory access time due to the transfer of blocks of data from 

global memory. The RCR and LRG machines demonstrate a lesser effect as block 

size increases.

In conclusion, the varying probability of READs is examined. Let Pread denote the 

probability of READ. The results shown in figure 47 exhibit that the NUMA machine’s 

performance decreases as PTead increases. The reason is that, the READ from the 

remote memories are costly. The UMA machine demonstrates a similar effect but at a 

lesser rate. The RCR machine shows the most desired result since it performs READs 

locally. The RCR configuration has less sensitivity to READ/WRITE percentage.
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7.6 Summary

In this chapter simulators for RCR, UMA, NUMA, and LRG architectures were de­

veloped and their performance results discussed. The simulation results proved that, 

for a wide range of system parameters, RCR outperformed the UMA and NUMA ar­

chitectures. The RCR architecture outperforms LRG architecture when the hit rates 

of the processor’s cache exceeds 80% and replicated memory exceeds 25%. Simula­

tion results show that RCR architecture, with up to 32 processors, offers outstanding 

performance over existing multiprocessors.
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8 Conclusion

Replicated Concurrent-Read architecture, with its novel design and functionality, 

offers favorable performance over UMA and NUMA architecture for all ranges of ap­

plication and system parameters. RCR outperforms LRG architectures when the hit 

rates of the processor cache exceed 80% and replicated memory exceed 25%. The RCR 

architecture resulted from a complete re-evaluation of common memory space based 

on actual multiprocessor memory reference behavior. The resulting design leverages 

memory reference behavior and component expense by broadcasting memory updates 

in constant time while allowing READ references to be performed with zero access 

latency.

8.1 Cost-Effectiveness

Since the best overall system price-performance will be determined primarily by the 

mermory architecture, the RCR offers a cost-effective system by redesigning the mem­

ory space. The RCR, by not requiring complicated and expensive hardware, offers low 

cost, yet efficient design. Memory latency is the most significant issue in the design of 

a shared-memory multiprocessor. Memory latency could be improved by increasing 

cache hit rate in a uniprocessor. Unlike uniprocessors, increasing size of caches is not 

a dominant factor in multiprocessor hit rate. In a multiprocessor system, maintaining 

coherence between caches is a significant factor in memory latency. These coherence 

misses are independent of the cache size. Increasing cache sizes will not decrease 

the expected memory access time, since data sharing causes invalidations and extra 

misses because of coherence. The RCR architecture outperforms UMA architecure 

with same cache hit rate, while it is a cost-effective system.

8.2 Scalability

Unfortunately Designing an ideal scalable system is not possible. The RCR design, 

by inclusion of an auxiliary memory unit, has increased its scalability rather than
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Table 12: RCR Speedup for Various Percentages of shared-read.

N Pshared-write — 0.20 Pshared-write — 0.40 Pshared-write — 0.80

8 5 2.5 1.25

16 5 2.5 1.25

32 5 2.5 1.25

the size of replicated memory modules. Table 7 and 12 illustrate that by increasing 

number of processors, as long as, adequate multiported memory units are used, RCR 

proves its scalability.

8.3 Performance Prediction

The RCR design has a unique characteristic by performing majority of memory ref­

erences locally with no delay. Thus, percentage of shared-write operations is the only 

factor influencing speedup in the RCR architecture. This is not possible for UMA, 

NUMA, and LRG architectures, speedup for RCR configuration is:

where
W

i f e - r j n i .

and
W

Thus,
r-HLl _  I J S L \

S(AT) = U-ll H-lJ(jy)
I d- 1 1

Table 12 shows speedup for various percentages of shared-write for dual-port RCR 

configuration.

As seen in table 12, RCR speedup is only function of shared-write. Thus, it 

is possible to predict the performance of RCR for any application. By increasing
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number of ports in d-ported memories, RCR shows an improvement in speedup as 

shown in table 7.

8.4  Hardware Feasibility

Since RCR hardware design is based on commonly available off-the-shelf parts, it does 

not require any customized complicated hardware. The RCR architecture utilizes 

currently available 16K  x 32 dual-port memory modules as part of its global address 

space. Each processor is attached to a local memory for its private data and programs. 

Every processor is also connected to a dual-port replicated memory module. The 

RCR architecture provides an auxiliary memory unit which is equally accessible by 

ail processors.

8.5 Future Work

To actually build the RCR will remain as future work. The expansion of RCR archi­

tecture to support a larger number of processors while maintaining scalability, also 

remains as future work.

I l l
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A R C R  Sim ulation C ode

I  i / t  s fe  j ( e  3{c sfc sfe  s fc  3{c 3fc sfc  sfe  j ( c  $  J c  sfc $  i f .  jfc  afe  afe 3{c afe afe  afc  afc afc  a (e  a fe  a je  afc a fc  afc a fc afc afc afc afc  afc afc

Simulation Code For Replicated Concurrent-Read 

Architecture 

Version 4.2
j  afc a fc  afc afc afc afc  afc  a fc  afc afc afc  afc afc afc  afc afc afc  afc  afc afc  afc afc afc afc afc  afc afc afc afc a fc afc a fc  afc  a fc  afc afc  afc  afc  afc afc afc afc afc afc

#include<stdio .h>
#include<math. h>
#define PE 8

J  afc afc *  afc  *  *  afc afe afc  *  afc afc  afe *  *  afe *  afe afc  *  *  *  afe afe  afc *  *  afc  afc afc *  a fe  afc  a fe  afe afe afc afc *  afe afc afe *  afc

Global Variables

FILE *fptr; 
int N = PE ;
/* Number of processing elements */ 

float h_c = .50 ;
/* Primary cache hit rate */ 

float h_M = .50; 
int t_p = 10 ;

/* Processor cycle time */ 
int t_c_read = 1;

/* Time it takes to read a word from primary cache 
in terms of processor’s clock cycle*/ 
int t_c_write = 1;

/* Time it takes to write a private word to 
primary cache in terms of processor’s clock cycle*/
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int t_M_read = 1;
/* Time it takes to read a vord from replicated 
memory in terms of processor’s clock cycle*/ 

int t_M_write = 2;
/* Time it takes to write a word to replicated 
memory in terms of processor’s clock cycle*/ 

int t_aux_read = 2;
/* Time it takes to read a word from auxiliary 
memory in terms of processor’s clock cycle*/ 

int t_aux_write = 2;
/* Time it takes to write a word to auxiliary 
memory in terms of processor’s clock cycle*/ 

float P_read = .90;
/* Probability access is read (vs. write)*/ 

float P_write =1-P_read;
/* Probability access is write */ 
int read;
/* A flag to indicate am operation */ 
float P.IOF = .80;
/* Probability of an address being Incrementally 
Outside Fence */ 

float P_shatred_write = .0164; 
float seed;

/* A variable which holds a ramdom number*/ 
int B = 8; 
int D = 4;

/* Distance outside fence */ 
int num_write_inpipe = 0; 
int iof_adres_read = 0; 
int iso_adres_read = 0;
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int old_write_inpipe =0; 
int old_iso_read = 0; 
int old_iof_read =0; 
int num_idle_pe = 0; 
int active_N = N; 
long i;
long count_iof_time[PE] ; 
long count_iso_time[PE]; 
long count_write_time[PE];

/* Maximum WRITEs in pipe can not exceed N */

int num_pending_access = 0;

int old_pending_access = 0; 
long recal = 0;

unsigned long number_of_miss = 0;

Function Prototype

int PEi();
long access.dport();

/* This function calculates the access 
time for dual-port memory*/ 

float rand(float);
/* This function generates random numbers */ 

float get_prob_uniform();
/* This function will provide a random address */
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int read_write();
/* This function sets access values based 

on read vs write */ 
int wait_for_bus(); 
void bus_arbiter();

main function

void mainO 

{
int n;
int counter;
int accesstime.dport = 0; 
long total_access_time = 0; 
long num.of.access = 0; 
float Expect ed.access.time = 0.0; 
int y.j.k;
for(y=0 ; y<=(N-l);y++)
i
count_iof_time[y] = 0; 
count_iso_time[y] = 0; 
count_write_time[y]= 0;
>

fptr = fopen("rcr_test. cpp","a");

printf ("\nPlease provide one random number 
seed for this experiment"); 

printf ("\nPlease enter an odd 6 digit
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number not ending in 5:"); 
scanf ('"/.f " ,&seed) ;

active.N = N;
for ( i=l;i<=100000; i++)

•C
read = read.writeO;

if(active.N >=1)
{
num_of.access +=1; 
accesstime.dport = PEi(); 
total.access.time += accesstime.dport;

>

if (iof.adres.read > 0)
t

for (j =0; j<iof_adres_read ;j++)

if (i+1 == count_iof_time[j])

for(k = j; k<iof_adres_read-l ; k++) 
count.iof.timeCk] = count_iof_time[k+l] ; 
iof.adres.read -=1; 
break;

>

>

>

if (iso.adres.read > 0)
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{

for (j = 0; j<iso_adres_read ;j++)
{
if (i+1 == count_iso_time[j])

for(k = j; k<iso_adres_read-l ; k++) 
count_ i s o _time [k] = count_iso_time[k+l]; 
iso_adres_read -=1; 
break;

>

>

>

if (num_write_inpipe >0)
{

for (j =0; j<num_vrite_inpipe ;j++)

if (i+1 == count_write_time [j] )

for(k = j ; k<num_write_inpipe-1 ; k++) 
count .writ e_t ime [k] = 

count_write.time[k+l]; 
num.write.inpipe -=1; 
break;

>

>

>

old.iof.read = iof.adres.read ;

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



old_iso_read ~ iso.adres.read ; 
old.write.inpipe = num.write.inpipe; 
num.pending. access = old.iof.read + old.iso.read + 
old.write.inpipe ;
old.pending.access = num.pending.access; 
num.idle.pe = num.pending.access ; 
active.N = N - num.idle.pe;

>

Expected.access.time =( (float)total.access.time 
/(num.of.access)) * t.p; 
printf("\nExpected Access Time = 5(5.2f", 
Expected.access.time);

fprintf(fptr,"\nProbability of read"); 
fprintf(fptr,"\nExpected Access Time = 5(5.2f", 
Expected.access.time); 
fprintf (fptr,"\nCache hit rate = Jif " ,h_c) ; 
fprintf(fptr,"\nReplicated memory hit rate = '/.f",h_M); 
fprintf(fptr,"\nP_read = '/,f",P_read) ; 
fprintf(fptr,"\nNumber of blocks = J(d",B); 
fprintf(fptr,"\nNumber of processor = 5(d",N); 
fprintf(fptr,"\nProbability of shared write = Jif", 

P.shared.write);

/* printf ("\n active N = 5(d",active.N);

for (n = O;n<iof_adres_read; n++)
printf ("\ncount_iof .time ['/,d] = '/.Id" ,n,count_iof_time[n]) ; 
for (n = O;n<iso_adres_read; n++)
printf("\ncount_iso_time[7,d] = '/.Id",n,count.iso.time [n] ) ;
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for (n = 0;n<num_write.inpipe; n++)
printf ("\ncount .writ e.t ime [J(d] = '/.Id" ,n,count_write_time[n]);

/ *  y  * /

printf("\n Number of cache miss = %ld",number.of_miss); 
fclose(fptr);
>

This function simulates PEi’s memory access

int PEiC)
{
int time = 0;
float write_is_shared ;
float hit.or.miss; /* Cache hit or miss */

hit.or.miss = get_prob_uniform();

if (hit_or_miss <= h_c)
{
if (read)
/* Access is a READ (rather than a WRITE) */ 

time = t.c.read;
/* Processor clock cycle time */ 
else

/* Access is WRITE under write-thru policy */
{
write.is.shared = get_prob_uniform(); 
if (write_is_shared <= (P.read + P.write)*
P.shared.write )
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{

time = wait_for_bus() + t_M_write ; 
num. writ e _ inp ip e +=1 ; 

bus_arbiter();
>

else
time = t_c_write ;

>

>
else

n.umber_of _miss +=1; 
time = access_dport();
>

return(time);
>

This function, calculates the access time for 

dual-port memory

long access_dport()
{
long time = 0;
float prob_in_replicated;
float IOF ;

/* ckeck to see if the intended word is 
in replicated memory */ 
prob_in_replicated = get_prob_uniform();
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if (prob_in_replicated <= h.M)
{

if(read)
t im e  = B * t .M . r e a d ;

e l s e

time = wait _f or_bus () + t.M.write; 
num.write.inpipe +=1; 
bus.arbiterO ;

>

>

else /* there are some read/write misses */
i

if(read)

IOF = get_prob_uniform(); 
if (IOF <= P.IOF )

{
time = wait_for_bus() + D * t_aux_read; 
iof.adres.read += 1; 
bus_arbiter();
>

else

time = wait_for_bus() + t.anx.read; 
iso.adres.read += 1; 
bus_arbiter();
>
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>

else
{
time = wait_for_bus() + t.aux.write; 
num.write.inpipe +=1; 
bus.arbiterO;

>

>

return (time);
>

^******************************************** 

This function calculates the wait time

for a global bus
j  i f  *  3fc *  *  i f .  *  *  *  #  i f  s fc $  *  $  s je  *  $  *  sfc  i f  i f  i f  *  *  i f  $  *  i f  i f  i f  i f  i f  i f  i f  *  : fe  sfc *  afc * c  jfc

int wait_for_bus()
{
int it.is.read; 
int n,wtime = 0; 
float P_wait_global ; 
float IOF;

for(n=l ; n <= (active_N-l) ; n++)
{
P.wait.global = get.prob.uniformO; 
if (P.wait.global <= (1 - h_c)*(l - h.M))
/* Other processors are using the bus at this time*/
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it.is.read = read.writeO; 
if (it.is.read)
/* If another processor is performing READ operation */

IOF = get_prob_uniform(); 
if (IOF <= P.IOF ) 
iof.adres.read += 1; 
else
iso.adres.read += 1;
>

else
/* Another processor is performing WRITE operation */

-c
num.write.inpipe +=1;
>

>

>

if (iof.adres.read + iso.adres.read + 
num.write.inpipe == 0) 

wtime = 0; 
else
wtime =iof_adres_read * D * t.aux.read + 
iso.adres.read * t.aux.read +

num.write.inpipe * t.aux.write; 
return(wtime);
>
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Bus Arbiter

void bus.arbiterO 
{
int x,y,z,v; 
int n,k; 
long index; 
if (i>= recal) 

index = i;
else

index = recal; 
num.pending.access = iof_adres_read + 
iso.adres.read + num.write.inpipe;

x = iof.adres.read - old.iof.read; 
v = iso.adres.read - old.iso.read; 
y  = num.write.inpipe - old.write.inpipe;

for (z = 0; z <(num.pending.access - 
old_pending_access); z++)

{
if (x > z)
{
count_iof_time[old_iof_read+z] = index + 

D * t.aux.read ;
index = count.iof.time[old_iof_read+z];

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



recal = index;
>

if (v > z)
{
count_iso_t ime [old_iso_read+z] = index 
+ t.aux.read ; 
index = count_iso_time[old_iso_read+z]; 
recal = index;
>
if (y > z )
•C
count .write.time [old. write_inpipe+z] = index + 

t_M_write ;
index = count .write.time [old. write.inpipe+z] ; 
recal = index;
>

>

>

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

Random number generator
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

float rand(float x)
{
int i;
i = 997.0 * x / l.e6; 
x = 997.0 * x - i * l.e6; 
return (x);
>

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

This function computes a probability value that 

is uniformly distributed on the interval [0,1]
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

float get_prob_uniform()
i
seed = rand(seed); 
retura(seed/l-e6);
/* In order to have a value between 0 and 1 */
>

/  > 
This function decides if an operation is 

write vs read then sets the effected values 

of access time.
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

int read_write()

int read.chance; 
float P_read_write;
P_read_write = get_prob_uniform(); 
if (P_read_write <= P_read ) 

read_chem.ce = 1; 
else

read.chance = 0; 
return(read_chance);
>
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2 N U M A  Sim ulation Code

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  j

Simulation Code For a Typical 

NUMA Machine 

Version 2.2

#include<stdio.h>
#include<math.. h>
#define PE 8

Global Variables
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  j

int N= PE;
/* Number of processing elements */ 
int active.N;

/* Number of active processors */ 
float h_c =.50;

/* Hit rate at level 1 */ 
float h_L = .50;

/* Hit rate at level 2 */ 
float P.read = .95;
/* Probability access is read (vs. write)*/ 
float P.write =1 - P.read;

/* Probability access is write */ 
int read;
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/* A flag to indicate an operation */ 
int t_0 = 10 ;
/* Processor cycle time */ 

int t_c = 10;
/* Access time to private cache */ 

int t_L = 100;
/* Access time to local memory */ 

int t_G = 200;
/* Access time to remote memory */ 

int B = 8;
/* ++ Burst size in words is 4 */ 

float seed;
/* A variable which holds a random number*/ 
int cache_miss = 0;
/* Level 1 cache missess */ 
int local_mem_miss = 0;
/* Level 2 cache missess */ 
float P_shared_write = .0164; 
long c ;
int waiting_for_cache = 0; 
int old.wait ing_cache = 0; 
int num_local_read = 0; 
int old_local_read = 0; 
int num_local_write = 0; 
int old_local_write = 0; 
int num_global_read = 0; 
int old_global_read = 0; 
int num_global_write = 0; 
int old_global_write = 0; 
int total_local_pending = 0;
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int old_local_pending = 0;
int total_global_pending = 0;
int old_global_pending = 0;
int num_global_access = 0;
int old_global_access = 0;
int num_local_access = 0;
int old_local_access = 0;
long count_idle_time[PE] ;
long count_local_time[PE];
long count_global_time[PE];
int count = 1 ;  /* A flag */
int dontcount =0; /* A flag */
FILE *fptr;
int num_cache_miss = 0;

Function Prototype
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  J

int PEi();
/* Tbis function simulates the microprocessor */ 

int f_distributed_mem();
/* This function simulates references to 
distributed memories*/ 

float rand(float);
/* This function generates random numbers */ 
float get_prob_uniform();
/* This function will provide a random address */ 
int wait_for_cache(int);
/* This function calculates wait time to
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access cache */ 
int local_bus_manager();
/* This function calculates wait time 

for a local bus */ 
int global.bus.manager0;
/* This function calculates wait time for 

a global bus */ 
int read_write();
/* This function sets access values 

based on read vs write */

/***&***********&*************************' 

main function

void main()
{
int A;
int accesstime = 0; 
long tot.access = 0,n,k; 
float av.access; 
long num.of.access = 0; 
char answer;

for (n = 0 ; n < PE ; n++)
i
count_idle_time[n] = 0; 
count_local_time[n] = 0; 
count.global.time[n] = 0;

/* count_local_read[n] = 0; 
count.local.write[n] = 0;

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



count_global_read[n] = 0; 
count _global_write[n] =0; */
>

fptr = fopen("numa_test.cpp","a");

printf("\nPlease provide a random number seed 
for this experiment"); 

printf("\nPlease enter an odd 6 
digit number not ending in 5:"); 
scanf ("'/,f",&seed); 
active.N = PE;

for ( c=l;c<=100000;c++)
{
if (active.N > 0)

num.of.access += 1; 
read = read.writeO; 
accesstime = PEi(); 
tot.access += accesstime;
>

for (n = 0; n <waiting_for_cache; n++) 
fprintf (fptr," \ncount_idle_t ime [%d] =

Xld",n,count.idle.time[n] );

for(n = 0; n < waiting.for.cache ; n++)
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if (c+1 == couat_idle_time[a] 11 
c+1 >couat_idle_time[a])

for (k = a ; k<wait ing_for_cache
- 1 ; k++) 
couat_idle_time[k] =

couat_idle_time[k+l]; 
waitiag_for_cache -=1;

>

>

for(a = 0; a< aum_local_access ; a++)

if ( c+1 == count_local_time[a] I I 
c+1 >couat_local_time[a])

for (k=a ; k<aum_local_access
- 1; k++) 
couat_local_time[k] =

couat_local_time[k+1]; 
aum_local_access -=1;

>

>

for(a = 0; a< aum_global_access ; a++)

if ( c+1 == couat_globaLl_time[a] I I 
c+1 > couat_global_time[a] )

for (k=a ; k<aum_global_access
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- 1; k++)
count_global_time[k] = 

count _global_t ime [k+1] ;
num_global_access -=1 ;

>

>

old_wait ing.cache = waiting_for_cache; 
old_local_read = num_local_read; 
old_local_ write = num.local.write; 
old_global_read = num.global.read; 
old.global.write = num.global.write; 
old_local_access = num_local_access ; 
old_global_access = num_global_access ;

old_global_pending = old_global_read + 
old_global_write ;

active.N = PE - (old_waiting_cache +
old_local_access + old_global_access);

>

av.access = (float) tot.access / num.of.access;

fprintf (fptr," \n__________ NUMA____________ ");
fprintf (fptr," \n........P.read.....") ;
fprintf (fptr," \nExpected Access Time = '/,5.2f ns."

,av_access); 
fprintf(fptr,"\nCache hit rate = Jlf",h_c); 
fprintf (fptr," \nLocal memory hit rate = Jif"

,h .L ) ;
fprintf (fptr," \nP_read = '/.f", P.read) ;
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fprintf (fptr, "\nNumber of blocks * %d",B); 
fprintf (fptr," \nNumber of processor = Jid",N); 
fprintf (fptr," \nProbability of shared write =

%f ",P_shared.write); 
fprintf (fptr," \n active.N = '/d" .active.N), 
fprintf (fptr," \n *****************************");

fclose(fptr);
>

This function simulates processors request for 

memory access
J if.**********************************************

int PEi()
-c
int time = 0;
float write.is.shared ;
float hit.or.miss;

/* Cache hit or miss */ 
hit.or.miss = get.prob.uniform(); 
if (hit.or.miss <= h.c)

{
if (read)
/* Access is a READ (rather than a WRITE) */ 
time = wait.for.cache(count) + t.c ; 

else
/* Access is WRITE under write-thru policy */

write.is.shared = get_prob_uniform() ;
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if (write.is.shared <= P.shared.write) 
time = wait.for.cache(dontcount) + 

t.c + local.bus.managerO + t.L;
else
time = wait.for.cache(count) + t.c ;

>

>

else

num.cache.miss +=1;
time = f.distributed.memO;
>

return(time);
>
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This function simulates references to 

distributed memories

int f_distributed_mem()
{
int time = 0; 
cache_miss++ ; 
float hit.or.miss;
/* Cache hit or miss */ 

hit_or_miss = get_prob_uniform(); 
if (hit.or.miss <= h_L)
/* If it is in local distribted memory *f 

{
if (read)

time = wait_for_cache(dontcount) + 
t_c + local_bus_manager() + B * t_L ; 

else
time = wait_for_cache(dontcount) + 
t.c + local.bus.managerO + t.L ;

>

else
/* It is in remote distributed memory */

local_mem_miss++; 
if (read)
time = wait.for.cache(dontcount) + t.c 
+ global.bus.managerO + B * t.G ; 

else
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time = wait_f or_cach.e(dontcount) + t_c 
+ global_bus_manager() + t_G ;

>

return (time);
>
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This function calculates the wait time 

to access the cache if there are other 

processors trying to invalidate shared data 
^*******************************************

int wait_for_cache(int W)
{
int n,wtime = 0;
int num_invalidate = 0;
float P_wait_for_cache ;

for(n=l ; n <= (active_N-l) ; n++)
{
P_wait_for_cache = get_prob_uniform() ; 
if (P_wait_for_cache <= P_shared_write)

/* Another processor is using the bus at this 
time to invalidate shared data */ 
num_invalidate +=1;

>

wtime = num_invalidate * t_c;

if (wtime > 0 kk W)
{
waiting_for_cache += 1; 
count _idle_time [old.wait ing_cache] = 
c + wtime ; 
fprintf(fptr,"\n c = 5Ud",c); 
fprintf (fptr, ;
for(n = 0; n< waiting_for_cache; n++)
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fprintf(fptr,"\nwaiting for cache = '/.d", 
waiting_for.cache); 
fprintf (fptr," \n count _ idle_t ime [*/,d] =
5(ld" ,n,count_idle_time[n] );

>

fprintf(fptr, ;
>

return(wtime);
>

j  j f e  i f  $  afe  j f e  afe a(c afe afe afe afe afe afc a fe  a fe  afe afe afe  afe afe afe  afe afe afe afe afe afe  afe afe afe afe afe afe afe afe afe afe afe afe afe afe  afe

This function calculates the wait 

time for a local bus
y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

local_bus_manager()
{
int n,wtime = 0; 
int it_is_read ; 
int num_local_read = 0; 
int num_local_write = 0; 
int x,y;
float P_local_waiting ; 
long index;

for(n=l ; n <= active_N-l ; n++)
•c
P_local_waiting = get_prob_uniform(); 
it_is_read = read_write();
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if ( it_is_read kk P_local_waiting 
<= (1 - h_c))

/* Another processor is accessing the 
local memory */

num_local_read += 1; 
else

if (P_local_waiting <= P_shared_vrite) 
num_local_write += 1 ; 
else ;
>

wtime = num_local_read * B * t_L + 
nnm_local_write * t_L ;

if (wtime > 0)

num_local_access +=1;
count_local_time[old_local_access] = c + wtime;

>

return (wtime);
>

j  sfe * jfc * 3(s sfe * * sfc $ s(c * * $ * sfc j|e * sfc * s(c * sfc £ * sfc * * j(c if afe £ $ afe sfc j|c * 3fe $ 3|c 3(c if * * $

This function calculates the wait time 

for a global bus

global_bus.manager()
{
int it_is_read;
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int global_read_counter = 0;
int global_write_counter = 0;
int index,x,y;
int n,wtime = 0;
float P_wait_global ;
f or(n=l ; n <= active_N-l ; n++)

P_wait_global = get_prob_uniform(); 
if (P_wait_global <= (l - h_c)*(l - h_L)) 

/* Other processors are using the bus 
at this time*/

{
it_is_read = read_write(); 
if Cit_is_read)

/* If another processor is performing 
READ operation */
/* num_global_read +=1; */

global_read_counter += 1; 
else

/* Another processor is performing WRITE 
operation */

/* num_global_write +=1; */ 

global_write_counter +=1;
>

>

wtime = global_read_counter * B * t_G + 
global_write_counter * t_G ;

if (wtime > 0)
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{

num_global_access +=1; 
count_global_time[old_global_access]

= c + wtime;
>

return(wtime);
>

This function, decides if an operation is 

write vs read then sets the effected 

values of access time.

int read_write()
{
int access; 
float P_read_write;
P_read_write = get_prob_uniform(); 
if (P_read_write <= P_read )

access =1; /* access is READ */ 
else

access = 0; /* access is WRITE */ 

return(access);
>
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^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  j

Random number generator
^****************************************j

float rand(float x)
{
int i;
i = 997.0 * x / l.e6; 
x = 997.0 * x - i * l.e6; 
return (x) ;
>

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

This function computes a probability value 

that is uniformly distributed on the interval

0,1

^********************************************j

float get_prob_uniform()
{
seed = rand(seed); 
retum(seed/l.eS);
/* In order to have a value between 0 and 1 */
>

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

END OF FILE
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  j
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3 U M A  Sim ulation Code

Simulation Code For a Typical 

UMA Machine 

Version 2.2

#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#define PE 8

Global Variables
y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

int N= PE;
/* Number of processing elements */ 

float h_c = .50;
/* Hit rate at level 1 */ 
float P_read = .95;
/* Probability access is read (vs. write)*/ 
float P_write =1 - P.read;

/* Probability access is write */

float P_shared = 0.0164;
/* Fraction of shared data */ 

int read;
/* A flag to indicate an operation */
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int t_0 = 10 ;
/* Processor cycle time */ 
int t_c = 10 ;

/* Access time to private memory (cache) */ 
int t_g = 100;

/* Access time to global memory */ 
int B = 8;
/* ++ Burst size in words is 4 * / 

float seed;
/* A variable which holds a random number*/

float P_local_global;
/* Probability of being in local or global 
memory */ 

int cache.miss = 0;
/* Level 1 cache missess */ 

int active_N ; 
long count_idle_time[PE] ; 
long Pi_idle_time[PE] ; 
int Pi_waiting_global = 0; 
int old_pi_waiting = 0; 
long c;
int old_waiting_local = 0; 
int Pi_waiting_local = 0;

FILE *fptr;
int count =1; /* A flag */
int dontcount = 0;
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^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

Function Prototype
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

int f.PEO;
/* This function simulates the microprocessor */ 

int f _shared_mem() ;
/* This function simulates the shared-memory */ 

float rand(float);
/* This function generates random numbers */ 

float get_prob_uniform() ;
/* This function will provide a random address */ 
int local_bus(int) ;
/* This function calculates wait time for a 

local bus */ 
int global_bus();
/* This function calculates wait time for a 

global bus */ 
int read.write();
/* This function sets access values based 

on read vs write */

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ^

main, function
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ^

void main()

int accesstime = 0; 
long tot.access = 0;
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int k,n;
float av_access; 
char answer; 
long num_of.access = 0; 
for (n = 0; n<N;n++)

-C

count.idle.time[n] = 0;
Pi_idle_time[PE] = 0;

>

fptr = fopen("uma_test. cpp", "a") ;

printf ("\nPlease provide a random number seed 
for this experiment"); 

printf("\nPlease enter an odd 6 digit number 
not ending in 5:"); 

scanf("%f",&seed); 
active.N = N;

for ( c=l;c<=100000;c++)

read = read_write(); 
if (active.N >=1)

num.of.access +=1; 
accesstime = f_PE(); 
tot.access += accesstime;
>

else
fprintf(fptr,"\nAll processors are idle
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and c = '/Id", c) ; 
if (Pi_waiting_local > 0)
{
for (n = 0;n<Pi.waiting.local;n++)

if(c+1 == count_idle_time[n] I I c+1 > 
count.idle.time[n])

{
for (k = n ; k<Pi_waiting_local-l ; k++) 
count_idle_time[k] = count_idle_time[k+l]; 

Pi_waiting_local -=1; 
break;

>

>

>
for (n = 0; n<Pi_waiting_global; n++)

if(c+1 == Pi_idle_time[n] I I c+1 >
Pi.idle.time[n])

{
for (k = n;k<Pi_waiting_global -l;k++) 
Pi.idle.time [k] = Pi.idle.time[k+1] ; 

Pi_waiting_global -=1;
>

>

old_waiting_local = Pi.waiting.local; 
old.pi.waiting = Pi_waiting_global; 
active.N = PE - (old_waiting_local + 
old.pi.waiting);
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>
av.access = (float) tot .access/(num.of. access);

fprintf (fptr," \nAver age access time = '/,5.2f ns.", 
av.access); 

fprintf (fptr," \n Probability of shared 
= JJf",P_shared); 
fprintf (fptr," \n Cache hit rate 
= V.f & N = '/,d",h_c, N); 

fprintf (fptr," \n Probability of READ = '/,f" ,P_read); 
fprintf (fptr," \n B = '/,d",B);

fprintf (fptr," \nActive_N = ’/d" .active.N); 
fprintf (fptr," \nPi_waiting_local = '/,d",
Pi_waiting_local); 
fprintf (fptr, "\nPi_wait ing_global 
= J(d" ,Pi_waiting_global) ; 
for (n=0 ;n<=Pi_waiting_local-l ;n++) 
fprintf (fptr, "\n count _idle_time['/,d]

= '/Id",n,count_idle_time[n]) ; 
for (n=0 ;n<Pi_waiting_global ;n++) 
fprintf (fptr," \n Pi.idle.t ime [J(d] =
'/Id" ,n, Pi.idle.t ime [n] ) ;

printf ("\nNumber of memory access = */ld" ,num.of .access) ,

fclose(fptr);
>
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y * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

This function simulates processors request for 

memory access 
^***********************************************

int f_PE()
{
int time = 0; 
float hit_or_miss;
I* Cache hit or miss */ 

hit_or_miss = get_prob_uniform(); 
if (hit_or_niss <= h_c) /* It is a hit */

{
if (read)
/* Access is a read (rather than a write) */ 

time = local.bus(count) + t_c ; 

else
/* Access is write under write-thru policy */ 

time = local_bus(dontcount) + t_c + 
global_bus() + t_g;

>

else
■( /* It is a miss */

cache_miss += 1 ; 

time = f_shared_mem();
>
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return (time);
>

^ * * * * * * * * * *  * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * * * * * * * * * *  

This function simulates the shared-memory
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

int f_sh.ared_mem()
{
int time = 0; 

if (read)
time = local.bus(dont count) + t_c + 
global_bus() + B * t_g ; 

else
time = local.bus(dontcount)

+ t_c + global_bus() + t_g; 
return (time);
>

^********************************** ********* ■̂ 

This function calculates the wait time for 

a local bus
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ^

int local.bus(int W)
{
int n,wtime = 0;
int pending.write * 0;
float P_wait_local ;

for(n=l ; n <= (active_N-l) ; n++)
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P.wait.local = get.prob.uniformO; 
if (P.wait.local <= (P.read +

P.write)*P_shared)

/* Another processor is using the bus at this 
time to invalidate shared data */

pending.write += 1;
>

wtime = pending.write * t.c; 
if (wtime > 0 &£ W)
{
Pi_waiting_local += 1;
count.idle.timeCold.waiting.local] = c + wtime ;

}
return(wtime);
>

This function calculates the wait time 

for a global bus
j * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

global_bus()
{
int it.is.read; 
int read_waiting_global= 0; 
int write_waiting_global= 0; 
int n,wtime = 0;
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float P.wait.global ;
for(n=l ; n <= active.N -1 ; n++)

P.wait.global = get.prob.uniformO ; 
if (P.wait.global <* (1 - h.c))

/* Other processors are using the bus at this time*/

it.is.read = read.writeO; 
if (it.is.read)

/* If another processor is performing 
READ operation */

read.waiting.global +=1; 
else

/* Another processor is performing WRITE operation */ 
write_waiting_global +=1;

>

>

wtime = read_waiting_global * B * t_g + 
write_waiting_global * t.g;

if (wtime > 0)

Pi_waiting_global +=1 ;
Pi.idle.time[old.pi.waiting] = c + wtime;

>

return(wtime);
>
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This function decides if an operation is write vs

read then sets the effected values of access time.
**********************

int read.writeO 
{
int access; 
float P.read.write;
P_read_write = get_prob_uniform(); 
if (P.read.write <= P.read )

access =1; /* access is READ */ 
else

access =0; /* access is WRITE */ 
retum(access);
>

Random number generator

float rand(float x)
{
int i;
i = 997.0 * x / l.e6; 
x = 997.0 * x - i * l.e6; 
return(x);
>
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This function computes a probability value that 

is uniformly distributed on the interval [0,1]

float get_prob_uniform()
{
seed = rand(seed); 
retura(seed/l.e6);
/* In order to have a value between 0 and 1 */
>

END OF FILE
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4 LRG Sim ulation C ode

Simulation Code For 

Local-Remote-Global 

Architecture 

Version 4.3
ji***********************************************j

#include<stdio.h> 
#include<math.h> 
#define PE 8

Global Variables
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  * * * * * *  j

int N = PE;
/* Number of processing elements */ 

int NL=2;
/* Number of processing elements on board */ 

float h_l = .50;
/* Hit rate at level 1 */ 

float P_local= .50;
/* Fraction of shared data in local memory */ 
float P.global;
/* Fraction of shared data in global memory*/ 
float P_read = .95;
/* Probability access is read (vs. write)*/ 
float P_write =1-P_read;
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/* Probability access is write */ 
int read;
/* A flag to indicate an operation */ 
int t_l ;
/* Access time to promary (internal) cache */ 
int t.local ;

/* Access time to local memory */ 
int t.global;
/* Access time to global memory */ 

int B = 8;
/* ++ Burst size in words is 4 */ 

float seed;
/* A variable which holds a random number*/ 

float hit_or_miss;
/* Cache hit or miss */ 

int t.burst_L = 20;
/* Time it takes to operate on words
when burst*/
int t_burst_FL = 20;
/* Time it takes to operate on words when burst*/ 
int t.burst_G = 40;
/* Time it takes to operate on words when burst*/ 
int snoop_time_local = 0;
/* Snooping time */
int snoop_time_global = 0;
/* ++ local and global snoop times are different */ 
float P_snoop_system ® 0.05;
/* Probability of snoop hit on system bus */ 
float P_snoop_local = 0.05;
/* Probability of snoop hit on local bus */
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float P.single = 0.01;
/* Probability that access is single */ 
int single;
/* This variable holds value of 1 or 0 to indicate 

the type of operation as single or burst */ 
float P_shared_write = .0164; 
float P.local.global;
/* Probability of being in local or global memory */ 

int copyback=0;
/* This variable holds 1 or 0 to indicate the mode */ 
int level.l.misses = 0;

/* Level 1 cache missess */ 
int level_2_misses = 0;

/* Level 2 cache missess */ 
int active.PE; 
int num_local_busy = 0; 
int old_local_busy = 0; 
long count_local_time[PE]; 
int num_global_busy = 0; 
int old_global_busy = 0; 
long count_global_time[PE]; 
long c;
long num.of.access = 0;
FILE *fptr;

Function Prototype
^ ********** :(ci(c * *** j|e ** jjt ** ******** jjc * Jlcsic** ****** #

int fprocessor();
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/* This function simulates the 
microprocessor (88110) */ 

int f_cachectrlr();
/* This function simulates the 
cache controller (88410) */ 
int f_local_global();

/* This function simulates Addr ASICs */ 

float rand(float) ;
/* This function generates random numbers */

float get_prob_uniform();
/* This function will provide a 
random address */ 

int local_bus_time();
/* This function calculates wait time 
for a local bus */ 
int global_bus_time();
/* This function calculates wait time for 

a global bus */ 
int pick(int,int);
I* This function picks the largest n 
umber among two */ 
void read.write();
/* This function sets access values 
based on read vs write */ 
void burst_vs_single();
/* This function makes decision whether 

operation is burst */
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main function

void main()
{

int accesstime = 0; 
long tot.access = 0; 
int n , k; 
float av.access; 
char answer;

fptr = fopen("L_R_G.cpp","a");

printf("\nPlease provide a random number 
seed for this experiment"); 

printf("\nPlease enter an odd 6 digit number 
not ending in 5:"); 

scanf ("'/.f",&seed);

for ( n = 0 ; n < N ; n++)
{
count_local_time[n] = 0; 
count _global_t ime [n] = 0;
>

active.PE = PE;
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for ( c = 1; c <= 100000; C + + )

{
if (active.PE > 0)
-C
num.of.access +=1, 
read.writeC);
accesstime = fprocessorO; 
tot.access += accesstime;

>

for(n = 0; n < num.local.busy ; n++)

if (c+1 == count_local_time[n] I I 
c+1 > count_local_time[n])
■c
for (k = 0 ; k<num_local_busy - 
1 ; k++)
count.local.time[k] = 
count.local.time[k+1]; 

for (n = 0; n<num_local_busy ;n++) 
num.local.busy -=1;
>

>

for(n = 0; n < num.global.busy ; n++)

if (c+1 == count_global_time[n] II c+1 > 
count.global.time[n])

for (k = 0 ; k<num_local_busy - 1 ; k++)
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count.global_time[k] =
count .global_time[k+l] ;
for (n = 0; n<num_local_busy ;n++)
num.global.busy -=1;
>

>

old.local.busy = num.local.busy;
old.global.busy = num.global.busy;
active.PE = N - (old.local.busy + old_global_busy);

>

av.access =(float) tot.access/(num.of.access);

fp rin tf(fp trf" \n m m m m p _ r e a d m x m m x m " );
fprintf(fptr, " ) ;  
fprintf (fptr,"\nExpected Access Time =

*/.5.2f ns.",av_access); 
fprintf(fptr,"\nCache hit rate = Jif",h_l); 
fprintf (fptr,"\nLocal memory hit rate 

= */tf",P_local); 
fprintf (fptr,"\nP_read = '/,f",P_read) ; 
fprintf(fptr,"\nNumber of blocks = '/,d",B); 
fprintf(fptr,"\nNumber of processor = J(d",N); 
fprintf(fptr,"\nProbability of shared write = Jif", 
P.shared.write); 

fprintf(fptr,"\n*******************************");

fclose(fptr);
>
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This function simulates processors request 

for memory access

int fprocessorO 
{
int time = 0; 
float is.it.private; 
hit_or_miss = get.prob.unif orm() ; 
if (hit.or.miss <= h.l)

•C
if (read)
/* Access is a read (rather than a write) */ 
time = t.l; 

else
/* Access is write under write-thru policy */
{
P_local_global = get_prob_unif orm(); 
is.it.private = get_prob_uniform(); 
if(is.it.private <= (P.read + P.write)* 

P.shared.write)
{
if (P.local.global <= P.local)
time = t.l + local_bus_time() + t.local;
else
time = t.l + local_bus_time() + t.local + 
global_bus_time() + t_global;
>

else
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time = t.l;

>

>

else
time = f_local_global();

return(time);
>

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

This function simulates local and global

memory references 
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

int f_local_global()
•C
float P_snoop_h.it;
int wait_for_bus,waittime,time = 0;
level.l.misses ++;
/* To count number of cache miss */
P.local.global. = get_prob_uniform() ; 
if (P.local.global <= P.local)
/* If the location is in local memory */

wait.for.bus = local_bus_time();
waittime = wait.for.bus;
time = t.l + waittime + t.local;
>

else
/* If the location is in global memory */
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i

wait.for.bus = global_bus_time(); 
waittime = wait.for.bus; 
time = t.l + local_bus_time() + t.local 
+ waittime + t_global ;
>

return(time);
>

I  'pjjjg function calculates the

wait time 

for a local bus

local.bus.t ime()
{
int n,wtime = 0;
int local.busy.single = 0;
int local.busy.burst = 0;
int t.local.O ; /* overlapped access time */
float P.wait.local ; 
t.local.O = t.burst_ L * 3  ; 
for(n=l ; n <= (N L -1 )  ; n++)

{
P.wait.local = get_prob_uniform() ; 
if (P.wait.local <= P_local*(l - h.l))

/* Other processor is using the bus at this time*/
{
if (single)

local.busy.single =1;
else
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local.busy.burst =1;
>

wtime += local.busy.single * t_local_Q + 
local.busy.burst * t.local.O +
(B-l)*t.burst_L;

>

if (wtime > 0 )

num.local.busy +=1;
/* if (num.local.busy > N/2) 

num.local.busy = N/2; */

count.local.time [old.local.busy] = c + wtime;

>

return (wtime) ;
>

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

This function calculates the wait time

for a global bus 
^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

global_bus_time()

int n,wtime = 0;
int global.busy.single = 0;
int global.busy.burst = 0;
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int t.global.O ; 
float P.wait.global ; 
t.global.O = t.burst_G*2 ;
/* overlapped access time */ 
for(n=l ; n <= (N-l) ; n++)

{
P.wait.global = get.prob.uniformO; 
if (P.wait.global <= P_global*(l - b.l))

/* Other processors are using the bus at this time*/

if (single) 
global.busy.single +=1; 

else
global.busy.burst +=1;

>

>

wtime = global.busy.single * t.global.O + 
global.busy.burst * ( t.global.O +
(B-l)*t_burst_G ); 
if (wtime > 0)

num.global.busy += 1;
count .global _time[old_global_busy] = c + wtime;

>

return (wtime);
>
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This function picks the largest number
^*************************************************** j

int pick(int x.int y)
i

if (x > y) 
return (x);
else 

return (y);
>

I  'pj-Qg function decides 

if an operation is write vs read then sets the effected values of access time.

void read.writeO 
{
float P.read.write;
P_read_write - get_prob_uniform(); 
if (P.read.write <= P_read )

{

/* If operation is read then these time 
variables will be set as follows in ns.*/

t.l = 10; 
t.local = 100; 
t ..global = 200; 
read = 1;
>
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else
•C

/* If operation is write then these time 
variables will be set as follows in ns.*/

t.l = 10; 
t.local = 100; 
t_global = 200; 
read = 0;
>

>

^ * * * * ^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

This function makes decision if an operation

is single or burst
j  i f .  *  sfc if:  *  * c  sfe s fe  sfe  j ( c  i f .  i f  i f  i f  j* c  *  i f  i f  j f c  i f  *  $  *  $  i f  i f  s ic  sfc  i f  sfc s fe  s fe  i f  i f  #  sfc  i f  i f  sfc i f  i f  s fc  i f  sfc i f

void burst_vs_single()
{
float P.burst.single;
P.burst.single = get.prob.uniformC) ; 
if ( P.burst.single <= P.single ) 

single = 1;
else 
single = 0;

>
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Random number generator

float rand (float x)
{

int i;
i = 997.0 * x / l.e6; 
x = 997.0 * x - i * l.e6; 
return(x);
>

^4e*4e4cJ(c4c:|c4c4e 4c s i c * * * * * * * * * * * *  * * * * * * * * * * * * * *  * * * * * * * * * *

This function computes a probability value that 

is uniformly distributed on the interval

0,1

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

float get_prob_uniform()
{
seed = rand(seed); 
retum(seed/l.e6);
/* In order to have a value between 0 and 1 */
>

^ * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *  

END OF FILE
* * * * * * * * * * * * * *  * * * * * * * * * * * * *  * * * * * * * * * *  * * * * * 4c4c4c4c
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5 R C R  C ost-Effectiveness Code

Code For Calculation of Cost Savings 

Factor For RCR Architecture with Various 

Number of PEs 

Version 2.0
^*********************************************** j

CODE FOR CALCULATION OF COST SAVINGS FACTOR For 

RCR ARCHITECTURE WITH VARIOUS NUMBER OF PEs.

#include<stdio.h>
#include<math.h>

void main.0
f
FILE *fptr;
int N,n ;
int M = 1;
int C_D = 1;
int C_S = 6;
float M_rep ;
float sav_4 = 0.0;
float sav_8 = 0.0;
float sav_16 = 0.0;
float sav_32 = 0.0;
float sav_64 = 0.0;
float sav_128 = 0.0;
float cost_without_cache = 0.0 ;
float cost_savings =0.0 ;
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float cost.factor = 0.0; 
fptr = fopen("Scost_r.cpp","a"); 
fprintf(fptr,"\n\\begin{table}"); 
fprintf (fptr, "\n\\capt ion{Cost Savings 
Factor For Various Number of PEs.}"); 

fprintf(fptr,”\n\\label{costfact}"); 
fprintf(fptr,"\n\\begin{center}"); 
fprintf(fptr,"\n\\begin{tabularX|c|c|c|c|c|c|c|> 

Whline") ;
fprintf(fptr,"\n$M_{rep}$ ft $N=4$ ft $N=8$ ft 
$N=16$ ft $N=32$ ft $N=64$ ft $N=128$ \\\\ 
\\h.line\\hline"); 
for ( n=l;n<10; n++)
{
for (N = 4 ; N<= 128; N= N*2)

M.rep = n/10.0;
cost_vith.out_cach.e = (float)M * N * C_S ; 
cost.savings = M * M.rep * (N * C_S - C_D); 
cost.factor = cost_savings/cost_with.out_cach.e; 
if (N == 4) 

sav_4 = cost.factor * 100;
else if (N == 8) 

sav_8 = cost.factor * 100;
else if (N == 16) 

sav_16 = cost.factor * 100;
else if (N == 32) 

sav_32 = cost.factor * 100;
else if (N == 64) 

sav_64 = cost.factor * 100;
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else
sav_128 = cost.factor * 100;

>

fprintf (fptr, "\n 7.4. If 4 7,4. If 4 7.4. If 4 7.4. If 
4 7.4.If 4 7.4.If 4 7.4.If \\\\ Whline", M.rep, \ 
sav_4, sav_8, sav_16, sav.32, sav_64, sav_128);

>

fprintf (fptr, "\n\\end{tabular}") ; 
fprintf (fptr, "\n\\end-Ccenter>") ; 
fprintf (fptr, "\n\\end-(table}-"); 
fclose(fptr);
>
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6 List o f Sym bols, A bbreviations, and  

N om enclature
Symbol Represents Relationship

A{ Number of Memory Accesses A,- = Ri + W{
A* Number of Shared Memory Accesses
A* The Weighted Average

Shared References 
B Block Size
Ci Cache i i = 0 , 1 , 2 , N
COMA Cache Only Memory Architecture
Cd Cost per Word for DRAM
Cs Cost per Word for SRAM
Csaving Cost Savings
CSM  Cache Shared Memory
CU Control Unit
CU{ Control Unit i i = 0 , 1 , 2 , N
D Delay in Terms of Memory Cycles
d Number of Ports in a Multiport

Memory Unit 
6 an Arbitrary Distance from

Lowest or Highest Addresses 
Currently Stored in 
Replicatred Memory 

Di Delay by P,-
Diof the Distance Outside

the Fence
Dir{ Directory i i = 0 , 1 , 2 , N
DS Data Stream
E(N)  System Efficiency for an E(N) = ^ p -

N-Processor System
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Symbol Represents Relationship

GSM  Global Shared Memory
H Highest Address Currently

Stord in Replicated Memory 
h Hit Ratio
h,L Hit Ratio on Local Memory
h.R Hit Ratio on Replicated Memory
IS  Instruction Stream
L Lowest Address Currently

Stord in Replicated Memory 
LM  Local Memory
LRF  Lower Replicated Fence
LRG Local-Remote-Global
M  Shared-Memory Size in Words
Mc Number of Memory Cycle

Memory Unit i i = 0,1,2, N
MM  Main Memory
MMi Main Memory i i = 0 , 1 , 2 , N
MTep Percentage of Shared-Memory

That is Spatially Cached 
N  Total Number of Processors

in the System 
NUMA  Non-Uniform Memory Access Model
P  A Processor
PC Processor Consistency Model
PE  Processing Element
pe Performance for the Entire Task

Using Enhancement 
Pi Processor i in the System i = 0 , 1 , N
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Symbol Represents Relationship

Pne

PlOF

Pl

Pthared-urrite

R

R i

RC
RCR
tR -

s
S(N)

tave

tsync

T

tbusy

tread

Performance for the Entire 
Task Without Enhancement 
Probability of a Word 
Being Incrementally outside 
the Fence
Probability of Data Being 
in Local Memory 
Probability of a 
Shared WRITE
Number of READ References 12iLi R i = R

During Interval
Number of READ References by Pi R i = R

Number of Shared 
data READs
Release Consistency Memory Model 
Replicated Concurrent-Read 
Read-Miss Time

t,w

Speedup
Speedup Factor for an 
iV-Processor System 
the Average Memory 
Access Time 
Synchronization Time 
Execution Time 
Processor Busy Time 
Average READ Time 
Write-Miss Time
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Symbol Represents Relationship

tw

*G

tc

taux

tM

tL

t Remote

fLRG
read

f LRG
''write

t LRG
wait-localJ>us

t LRG
wait-global Jms

fL R G
tave

f N U M A
read

f N U M A
''write

Time it Takes to Write 
a Word to Replicated Memory 
Time it Takes to 
Access Global Memory 
Cache Clock Cycle Time 
Time it Takes to 
Access Auxiliary Memory 
Time to Access 
Replicated Memory 
Time it Takes to 
Access Local Memory 
Time it Takes to 
Access Global Memory 
the Average READ Time 
for LRG Configuration 
the Average WRITE Time 
for LRG Configuration 
the Waiting Time 
for Local Bus for 
LRG Configuration 
the Waiting Time 
for Global Bus for 
LRG Configuration 
the Expected Memory Access 
Time for LRG Configuration 
the Average READ Time 
for NUMA Configuration 
the Average WRITE Time 
for NUMA Configuration

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Symbol

t N U M A  
wa.it-local -bus

*N U M A  
wait-global-bus

f N U M A
"flit*

f N U M A
wait-pending-write

f R C R
read

f R C R
''write

t RCR  
wait-global-bus

f R C R
* ' n n *

f U M A
read

f U M A
write

f U M A
" n i t *

f U M A
wait-global Jms

Represents

the Waiting Time
for Local Bus for
NUMA Configuration
the Waiting Time
for Global Bus for
NUMA Configuration
the Expected Memory Access
Time for NUMA Configuration
the Time a Processor
may have to Wait to Access
Local Memory (NUMA Machine)
the Average READ Time
for RCR Configuration
the Average WRITE Time
for RCR Configuration
the Waiting Time
for Global Bus for
RCR Configuration
the Expected Memory Access
Time for RCR Configuration
the Average READ Time
for UMA Configuration
the Average WRITE Time
for UMA Configuration
the Expected Memory Access
Time for UMA Configuration
the Waiting Time
for Global Bus for
UMA Configuration
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Symbol Represents Relationship

tw^t%ending.write the Time a Processor
may have to Wait to Access 
Local Memory (UMA Machine) 

r(l) Execution Time Steps in a Uniprocessor T(l) = 0(1)
T(N)  Execution Time Steps for

iV-Processor System 
TSO Total Store Order Weak

Consistency Model 
UMA Uniform Memory Access Model
URF Upper Replicated Fence
W  Number of WRITE References W  = Y^= \ W«'

During Interval
Number of WRITE References by Pt W = YliLi

W a Number of WRITE References
to Shared Data 

W* Number of WRITE References
to Shared Data by P,-
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