
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6” x 9” black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Information Company

300 North Zed) Road, Ann Arbor MI 48106-1346 USA
313/761-4700 800/521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A R e p l ic a t e d C o n c u r r e n t -R e a d A r c h it e c t u r e
f o r S c a l a b l e S h a r e d -M e m o r y M u l t ip r o c e ss in g

by

B a h m a n S h a h ir M o t l a g h
B.S., Istanbul Academy of Sciences, 1977

M.S.Cp.E., University of Central Florida, 1993

DISSERTATION

Submitted in partial fulfillment of the requirements
for the degree of

Doctor of Philosophy in Computer Engineering
in the Department of Electrical and Computer Engineering

in the College of Engineering
at the University of Central Florida

Orlando, Florida

Spring Term
1997

Major Professor: Ronald F. DeMara

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number: 9723892

UMI Microform 9723892
Copyright 1997, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Abstract

A Replicated Concurrent-Read (RCR) architecture was developed which is cost-

effective, yet adequately scalable. First, the role of the common memory space is

re-evaluated from the viewpoint of actual multiprocessor memory reference charac­

teristics. Second, the most frequent memory operations are optimized based on the

availability of inexpensive storage technologies. Third, aggregrate storage require­

ments axe minimized by devising a spatial caching technique by replicating only the

current working set. The resulting design leverages reference behavior and component

expense by using broadcasting to update replicated memories in 0(1) time while al­

lowing read references to be performed locally without delay. Thus, W simultaneous

writes require [" memory cycles using d-port memory components. However, read

bandwidth of a full N words/cycle is obtained for N processors.

Analytical models were developed and simulations of memory latency were per­

formed for Uniform Memory Access (UMA), Non-Uniform Memory Access (NUMA),

Local-Remote-Global (LRG), and RCR architectures for hit rates from 0.1 to 0.9 in

steps of 0.1, memory access times of 10 nsec to 100 nsec, proportions of read/write

access from 0.01 to 0.1, and block sizes of 8 to 64 words. The RCR architecture

provides favorable performance over UMA and NUMA architectures for all ranges

of application and system parameters. RCR outperforms LRG architectures when

the hit rates of the processor cache exceed 80% and replicated memory exceed 25%.

Thus, inclusion of a small replicated memory at each processor significantly reduces

expected access time since all replicated memory hits become independent of global

traffic. For configurations of up to 32 processors, results show that latency i3 further

reduced by distinguishing burst-mode transfers between isolated memory accesses and

those which are incrementally outside the working set.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

To my mother

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Acknowledgements

I would like to take this opportunity to express my thanks to my advisor, Dr.

Ronald F. DeMara, for his continuous guidance, encouragement and endless support.

I also want to thank Dr. Brian Petrasko, who along with serving as a member of my

advisory committee, guided me through my masters degree program with profound

wisdom and direction. Deepest thanks also to the other members of my oral examina­

tion committee, especially Dr. Darrell Linton and Dr. Chris Bauer, who have offered

me direction and encouragement when I needed it most. Thanks also to Dr. N. Lobo

for his time spent on my advisory committee.

Many thanks also to Concurrent Computers, Inc. for their support of my research.

A special acknowledgement goes to Dr. A1 Romagosa who has been especially sup­

portive of my work.

I want to sincerely thank my dear friends, Simin, Bardia, Soheil, Bahram, Mehdi,

Majid and Ata, for their friendship, kindness and moral support throughout the years.

Deepest thanks also to my friend and colleague, Ali, who has been a constant source

of companionship and support.

I am, and always have been, grateful to my mother whose love and unconditional

support has been a great source of encouragement and joy. To my sisters and relatives,

Mina, Lila, Sima and her husband Scott, Behrooz, and Nima, my grateful thanks for

years of unwaivering support in furthering my growth and education. Finally, I would

like to express my deepest gratitude to my dear friend, Michele, for her friendship

and wisdom.

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Contents

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Overview of Parallel Computer Architectures.. 1

1.2 Desirable Multiprocessor C haracteristics... 4

1.3 Cost-Effective Design C rite r ia .. 5

1.4 Outline of D issertation .. 5

2 Shared-M emory Organizations and Their Characteristics 8

2.1 Overview... 8

2.2 Conceptual Organizations for Multiprocessor A rchitectures................ 8

2.2.1 Uniform Memory Access M o d e l.. 9

2.2.2 Non-Uniform Memory Access M o d e l .. 10

2.2.3 Cache-Only Memory M o d e l .. 11

2.3 Viable Physical Designs .. 12

2.3.1 Bus-Based Interconnection S trateg ies.. 13

2.3.2 Static Interconnection Networks... 14

2.3.3 Dynamic Interconnection N etw orks... 15

2.3.4 Multiported Memory M odules... 16

2.4 Private Cache Memories to Capture Locality.. 17

2.4.1 Data Updating and Coherence.. 19

v

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4.2 Cache Updates In Distributed Shared-Memory Systems 22

2.4.3 Coherence S tra teg ies.. 24

2.5 Memory Consistency M odels... 25

2.5.1 Sequential Consistency M o d e l... 27

2.5.2 Relaxed Consistency M odels.. 29

2.6 Summa r y .. 33

3 Previous Scalable Architectures 35

3.1 Overview.. 35

3.2 The Stanford DASH A rchitecture.. 35

3.2.1 DASH Memory H iera rchy ... 36

3.2.2 Cache Coherence Method in D A S H ... 38

3.3 The Kendall Square Research K S R -1 .. 39

3.3.1 KSR-1 Memory Hierarchy and Coherence Strategy 39

3.3.2 KSR-1 Programming M o d e l.. 40

3.4 The Nighthawk 6800-Series M ultiprocessor.. 42

3.4.1 Local-Remote-Global Memory H ierarchy 42

3.4.2 CPU-Level Local and Remote Memory D esign 43

3.4.3 Global Memory D esign... 44

3.5 Multiprocessors Employing Global Data Replication........................... 44

3.5.1 Global Data R eplication.. 45

3.5.2 Dynamic Data Replication... 46

3.5.3 Selective Data R eplication... 47

3.6 S u m m a ry .. 48

4 Analysis o f M em ory Access Behavior in M ultiprocessors 49

4.1 Overview... 49

4.2 Global vs. Local Memory R eferences.. 49

vi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.3 READ vs. WRITE Distribution of Memory A ccesses......................... 50

4.4 S u m m a ry .. 55

5 A Scalable Replicated Concurrent-Read M emory Model 56

5.1 Assumptions.. 56

5.2 RCR Analytical M o d e l... 56

5.3 UMA Analytical M odel.. 60

5.4 NUMA Analytical M odel.. 62

5.5 Local-Remote-Global Analytical M o d el.. 64

5.6 S u m m a ry ... 67

6 A Scalable Replicated Concurrent-Read Architecture 68

6.1 Overview.. 68

6.2 Hardware D e s ig n ... 69

6.2.1 Memory Units and the Interconnection N etw ork...................... 69

6.2.2 Auxiliary Memory U n it.. 71

6.3 Multiport Memory Replication Characteristics..................................... 76

6.3.1 Multiport Arbiter Design Characteristics.................................. 79

6.4 Multiport Memory Cycle Analytical Representation............................ 81

6.5 Performance Behavior and M e tr ic s .. 85

6.6 S u m m a ry ... 89

7 Simulator Developm ent and Performance Comparisons 90

7.1 Replicated Concurrent-Read (RCR) A rch itec tu re 90

7.1.1 Varying Cache and Replicated Memory Hit R a t e 91

7.2 Uniform Memory Access (UMA) A rch itec tu re 94

7.2.1 UMA Simulation R esults.. 95

7.3 Non-Uniform Memory Access (NUMA) Architecture............................ 96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3.1 NUMA Simulation R esu lts.. 96

7.4 Local-Remote-Global (LRG) A rc h ite c tu re .. 99

7.4.1 Local-Remote-Global (LRG) Simulation R esu lts 99

7.5 Performance C om parisons... 99

7.6 S u m m a ry ... 108

8 Conclusion 109

8.1 Cost-Effectiveness.. 109

8.2 Scalability ... 109

8.3 Performance Prediction... 110

8.4 Hardware F easib ility ... I l l

8.5 Future W ork... I l l

A RCR Simulation Code 112

2 NU M A Simulation Code 128

3 UM A Simulation Code 145

4 LRG Simulation Code 157

5 RCR Cost-Effectiveness Code 172

6 List of Symbols, Abbreviations, and Nomenclature 175

7 References 181

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Figures

1 MIMD architecture.. 3

2 Message passing multicomputer... 3

3 The UMA Multiprocessor Model... 9

4 The NUMA Multiprocessor Model.. 10

5 The COMA Multiprocessor Model... 11

6 Hierarchical cluster model... 12

7 Single-bus multiprocessor.. 14

8 Single-bus multiprocessor with local caches... 15

9 Static interconnection network... 16

10 Crossbar-Connected Shared-Memory Multiprocessor................................ 17

11 Multiport memory organization... 18

12 Basic Structure of a Memory Hierarchy.. 20

13 Coherent Caches Before Modification Occurs.. 21

14 Inconsistent Caches after Modification by Processor 1............................. 22

15 Intuitive Definition of Four Memory Consistency Models........................ 26

16 Sequential Consistency Memory M o d e l... 28

17 TSO Weak Consistency Model.. 30

18 Stanford’s DASH architecture.. 36

19 DASH memory hierarchy. ... 37

20 Directory structure per cluster.. 39

21 The Kendall Square Research KSR-1 architecture.................................... 40

22 Remote cache access in KSR-1 architecture.. 41

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

23 The Night Hawk System Block Diagram[Harris].............................. 42

24 The Nighthawk memory hierarchy. ... 43

25 Multiprocessor system having global data replication........................ 46

26 The RCR configuration... 57

27 LRG architecture... 64

28 Basic RCR Architecture... 70

29 Memory Configuration of Replicated Concurrent-Read architecture. . 72

30 Replicated Concurrent-Read architecture.. 73

31 RCR memory consistency model... 76

32 Dual-Port M emory... 78

33 Four-Ported Memory RCR Architecture.. 79

34 d-Ported Memory RCR Architecture.. 80

35 RCR architecture. Expected access time for various replicated memory

hit rates.. 92

36 RCR architecture. Expected access time for various h i with 80% hc. . 93

37 Expected access time vs. hc for UMA configuration.......................... 95

38 Expected access time vs. h i when hc = 0.50 for NUMA configuration. 97

39 Expected access time vs. h i when hc = 0.90 for NUMA configuration. 98

40 LRG architecture. Expected access time for various local memory hit

rates.. 100

41 Expected access time for various cache hit rate percentages......................101

42 Expected access time for various h i when hc = 0.25.............................. 102

43 Expected access time for various h i when he = 0.80.............................. 103

44 Expected access time for various h i when hc = 0.90.............................. 104

45 Expected access time for various shared-write percentages........................105

46 Expected access time for various block sizes.. 106

47 Expected access time for various Pread percentages................................ 107

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

List o f Tables

1 Memory Technologies.. 50

2 General Statistics on the Benchmark Applications................................... 51

3 Statistics on Shared Data References and Their Characteristics. . . . 52

4 Expected Memory Access Time for Various Cache Hit Rate Rates ,

N = 8, B = 8, and PTtad = .90,... 67

5 Cost Savings Factor For Various Numbers of PEs.................................... 75

6 Memory Cycles Required for W Simultaneous Waits Using d-ported

Memory Components... 85

7 RCR Speedup for Various Number of Ports in Multiported Memories. 88

8 RCR System Parameters.. 91

9 UMA System Parameters... 94

10 NUMA System Parameters.. 97

11 LRG System Parameters.. 100

12 RCR Speedup for Various Percentages of shared-read............................. 110

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1 Introduction

Rapid changes in the cost and density of semiconductor memory technology have

made the previously preferred multiprocessor design approaches obsolete. In particu­

lar, traditional interconnection strategies between multiple processors and a common

memory regard the storage space as a very scarce resource. These conventional ap­

proaches restrict scalability by requiring latency to transfer data whenever and wher­

ever remote memory references occur. Previous designs have addressed this problem

by including local caches, multistage combining networks, and elaborate referenc­

ing schemes, but require sophisticated hardware to maintain coherence between the

physically-distinct memories.

We present a novel multiprocessor architecture which is cost-effective, yet suf­

ficiently scalable. Our approach involves a complete re-evaluation of the common

memory space based on actual multiprocessor memory reference behavior and the

availability of inexpensive memory devices. Our technique leverages these character­

istics by broadcasting memory updates in constant-time while allowing read references

to be performed locally with zero access latency.

1.1 O verview o f Parallel Com puter Architectures

Historically, digital computer systems containing one or more processors have been

classified into four categories according to the number of simultaneous instructions

performed and data items which axe operated on concurrently [FLYNN66]:

1. Single Instruction stream, Single Data stream (SISD),

2. Single Instruction stream, Multiple Data stream (SIMD),

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. Multiple Instruction stream, Single Data stream (MISD),

4. Multiple Instruction stream, Multiple Data stream (MIMD).

SIMD, MISD and MIMD machines are considered parallel machines, but since

SIMD and MISD classes are mainly suitable for special purpose computations, MIMD

machines axe more popular.

MIMD machines, operate on multiple instruction streams and multiple data sets

as shown in Figure 1. Every processor (Pt) is capable of fetching its own instruction

streams (IS) and required data (DS) from shared memory and execute the program.

Figure 1 illustrates the general architecture of a MIMD multiprocessor. We can divide

this class of computers into two major groups:

1. Shared-memory multiprocessors

2. Message-passing multicomputers

The basic difference between these two groups lies in their memory architecture

and interprocessor communication mechanisms. The processors in shared-memory

systems communicate with each other through shared variables stored in a common

memory space. If at least some physical memory exists which can be accessed by more

than one processor then the system is classified as a shared-memory machine, regard­

less of the other communication facilities which may be provided. This characteristic

is the rationale for referring to shared-memory multiprocessors as tightly-coupled sys­

tems.

In a message-passing multicomputer, communication is done by exchanging mes­

sages among the computer nodes. Each computer node (PEi) has only private local

memory which is not shared with other processors, a control unit (CU{), a private

local memory (LM{), and perhaps even attached disks or I/O peripherals. Since to­

tal memory space is contibuted among all memory modules, processors do not have

equal access time to a given word in memory. Figure 2 shows a typical architecture

of message-passing multicomputers or Loosely-Coupled Systems.

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

— IS

I/O-* — IS

CUi

CU2

cu,

SHARED
MEMORY

Figure 1: MIMD architecture.

PE2

LM2

PEn

LMnLMi

PEi

MESSAGE-PASSING
INTERCONNECTION NETWORK

Figure 2: Message passing multicomputer.

A significant limitation of message passing is the transfer of large amounts of data

between processes which require a number of message exchanges. This limitation

not only degrades the system throughput, but also requires sophisticated proces­

sor interconnection. On the other hand, shared-memory can be considered a more

flexible means of interprocessor communication, due to the ease at which communi­

cation of results generated by one task need not specify the destination of the recipi­

ents [KESSLER89]. Thus, the architectural trend for future scalable general-purpose

computers is toward MIMD configurations with distributed memories as in message-

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

passing machines, yet providing a globally-shared virtual address space [HWANG93].

With respect to design of a shared-memory multiprocessor, the primary challenge is

to avoid contention during access to the common memory space.

1.2 Desirable M ultiprocessor Characteristics

For many years, designing a scalable, affordable, and programmable parallel computer

which satisfies the needs of sophisticated computation problems has been an illusive

goal. The majority of existing programs axe still written in sequential languages.

Their most direct and efficient conversion to a parallel form is via the shared-memory

programming model. Consequently, there is a need to design architectural support for

this model that possesses a reasonable balance between cost and performance. The

design criteria should include the following principles:

1. The design should be simple and inexpensive to build,

2. Coherence among the distributed memories must be maintained, and

3. The design should be optimized for typical memory reference characteristics.

The first criteria can be met in part by using multiple physically-distinct memory

units organized hierarchically. By adding small, fast cache memories, a considerable

performance improvement is obtained for a negligible increase in system cost.

However, in the memory hierarchy of a multiprocessor computing system, data

inconsistency may occur between adjacent levels of different processors or even within

the same level of the memory hierarchy. As fax as the second criteria is concerned, the

main memory and caches may contain inconsistent copies of the same data, refered to

as the cache coherency problem. In particular, multiple caches may contain different

copies of the same memory block. This coherence problem generally arises dur­

ing asynchronous and independent operations of multiprocessors having physically-

distributed memories.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

While the third criteria can have a very significant impact on system performance,

it has essentially been neglected for many yeaxs because multiprocessor READ and

WRITE latencies were identical, as in uniprocessors. In practice however, their differ­

ence in frequency of occurance turns out to be the key to solving the multiprocessor

design problem. Specifically, READ operations on a uniprocessor typically constitute

90% of all memory references leaving only 10% of accesses as WRITE operations.

Moreover, when the transition is made to a multiprocessor environment, this effect

is further amplified by the nature of sharing which provides the opportunity to al­

low data written by at most one processor, to be read by at least one processor. In

general, the data will be read by more than one processor.

1.3 Cost-Effective Design Criteria

Cost-effectiveness of an architecture concerns the relative benefits of tangible and in­

tangible performance characteristics. The tangible chaxacteristics of cost-effectiveness

can be expressed in terms of MIPS obtained per dollar. For instance, many applica­

tions can be executed on an ensemble of slow processors more cost-effectively than

on a single extremely fast uniprocessor.

Within the shared-memory multiprocessor domain, the best overall system price-

performance will be determined primarily by the memory architecture. This is be­

cause powerful microprocessors have become off-the-shelf commodities. Thus, the

memory system design is at the forefront of importance to obtaining a cost-effective

system design.

1.4 O utline o f Dissertation

This dissertation presents the memory system design for a novel shared-memory mul­

tiprocessor system. The Replicated Concurrent-Read (RCR) architecture takes advan­

tage of a distributed multiported memory organization. It avoids coherence problems

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

by performing READ operations locally while broadcasting all memory updates. By

design, this system places greater emphasis on optimization of READ memory refer­

ences. The RCR memory system eliminates contention by providing independent local

READ buses to every processor. This results in zero overhead for frequent READ

references, at the expense of potentially slower yet typically infrequent WRITE access.

Chapter 2 investigates shared-memory multiprocessor organizations and their char­

acteristics. In this chapter, currently existing shared-memory models are described

and characterized. Diverse interconnection networks axe examined and their advan­

tages and disadvantages axe also reviewed. We study the locality of memory refer­

ences, and how private memories could improve overall average memory access time

by taking advantage of this phenomenon. Finally, memory consistency models are

discussed.

Chapter 3 describes a representative sample of previous scalable axchitectures.

The Stanford DASH and Kendall Square Research (KSR-1) axe covered as examples

of directory-based schemes. The Harris Nighthawk is presented as an example of the

snooping-based approach. Advantages and disadvantages of directories and snooping

buses are discussed.

In Chapter 4, we analyze memory access behavior in shared-memory multiproces­

sors. We categorize memory references into global vs. local memory references, and

READ vs. WRITE memory accesses.

Chapter 5 derives and evaluates the analytical model of RCR architecture. We

define the RCR memory model, and discuss statistical distributions. This chapter
estimates the probability of read and write occurrences.

Chapter 6 presents the hardware design of the RCR shared-memory system.

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Chapter 7 describes the development of a software simulator for the RCR archi­

tecture. This chapter illustrates the result of simulations, validates the analytical

models, and provides new insight into components of expected access time.

Chapter 8 discusses overall conclusions, and outlines topics for possible future

work.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 Shared-M emory Organizations and Their Char­

acteristics

2.1 Overview

Distributed shared-memory multiprocessors communicate using mutually accessible

stored data structures called shared variables, with READs and WRITEs of multiple

CPUs capable of accessing the shared data. The memory design objective is to match

the effective memory bandwidth with the peak processor throughput, so that the max­

imum demand for memory words can be satisfied. Ideally, the memory bandwidth

would match the transfer rate demanded by each processor even after coherence and

contention are taken into account.

The basic characteristics of shared-memory multiprocessors can be studied under

two separate, though inter-related, organizations. The first takes a logical viewpoint

called the conceptual organization, while the other deals with the physical design of

the shared-memory system. Moreover, to design an efficient shared-memory system,

it is necessary to study and quantify the behavior of memory modules as observed

from the processor’s point of view.

2.2 Conceptual Organizations for M ultiprocessor Architec­

tures

There axe three primary conceptual organizations for shaxed-memory multiprocessors:

1. Uniform Memory Access model,

2. Non-Uniform Memory Access model, and

3. Cache Only Memory Architecture.

Each model offers distinct performance and design advantages, as discussed below.

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Interconnection Network

Figure 3: The UMA Multiprocessor Model.

2.2.1 Uniform M emory Access Model

In the Uniform Memory Access (UMA) multiprocessor model shown in Figure 3,

all processors, P,-, experience an equal expected, access time to all shared-memory

modules, M j, for all 1 < i , j < N. In this model, each processor, P,-, is attached to

a private cache, C,-, so that it can take advantage of locality of reference of the data

and/or instructions which axe currently used. All Processors may access their private

cache in tc time with hit rate h. In case of a miss, Pi may have to compete with

other processors to access global memory. The waiting time to access shaxed-memory

is dependent on the number of pending memory references and their characteristics.

Processing elements also share peripheral devices in some fashion. When all processors

equally shaxe all peripherals, the system is called a symmetric multiprocessor. In such

a system, every processor is capable of running operating system executives or I/O

service routines.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LM.LMi

Interconnection Network

r igure 4: The NUMA Multiprocessor Model.

2.2.2 Non-Uniform M emory Access M odel

In a Non-Uniform Memory Access (NUMA) multiprocessor model shown in Figure 4,

The shaxed-memory is physically divided into smaller regions and each is assigned

to a processor (Pi) forming an ensemble of local memories, LMi, where 1 < i < N.

Together, these local memories (LM{) comprise the global address space accessible

to all processors. In a NUMA multoprocessor model the processor’s access time to

main memory varies with the location of the memory word within the global space.

Every Pi is attached to a private cache, C,-. In case of a miss, then P, may have

to access local or remote memories. In this shared-memory model, access time of a

local processor to a local memory is less than the same processor’s access time to

any remote memory. The increase in access time results from the added delay and

possible contention within the interconnection network.

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DirDin

Interconnection Network

Figure 5: The COMA Multiprocessor Model.

2.2.3 Cache-Only Memory M odel

In the Cache-Only Memory Model {COMA) multiprocessor model, shown in Figure 5,

each processor (P,) has its own cache (Ct) and it is the collection of these fast memories

which enables them to form a global address space. In a COMA machine there

is no memory hierarchy nor access by any processor to a remote memory device.

We can consider a COMA model a special case of NUMA, in which the distributed

main memories are converted into caches. Data which resides in remote caches is

forwarded to local caches upon a miss from the local cache. Typically, distributed

cache directories (Dir,) are used to assist accessing the remote caches.

Besides these primary models, there are other models which can usually be con­

sidered some combination of UMA, NUMA, and COMA machines. Figure 6 exhibits

a model which has combined the NUMA with a UMA model. In this model, a glob­

ally shared memory is added to a multiprocessor system. The processors are divided

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© - *

®-v *-*

CSM -------------------- ® * -» i CSM

CSM
I

CSM*

CSM © ~
l * - * CSM

Global Interconnection Network

GSM GSM GSM

Figure 6: Hierarchical cluster model.

into severed clusters. The clusters are connected to globally shared-memory modules.

Each cluster could be designed as a UMA or NUMA machine while the system as a

whole is considered a NUMA machine.

Regardless of the model used, each design possesses memory coherence and syn­

chronization requirements. In the upcoming chapters, a new shared memory multi­

processor model, that solves the named problems using replicated shared memories

together with distributed local memories, will be introduced.

2.3 V iable Physical Designs

The interconnection network between components of a multiprocessor have been con­

structed using several diverse designs. These networks provide the means for internal

connections among processors, memory modules, and I/O devices. Thus, the commu­

nication efficiency of the network is critical to system performance. The ultimate goal

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is to provide a low-latency network with a high data-transfer rate while providing a

wide communication bandwidth to all devices simultaneously.

There axe four basic organizations for the interconnection network:

1. Bus-based strategies,

2. Static interconnection networks,

3. Dynamic interconnection networks, and

4. Multiport memory-based schemes.

2.3.1 Bus-Based Interconnection Strategies

The simplest interconnection system for shaxed-memory multiprocessors employs a

single common communication path called the bus which connects all devices. An

example of a multiprocessor system using a bus interconnection is shown in Figure 7.

The traffic generated per processor and the bus bandwidth provided, will determine

the number of processors which can be adequately supported in such a shaxed-memory

system. Since the overall transfer rate within the system is limited by the bandwidth

and the speed of the bus, use of private memories is highly advantageous. Figure 8

shows such a multiprocessor system.

A bus-based memory system is the most frequently used interconnection in com­

mercially available multiprocessors because it is a relatively inexpensive interconnec­

tion. However, a shaxed-bus interconnection exhibits two major deficiencies:

1. It provides low effective bandwidth available to each processor, and

2. It creates a single point-of-failure in the interconnection network.

Moreover, system expansion use of additional processors or memory modules,

further increases the bus contention, which decreases system throughput and increases

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Main Memory

Figure 7: Single-bus multiprocessor.

arbitration logic. For this reason, bus-based interconnection alone is not considered

scalable.

2.3.2 S ta tic In terconnection N etw orks

Static networks consist of point-to-point dedicated links between individual processors

or memories which remain fixed once the machine is built. Figure 9 shows such a

system with 16 processors (N = 16). Each Pi is capable of sending data to any one of

P,+1 , P{-1 , Pi+r, and Pi-r where r = \ /N in one circulation step through the network.

This example of static interconnection network topology (Wrapped-Around Mesh) is

defined by four routing functions:

72+1 (2) = (2 + 1) mod N

R~i(i) = (2 — 1) mod N

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Pi: Processor#i
Ci: cache # i

Main Memory

Figure 8: Single-bus multiprocessor with local caches.

R+r(i) = (i + r) mod N

R -r(i) = (i — r) mod N

where 0 < i < N — 1. This type of network is more suitable for providing repeated

regular connections among components. Static networks could be very expensive

especially if the system employs a large number of processors and memory modules.

2.3.3 Dynamic Interconnection Networks

Dynamic interconnection networks are realized using switched channels, which are dy­

namically configured to match the communication requirements demanded by the con­

current tasks. Dynamic networks include multistage networks and crossbar switches,

which are often used in shared-memory multiprocessors. Figure 10 depicts a shared-

memory multiprocessor with a crossbar-based interconnection. As shown in Figure 10,

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 9: Static interconnection network.

a n ■processor system with n memory module has been implemented with n x n cross­

bar network which connects n processors to n memory modules. Although the highest

bandwidth and interconnection capability are provided by crossbax network, it is the

most expensive to build, due to the fact that its complexity increases (iV2) for a

system containing N processors.

2.3.4 M ultiported M em ory Modules

Since the bandwidth of single-ported memory systems is limited, more scalable al­

ternatives have been sought out. However, the recent availability of multiport mem­

ory chips has allowed multiple simultaneous access to individual memory devices

[STODLECK89]. Figure 11 illustrates a multiport memory organization. By provid­

ing multiple simultaneous access, multiport memories can help mitigate the band­

width mismatch between main memory and the processor by increasing the effective

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

© © — ©

Figure 10: Crossbar-Connected Shared-Memory Multiprocessor,

memory bandwidth, and reducing contention.

As Figure 11 shows, multiple processors could access multiport main memory

simultaneously. Multiport-memories axe becomming popular among computer system

designers because of their simplicity and low cost factor. In upcoming chapters, we

introduce a computer design that takes advantage of multiport memories to improve

total performance.

2.4 Private Cache M emories to Capture Locality

As previously mentioned, private cache memories can be employed to increase per­

formance. Specifically, as a program executes its memory references over a given

period, it tends to be confined to a few localized areas of the entire address space.

This occurrence is referred to as the locality of reference property [MAN082]. Since

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Cache Cache

Multiported
Directory

Multiported Main Memory

Figure 11: Multiport memory organization.

memory references are generated for both instruction and data fetches, a typical com­

puter program may spend the majority of its execution time in only a fraction of the

total code, such as a nested loop operation. This phenomenon is referred to as ”90-10

rule” since 10% of the total code takes 90% of the execution time in a typical program

[HENNESSY90]. Three types of locality of reference behavior have been identified

[HWANG84]:

1. Temporal locality,

2. Spatial locality, and

3. Sequential locality.

Temporal locality refers to the inclination for programs to reference memory loca­

tions which have been accessed in the recent past. This is often caused by program

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

constructs such as loops, stacks, and temporary variables. By moving recently ac­

cessed memory blocks from remote memory into the fast memory, overall computer

performance can be significantly improved. Spatial locality refers to the tendency

of programs to access items whose addresses are near one another. For example,

searching through a field of data, or operations on arrays. Sequential locality refers

to a case when a typical program, fetches the instructions in sequential order unless

branch instructions create out-of-order executions. The ratio of in-order execution to

out-of-order execution is approximately 5-to-l in typical parallel numeric programs

[HWANG93]. Since 80 to 85 percent of the total code of a typical program executes

in sequential order, then only 15 to 20 percent of the code contains branch instruc­

tions. As a result, by moving continuous blocks of memory space to local caches, a

significant performance improvement can be observed.

Taking advantage of the principal of locality, by designing the memory of a multi­

processor as a memory hierarchy, results in a substantial reduction in average memory

access time. Figure 12 depicts the basic structure of a memory hierarchy. Because of

the differences in access time and cost, it is useful to build memory as a hierarchy of

levels, with the faster memory close to the processor and the slower, less expensive

memory below that, as illustrated in Figure 12. Caches are the fastest and closest

memory modules to processors. A typical cache access time is in the range of 8 to 35

ns, while typical access time to the main memory is between 90 to 120 ns. Connect­

ing a local memory directly to a processor will reduce the frequency of access to the

shared memory space interconnection networks, and therefore, will decrease the total

interconnection network traffic. As a result, caches increase the overall performance

of a system, while reducing the interconnection network contention.

2.4.1 Data U pdating and Coherence

Effective caching techniques are indispensable in distributed shared-memory systems,

since providing high-speed caches for each processor significantly mitigates the over­

head in referencing main memory. However, this improvement in performance is not

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Local
Memory

Secondary
Cache

/ -\
Processor

Cache

Local
Memory

Secondary
Cache

r \
Processor

Cache

Local
Memory

Secondary
Cache

Processor
Cache

Global Memory

Figure 12: Basic Structure of a Memory Hierarchy.

cost free. Employing multiple caches gives rise to the problem of cache coherence.

The cache coherence problem is an undesirable, but surmountable side-effect which

results from the use of a hierarchical memory design in a distributed shaxed-memory

system [CRAWFORD94]. Since multiple caches are allowed to hold simultaneous

copies of an assumed memory location’s content, some techniques must exist to ensure

consistency of all copies when one is modified. Simply, maintaining multiple copies

representing the content of the same memory location implies the urgency to know

which copy is valid.

Figure 13 illustrates a n processor distributed shared-memory system with coher­

ent caches. Cache 1 and n each hold a copy of the shared variable, A. When Processor

1 updates its copy of variable A, the copy stored in Cache n is no longer valid, creat­

ing a cache coherency problem, as shown in Figure 14. To correct this inconsistency,

Cache n's copy must either be updated or marked as invalid.

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A = 1 A = 1 A = 1

Main Memory
A = 1

Figure 13: Coherent Caches Before Modification Occurs.

The performance of a cache design depends on two important factors:

1. Cycle Count: number of processor cycles required to locate, fetch, and deliver

the data to the requesting PE, and

2. The Hit Ratio: an important factor in determining how effectively the cache

can reduce the total memory-access time.

The cycle counts includes the number of total machine cycles needed for lower-level

cache misses, cache updates, and consistency control.

The hit rate refers to a situation when a memory reference can be satisfied by the

cache which is called a data reference hit. If the data is not found in the cache, it is

refered to as a miss. Generally, a miss necessitates a search at the next higher level

of memory hierarchy. The hit ratio between two adjacent levels is defined as the ratio

of number of hits to number of references. Let Hrati0, h denote the hit rate, and the

number of hits respectively. Let’s assume A represents number of references then:

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A = 1A = 1

Main Memory
A = 1

Figure 14: Inconsistent Caches after Modification by Processor 1.

HTatio — . (1)

where the number of references includes both hits and misses. If m denotes the

number of misses then:

Hr.,,. = (2)
ft + 77X

Hit ratios above 0.99 have been observed, with typical hit ratios above 0.9, vali­

dating the locality of reference principle.

2.4.2 Cache U pdates In Distributed Shared-M emory Systems

A major characteristic of any multilevel memory system is the way it handles WRITE

operations. Basically, there are two distinct alternatives to update memories:

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Write through - whenever there is a need to update a memory block, the update

will be done to blocks, both in the cache and in the lower level memory unit at

the same time.

2. Copy back - the WRITE is performed only to the block in cache and whenever

there is a need to replace that block then the modified block is written to the

lower level memory.

Both of these update schemes are associated with certain advantages and disadvan­

tages. The main advantages for write-through policy are:

1. READ misses never cause WRITEs to lower level memory, and

2. It is less complex to implement than the copy-back scheme.

The key advantages of copy-back policy are:

1. A single word can be written to the cache at processor speed rather than memory

speed,

2. Several updates to the same block in the cache require only one WRITE oper­

ation to the lower level memory, and

3. Whenever blocks are written back, the system can take advantage of a wide

lower level, since the entire block is being updated.

Generally, the copy-back policy requires a more complex and sophisticated hardware

system, while the difference in the speed of processors and main memories, favors a

trend towards the copy-back scheme. Very often, a write-through policy is adopted

in the first level cache, and the copy-back scheme is used in the second level cache

[Hwang93]. However, both of these update policies require hardware support, which

is avoided totally in the Replicated Concurrent-Read (RCR) memory hiararchy sys­

tem design. Since RCR performs all READ operations locally, while it broadcasts

WRITEs globally, all caches will have a valid copy of data.

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.4.3 Coherence Strategies

Even though, the cache coherency problem has been the subject of much research,

there is very little literature discussing cache coherency in multiport-based distributed

shared-memory systems. Previously defined strategies to ensure cache coherency

generally fall into two major categories:

1. haxdware-based strategies, and

2. software solutions.

Hardware-based techniques were implemented without any support from software.

These techniques maintain cache consistency by adopting one of the following proto­

cols:

1. Directory based - The physical memory is divided into equal-size blocks. The

sharing status of a block is kept in just one location, called the directory.

2. Snooping - In this protocol the sharing status of memory blocks is not kept in

a centralized location. Snooping protocol is based on monitoring the shared-

memory bus, since processors share a common memory via a single bus. This

scheme could also be applied to mutiple buses in a system with moderate cost

[O’KRAFKA90] [BERT0NI91].

While hardware-based techniques are efficient, they add to system hardware complex­

ity. Our proposed Replicated Concurrent-Read architecture requires no hardware

support in order to maintain cache coherency. Software techniques, rely solely on'

the compiler or programmer to maintain cache coherency. These schemes could be

categorized in two classes:

1. Static placement - at compile time, all shared writable data are tagged as non-

cashable. Thus, any memory block that can be modified by more than one

processor, will be stationary in the main memory. This protocol is considered

the simplest to implement.

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. Software-based protocols - this scheme depends on a sophisticated compiler to

insert cache control instructions at compile time to maintain data consistency.

Replicated Concurrent-Read architecture does not require any software support to

eradicate the coherency problem because of its unprecedented design. There are

advantages and disadvantages associated with each one of these coherence strate­

gies. Crawford examined and analyzed the effect of four coherence schemes on mul­

tiport memory systems. Namely, No-cache, Synapse (snooping), Firefly, and Di­

rectory schemes were analyzed and simulated for a multiport system. The result

of the analytical model and simulation were in favor of Firefly techniques in terms

of memory average access time [CRAWFCRD94]. However, this technique requires

extensive hardware, since cache-to-cache transfers demand four dedicated paths be­

tween caches. Such hardware costs become enormous as the number of processors

grows large, making the Firefly less scalable than other techniques. Our proposed

Replicated Concurrent-Read architecture virtually requires no adoption of coherence

strategies in any form. Broadcasting all WRITE operations will solve this unwanted

problem at minimal cost.

2.5 M em ory C onsistency M odels

The memory model characterizes the behavior of a shared-memory system as observed

by the processors. The problem of memory inconsistency emerges when the memory-

access order differs from the program execution order. A memory model specifies

three fundamental perspectives:

1. Behavior of a shared-memory multiprocessor,

2. Coverage of all contingencies, and

3. Behavior of processors and shared-memory systems to ensure consistent adher­

ence to the expected behavior of the multiprocessor.

In general, choosing a memory model is a process of making a compromise between

a robust model minimally restricting the software or a relaxed model offering. The

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Model

processor consistoncy

Writes Issued by each
individual processor are
never seen out of order,
but the order of writes

from two different
processors can be
observed differently

fGOOOMAN891.

The programmer enforces
consistency using

synchronization operators
guaranteed to be

sequentially consistent
[DUBOIS92],

Consistency

The result of any execution
appears as some interleaving

of the operations of the
individual processors when

executed on a multithreaded
sequential machine

[LAMPORT791-

Sequential Consistency

Wbak consistency with two
types of synchronization
operators: acquis and

release. Each type of operator
is guaranteed to be processor

consistent
[GHARACHQRL0090].

Release Consistoncy

Relaxed
Model

Figure 15: Intuitive Definition of Four Memory Consistency Models.

quality of a memory model is evaluated by software/hard ware efficiency, simplicity,

and bandwidth performance. Most multiprocessors have implemented the strong

consistency model because of its simplicity. Memory accesses for this model are atomic

and strongly ordered, and confusion can be avoided by having all processor/caches

sufficiently wait during unexpected run-time events. However, the model may lead to

poor memory performance due to the imposed strong ordering of memory events. This

is especially true when the shared-memory system becomes very large. Therefore, a

strong consistency model makes a scalable design more difficult to obtain. On the

other hand, relaxed consistency models may offer increased performance by hiding

as much write latency as possible. The main disadvantage is increased hardware

complexity and a more complex programming model. Figure 15 summarizes four

memory consistency models [HWANG93].

Shared-memory systems can be further classified into two behavioral categories:

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. Only atomic memory accesses are supported, and

2. Non-atomic memory accesses axe also allowed.

A memory access is atomic if the memory updates axe known to all processors at the

same time, and it is non-atomic if coherence mechanism does not necessarily inform

all processors at the same time. A strong consistency model can support atomic ac­

cess and a relaxed consistency model usually conforms with non-atomic accesses.

Three primitive memory operations have been defined for the purpose of specifying

memory consistency models [DUBOIS86]:

1. A READ by processor Pi is considered performed with respect to the processor

Pk at a point of time when the issuing of a WRITE to the same location by Pk

can not affect the value returned by the READ.

2. A WRITE by Pi is considered performed with respect to Pk at one time when

an issued READ to the same address by Pk returns the value by this store.

3. A READ is globally performed if it is performed with respect to all processors

and if the WRITE, that is the source of the returned value, has been performed

with respect to all processors.

The Replicated Concurrent-Read (RCR) memory consistency model supports

atomic memory accesses by broadcasting WRITE operations globally. Since READs

axe performed locally in one cycle, then an issued WRITE to the same address by

any processor can not affect the value returned by the READ. The RCR memory

consistency model is simple and efficient.

2.5.1 Sequential Consistency Model

Sequential Consistency is the most widely implemented model by multiprocessor de­

signers. Figure 16 illustrates this memory model where the READ, WRITE, and

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Switch

Single-Port Memory

Shared Memory System

Figure 16: Sequential Consistency Memory Model

swap of all processors are performed serially in a single global memory order that

conforms to the individual processor’s program orders.

Lamport has defined Sequential Consistency as follows: a multiprocessor system

is sequentially consistent if the result of any exection is the same as if the operations

of all the processors were executed in some sequential order, and the operations of

each individual processor appeax in this sequence in the order specified by its program

[LAMPORT79].
Dubois, Scheurich, and Briggs have stipulated the following two sufficient conditions

to reach sequential consistency in shared-memory access [DUBOIS86]:

1. Before a READ is allowed to perform with respect to any other processor, all

previous READ accesses must be globally performed and all previous WRITE

accesses must be performed with respect to all processors.

2. Before a WRITE is allowed to perform with respect to any other processor, all

28

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

previous READ accesses must be globally performed and all previous WRITE

accesses must be performed with respect to all processors.

Sindhu, Frailong, and Cekleov have defined the sequential consistency memory model

with the following five propositions [SINDHU92]:

1. A READ by a processor always returns the value written by the latest WRITE

to the same location by other processors.

2. The memory order conforms to a total binary order in which shaxed-memory is

accessed in real time over all READs and WRITEs with respect to all processor

pairs and location pairs.

3. If two operations appear in a particular program order, then they appear in the

same memory order.

4. The swap operation is atomic with respect to other WRITEs. No other WRITE

can intervene between the READ and WRITE parts of a swap.

5. All WRITEs and swaps must eventually terminate.

The RCR memory consistency model is comparable to the sequential consistency

model.

2.5.2 Relaxed Consistency Models

Memory consistency models, as stated before, can range from strong to various de­

grees of relaxed consistency. Figure 17 exhibits an example of a relaxed model, the

total store order (TSO) Weak Consistency model developed by Sun Microsystems’

SPARK Architecture Group (1990). Dubois, Scheurich, and Briggs have developed

a relaxed consistency memory model by relating memory access request ordering to

synchronization points in the program. This model indicated by the following three

conditions [DUBOIS86]:

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Stores,
Swaps

Stores,
Swaps

Stores,
Swaps

Switch

Single-Port Memory

Shared Memory System

Figure 17: TSO Weak Consistency Model.

1. All previous synchronization accesses must be performed, before a load or a

WRITE access is allowed to perform with respect to any other processor.

2. All previous READ and WRITE accesses must be performed, before a synchro­

nization access is allowed to perform with respect to any other processor.

3. Synchronization accesses are sequentially consistent with respect to one another.

By applying different restrictions on memory-access ordering, we may define multi­

form weak memory models.

Sindhu, Frilong, and Cekleov have provided the TSO Weak Consistency (WC)

model with six behavioral axioms [SINDHU92]. The following is an intuitive descrip­

tion of their abstracted axioms by Kai-Hwang [HWANG93]:

1. A READ access is always returned with the latest store to the same memory

location issued by any processor in the system.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2. The memory order is a total binary relation over all pairs of WRITE operations.

3. If two WRITEs appear in a particular program order, then they must also

appear in the same memory order.

4. If a memory operation follows a load in the program order, then it must also

follow the READ in memory order.

5. A swap operation is atomic with respect to other stores. No other store can

interleave between the READ and WRITE parts of a swap.

6. All WRITEs and swaps must eventually terminate.

The RCR memory consistency model, without relating memory access request order­

ing to synchronization points in the program, offers the same efficiency as the above

memory model without any increase in hardware complexity.

The Processor Consistency (PC) model, introduced by Goodman (1989), notes

that WRITEs issued by each processor, are always in program order. However, the

WRITEs issued by two different processors can be out of program order. The order of

READs issued by each processor is not restricted as long as they do not involve other

processors. This model relaxes from the sequential consistency model by removing

some restrictions on WRITEs from different processors. Thus, it creates more oppor­

tunities for the buffering and piplining of WRITEs. Two conditions must be required

for insuring processor consistency:

1. Before a READ is allowed to perform with respect to any other processor, all

previous READ accesses must be performed.

2. Before a WRITE is allowed to perform with respect to any other processor, all

previous READ or WRITE accesses must be performed.

Release Consistency (RC), introduced by Gharachorloo et al.(1990), is one of the

most relaxed memory models available. In this consistency model, the synchroniza­

tion accesses in the program must be identified as either acquire (e.g.,locks) or release

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(e.g., unlock). An acquire is a READ operation that attains permission to access a

set of data, while a release is a WRITE operation that grants such permission. There

axe three conditions that ensure release consistency:

1. Before an ordinary READ or WRITE access is allowed to perform with respect

to any other processor, all previously acquired accesses must be performed.

2. Before a release access is allowed to perform with respect to any other processor,

all previous ordinary READ and WRITE accesses must be performed.

3. Special accesses axe processor-consistent with one another. The ordering re­

strictions imposed by weak consistency axe not present in release consistency.

Instead, release consistency requires processor consistency and not sequential

consistency.

Stanford reseaxchers have reported results for evaluating these memory models un­

der three applications [GUPTA91]. They include a particle-based three-dimentional

simulator used in aeronautics(MP3D), a LU-decomposition program (LU), and a dig­

ital logic simulation program (PTHOR). Their research illustrates the breakdown

of execution times under the sequential and relaxed models for the three bench­

marks. Relaxed models remove all idle time due to write-miss latency. Based on the

same model, the READ operation cannot be performed in parallel with a single port

shaxed-memory holding the global data. Thus, the execution time has increased for

benchmarks MP3D and LU, while, a very slight improvement of 52.9% to 49.0% is

shown for PTHOR.

The key point being that the major processor’s time is spent stalling for a READ

miss.

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6 Summary

The architecture of a multiprocessor refers to the relationship between processors,

memory modules and I/O devices. In this chapter, UMA, NUMA and COMA, archi­

tectures were introduced. In UMA architecture all processors are attached to their

private caches while sharing a global memory. The advantage of this architecture

is the simplicity of design and ease of programming. The major drawback of the

UMA machine is contention in global traffic, as the number of processors grows. The

NUMA architecture is a distributed shared-memory machine. Every processor can

address its own local memory as well as any remote memory module. The advantage

of this machine is its ability to support a large number of processors. COMA archi­

tecture is very similar to NUMA machines except that distributed memory modules

are replaced with caches.

The communication efficiency of a network is essential to system performance.

There are four major organizations for the interconnection network:

1. Bus-based strategies,

2. Static interconnection networks,

3. Dynamic interconnection networks, and

4. Multiport memory-based schemes.

Memory references tend to be confined to a few localized areas of the entire address

space As a program executes these references over a given period of time. This

phenomenon is known as locality of references. Three types of locality of reference

behavior have been identified:

1. Temporal locality,

2. Spatial locality, and

3. Sequential locality.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

One of the major characteristics of any multiprocessor system is the way it han­

dles WRITE operations.

The memory model characterizes the behavior of a shared-memory system as seen

by the processors. The problem of memory inconsistency emerges when the memory-

access order differs from the program execution order.

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 Previous Scalable Architectures

In this Chapter, we review some of the most recent approaches based on maintaining

coherence through demand-driven movement of data when it is referenced. Several

approaches have been used, including directory structures which maintain a list of

which memories hold the valid copy and snooping strategies which avoid the bottleneck

of a centralized directory, but require many-to-many monitoring of each processor’s

update traffic. We discuss advantages and disadvantages of each scheme to provide

the basis for a totally new architecture.

3.1 Overview

Since we are primarily interested in designs which are scalable in the number of

processors they can support, we present four examples of the most scalable designs

which have been proposed. We show two directory-based architectures, one snooping-

based architecture, and a rudimentary replicated-memory architecture.

3.2 The Stanford DA SH Architecture

The DASH multiprocessor system has been under development by John Hennessy and

co-workers at Stanford University since 1988 [HWANG93]. ”DASH” is an acronym for

Directory Architecture for Shared Memory. It combines the scalability of message-

passing machines, by distributing the shared memory space among PEs with the

programmability of a single address space through directory-based coherence pro­

tocols. Processing clusters share a single global address space interconnected by a

scalable interconnection network.

The architecture is composed of two structural levels. The first level consists of

a set of processing clusters, each set is a bus-based multiprocessor with primary and

secondary caches. Coherence within this cluster is supported using a snoopy bus-

based protocol. The second level is a mesh interconnected network connecting the

clusters together. Within this level, inter-cluster cache coherence is maintained by a

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 18: Stanford’s DASH architecture.

distributed directory-based cache coherence protocol. The interconnection network

among the 16 multiprocessor clusters is a pair of wormhole-routed mesh networks.

One mesh network is used to request remote memory, and the other is a reply mesh.

Figure 18 depicts at a high level organization of the Stanford’s DASH architecture.

Caches within the clusters are designed to match the processor speed and support

snooping from the bus to maintain the coherency. Intra-cluster coherence implements

the Illinois or modified, exclusive, shared, invalid (MESI) protocol.

3.2.1 DASH M em ory Hierarchy

The Stanford DASH implements an invalidation-based cache-coherence protocol. A

memory location may be in one of three states:

1. Uncached: not cached by any cluster,

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Processor Level

Processor Cache

Processor Cache in Remote
Clusters

Remote Cluster Level

Other Processor Cache
Within Local Cluster

Local Cluster level

Directory and Main Memory
Associated With Given

Address

Directory Home Level

Figure 19: DASH memory hierarchy.

2. Shared: in an unmodified state in the caches of one or more clusters, or

3. Dirty, modified in a single cache of some cluster.

The directory keeps the summary information for each memory block, specifying its

state and the clusters that are caching it. The four levels of the DASH memory

hiererchy are shown in Figure 19.

The first-level cache is designed to match the processor speed. If any request is

not satisfied at this level then it is routed to the second level. It takes 30 processor

clock cycles to access this level. The second-level consists of other processor’s caches

within the local cluster. If the data is locally cached at this level, the request can be

satisfied within the cluster, otherwise the request is sent to the home cluster level.

The home-level consists of the cluster that contains the directory and physical mem­

ory for a given memory address. It takes 100 processor clock cycles to access the

directory in this level.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

For many accesses, most private data references, local and home clusters, are the

same and the hierarchy can be collapsed to just three levels. In general however,

a request will travel through the interconnection network to the home cluster. The

home cluster can usually satisfy the request immediately, but if the directory entry is

in a dirty state, or in a shared state when the requesting processor requires exclusive

access, the fourth level must also be accessed which requires 135 clock cycles. The

remote cluster level for a memory block consists of the clusters marked by the directory

as holding a copy of the block.

3.2.2 Cache Coherence M ethod in DASH

Two levels of local cache axe used per processing node as shown in Figure 18. One can

assume a write-through primary cache and a write-back secondary cache. READS

and WRITES axe separated with the use of WRITE buffers for implementing weaker

memory consistency models. The main memory is shared by all processing nodes in

the same cluster. To facilitate prefetching and the directory-based coherence protocol,

directory memory and remote-access caches are used for each cluster. The remote-

access cache is shared by all processors in the same cluster.

The directory memory relieves the processor caches of snooping on memory re­

quests by keeping track of which caches hold each memory block. Figure 20 illustrates

a directory structure per cluster. As proposed by Censier and Feautrier, each entry

contains one presence bit per processor cache. In addition, a state bit indicates

whether the block is uncached, shared in multiple caches, or held exclusively by one

cache; if the block is dirty. By inspecting the state and presence bits, the memory can

become aware of which caches need to be invalidated when a location is written. This

facilitates the scalability of the DASH by reducing the demand on available memory

bandwidth.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r Processor N

Cache

Processor Processor

Cache Cache

Snoopy Bus

f Processor ^

v Cache j

Remote Memory
Addresses

Remote Access
Cache

Main Memory Directory

Data Cluster
n

Figure 20: Directory structure per cluster.

3.3 T he K endall Square Research KSR-1

The Kendall Square Research KSR-1 is the first commercial attempt at building a

COMA-style scalable multiprocessor. Scalability in the KSR-1 is obtained by con­

necting 32 processors to assemble a ring multi (search engine 0 in Figure 21) operating

at 128 million accesses per second. As shown in Figure 21, the KSR-1 uses a two-level

hierarchy to interconnect 34 Ring:0s by a top-level Ring:l. Each node consists of a

32-Mbyte primary high-speed memory, and a 64-bit superscalar processor. The super­

scalar processors are designed for both scalar and vector operations. Each processor

comprises 64 floating-point and 32 fixed-point registers of 64 bits.

3.3.1 KSR-1 M emory Hierarchy and Coherence Strategy

The KSR-1 offers a single-level memory, named ALLCACHE by its designers. As a

result of this, the KSR-1 eliminates the memory hierarchy present in conventional

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

r~Lr • L_r-|

^ Sawt* V
Engm 1

V o ? ARD:
ALLCACHE
RouMrand
Dtactoty

6 ^ ° a
Stttodrang
(S-32nod«)E n g m o

H IH D -

Oirecafy|

| Cattm
iProoaacrl

For ttiiinoda only
32 MB. 1288 in* ftubpaga1)

20 MHz. 20 MIPS. 84b ouMam

Figure 21: The Kendall Square Research KSR-1 architecture.

computers and the corresponding physical memory addressing overhead. The KSR-1

maintaines data consistency by replication of data throughout the distributed pro­

cessor memory nodes.

3.3.2 KSR-1 Programming M odel

The KSR-1 machine provides a strictly sequential consistent programming model and

dynamic management of memory through hardware migration and replication of data

throughout the distributed processor memory nodes using its ALLCACHE mechanism

and a sequential consistency model. With ALLCACHE, an address becomes a data

name, and this name automatically migrates throughout the system and is associated

with a processor in a cache-like fashion as needed. Copies of a given cell are made by

the hardware and sent to other nodes to reduce access time. A processor can prefetch

data into a local cache and poststore data for other cells. The hardware exploits

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Local
Cache

Directory

Local
Cache

Directory

Requestin

Figure 22: Remote cache access in KSR-1 architecture.

temporal and spatial locality.

Figure 22 illustrates the situation when the requester and responder reside in dif­

ferent ring:0s. The top level, Ring:l, consists entirely of Ring Routing Cells(RRCs),

each containing a directory for the Ring:0 to which it is connected. Each RRC direc­

tory on Ring:l is essentially a duplicate of the RRC directory on the corresponding

Ring:0. When a packet reaches an RRC on Ringrl, it will be moved to the next RRC

on the ring of the RRC directory indicating that the requested data is not on the

corresponding ring. Otherwise, the packet is routed down to the RRC on Ring:0.

Ring:0 has the capacity of processing 8 million packets per second, and Ring:l could

handle 8, 16, 32, or 64 million 1024-bit packets per second.

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Frontplane (max: 6
modules)

Up to 2 modules Up to 4 modules

Secondary
I/O

Chassis

Primary
VME I/O
modules HVME Bus

Sec.
Cache

Sec.
Cache

Local Memory

Secondary
I/O

Interface
Global

Memory

604
CPU

Figure 23: The Night Hawk System Block Diagram[Harris]

3.4 The Nighthawk 6800-Series M ultiprocessor

The Nighthawk multiprocessor is a shared-memory system specifically for Real-Time

applications. The system is composed of CPU modules, Global Memory modules and

I/O Interface modules. A maximum system consists of 6 modules. Up to 4 modules

can be CPU modules, and up to 2 modules can be Global Memory modules. One

of the modules can be a secondary I/O Interface module. This system supports up

to 8 processors as a tightly-coupled multiprocessor. Figure 23 depicts the Nighthawk

simplified system block diagram.

3.4.1 Local-Remote-Global M emory Hierarchy

The Nighthawk memory system can be decomposed into four levels of hierarchy, as

illustrated in Figure 24. The first level is the primary cache which is within the PE,

and matches the processor speed.

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Processor
Cache

Secondary
Cache

Local
Memory

Global
Memory

Figure 24: The Nighthawk memory hierarchy.

A request that cannot be serviced by the primary cache is sent to secondary cache.

Designers have estimated a 95% hit rate at this level for typical real-time tasks. If

there is a miss, then snooping the local bus and system bus takes place until the

request is satisfied.

3.4.2 CPU -Level Local and R em ote M em ory Design

Each CPU board could have 1 or 2 IBM/Motorola 604 processors supporting 100

MHz and 150 MHz clock rates.

A separate direct-mapped secondary cache is used for each processor and these

caches support copyback and write-through protocols. The processor bursts data

(operands and instructions) to/from the secondary cache at the rate of 400 MB/sec.

The CPU burst size is one cache line which consists of 4 (64-bit) double words. The

write-through mode is used only by the operating system and is not available to the

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

users. The secondaxy cache RAMs axe packaged as a single daughter board with the

RAMs for both processors. The RAM module supports a 1 Megabyte direct-mapped

secondaxy cache for each processor.

The Nighthawk 6800 includes a cache snoop filter at the frontplane interface. This

filter consists of two cache tag sets (one for each processor) that keeps track of global

memory reads into the processors on the boaxd. The filter tags then indicate if a

snoop request from other boaxds can possibly be in the caches on this board. If

the snoop request address is not on the filter tags, then the filter responds to this

miss status, of the frontplane, without bothering the caches or the processors. If the

filter tags show a hit, then the snoop request is passed to the secondaxy caches and

processors. The filter tags accommodate the secondaxy cache size defined above.

The Night Hawk 6800 supports two types of local memory, one using static RAM’s

for higher performance and one using dynamic RAM’s for higher capacity. Local

memories are packaged as daughter caxds, and its size may be upgraded by replacing

the daughter caxd.

3.4.3 Global Memory Design

The global memory system consists of one or two global memory boaxds and may

contain a combined total of 1 gigabyte of storage. The memory boaxd is a two ported

dynamic RAM memory device that can service either the HVME backplane or the

system frontplane. It consists of a mother boaxd and a Memory Daughter Card

(MDC). The daughter caxd allows for different memory densities using a common

mother boaxd and the capability of memory expansion.

The global memory boaxd insures system-wide cache coherency by broadcasting

primary I/O accesses to the frontplane for snooping.

3.5 M ultiprocessors Em ploying Globed D ata Replication

Concept of data replication refers to a multiprocessor system where each processor

has its own local memory and the shared data are replicated in each of the local mem-

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ones. This scheme is somewhat orthogonal to the DASH and the KSR-1 axchitectures

discussed earlier in this chapter. Although both architectures support data replica­

tion and process migration, they do not replicate the shared data over the processor

memory pairs. It can be used to implement Uniform Memory Access (UMA) systems

if all memory addresses axe replicated, or it can be used to implement Non-Uniform

Memory Access (NUMA) systems if only some addresses axe replicated. However, this

implies a cost disadvantage of requiring redundant memories that contain identical

data.

Various aspects of data replication in multiprocessor systems have been described

in United States patent documents, numbers 4928224, 5214776, 5247629, 5247673,

and 5274789 of different applicants. Figure 25 illustrates an architecture (Patent No:

5214776) under the title name ” Multiprocessor System Having Global Data Replica­

tion”. It is comprised of four identical control processing units, CPU 0 to 4. The

detail is shown for CPU 0 only. All units communicate with each other through a

system bus. They also share peripheral units and common memory resources through

the system bus. Its designers claim this architecture provides remarkable advantages

in terms of performance because each processor has access to global data for read

operations without needing access to the system bus. However, this architecture

requires that the global data be replicated in each of the several local memories.

Coherence problems could be solved using several techniques based on the type of

replication. There are three types of replication that can solve this coherence problem:

1. Global data replication,

2. Dynamic data replication, and

3. Selective data replication.

3.5.1 Global D ata Replication

The global data replication approach replicates shared data over entire local memories.

This way each processor may read the global data in its related local memory without

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CPUs

Arbiter

CPUiCPUi CPU*

Output
Buffer

Interface &
Arbitration

Control/
Isolation

Input
Buffer

Timing Unit

Interface

Figure 25: Multiprocessor system having global data replication.

accessing the system bus. In the event of a write operation on global data, access to

the system bus is required to write the data in all local memories to assure consistency.

This architecture demands a large amount of local memory, adequate for storing all

the global data which may be required for parallel processing. To keep the size of

the local memories economically feasible, it is important to keep the local data and

replication at a minimal level.

3.5.2 Dynam ic D ata Replication

Dynamic data replication is performed at the page level, only when global data is

requested by several processors. First, the data is treated as local then converted to

global, and vice versa, to be replicated dynamically at run time. As long as the data

is considered local, it is not necessary to allocate memory space in each and all of

the local memories. This limits the bus access operations by maintaining coherence

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

among the copies of the data and size of the local memories required to run a particular

application.

3.5.3 Selective D ata Replication

Selective data replication uses local memories efficiently by further limiting the repli­

cation of the global data. It is necessary to perform replication according to selective

criteria. This type of approach would require the development of complex and sophis­

ticated replication mechanisms, which would permit control of WRITE operations in

selected local memories. However, the drawback of costly memory replication, must

be weighed against the resulting advantages. The outcome would limit the replication

of data and the problems of global and dynamic type replication, and thus reduce the

size of required local memories.

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3.6 Sum m ary

In this chapter, four scalable shared-memory multiprocessors were reviewed. DASH

architecture implements an invalidation-based cache coherence protocol. Directory-

based architectures, such as DASH, maintain the summary information for each mem­

ory block, specifying its state and the clusters that are caching it. KSR-1 architecture

also relies on directory-based schemes to maintain data coherency. KSR-1 is an exam­

ple of COMA architecture. The Nighthawk multiprocessor uses snooping strategies

which avoid the bottleneck of a centralized directory, but require the monitoring of

each processor’s update traffic. Finally, a multiprocessor system having global data

replication was introduced. This architecture requires that the global data be repli­

cated in each of the several local memories. The multiprocessor system, having global

data replication, maintains data consistency by employing several techniques based

on the type of replication.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 A nalysis o f M emory Access Behavior in M ulti­

processors

4.1 O verview

Previous multiprocessor designs have viewed memory as a scarce resource which must

contend for simultaneous READ access by storing only one valid copy of each updated

data item. While this approach was economically necessary several years ago, it cre­

ated a cache coherence problem. Advancement of memory technology has opened up

new opportunities by optimizing memory system design for the most frequently used

operations.

The principle of locality of references has demonstrated that, roughly 90% of

memory accesses axe local memory references. Also true is that, 80 to 90% of memory

references are READ operations, thus, the concentration of our research is of these

memory reference behaviors. In the next two sections, we will analyze these memory

access behaviors.

4.2 G lobal vs. Local M em ory References

A memory reference that can be satisfied by the local memory is called local memory

reference. Likewise, an access to main memory is known as global memory reference.

The principle of locality of reference states that, local memory references constitute

90% of all memory accesses. Since local memory access time is shorter than referenc­

ing global memory modules, then the emphasis should be placed upon the design of

memory hierarchy systems, in order to minimize the total memory access time.

A memory hierarchy system consists of multiple levels of memory modules with

different speeds and sizes. Fast memories axe more expensive per bit than slower

memories and axe usually smaller. The ultimate design goal is to minimize the cost

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 1: Memory Technologies.

Memory technology Typical access time $ per MByte in 1993

SRAM 8 - 35 ns $100 - $400

DRAM 90 - 120 ns $25 - $50

Magnetic disk 10,000,000 - 20,000,000 ns $1 - $2

per bit of the total memory system while maximizing the speed of memory references.

High speed memories are approximately four to ten times faster than main memories,

while they axe four to eight times more expensive than slow memories. Main mem­

ories use DRAM (dynamic random access memory), while caches axe implemented

from SRAM (static random access memory). Today, the three major technologies

used to build memory units axe DRAM, SRAM, and disk. Table 1 illustrates the

access time and costs pertaining to these technologies [HENNESY94].

So fax, by providing a local memory to every processor, average memory access

time has been notably reduced. Generally, minimizing the number of global memory

references while reducing the cost per bit of memory units will result in a more

effective shared-memory system. By employing multiported memories in a replicated

fashion, the total memory access time can be improved even further. Our proposed

memory hierarchy system not only shows an improvement over existing systems, but

that it is also free of cache coherency problems.

4.3 R E A D vs. W RITE D istribution o f M emory A ccesses

While the majority of all memory references axe READ operations [HWANG84], it is

surprising that no experimental studies, examining the impact of 0(1) READ mem­

ory access without overhead cost, have been done. This reality has been neglected for

many yeaxs, due to the fact READ and WRITE latencies axe identical in uniproces­

sors. The ratio of READ/WRITE operations increases even more when the transition

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 2: General Statistics on the Benchmark Applications.

Application

Instructions

Executed

(millions)

Shared Data

References

(millions)

percentages of

shared data

references

OCEAN 120 16.5 13.8%

PTHOR 86 15.8 18.4%

MP3D 209 22.4 10.7%

CHELOSKY 1302 217.2 16.7%

LU 50 8.2 16.4%

LOCUS 897 130.3 14.5%

BARNES 337 44.9 13.3%

WATER 2165 195.3 9%

is made to multiprocessors. Since in a shared-memory system, a WRITE operation

will be followed by at least one READ memory reference, this actuality is further

amplified. Table 2 shows the statistics taken from the execution of benchmark appli­

cations on the SPLASH architecture [GHARACH0RL0095]. These general statis­

tics exhibit that only a small percentage of all memory references are shared data

references. Let A,- and A* denote the number of memory accesses and shared data

references, respectively. The weighted average of shared references (A?) is:

A ; = § 1 7 * 100 (3)

By substituting the values of A,- and A? in equation 3, we have:

650.6M
A‘ - 5l66M * 100 = li6 %

These statistics amplify the fact that only small percentages of all memory accesses

are shared data references.

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 3: Statistics on Shared Data References and Their Characteristics.

READs WRITEs R/W

Application X1000 X1000 Ratio

OCEAN 12.280 4.255 2.9

PTHOR 14.516 1.316 11.0

MP3D 16.965 5.468 3.1

CHELOSKY 193.216 24.049 8.0

LU 5.478 2.727 2.0

LOCUS 117.440 12.847 9.1

BARNES 34.121 10.765 3.2

WATER 146.376 48.91 3.0

Table 3 shows statistics on shared data references and their characteristics [GHARA-

CH0RL0095]. Let R* and W* denote the number of shared READs and shared

WRITEs, respectively. Based on the statistics of table 3, 52 R* = 540.392, and

J2W* = 66.318 for an aggregate R /W ratio of 8.1 on shared memory references.

These numbers imply that only a small (1.37%) percentage of all memory references

are shared WRITEs. (89.1%) of shared references are READ accesses.

If 10% of all memory references are WRITE, which is likely the case for multipro­

cessors [HWANG84], then a greater focus must be placed on the READ capabilities

of multiprocessor computers since it holds 90% of all memory references. Let us

emphasize that 10% of WRITEs are composed of shared and local WRITEs. Typ­

ical multiprocessor applications have 1 to 5% shared WRITEs, and therefore, less

emphasis can be placed upon WRITE operations.

By this analysis, we could say that the upper limit for the number of WRITE

memory references in a typical application, is 50% of the total memory references,

while the lower limit could be very close to zero. Since the total number of WRITEs

can not exceed 50% of the total number of memory accesses, then, READ operations

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

have a lower limit of 50% with an upper limit of close to 100% of all memory accesses.

Let A{ denote the number of memory accesses by processor i in a given time in­

terval. If Wi and R{ denote the number of READ and WRITE references respectively

during that interval, then

Ai = Wi + Ri, (4)

1 < i < N .

Thus, for all N processors in the system,

+ (5)
i'=i i'=i

Thus,
N N N
£ * = £ * + £ » ; (6)
i= l t'= l i= l

T heorem 1 : Visibility of Shared Updates: For a shared-memory update to be visible

to at least one other processor, the following inequality holds:

N Y ' n A •
(7)

«=1 z
Proof: (by contradiction)

at AiAssume 5Zi=i Wf > ■*. This imphes that at least one superfluous WRITE oc-

cured then by equation 6 we have, J2iLi Ri < Wj. This implies that data has

been written unnecessarily since it is never read. □

C oro llary 1 : Cummutative READ vs. WRITE Ratio: Since theorem 6 dictates

N a .
(g)

t= l Z

and substituting 6
N N N

i=i i=i {=1

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in equation 8, then.
- . W S + S g , * (#)

i=i 2

N N N

2 E ^ < E ^ + E ^ (10)
t=i t=i i=i

Or AT AT
E ^ < X > (n)i=i i=i

Thus, the number of READs is always at least as large as the number of WRITEs,

yielding the READ vs. WRITE ratio,

- ° '50 (12)

Indicating that READs axe more important to optimize, than WRITEs. □

Equation 12 expresses that the total number of WRITE references can not be

greater than 50% of all references. Therefore, the number of READs will constitute

at least above 50% of the total memory references. Because of the nature of sharing in

multiprocessors, this lower limit of number of READs will be well above 90%. Thus,

it is time to place greater emphasis on READ operations.

Our design objective which is ambitious though feasible, is to attain zero memory

access overhead on all READ operations. Replication is the most feasible solution to

this problem, however it is not an economical approach. To design a cost effective high

performance multiprocessor, a combination of replication and multiport memories will

offer an acceptable solution.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 Sum m ary

In depth research of memory reference behavior has inspired us with new ideas about

multiprocessor architecture. WRITE operations can account for 0% to 50% of all

memory references. Since READ operations constitute the majority of memory refer­

ences, improvement of READ references has a great impact on overall multiprocessor

performance.

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 A Scalable Replicated Concurrent-Read M em ­

ory M odel

To evaluate the Replicated Concurrent-Read (RCR) architecture, an analytical model

was developed. In order to compare the RCR approach with existing architectures,

models were also developed for typical Uniform Memory Access (UMA), and Non-

Uniform Memory Access (NUMA) machines along with the Local-Remote-Global

(LRG) multiprocessor. Since hardware configurations of computer systems could

vary among different models, consistent assumptions have been made.

5.1 A ssum ptions

It is assumed that the workload will be evenly distributed between processors in all

models. This implies that each processor has the same chance to perform READ/WRITE

to shared/private data. If there is a READ miss, a block of data will be transfered

to the cache. In case of a WRITE request, write-through policy will be assumed. For

the sake of simplicity, it is assumed that block sizes are the same between all levels

of caches. The models do not employ the concept of finite population of Processing

Elements. In other words, in these models, all of N processors could make N memory

references at every clock cycle. Thus, no processor is idle at any given time due to

competition for accessing memory. Developed models project the expected memory

access time for each architecture.

5.2 R C R A nalytical M odel

In this architecture, every processor is attached to a private cache, a local cache, and

a replicated memory module as shown in Figure 26.

A READ hit fetches data from the cache in tc time or in a one clock cycle. Let hc

denote the probability of a cache hit. A READ miss with the probability of (1 — hc)

will cause an access to replicated memory in search of a requested word. The time

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ReadRead Read

Mn

Read miss or Write Bus

Figure 26: The RCR configuration.

required to access such a word is simply the replicated memory cycle time, t^j- Let

ha denote the probability of a replicated memory hit. In the case of a miss, the pro­

cessor has to access the auxiliary memory in taux time. The auxiliary memory space

is partitioned into addresses in the working set and addresses outside the working set.

Replicated memories axe images of the working set. A reference to auxiliary memory

addresses axe distinguished between isolated memory accesses and those which are

incrementally outside the working set by some distance 8 such that L —8 < X < H +6

where L and H axe the lowest and highest addresses currently stored in replicated

memory, respectively. If an access is to an isolated memory address, then the re­

quested word will be directly transfered from the auxiliary memory to the processor

immediately. In the case of a reference being Incrementally Outside the Fence (IOF)

such that X < L — 8 o r X > H + 8 , a . quantity of D iof words will be transfered to the

processor. Let P i o f denote the probability of a memory access being incrementally

outside the fence.

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The time it takes to fetch a word from the auxiliary memory also depends on the

global bus traffic. Every processor is equally likely to reference memory address space.

The chance of a READ memory access is (1 — Ac)(1 — Hr). A processor may have

to wait for other READs or WRITEs to complete their execution. The time penalty

associated with the duration of wait, depends on the number of pending READs and

WRITEs in the bus queue. Let N and P, denote the total number of processors

and processor # i respectively. At any given time, the number of pending memory

accesses is between 0 — N inclusively. As a result, Pi may have to wait for 0 — (N — 1)
memory references to be completed before its turn. Let t̂ ait-giobai-bus denote the wait

time. The WRITE access time depends on whether it is a shaxed or private WRITE.

A private WRITE takes place in t c time to the private cache of the writing PE. On

the other hand, Shared WRITEs axe broadcasted to all replicated memories via the

global bus. A WRITE to memory takes place in t w time. Let denote the average

READ time which be expressed as the sum of products for each access type and time

mentioned above:

- *c + (1 - hc) tMB + (1 - hc)(1 -

+{PlOF)t aux D iof + (1 — PiofY aux } (13)

Equation 13 could be simplified as:

+ taux[PlOF(DlOF — 1) + 1]] (14)

The value of twait-giobaiJmai depends on the number of pending accesses in the queue
and the time penalty associated with it. This can be approximated by scaling the

probability of each individual processor requesting global access by the expected num­

ber of requests pending from other processors which is The time penalty with

accesses in the queue depends on the characteristics of each access:

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1. whether the memory access is a READ or WRITE,

2. whether a requested word is in incrementally outside the fence or it is in isolated

memory space.

The probability of a READ memory reference to be in the queue is (1 — hc)(1 — hn).

Let Pshared-rtrrite denote the probability of a shared-write memory access such that

Pshared—write "1“ Pprivatc-write "I" Pread = 1* The Value of twait_globalJbus expressed
as:

rcr N — 1
ûia.it-global-bus = ^ shared-write^w (1 ^ c)(l ^ r) P read

[P lO F D lO F t aux “f" (1 - PlOF)t aux]} (15)

Equation 15 may be simplified as:

A T - 1
2

[taux(PlOF(DlOF ~ 1) + 1)]} (16)

t wait-global-bus — o shared-writê w (1 ^c)(l hfl)Preaj

Hence, the may be expressed as:

r̂ead = + (1 — hc)tf4 B + (1 — Ac)(l — ^J?)[------ [Pshared-writetw +

(1 — A c)(l — hR)Pread[taux(PlOF(DlOF ~ 1) + 1)]]

+taux[PlOF(DlOF ~ 1) + 1]] (17)

The WRITE access time depends on whether it is a shared or private WRITE. A

private WRITE takes place in tc time while a shared WRITE is broadcasted to all

replicated memories via the global bus. In the case of a shared WRITE, P,- may

have to wait for 0 — (N — 1) memory references to be completed before its turn. The

average WRITE time, may be written as:

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^ write — Pthared-write[t wait-global Jbua "h "b Pshared-write)^c (IS)

By substituting the value of calculated t̂ aitigiobaiJms iQ equation 18, t ^ Re becomes:

N — 1
tw rite = P i hared-w rite[̂ ihared-write^w d* (1 ^c)(1 hptjP read

[taux(PlOF(DlOF ~ 1) + 1)] + tw] + (1 — Pshared-write)tc (19)

Let tR̂eR be the average memory access time. The overall expected memory access

time depends on the percentages of READ/WRITE operations with respect to total

memory references. By adding average READ/WRITE access time with respect to

probability of an access being READ/WRITE, the overall expected memory access

time becomes:

t?ZR = Pr-dt£% + (1 - S2 (20)

5.3 U M A A nalytical M odel

In the UMA machine, all processors share a global memory module, while every

processor is attached to a local cache and a seperate private cache. Every memory

access starts with searching data in either a local cache or private cache, depending

upon the address of the access. In the case of a miss, global memory is accessed.

Let hc denote the cache hit rate. A READ hit fetches data directly from the cache

in tc time, if there are no pending WRITEs since only one invalidation can occur

at a time. The probability of having to wait for a pending write to complete, may

be expressed as P3hared-write• The time penalty involved depends on the number of

pending WRITEs in the queue. Let t^upending-write denote the time a processor may
have to wait before accessing data from the cache. A READ miss requires checking

the global memory for a copy of the data. The time required to access any such

data is simply the global memory cycle time, tm. The chance of having to wait for

another memory reference to complete its execution is (1 — hc). The wait time also

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

depends on the number of pending memory accesses. Let t^ugiobaiJms denote the
time a processor may have to wait for accessing global memory. The average READ

time may be expressed as:

+ <c + (1 - A c (21)

twaiupending-write can be approximated by scaling the probability of each individual
processor requesting global access by the expected number of requests pending from

other processors which is Thus, the expected value of t™ t%ending-write may be
calculated as follows:

t wait-pending-write (Behared-writet ̂ (““)

The waiting time for global bus is dependent on whether other processors are trying

to access global memory. t™t̂ giobaiJbus may be expressed as:

N - l ,
t wait-global-bus ~ 2 \^shared-writetm + (1 — hc)PreadBtm] (23)

A private WRITE takes place in tc time plus waiting time for any other pending

WRITEs. Any update to shared-data, also requires updating the global memory. As

a result, any shared-write memory accesses may have to wait for global traffic. The

average WRITE time may be expressed as:

1.UMA p . fi j . +UMA ,write *3narcd-write\l'C 1 wait-pending-write ■wait-pending-write
lUMAtwait-global-bus "b ^m) "b (1 Pshared-write) X

t UMA \wait-pending-write)(tc + t ending-write) (24)

The overall memory access time is dependent on the probabilty of an access being

READ or WRITE. Let t^ve denote the overall memory access time. t^ve may be

expressed as:

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+UMA p f U M A i f I p \AJ M A
Lave ~ * re a d t read f VA r read 1L write)

As seen in equation 25, the expected memory access time is the total of average

READ/WRITE time with respect to the probability of an access being READ/WRITE

5.4 N U M A Analytical M odel

Since global memory is distributed among processors, every processor is attached to its

own private cache and a memory module, which is considered as local memory for the

respected processor. If an access is not satisfied by the cache, then distributed shared-

memory modules will be accessed. A READ hit is answered in tc time plus the waiting

time for pending invalidation WRITEs, if any. A READ miss requires checking the

distributed memory modules. Let Pl denote the chance of having requested data in

the local memory module. Fetching a word from local memory takes place in tl, time

plus the time spent in local memory traffic. If the data is in a remote memory module,

then the time required to fetch a word is demote plus the waiting time in global traffic.

Let twctit̂ pending.write denote the time a processor may have to wait for accessing the

cache, tw a it^en d in g .w rite depends on the number of pending invalidation WRITEs. Let

twaitJocaiJbus denote the time a processor may have to wait for accessing local memory.

Finally, let tZ ^u g io b a iJm s be time spent in global traffic. The average READ time

may be expressed as:

J.NUMA _ f N U M A , f i f i _ l Up (+NUMA ,
read wait ^pending—write ' c ' \ wait-local-bus

BtL) + (1 - + Bt,w .)] (26)

The waiting time for pending .write times depends if other processors are trying to

invalidate a shaxed-word in the private cache. Also the number of pending-write

accesses in the queue effects the duration of waiting time to access the cache. This

can be approximated by scaling the probability of each individual processor requesting

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

global access by the expected number of requests pending from other processors which

is Thus, twait̂ pending-write could be calculated as:

t wait-pending-write ~~ 9 {Pshared-write^c) (2 7)

The waiting time for local bus depends on the number of remote accesses by other

processors and characteristics of those remote references. Thus, t^tJocaiJbus may be

expressed as:

tZ S u L l J to = + (1 - *«)(1 - hL) P , ^ B t L) (2 8)

where is the local memory hit rate.

The waiting time for global bus is the function of the number of remote accesses in

the global traffic and also local traffic in a specified remote memory module. The

characteristics of pending accesses in local and global traffic is also a factor in the

calculation of waiting time for global bus. Thus, t^aiujiobai-bus could be calculated as:

N - 1 ,
2

P l { P shared -w rite^L + (1 ~ h c) P Teai B t l) (2 9)

^ w ait-global-bus ~ (9)[P sh a red -u rr ite t Rem ote d" (1 ^ c) (l PreadBt Remote\ +

A private WRITE access takes place in t c time plus the waiting time in the cache

queue. A shared-write also requires updating the distributed memory module. The

average WRITE access may be expressed as:

J.NUMA — p , U 1 +NUMA , » (i N U M A , i \ ,
^ w rite * shared-write\}'C T *> w ait-pending -w rite ' " 'L Kuwait Jo ca l-bus * ’•L) 1

(1 h£,)(t wait-global -bus d" R̂emote)] d" (1 P sh a red -w rite) X

ttw a iU p en d in g -w rite d* ĉ) (30)

The overall memory access time may be obtained by combining expected READ and

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Board 1 Board n

Bus

C lN

IN

Em.

Global Bus

Global Shared-Memory

Figure 27: LRG architecture.

WRITE access times with respect to the probability of an access being READ or

WRITE. The expected memory access time may be expressed as:

+NUMA _ p + N U M A . C , p \+NUM A / q 1 n
l’ave * r read<-ri:ad i* r Tead)f-WTit t

As seen in the equation 31, the overall access time is a function of average READ

and WRITE times plus the probability of an access being READ or WRITE.

5.5 Local-Rem ote-G lobal Analytical M odel

Local-Remote-Global (LRG) architecture consists of several clusters with every clus­

ter containing two processors and a shared local memory as shown in Figure 27.

Each processor on the board is attached to a private cache. The LRG architecture

also provides a global memory module which is uniformly accessible by all processors.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A READ hit is answered in tc time. A READ miss requires checking the local memory

for a copy of the data. The time it takes to fetch a word from local memory is t i plus

the waiting time for the local bus. Let hc and h i denote the probability of cache and

local memory hit rates, respectively. The chance of having to access global memory

is (1 — hc)(l — hi). Let ttait-giobaiJms denote the waiting time for the global bus. The

average READ time may be expressed as:

+ + *!.) +

(1 - hc)(1 - + B tm] (32)

The waiting time for the local bus is dependent on whether the other processor on

the board is accessing the local memory and also on the characteristics of its access.

A processor will access local memory if:

1. the processor is performing a sharedjwrite, and

2. there is a cache read-miss.

twaUJocaiJ,™ maY be expressed as:

 ̂wait-local-bus ~ 'ha.Tcd-.writct L "t* (1 hc)PTeadBtl\ (33)

The waiting time for global bus is dependent on the number of pending global memory

accesses by other processors and characteristics of those accesses in the queue. A

processor will access the global memory if:

1. the processor is performing a sharedjwrite, and

2. there is a read-miss on local memory.

iwait-giobaiJ,™ could be calculated as:

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i LRG — ~ r n , s ,wait-global-bus — 2 shared-ruriteLm T

(1 - hc)(1 - hL)PreadB tm] (34)

The average WRITE time is dependent on whether a WRITE is on a private or

shared word. A private WRITE takes place in tc time. A shared WRITE requires

also updating local and global memories. The average WRITE time may be expressed

as:

-̂write = Pshared-vrrite{ ĉ 4* PL{tWaitJocalJ>us 4* ^l) 4*

(1 P î^wait-global-bus 4" ^m)} 4“ (1 Piharcd-write)tc (35)

The overall memory access time is dependent on average READ and WRITE times

with respect to the probability of an access being READ or WRITE. Let t ^ G be the

expected memory access time, t ^ G may be expressed as:

t™G = PreadttSZ + i1 ~ Pread)trurite (36)

Equation 36 reflects the fact that the average memory access time is directly

function of number of memory accesses with respect to their characteristics at any

given time.

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.6 Summary

By employing a preset distribution of memory accesses throughout the address space,

analytical models were developed. The READ time in the RCR configuration is

proportional to replicated memory hit rate. The READ time in a UMA architecture

is strictly greater than that of the RCR architecture because UMA configurations

must wait for global bus for all READs that are not satisfied by cache. The READ

time in a NUMA machine depends upon the location of the requested word whether

it is:

• in local distributed memory module, or

• in a remote memory module.

The expected READ time in the RCR architecture is less than NUMA configuration

since the RCR performs majority of its READs locally. The READ time in LRG

configuration is greatly dependent on local memory hit rate since READ misses are

very costly. The RCR architecture with replicated memory hit rate of 80% and above

has less READ time than LRG configuration with the same hit rate.

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 A Scalable R eplicated Concurrent-Read A rchi­

tectu re

Demand to design a high performance computing system, capable of handling today’s

complicated engineering problems, continues to grow exponentially. In recent years,

processing element’s speed and overall performance has reached a point in which phys­

ical limitations restrict further improvements. This has captivated a great amount of

attention to the re-evaluation of current memory hierarchy systems.

6.1 O verview

One of the major factors which effects the performance of a distributed shared-

memory system is the strength of its memory hierarchy design. The primary memory

hierarchy design goal is to increase the effective memory bandwidth so that more

memory words can be referenced per unit time. Previous designs provided high­

speed caches to every processor to alleviate processor memory bandwidth mismatches.

While this approach was impelling, it had an undesirable side-effect of data inconsis­

tency, which resulted in more complex hardware designs in order to secure correctness

of execution. On the other hand, interconnection network systems started to experi­

ence a new problem called contention.

In this chapter, a new approach in multiprocessor design will be introduced. The

Replicated Concurrent-Read (RCR) architecture demonstrates a unique characteristic

in dealing with READ and WRITE operations. This design has not inherited the

short comings of previous approaches while remaining simple, cost-effective, and a

considerably scalable system.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2 Hardware D esign

The foundation of the proposed design is based on extensive investigation of previously

designed memory hierarchy architectures. The proposed concept increases efficiency

of READ operations while decreases deficiencies of previous designs. To achieve this

goal, two major components of multiprossesors were the center of our consideration,

Memory units and interconnection network system. These components had to be

designed in such a way that optimizes the READ operation while the probability of

data inconsistency and contention is minimized.

6.2.1 M emory U nits and the Interconnection Network

Multiported memories have been developed to support concurrent access to memory.

Availability of these memory units would allow us to READ and WRITE the same

memory unit simultaneously. By assigning each memory port to only one type of

memory reference operation, it is possible to READ through one port while updating

data through the other. In our proposed shared-memory multiprocessor system, each

processor will be connected to its own dual-port memory unit. Thus, it is possible to

read N different memory words by N processors simultaneously in one memory cycle

with no delay. WRITE operations axe accomplished by broadcasting over a system

bus which will be connected to the other port of these memory units. This technique

will allow us to WRITE to all memory units simultaneously, therefore, eliminating

the cache coherence problem. Together, the dual-port high-speed memories form a

global address space available to all processors simultaneously.

Since every memory unit will have a designated port for READ operations, then

each processor could perform READ locally with zero overhead. All of processors will

be connected to a system bus which is also connected to the other port of the memory

units. In this fashion, we could broadcast all the WRITE operations. Therefore, this

system will perform write operations in 0(1) time while READs are done locally.

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Read Read Read

M n

Read miss or Write Bus

Figure 28: Basic RCR Architecture.

Thus, all memory units axe replications of each other. Figure 28 illustrates the basic

components of this design.

Multiported memories, currently available on the market, are an essential factor in

the cost-effectiveness of this design. A dual-port Static RAM (SRAM), with an access

time of 10 ns, provides two independent ports with separate control, address, and I/O

pins that permit independent and asynchronous access for READ or WRITE to any

location in the memory. Currently dual-port semiconductor memories axe available

in a wide range of speeds. Their cycle times range from a few hundred nanoseconds

(ns) to less than 10 nanoseconds. These memory modules axe in a wide range of sizes

up to 1M. The RCR design employs 16K x 32 dual port static RAM module. This

module holds 16K words of 32 bits. The replicated memory module is packaged in a

ceramic 121 pin PGA (PinGridArray) 1.35 inches on a side.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.2.2 Auxiliary M emory Unit

Since every memory unit is a replication of each other, the expansion of the shared

memory space will be costly, and have an effect on the scalability of the system.

Thus, by providing an auxiliary Dynamic RAM memory unit, which is part of gen­

eral shared-memory space, we could increase scalability of the system. By having

a controller chip monitoring the addresses that are being accessed, we could move

blocks of data in or out of replicated memories based on the spatial locality of refer­

ence. Since more than 90% of all references will be done locally, then, the movement

of these blocks of data will not cause or add to system bus contention. It only in­

creases the effective utilization of the system bus. Figure 29 exhibits the memory

configuration of the Replicated Concurrent-Read system. As shown in Figure 29,

total global memory space is consist of replicated space and auxiliary space. Each

processor is equally close to every memory word in global memory. Every processor

is attached to a local memory, so that private data and programs could be stored.

Addition of auxiliary memory will effect two essential factors in the Replicated

Concurrent-Read shared-memory system design:

1. It will increase scalability of the system, and

2. It will increase cost-effectiveness of the system.

Increasing size of replicated memories will effect scalability of the system, thus, by

adding a spatial cache (auxiliary memory), the system maintains its scalability. Since

replicated memories are expensive static RAMs increasing the size of these memory

units is very costly. Thus, the addition of inexpensive auxiliary memory (DRAMs) is

cost-effective, and at the same time, it will not significantly increase expected memory

access time because of the spatial locality of reference, which will be shown later in

this section.

Figure 30 exhibits the architecture of the Replicated Concurrent-Read system. A

private READ/WRITE is done locally by a processor with no delay. A shared READ

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Memory
Map

Physical
S to rage

lower
replicated

fence

upper
replicated

fence

Data/Code

Aux Data
Gower region)

RepGcated
Data

Aux Data
(upper region)

Private r

■< Memory ^

Shared

W ==i>J
Memory

Local RAM

Aux DRAM

DP DP DP
SRAM SRAM SRAM

Lower region

Upper region

(Replicated
r Region

Figure 29: Memory Configuration of Replicated Concurrent-Read architecture.

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Address
b ro a d c a s

SCCMux

Data

Auxiliary
Memory Demux

D ataw

Address ofence

A ddr.
Demux

Dataw
Addr.

Mux Mux Mux

Buffer
Miss

Figure 30: Replicated Concurrent-Read architecture.

will take place in one clock cycle since each processor is attached to a replicated

memory module. A READ miss will cause an access to auxiliary memory through

write or read bus. If the word is located incrementally outside the fence then a block

of data will be transfered to all replicated memories, otherwise the intended word will

be loaded to the requesting processor immediately. Simultaneously, the spatial cache

controller (SCC) is monitoring all addresses being accessed, so that it can broadcast

blocks of data to replicated memories in slow traffic time. In the case of shared

WRITEs, all replicated memories will be updated cocurrently. A demux is attached

to write or read bus, so that it determines whether the address is in auxiliary memory

or it is in replicated meories as shown in in Figure 30.

In order to calculate the cost decrease by employing the spatial cache, we need to

compute the total memory system cost with and without the auxiliary memory. Let

Mrep denote the percentage of shared memory that is spatially cached. Let M , and N

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

denote shared memory size and number of processors respectively, and also, let Cs,

and Cd denote cost in $/word for SRAM, and cost in $/word for DRAM respectively.

Then, with a spatial cache, the memory system cost will be:

Memory System Cost = Cost Spatial cache + Cost all Replicated Memories

Let Cm denote the memory system cost then:

Cm = [Mrep x M x Cd) + [(1 - M rep) x M x N x Cs] (37)

As illustrated in Figure 30, total memory includes N replicated memory units with

size M plus spatial cache, thus the memory system cost is the total of the spatial

cache and all replicated memories. If we do not employ the spatial cache, then the

memory system cost will be:

Cm - M x N x C s (38)

As shown in Figure 28, the total memory consists of only high-speed replicated

memory units. Since SRAMs axe four to eight times more expensive than DRAMs

(table 1), the memory system cost will be a function of shared memory size, number of

processors, and percentage of shared memory that is spatially cached. By subtracting

equation 37 from equation 38, we can calculate amounts of cost savings. Let Csaving
denote the cost savings, then

Csaving = M x N x Cs - [Mrep x M x Cd + (1 - Mrep) x M x N x Cs]

by factoring out the M, we have

Csaving = M X [N x Cs - M rep X CD - (1 - Mrep) X N X Cs]

we can also factor out N x Cs

Csaving = M X [N X CS X (1 - (1 - Mrtp)) -.Mrep X CD]

by further simplification, we have

Csaving = M x [N x Cs x Mrep - Mrep x Cd]

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 5: Cost Savings Factor For Various Numbers of PEs.

M rep N = 4 N = 8 N =16 N = 32 N = 64 IV = 128

0.1 9.6% 9.8% 9.9% 9.9% 10.0% 10.0%

0.2 19.2% 19.6% 19.8% 19.9% 19.9% 20.0%

0.5 47.9% 49.0% 49.5% 49.7% 49.9% 49.9%

0.9 86.2% 88.1% 89.1% 89.5% 89.8% 89.9%

by factoring out Mrep, we have

Csaving = M X Mrep X.[N x C s - Cd] (39)

Equation 39 calculates the amount of cost savings associated with the total mem­

ory system cost for a different percentage of shared memory that is spatially cached.

As a result, we can design the memory system with minimal required expenses while

optimizing the memory access operations. Since WRITE bus is not utilized 100% of

the time, then copying blocks of data in and out of the auxiliary memory will not

effect the overall performance of the memory system.

Let’s assume the shared-memory size (M) is 1 Gbyte. Since the cost of SRAM is

approximately 4 to 8 times higher than DRAM (table 1), then let’s assume the cost

of DRAM is 6 times higher than SRAM. If DRAM = 1, then SRAM = 6. Table 5

shows the cost savings for different percentages of shared memory that is spatially

cached with respect to a different number of processors.

The Replicated Concurrent-Read (RCR) architecture is a hardware solution for

Scalable multiprocessors, under the shared bus category. This system offers an effec­

tive memory reference mechanism. Any processor can broadcast the data through the

bus and update the related block in the entire shared-memory space with a constant

time complexity. With this capability of the system, the private memories become the

exact replica of one another. Thus, consistency of the shared data is guaranteed at

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Read miss
or

Shared Write

Stored in
Program

Order

LRF<= address <=URF for all addresses

Replicated
Memories

Auxiliary
Memory

Load

Figure 31: RCR memory consistency model.

any given time. Figure 31 shows the Replicated Concurrent-Read system’s memory

consistency model.

The Replicated Concurrent-Read architecture offers several distinct advantages

over existing multiprocessors:

1. Cost-effectiveness and simplicity of design,

2. Zero overhead memory read operations, and

3. Data consistency by broadcasting updates globally with a constant time com­

plexity.

6.3 M ultiport M em ory Replication Characteristics

Performance of a distributed shared-memory system greatly depends on the char­

acteristics of its memory modules. Since advancement of memory technology has

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

provided designers with the option of fast multiported memories, concurrent memory

references have been feasible. It is essential to analyze the performance of systems

employing multiported memories with different numbers of ports.

Multiported memories provide a means to READ concurrently different or same

memory locations by various numbers of processors. The maximum number of words

that can be read simultaneously in one memory cycle is equal to the number of pro­

cessors in the system. Thus, as the number of processors grows larger, the capability

of referencing different memory locations increases linearly. The number of memory

ports assigned for read operations has no effect on the total number of concurrent

READs, since any processor can issue only one memory reference instruction per ma­

chine clock cycle.

The capability of performing more than one W RITE operation simultaneously

in only one memory cycle, depends on the number of ports that are designated for

WRITE references. The Replicated Concurrent-Read system utilizes dual-ported

memory units. This architecture allows for only one WRITE operation without over­

head in every memory cycle by one of the processors. Figure 32 illustrates an archi­

tecture using dual-ported memories.

If we replace these dual-ported memories with 4-ported memory units, it will

increase the number of concurrent WRITEs in one memory cycle by two. Figure 33

demonstrates a system with 4-ported memories. Since there will be only one port

assigned to READ operations, the rest of ports will be exclusively for WRITE memory

accesses.

Let d denote the number of ports in a multiported memory unit, then it will be

possible to perform (d — 1) concurrent WRITEs without overhead. This increase

in number of concurrent WRITEs is not cost free since the system will require more

system buses to perform simultaneous WRITE memory references. A d-ported system

will require (d — 1) system buses in order to perform (d — 1) simultaneous WRITEs

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Buffer

Dual-Port
Memory

Dual-Port
Memory

Dual-Port
Memory

Bus

Figure 32: Dual-Port Memory.

as exhibited in Figure 34.

While increasing the number of ports illustrates an improvement in the number

of concurrent WRITEs, it has a direct relationship with hardware complexity. Since

the number of processors in the system is usually greater than the number of ports,

this system will require demultiplexers to route the WRITE operations to different

busses. This is because each bus is capable of accommodating only one WRITE in

each cycle. This requirement is not necessary with the dual-ported memories.

Choosing the right multiported memory with respect to the number of ports

greatly depends on the applications. An ordinary application’s memory reference be­

havior demonstrates only 10% or less WRITE operations comparing to 90% READ

operations. The speedup of different multiported systems will depend on the per­

centage of WRITE operations with the available number of ports and processors.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bus A

Bus B

Bus C

Demux DemuxDemux

Four-Port
Memory

Four-Port
Memory

Four-Port
Memory

Figure 33: Four-Ported Memory RCR Architecture.

Therefore, it is possible to study scalability of such systems by the ability to calculate

their speedup. Higher speedup will be observed when an application requires less

WRITE operations in a system with a laxge number of ports.

6.3.1 M ultiport Arbiter Design Characteristics

The number of concurrent WRITEs that can be performed in one memory cycle

depends on the number of available ports in a multiport memory unit. Therefore, a

d-ported system can accommodate only (d — 1) WRITEs simultaneously, where d is

the number of ports in a multiported memory unit. Since a dual-ported system can

grant bus access to only one processor at a time, there is a need to employ an arbiter

to issue bus access grants to processors. Generally, as long as the number of processors

in a system is greater than (d — 1) ports, there is a need for an arbiter to regulate

the system bus accesses. The logical function of this arbiter can be realized using

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DemuxDemux Demux

d-Port
Memory

d-Port
Memory

d-Port
Memory

d Bus

Figure 34: d-Ported Memory RCR Architecture.

off-the-shelf devices such as PLA, PAL, field-programmable ROM, or by designing a

customized combinational logic system.

Any time a processor needs to write, it will have to request the arbiter for permission

to access the WRITE bus. However, if there are no other requests in the queue, then

permission will be granted immediately. Therefore, in a dual-ported memory system

expected delay for bus access will be equal to the number of requests in the queue in

terms of memory cycles. These requests can be handled based on first in first out

(FIFO) or could be based on a priority scheme. If a WRITE request is on a shared

data, then we may assign a higher priority to that request. The choice of a policy for

the arbiter would greatly depend on the applications. In most applications, WRITE

operations constitute only 10% of their total memory references, thus, a simple arbiter

design is appropriate for a general purpose multiprocessor.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.4 M ultiport M em ory C ycle A nalytical Representation

The number of concurrent memory references, that can be performed simultaneously

is directly dependent upon the number of ports in a multiported memory unit. In

such a system, all processors can read simultaneously in one memory cycle with no

delay. WRITE operations could experience some delay depending on the number of

processors trying to access the WRITE bus and the number of ports designated for

update operations. In the case of a dual-ported memory system, only one processor

can perform a WRITE operation in each memory cycle. Thus, if two processors

attempt to update their replicated memories, then one of them will experience one

memory cycle of delay. Generally, the expected delay will depend on the exceeding

number of WRITEs that can not be accommodated in one memory cycle. Thus, for a

dual-ported memory, the number of needed cycles is equal to the number of WRITEs,

and the expected delay would be the number of memory cycles left off after the initial

execution.

By consideration of all these elements, we can formulate the needed memory cycles,

and expected delays of WRITE operations using dual-ported memory units. Since,

in a dual-port memory unit, there is only one port for WRITE purposes, the total

number of required memory cycles is equal to the total number of WRITEs. Let Mc,

and W denote the number of memory cycle and total number of writes respectively,

then the total number of memory cycles needed for W WRITEs is:

MC = W (40)

where

W = W0 + W1 + W2 + ... + Wn (41)

where n is the number of processors that requesting WRITE access at any given time

interval, n = 0,1,2,..., N . Thus,

W = X ,W i (42)
i=0

where W{ is a WRITE by processor P,-, and N is the total number of processors in

the system. Therefore, in a dual-ported memory system, the total number of memory

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

cycles needed to perform W WRITEs is:

Mc = j^ W i (43)
i—0

Therefore, at any give time, the total number of memory cycles needed to complete

the toted number of WRITEs is equal to the total number of WRITEs issued by all

processors.

Since, in a dual-port memory only one WRITE access will be granted, there will

be a delay in accessing the WRITE bus if there are more than one WRITE requests

in one memory cycle. Let’s assume that there axe two WRITE requests, then one

of the requests will be granted with no delay and the second one, with one memory

cycle delay, will be granted. Thus, the expected delay, D , is equal to:

Delay = (0) x Do + (1) x D\

where D{ is the delay related to W{.

Thus, we can generalize this equation for W WRITEs at any given time. If there are

n WRITEs, then there axe (n — 1) memory clock cycles delay to accommodate all

memory WRITE requests. Let D denote the expected delay, then

D = (0).Do + (l)-Di + (2)Z?2 + ••• + {n)Dn (44)

where

n = 0,1,2,..., W

Equation 44 can be rewritten as

D = (1 - 1)Dq + (2 - l)Dx + (3 - 1)D2 + ... + (n - 1)Dn (45)

Thus, we can calculate expected delay for n WRITEs in terms of memory clock cycle

as

D = £ (< - 1) (46)
1= 1

In case of a four-ported memory system, three WRITEs can be accommodated

at each memory cycle, and an additional memory cycle will be required for every

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

multiple of three WRITEs thereafter. Therefore, we can formulate needed memory

cycles, and expected delays for such a system in terms of memory cycles.

„ rW0 + Wi + W7 + ... + Wm
Mc = f-------------3 -------------------1 (47)

We can rewrite the equation 47 as

W-
Me = — 11 (48)

Since W = E"=o then
W

Mc = T y l (49)

Equation 49, calculates the total number of memory cycles required to accommodate

all memory WRITE access requests in a four-ported memory system.

Since three WRITEs can be performed in each memory cycle, the fourth WRITE

request will experience one memory cycle delay. As the number of WRITEs grows

larger, the number of delays will grow one cycle for every three WRITE requests.

Therefore, we can formulate delays as below

D = (0)[Z?o + D\ + D2] + (1)[1?3 + D4 + D5\ + ... -f [_(—)J \Dn-2 + Dn - 1 + Dn] (50)

We can rewrite the equation 50 as follow

(5 i)
t= 0 j =0 0

Therefore, the expected delay time in terms of memory cycles at any given time

interval is

£ = (52)
.'=0 j=Q 0

As the number of ports increases, the ability to perform more concurrent WRITE

operations grows laxger. For d-ported memory systems, the maximum number of

concurrent WRITEs is equal to (d — 1), the minus one indicates designation of one

port to READ operations. If more than (d — 1) processors request to update memory,

they will experience delays based on the number of requesting processors. We can

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

calculate the total number of required memory cycles to perform W WRITEs in a

d-ported memory system as follows

„ rw0 + wl + w2 + ... + wni
Mc = f------------------- 1 (o3)

We can rewrite equation‘53 as

Y'? W-Mc = (54)

Since W = Wi, thus
W

Mc = r ^ - 1 (55)

Therefore, the number of required memory cycles to perform W WRITEs in a d-

ported memory system can be calculated by using equation 55. Table 6 shows the

required number of memory cycles for W WRITEs with different numbers of port

memory systems.

In a d-ported memory system, (d — 1) WRITEs can be accommodated at each

memory cycle, and an additional memory cycle will be required for every multiple of

(d— 1) WRITEs thereafter. Therefore, if there are more than (d— 1) WRITEs at any

given time, then there will be a delay time to accommodate all the WRITEs accesses.

D = (0)[Z?o + D\ + . . . + Dd-2] +

(l) [A i _ l + Dd + . . . + Z?2d-l] +

— + UjrylJ P --*-1 + D " - i + ••• + £»] (s6)

We can rewrite equation 56 as follows

• o = E E l (j r r) J A - - i w (5 7 >
t=o j =0 a i

Therefore, we can calculate the expected delays in terms of memory cycles at any

given time as follows:

a - E E K j r r J J <5 8 >1=0 j= 0 a L

84

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 6 : Memory Cycles Required for W Simultaneous Waits Using d-ported Memory

Components

w dual-port four-port eight-port 16-port d-port

0 I 1 1 1 1

I 1 1 1 1 1

2 2 1 1 1 1

3 3 1 1 1 1

4 4 2 1 1 1

5 5 2 1 1 1

• I I I • I .

N - 2 N - 2 r ^ i r ^ i r ^ i r £ ? i
N - 1 N - 1 r ^ i r ^ i r ^ i r 4 ? i

N N r f i r f i r s i r £ r i

6.5 Perform ance Behavior and M etrics

In chapter 2 we defined four shared memory models ranging from sequential consis­

tency to release consistency memory models. In this section, we will examine the

effects of these memory models on execution time.

Our perspective is to balance software with haxdwaxe by the program’s degree of

parallelism. We have set our objective in the efficient utilization of the hardware.

Several parameters have been defined for evaluating parallel computations by Ruby

Lee [LEE80]. Let O(N) denote the total number of unit operations performed by a

AT-processor system and let T(N) denote the execution time in unit time steps. Let’s

assume T (l) = 0(1) in a uniprocessor. The speedup factor is defined as [HWANG93]

S(N) —
1 > T (N)

then we can define the system efficiency for a iV-processor system as

E (N) = m

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Where:

E = efficiency,

S = speedup, and

N = number of processors.

Amdahl's law defines speedup that can be gained by using a particular feature. Thus,

speedup is the ratio

Where:

Pe = performance for the entire task using the enhancement when possible, and

Pne = performance for the entire task without using the enhancement.

Since:

performance = ^

Where:

T = execution time.

Thus
T{ 1)
T (N)

Therefore

E(N) =
v ’ N .T (N)

For RCR architecture, let:

tbuay = processor busy time in memory cycles,

= read-miss time in memory cycles,

tmiss = write-miss time in memory cycles, and

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

taync = synchronization time (time spent by a processor idling while waiting for

the program order) in memory cycles.

We have:

E (N) = p tbuayw -----------
tbuay + ̂ m isa + ̂ m ias + taync

Substituting from the equation above, we have:

+ < * . * + > + t)N'"buay i Lmtaa “ mtaa ' Laync

tmiaa = tmiaa = t*ync = 0, then we can scale linearly. But **•„, and t3ync
increase with the number of processors.

In this model, we can eliminate t^ iaa and also relax t™iaa by buffering an 0(1)

WRITE. However, buffering can increase synchronization overhead time when mul­

tiple writes occur simultaneously. We can read with zero overhead, but in the case

when the data to be read is still in the buffer, the processor(s) has to be idle for

a fraction of the time (if the system does not support process migration and inter­

leaving) which will add to the synchronization time. As t%{33 and taync increase with

the number of processors, the number of computing nodes that can be added to this

system, in order to get the best possible performance, is crucial.

Calculation of efficiency and speedup for Replicated Concurrent-Read architecture

based on needed memory cycles and expected delays axe as follow:

M c = tfiujy + m̂ijs "b t miaa + taync

Since t * {aa = 0 for RCR, and D = t™isa + t 3ync, then

£ _ tbuay

tbuay + D

E =
M c - D

M c

Speedup for Replicated Concurrent-Read is

5(JV) = n ^ (A,)

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 7: RCR Speedup for Various Number of Ports in Multiported Memories.

N

<MII II"<3

00II

8 0 2.67 4

16 0 2.67 5.33

32 0 2.91 6.4

Speedup for RCR architecture is function of the number of WRITEs issued simul­

taneously by processors, since READs axe done locally with no overhead. Table 7

shows speedup for RCR with dual-ported, 4-ported, and 8 -ported memories when all

processors attem pt to perform WRITE simultaneously for various N.

Table 7 shows that if 100% of total memory accesses are WRITE operations, there

is 0 speedup if dual-ported memories are used, since only 1 WRITE can take place

in one clock cycle.

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6.6 Sum m ary

This architecture, allows READ operations to be performed locally with zero overhead

while performing WRITEs globally. Since increasing the size of replicated memory

modules affects the overall cost of the system, by adding auxiliary memory the scal­

ability of the system is increased. RCR architecture by taking advantage of spatial

caching, allows for greater performance with small sized replicated memories. Since

RCR architecture performs the majority of memory references locally, this reduces

system bus traffic while improving overall memory access time.

d-ported memories support d — 1 WRITE operations at every single clock cycle.

Thus, if there are more than d — 1 WRITEs concurrently, D number of clock cycles

delay will be experienced, where D = — 1 . Thus, by having larger number

of ports on multiported memories, an overall improvement is expected. By using

4-ported memories instead of dual-ported memories, there is a 71% improvement in

number of delay in the worse case when there are N WRITEs simultaneously. In

order to experiment and compare the effectivenss of RCR design in the worse case,

dual-ported memories are chosen.

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 Sim ulator D evelopm ent and Perform ance Com­

parisons

A simulator has been developed in order to study and analyze the behavior of mem­

ory references in Replicated Concurrent-Read (RCR) Architecture. For comparable

analysis purposes, simulators for Uniform Memory Access (UMA) Architecture, Non-

Uniform Memory Access (NUMA) and Local-Remote-Global (LRG) Architecture,

have also been developed.

The simulation code consists of a series of functions in C programming language

which are included in Appendix section. The main program contains a FOR loop

which allows for simulations in ten nano second iterations per cycle. Within the

FOR loop, memory references axe issued by calling related routines. Each memory

reference could be a READ or WRITE access. As simulation progresses, the total

memory access time is recorded and finally, expected access times are computed.

In the following sections, simulator design and analysis of RCR, UMA, NUMA

and LRG architectures are discussed. In the final section, comparisons of these ar­

chitectures will be presented. A few assumptions have been made in order to resume

consistency in analyzing generated data from the simulators. If there is a READ

miss, then a block of data will be copied to the cache. In the case of a shared-write

then write-through policy is implemented.

7.1 Replicated Concurrent-Read (RCR) A rchitecture

In the RCR, a READ miss will cause an access to replicated memory in search of a

requested word. If the search of replicated memory is unsuccessful, then the auxilary

memory will be referenced. Let P, denote processor # i. The probability of a cache

hit is hc and the replicated memory hit is hi,. Pi with (1 — hc) probability will face a

cache miss and has (1 — h£) chance of replicated memory miss. Therefore, the chance

of having to access auxilary memory is (1 — hc) (1 — hm). P,- will have to wait until

this data is transfered to C, (P,-’s private cache). During this time P,- will be inactive.

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 8: RCR System. Parameters.
Input Parameter Value Range

P i 1 0 ns/cc N /A

P read 0.90 0.75 - 0.95

P tharcd-w rite 0.0164 0.01 - 0.5

hc 0.50 0.10 - 0.95

flL 0.50 0 . 1 0 - 0.80

Words per Block 8 8 - 6 4

Pi has to compete with other processors to access the global bus. As a result, Pi may

have to wait for its turn to access the auxilary memory.

A WRITE access is treated differently in RCR architecture. Every shared-write access

is broadcasted to all replicated memories. The simulator determines all memory

reference characteristics:

• whether the memory access is a READ or WRITE,

• if memory access refers to shared data,

• if memory access is a cache hit or miss,

• is a replicated memory hit or miss.

The simulator also generates the number of other memory references pending for

bus access in order to compute the wait time for P,-. table 8 lists the input to the

simulator.

7.1.1 Varying Cache and R eplicated Memory Hit R ate

Various cache hit rates, with respect to 10%, 20%,. . . , 80% replicated memory hit

rates, have been studied. Figure 35 shows the average access time of RCR with a

cache hit rate of 1 0 % in conjunction with various replicated memory hit rates.

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

av
e

05c

3500

3000-

2500-

2000

1500-

1000 -

500-

0.2 0.3 0.4 0.5 0.6 0.7 0.80.1

N = 8

N = 16

N = 32

he = .10
Prcad = 0.90
B = 8

h-L

Figure 35: RCR architecture. Expected access time for various replicated memory

hit rates.

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

«>5e

800

700-

600-1

500-

400-.

300-1

200-i

100^

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N = 8

N = 16

N = 32

N = 64

hc = .80
Pr'ad = 0.90
5 = 8

h-L

Figure 36: RCR architecture. Expected access time for various h i with 80% hc.

This experiment has been conducted for 8 , 16, 32 and 64 processor systems. Average

access time decreases as the replicated memory hit rate increases, as is shown in

Figure 35. Let N denote the totcil number of processors. When N= 8 , there is more

than a 64% improvement in access time as replicated memory hit rates increase from

10% to 80%. Systems with 16, 32 and 64 processors also demostrate an improvement

in average access time by over 6 8 %.

Figure 36 shows the expected access time for the cache hit rate (hc) of 80% for

various replicated memory hit rates. This figure shows expected access time im­

proves over 72% as hi, increases from 10% to 80% for N = 8 . For N = 16,32, and

64, expected memory access time improves over 84%, 89%, and 89%, respectively.

Comparing Figure 36 with Figure 35 shows the effect of hc on average memory access

time (tave)- As more memory accesses are satisfied by cache and replicated memory,

better average access time and more CPU utilization results.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 9: UMA System Parameters.
Input Parameter Value Range

Pi 1 0 ns/cc N /A

tc 1 0 ns/cc N /A

tm 1 0 0 ns/cc N /A

Pread 0.90 0.75 - 0.95

Pshared-write 0.0164 0 . 0 1 - 1 . 0

hc 0.50 0.10 - 0.95

Words per Block 8 8 - 6 4

7.2 Uniform M em ory Access (U M A) A rchitecture

In UMA architecture, all processors share a global memory which is equally close to

all processing elements, while every processor is attached to a private cache. A READ

hit feches data from the cache in t c time. The probability of a cache hit is denoted as

hc. A READ miss will cause Pt- to access the global memory in order to fetch data.

The probability of having to access global memory is (1 — hc). P, may have to wait

to access the cache if there are a number of pending WRITEs since only 1 validation

can occur at a time.

Since every processor in the system with a probability of (1 — hc) will have to

access shared-memory, a delay in accessing the shared-memory will be inevitable.

In UMA architecture, as the number of processors increases, undesirable delays will

increase average memory access time. As a result, UMA architecture can support

only a small number of processors. UMA simulators will generate access to memory

and will also define the characteristics of all memory accesses.

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

800
700
600-
5 0 0 -

400-
3 0 0 -

200 -

100
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

COIIZ

z II o>

- A - N = 3 2

N = 6 4

hc Pread — 0.90
Psharcd-write = 0.0164
5 = 8

Figure 37: Expected access time vs. hc for UMA configuration.

7.2.1 UM A Sim ulation Results

In UMA architecture, since there is no local memory other than cache, the cache hit

rate is a major concern in regard to its performance evaluation. Figure 37 shows

the results of a simulation as the cache hit rate increases from 10% to 90%. The

simulation has been repeated for a various number of processors in the system. The

average access time shows an improvement of over 85% as hc increases from 10% to

90%. The effects of other parameters of simulation will be discussed as RCR, UMA,

NUMA and LRG simulation results are compared.

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.3 N on-Uniform M em ory A ccess (N U M A) A rchitecture

In NUMA architecture, shared memory is distributed among all processors. Every

processor can address its local memory or remote memories of other processors. Every

Pi is also attached to a private cache. A READ hit fetches data from the cache in tc

time. The cache hit rate is denoted as hc.

A cache miss with a probability of (1 — hc) will cause tin access to local memory.

Fetching data from local memory may be delayed if there are other pending READ or

WRITES by other processors. In the case of a local memory miss, remote memories

will be accessed. This NUMA simulator generates memory references as it defines

their characteristics, whether the access :

• is a READ or WRITE;

• is a cache hit or miss,

• is a local memory hit or miss, or

• refers to shared or private data.

7.3.1 N U M A Simulation Results

The cache hit rate hc and local memory hit rate h i are two major parameters in the

performance evaluation of NUMA machines. Figure 38 shows results of simulation

for hc = 0.50 and varying h i percentages.

There is a direct relationship between average access time and h i. An increase in h i

will decrease tave directly as shown in Figure 38. This experiment is repeated with

hc = 0.90 for varying percentages of h i in order to study the effects of higher hc. As

shown in Figure 39 with hc = 0.90, a 77% improvement, in average memory access

time, is achieved over hc = 0.50. The effects of other parameters of simulation will

be discussed as RCR, UMA, NUMA and LRG simulation results are compared.

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ns

Table 8: NUMA System Parameters.

Input Parameter Value Range

Pi 1 0 ns/cc N /A

tc 1 0 ns/cc N /A

t l 1 0 0 ns/cc N /A

tG 2 0 0 ns/cc N /A

Pread 0.90 0.75 - 0.95

Piharcd-urrite 0.0164 0 . 0 1 - 1 . 0

hc 0.50 0.10 - 0.95

hi 0.50 0 . 1 0 - 0.80

Words per Block 8 8 - 6 4

800

750-

700-

650-

600-

550-

500-

450
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

N = 8

N = 16

N = 32

N = 64

he = .50
Pread = 0.90
5 = 8

hi.

Figure 38: Expected access time vs. h i when hc = 0.50 for NUMA configuration.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

av
t

05e

2 2 0

200-

180-

160-

140-

120 -

100
0.7 0.80.50.3 0.4 0.60.1 0.2

N = 8

N = 16

N = 32

N =64

hc = .90
Pread = 0-90
B = 8

Figure 39: Expected access time vs. hr, when hc = 0.90 for NUMA configuration.

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.4 Local-Rem ote-Global (LRG) A rchitecture

Local-Remote-Global Architecture is a combination of UMA and NUMA machines.

Every cluster contains two processors and a shared local memory. Each processor

on the cluster is attached to a private cache. LRG also provides a global memory

accessible by all processors.

A READ hit with a probability of hc fetches data directly from the cache in tc

time. In the case of a cache miss, the local memory is referenced. Let h i denote the

local memory hit rate. The probability of accessing global memory is (l — hc)(l —hi).

As a result, the average access time is a function of hc and hi. This simulator will

study and analyze various percentages of hc and h i.

7.4.1 Local-Remote-Global (LRG) Sim ulation Results

For a complete analysis of the effects of hc and h i on expected memory access time,

various percentages of hc and h i are studied. Figure 40 shows the average access time

as h i increases from 10% to 90% for various cache hit rates. The cache hit rate has a

more drastic effect on expected access time than the local memory hit rate. As shown

in figure 40, the local memory hit rate also has a significant effect on the expected

memory access time. The effects of other parameters of simulation will be discussed

as RCR, UMA, NUMA and LRG simulation results are compared.

7.5 Perform ance Comparisons

For the purpose of comparing these machines, the effect of numerous varying pa­

rameters will be examined. As shown in figure 41, the effect of various cache hit

rates is illustrated. As expected, the NUMA machine has shown great improvement

in average access time, with respect to varying cache hit rates. The reason being,

that the delays caused by the interconnection network is decreased. All of the other

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

av
e

3 5 0

300-

250-

200 -

150-

100 -

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.90.1

h c = 0.25

h c = 0.50

h c = 0.80

llL Pread. — 0.90
Pshared-write ~ 0.0164
5 = 8

Figure 40: LRG architecture. Expected access time for various local memory hit

rates.

Table 9: LRG System Parameters.
Input Parameter Value Range

Pi 1 0 ns/cc N /A

tc 1 0 ns/cc N /A

tL 1 0 0 ns/cc N /A

tG 2 0 0 ns/cc N /A

Pread 0.90 0.75 - 0.95

Pshared-write 0.0164 0 . 0 1 - 1 . 0

hc 0.50 0.10 - 0.95

hi. 0.50 0 . 1 0 - 0.80

Words per Block 8 8 - 6 4

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1400
-m - RCR

“•* - UMA

- A - NUMA

LRG

Pread = 0.90
hjj = 0.10
N = 8

B = 8

hc

Figure 41: Expected access time for various cache hit rate percentages.

machines have shown improvement as hc is increased from lOWhen hc is above 75%,

RCR delivers a lessened memory access time. When hc is below 75%, RCR’s memory

access time is comparable to LRG’s average access time.

Figure 42 shows the effect of vaxying local memory hit rates on expected memory

access time. Since the UMA machine does not have local memory, its average memory

access time does not vary. RCR demonstrates a direct effect as a result of increasing

the replicated memory hit rate. The NUMA machine demonstrates a better perfor­

mance as hit rate increases. The LRG machine is less affected by the local memory

hit rate than the RCR and NUMA machines.

Figure 43 illustrates the effect of varying local memory hit rates when the cache

hit rates increase. The effect of vaxying local memory hit rates, accompanied by

higher cache hit rates, is more pronounced with the RCR and NUMA machines. The

other machines did show improvement, but not as significantly as that of the rate of

101

1200 -

1000 -

800-

600-

400-

200 -

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

<0e

13 0 0

1 1 0 0 -

900-

700-
— ©■............ $£-

500-

300-

100
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

RCR

- ® - UMA

NUMA

LRG

Prtad = 0.90
hc = 0 . 2 0

N = 8

B = 8

h i

Figure 42: Expected access time for various h i when hc = 0.25.

102

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

-m - RCR

UMA

—A— NUMA

J LRG

Pread = 0.90
hc = 0.80
N = 8
5 = 8

hL

Figure 43: Expected access time for various when hc = 0.80.

the RCR machine.

Figure 44 also illustrates the effects of varying local memory hit rates in conjunc­

tion with a 90% cache hit rate. The RCR, LRG, and NUMA machines demonstrates

an improvement as local memory hit rates increase.

The effect of varying shared-write percentages on these machines have been ana­

lyzed. Let Ptkared-write denote the probability of a shared-write memory access such

that Pikared-write + Pprivate.write + P — read = 1. The results, shown in figure 45,
illustrate a slight increase in the average memory access time as the probability of

shared-writes increases from 0.0 to 0.5.

Figure 46 shows the effect of varying block sizes on expected memory access time

on the RCR, UMA, NUMA, and LRG machines. The NUMA machine demonstrates

a drastic increase in memory access time as the block sizes increase from 8 to 64. The

main reason for this significant increase in memory access time is due to the transfer

103

3 0 0

250-

200 -

150-

100 -

50-

0.70.6 0.80.1 0.2 0.3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

16 0

140-

120 -

100 -

80-

60-

40-

2 0 -

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

h-L

R C R

— 8— UMA

NUMA

LRG

Figure 44: Expected access time for various hi, when hc = 0.90.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

au
el

ns

4 0 0

350-

300-

250

- A * A

Pshared-write

R C R

UMA

NUMA

LRG

hc = .50
Pread = 0.90
B = 8

Figure 45: Expected access time for various shared-write percentages.

105

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

av
c

03e

4500

4000

3500

3000

2500-i

2000

1500-i

1000J

500

64328 16

R C R

UMA

NUMA

LRG

Pread = 0.90
hc = 0.50
hL = 0.50
N = 8

B (words)

Figure 46: Expected access time for various block sizes.

of blocks of data from remote memories. The UMA machine also experienced a

significant increase in memory access time due to the transfer of blocks of data from

global memory. The RCR and LRG machines demonstrate a lesser effect as block

size increases.

In conclusion, the varying probability of READs is examined. Let Pread denote the

probability of READ. The results shown in figure 47 exhibit that the NUMA machine’s

performance decreases as PTead increases. The reason is that, the READ from the

remote memories are costly. The UMA machine demonstrates a similar effect but at a

lesser rate. The RCR machine shows the most desired result since it performs READs

locally. The RCR configuration has less sensitivity to READ/WRITE percentage.

106

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

ta
ve

iP
'^)

Pshared-write = 0.0164
hc = 0.50
hi — 0.50
N = 8
B = 8

700

600-

500-

400-

300-

200 -

100
0.7 0.75 0.8 0.85 0.9 0.95 10.5

RCR

UMA

NUMA

LRG

Pread

Figure 47: Expected access time for various P Tead percentages.

107

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7.6 Summary

In this chapter simulators for RCR, UMA, NUMA, and LRG architectures were de­

veloped and their performance results discussed. The simulation results proved that,

for a wide range of system parameters, RCR outperformed the UMA and NUMA ar­

chitectures. The RCR architecture outperforms LRG architecture when the hit rates

of the processor’s cache exceeds 80% and replicated memory exceeds 25%. Simula­

tion results show that RCR architecture, with up to 32 processors, offers outstanding

performance over existing multiprocessors.

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

8 Conclusion

Replicated Concurrent-Read architecture, with its novel design and functionality,

offers favorable performance over UMA and NUMA architecture for all ranges of ap­

plication and system parameters. RCR outperforms LRG architectures when the hit

rates of the processor cache exceed 80% and replicated memory exceed 25%. The RCR

architecture resulted from a complete re-evaluation of common memory space based

on actual multiprocessor memory reference behavior. The resulting design leverages

memory reference behavior and component expense by broadcasting memory updates

in constant time while allowing READ references to be performed with zero access

latency.

8.1 Cost-Effectiveness

Since the best overall system price-performance will be determined primarily by the

mermory architecture, the RCR offers a cost-effective system by redesigning the mem­

ory space. The RCR, by not requiring complicated and expensive hardware, offers low

cost, yet efficient design. Memory latency is the most significant issue in the design of

a shared-memory multiprocessor. Memory latency could be improved by increasing

cache hit rate in a uniprocessor. Unlike uniprocessors, increasing size of caches is not

a dominant factor in multiprocessor hit rate. In a multiprocessor system, maintaining

coherence between caches is a significant factor in memory latency. These coherence

misses are independent of the cache size. Increasing cache sizes will not decrease

the expected memory access time, since data sharing causes invalidations and extra

misses because of coherence. The RCR architecture outperforms UMA architecure

with same cache hit rate, while it is a cost-effective system.

8.2 Scalability

Unfortunately Designing an ideal scalable system is not possible. The RCR design,

by inclusion of an auxiliary memory unit, has increased its scalability rather than

109

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Table 12: RCR Speedup for Various Percentages of shared-read.

N Pshared-write — 0.20 Pshared-write — 0.40 Pshared-write — 0.80

8 5 2.5 1.25

16 5 2.5 1.25

32 5 2.5 1.25

the size of replicated memory modules. Table 7 and 12 illustrate that by increasing

number of processors, as long as, adequate multiported memory units are used, RCR

proves its scalability.

8.3 Performance Prediction

The RCR design has a unique characteristic by performing majority of memory ref­

erences locally with no delay. Thus, percentage of shared-write operations is the only

factor influencing speedup in the RCR architecture. This is not possible for UMA,

NUMA, and LRG architectures, speedup for RCR configuration is:

where
W

i f e - r j n i .

and
W

Thus,
r-HLl _ I J S L \

S(AT) = U-ll H-lJ(jy)
I d- 1 1

Table 12 shows speedup for various percentages of shared-write for dual-port RCR

configuration.

As seen in table 12, RCR speedup is only function of shared-write. Thus, it

is possible to predict the performance of RCR for any application. By increasing

110

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number of ports in d-ported memories, RCR shows an improvement in speedup as

shown in table 7.

8.4 Hardware Feasibility

Since RCR hardware design is based on commonly available off-the-shelf parts, it does

not require any customized complicated hardware. The RCR architecture utilizes

currently available 16K x 32 dual-port memory modules as part of its global address

space. Each processor is attached to a local memory for its private data and programs.

Every processor is also connected to a dual-port replicated memory module. The

RCR architecture provides an auxiliary memory unit which is equally accessible by

ail processors.

8.5 Future Work

To actually build the RCR will remain as future work. The expansion of RCR archi­

tecture to support a larger number of processors while maintaining scalability, also

remains as future work.

I l l

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A R C R Sim ulation C ode

I i / t s fe j (e 3{c sfc sfe s fc 3{c 3fc sfc sfe j (c $ J c sfc $ i f . jfc afe afe 3{c afe afe afc afc afc a (e a fe a je afc a fc afc a fc afc afc afc afc afc afc

Simulation Code For Replicated Concurrent-Read

Architecture

Version 4.2
j afc a fc afc afc afc afc afc a fc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc afc a fc afc a fc afc a fc afc afc afc afc afc afc afc afc afc afc

#include<stdio .h>
#include<math. h>
#define PE 8

J afc afc * afc * * afc afe afc * afc afc afe * * afe * afe afc * * * afe afe afc * * afc afc afc * a fe afc a fe afe afe afc afc * afe afc afe * afc

Global Variables

FILE *fptr;
int N = PE ;
/* Number of processing elements */

float h_c = .50 ;
/* Primary cache hit rate */

float h_M = .50;
int t_p = 10 ;

/* Processor cycle time */
int t_c_read = 1;

/* Time it takes to read a word from primary cache
in terms of processor’s clock cycle*/
int t_c_write = 1;

/* Time it takes to write a private word to
primary cache in terms of processor’s clock cycle*/

112

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int t_M_read = 1;
/* Time it takes to read a vord from replicated
memory in terms of processor’s clock cycle*/

int t_M_write = 2;
/* Time it takes to write a word to replicated
memory in terms of processor’s clock cycle*/

int t_aux_read = 2;
/* Time it takes to read a word from auxiliary
memory in terms of processor’s clock cycle*/

int t_aux_write = 2;
/* Time it takes to write a word to auxiliary
memory in terms of processor’s clock cycle*/

float P_read = .90;
/* Probability access is read (vs. write)*/

float P_write =1-P_read;
/* Probability access is write */
int read;
/* A flag to indicate am operation */
float P.IOF = .80;
/* Probability of an address being Incrementally
Outside Fence */

float P_shatred_write = .0164;
float seed;

/* A variable which holds a ramdom number*/
int B = 8;
int D = 4;

/* Distance outside fence */
int num_write_inpipe = 0;
int iof_adres_read = 0;
int iso_adres_read = 0;

113

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int old_write_inpipe =0;
int old_iso_read = 0;
int old_iof_read =0;
int num_idle_pe = 0;
int active_N = N;
long i;
long count_iof_time[PE] ;
long count_iso_time[PE];
long count_write_time[PE];

/* Maximum WRITEs in pipe can not exceed N */

int num_pending_access = 0;

int old_pending_access = 0;
long recal = 0;

unsigned long number_of_miss = 0;

Function Prototype

int PEi();
long access.dport();

/* This function calculates the access
time for dual-port memory*/

float rand(float);
/* This function generates random numbers */

float get_prob_uniform();
/* This function will provide a random address */

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int read_write();
/* This function sets access values based

on read vs write */
int wait_for_bus();
void bus_arbiter();

main function

void mainO

{
int n;
int counter;
int accesstime.dport = 0;
long total_access_time = 0;
long num.of.access = 0;
float Expect ed.access.time = 0.0;
int y.j.k;
for(y=0 ; y<=(N-l);y++)
i
count_iof_time[y] = 0;
count_iso_time[y] = 0;
count_write_time[y]= 0;
>

fptr = fopen("rcr_test. cpp","a");

printf ("\nPlease provide one random number
seed for this experiment");

printf ("\nPlease enter an odd 6 digit

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number not ending in 5:");
scanf ('"/.f " ,&seed) ;

active.N = N;
for (i=l;i<=100000; i++)

•C
read = read.writeO;

if(active.N >=1)
{
num_of.access +=1;
accesstime.dport = PEi();
total.access.time += accesstime.dport;

>

if (iof.adres.read > 0)
t

for (j =0; j<iof_adres_read ;j++)

if (i+1 == count_iof_time[j])

for(k = j; k<iof_adres_read-l ; k++)
count.iof.timeCk] = count_iof_time[k+l] ;
iof.adres.read -=1;
break;

>

>

>

if (iso.adres.read > 0)

116

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{

for (j = 0; j<iso_adres_read ;j++)
{
if (i+1 == count_iso_time[j])

for(k = j; k<iso_adres_read-l ; k++)
count_ i s o _time [k] = count_iso_time[k+l];
iso_adres_read -=1;
break;

>

>

>

if (num_write_inpipe >0)
{

for (j =0; j<num_vrite_inpipe ;j++)

if (i+1 == count_write_time [j])

for(k = j ; k<num_write_inpipe-1 ; k++)
count .writ e_t ime [k] =

count_write.time[k+l];
num.write.inpipe -=1;
break;

>

>

>

old.iof.read = iof.adres.read ;

117

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

old_iso_read ~ iso.adres.read ;
old.write.inpipe = num.write.inpipe;
num.pending. access = old.iof.read + old.iso.read +
old.write.inpipe ;
old.pending.access = num.pending.access;
num.idle.pe = num.pending.access ;
active.N = N - num.idle.pe;

>

Expected.access.time =((float)total.access.time
/(num.of.access)) * t.p;
printf("\nExpected Access Time = 5(5.2f",
Expected.access.time);

fprintf(fptr,"\nProbability of read");
fprintf(fptr,"\nExpected Access Time = 5(5.2f",
Expected.access.time);
fprintf (fptr,"\nCache hit rate = Jif " ,h_c) ;
fprintf(fptr,"\nReplicated memory hit rate = '/.f",h_M);
fprintf(fptr,"\nP_read = '/,f",P_read) ;
fprintf(fptr,"\nNumber of blocks = J(d",B);
fprintf(fptr,"\nNumber of processor = 5(d",N);
fprintf(fptr,"\nProbability of shared write = Jif",

P.shared.write);

/* printf ("\n active N = 5(d",active.N);

for (n = O;n<iof_adres_read; n++)
printf ("\ncount_iof .time ['/,d] = '/.Id" ,n,count_iof_time[n]) ;
for (n = O;n<iso_adres_read; n++)
printf("\ncount_iso_time[7,d] = '/.Id",n,count.iso.time [n]) ;

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for (n = 0;n<num_write.inpipe; n++)
printf ("\ncount .writ e.t ime [J(d] = '/.Id" ,n,count_write_time[n]);

/ * y * /

printf("\n Number of cache miss = %ld",number.of_miss);
fclose(fptr);
>

This function simulates PEi’s memory access

int PEiC)
{
int time = 0;
float write_is_shared ;
float hit.or.miss; /* Cache hit or miss */

hit.or.miss = get_prob_uniform();

if (hit_or_miss <= h_c)
{
if (read)
/* Access is a READ (rather than a WRITE) */

time = t.c.read;
/* Processor clock cycle time */
else

/* Access is WRITE under write-thru policy */
{
write.is.shared = get_prob_uniform();
if (write_is_shared <= (P.read + P.write)*
P.shared.write)

119

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{

time = wait_for_bus() + t_M_write ;
num. writ e _ inp ip e +=1 ;

bus_arbiter();
>

else
time = t_c_write ;

>

>
else

n.umber_of _miss +=1;
time = access_dport();
>

return(time);
>

This function, calculates the access time for

dual-port memory

long access_dport()
{
long time = 0;
float prob_in_replicated;
float IOF ;

/* ckeck to see if the intended word is
in replicated memory */
prob_in_replicated = get_prob_uniform();

120

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (prob_in_replicated <= h.M)
{

if(read)
t im e = B * t .M . r e a d ;

e l s e

time = wait _f or_bus () + t.M.write;
num.write.inpipe +=1;
bus.arbiterO ;

>

>

else /* there are some read/write misses */
i

if(read)

IOF = get_prob_uniform();
if (IOF <= P.IOF)

{
time = wait_for_bus() + D * t_aux_read;
iof.adres.read += 1;
bus_arbiter();
>

else

time = wait_for_bus() + t.anx.read;
iso.adres.read += 1;
bus_arbiter();
>

121

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

>

else
{
time = wait_for_bus() + t.aux.write;
num.write.inpipe +=1;
bus.arbiterO;

>

>

return (time);
>

^**

This function calculates the wait time

for a global bus
j i f * 3fc * * i f . * * * # i f s fc $ * $ s je * $ * sfc i f i f i f * * i f $ * i f i f i f i f i f i f i f * : fe sfc * afc * c jfc

int wait_for_bus()
{
int it.is.read;
int n,wtime = 0;
float P_wait_global ;
float IOF;

for(n=l ; n <= (active_N-l) ; n++)
{
P.wait.global = get.prob.uniformO;
if (P.wait.global <= (1 - h_c)*(l - h.M))
/* Other processors are using the bus at this time*/

122

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

it.is.read = read.writeO;
if (it.is.read)
/* If another processor is performing READ operation */

IOF = get_prob_uniform();
if (IOF <= P.IOF)
iof.adres.read += 1;
else
iso.adres.read += 1;
>

else
/* Another processor is performing WRITE operation */

-c
num.write.inpipe +=1;
>

>

>

if (iof.adres.read + iso.adres.read +
num.write.inpipe == 0)

wtime = 0;
else
wtime =iof_adres_read * D * t.aux.read +
iso.adres.read * t.aux.read +

num.write.inpipe * t.aux.write;
return(wtime);
>

123

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Bus Arbiter

void bus.arbiterO
{
int x,y,z,v;
int n,k;
long index;
if (i>= recal)

index = i;
else

index = recal;
num.pending.access = iof_adres_read +
iso.adres.read + num.write.inpipe;

x = iof.adres.read - old.iof.read;
v = iso.adres.read - old.iso.read;
y = num.write.inpipe - old.write.inpipe;

for (z = 0; z <(num.pending.access -
old_pending_access); z++)

{
if (x > z)
{
count_iof_time[old_iof_read+z] = index +

D * t.aux.read ;
index = count.iof.time[old_iof_read+z];

124

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

recal = index;
>

if (v > z)
{
count_iso_t ime [old_iso_read+z] = index
+ t.aux.read ;
index = count_iso_time[old_iso_read+z];
recal = index;
>
if (y > z)
•C
count .write.time [old. write_inpipe+z] = index +

t_M_write ;
index = count .write.time [old. write.inpipe+z] ;
recal = index;
>

>

>

^ *

Random number generator
^ *

float rand(float x)
{
int i;
i = 997.0 * x / l.e6;
x = 997.0 * x - i * l.e6;
return (x);
>

125

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^ *

This function computes a probability value that

is uniformly distributed on the interval [0,1]
^ *

float get_prob_uniform()
i
seed = rand(seed);
retura(seed/l-e6);
/* In order to have a value between 0 and 1 */
>

/ >
This function decides if an operation is

write vs read then sets the effected values

of access time.
^ *

int read_write()

int read.chance;
float P_read_write;
P_read_write = get_prob_uniform();
if (P_read_write <= P_read)

read_chem.ce = 1;
else

read.chance = 0;
return(read_chance);
>

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2 N U M A Sim ulation Code

^ * j

Simulation Code For a Typical

NUMA Machine

Version 2.2

#include<stdio.h>
#include<math.. h>
#define PE 8

Global Variables
* j

int N= PE;
/* Number of processing elements */
int active.N;

/* Number of active processors */
float h_c =.50;

/* Hit rate at level 1 */
float h_L = .50;

/* Hit rate at level 2 */
float P.read = .95;
/* Probability access is read (vs. write)*/
float P.write =1 - P.read;

/* Probability access is write */
int read;

127

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/* A flag to indicate an operation */
int t_0 = 10 ;
/* Processor cycle time */

int t_c = 10;
/* Access time to private cache */

int t_L = 100;
/* Access time to local memory */

int t_G = 200;
/* Access time to remote memory */

int B = 8;
/* ++ Burst size in words is 4 */

float seed;
/* A variable which holds a random number*/
int cache_miss = 0;
/* Level 1 cache missess */
int local_mem_miss = 0;
/* Level 2 cache missess */
float P_shared_write = .0164;
long c ;
int waiting_for_cache = 0;
int old.wait ing_cache = 0;
int num_local_read = 0;
int old_local_read = 0;
int num_local_write = 0;
int old_local_write = 0;
int num_global_read = 0;
int old_global_read = 0;
int num_global_write = 0;
int old_global_write = 0;
int total_local_pending = 0;

128

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int old_local_pending = 0;
int total_global_pending = 0;
int old_global_pending = 0;
int num_global_access = 0;
int old_global_access = 0;
int num_local_access = 0;
int old_local_access = 0;
long count_idle_time[PE] ;
long count_local_time[PE];
long count_global_time[PE];
int count = 1 ; /* A flag */
int dontcount =0; /* A flag */
FILE *fptr;
int num_cache_miss = 0;

Function Prototype
^ * J

int PEi();
/* Tbis function simulates the microprocessor */

int f_distributed_mem();
/* This function simulates references to
distributed memories*/

float rand(float);
/* This function generates random numbers */
float get_prob_uniform();
/* This function will provide a random address */
int wait_for_cache(int);
/* This function calculates wait time to

129

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

access cache */
int local_bus_manager();
/* This function calculates wait time

for a local bus */
int global.bus.manager0;
/* This function calculates wait time for

a global bus */
int read_write();
/* This function sets access values

based on read vs write */

/***&***********&*************************'

main function

void main()
{
int A;
int accesstime = 0;
long tot.access = 0,n,k;
float av.access;
long num.of.access = 0;
char answer;

for (n = 0 ; n < PE ; n++)
i
count_idle_time[n] = 0;
count_local_time[n] = 0;
count.global.time[n] = 0;

/* count_local_read[n] = 0;
count.local.write[n] = 0;

130

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

count_global_read[n] = 0;
count _global_write[n] =0; */
>

fptr = fopen("numa_test.cpp","a");

printf("\nPlease provide a random number seed
for this experiment");

printf("\nPlease enter an odd 6
digit number not ending in 5:");
scanf ("'/,f",&seed);
active.N = PE;

for (c=l;c<=100000;c++)
{
if (active.N > 0)

num.of.access += 1;
read = read.writeO;
accesstime = PEi();
tot.access += accesstime;
>

for (n = 0; n <waiting_for_cache; n++)
fprintf (fptr," \ncount_idle_t ime [%d] =

Xld",n,count.idle.time[n]);

for(n = 0; n < waiting.for.cache ; n++)

131

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (c+1 == couat_idle_time[a] 11
c+1 >couat_idle_time[a])

for (k = a ; k<wait ing_for_cache
- 1 ; k++)
couat_idle_time[k] =

couat_idle_time[k+l];
waitiag_for_cache -=1;

>

>

for(a = 0; a< aum_local_access ; a++)

if (c+1 == count_local_time[a] I I
c+1 >couat_local_time[a])

for (k=a ; k<aum_local_access
- 1; k++)
couat_local_time[k] =

couat_local_time[k+1];
aum_local_access -=1;

>

>

for(a = 0; a< aum_global_access ; a++)

if (c+1 == couat_globaLl_time[a] I I
c+1 > couat_global_time[a])

for (k=a ; k<aum_global_access

132

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

- 1; k++)
count_global_time[k] =

count _global_t ime [k+1] ;
num_global_access -=1 ;

>

>

old_wait ing.cache = waiting_for_cache;
old_local_read = num_local_read;
old_local_ write = num.local.write;
old_global_read = num.global.read;
old.global.write = num.global.write;
old_local_access = num_local_access ;
old_global_access = num_global_access ;

old_global_pending = old_global_read +
old_global_write ;

active.N = PE - (old_waiting_cache +
old_local_access + old_global_access);

>

av.access = (float) tot.access / num.of.access;

fprintf (fptr," \n__________ NUMA____________ ");
fprintf (fptr," \n........P.read.....") ;
fprintf (fptr," \nExpected Access Time = '/,5.2f ns."

,av_access);
fprintf(fptr,"\nCache hit rate = Jlf",h_c);
fprintf (fptr," \nLocal memory hit rate = Jif"

,h .L) ;
fprintf (fptr," \nP_read = '/.f", P.read) ;

133

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fprintf (fptr, "\nNumber of blocks * %d",B);
fprintf (fptr," \nNumber of processor = Jid",N);
fprintf (fptr," \nProbability of shared write =

%f ",P_shared.write);
fprintf (fptr," \n active.N = '/d" .active.N),
fprintf (fptr," \n *****************************");

fclose(fptr);
>

This function simulates processors request for

memory access
J if.**

int PEi()
-c
int time = 0;
float write.is.shared ;
float hit.or.miss;

/* Cache hit or miss */
hit.or.miss = get.prob.uniform();
if (hit.or.miss <= h.c)

{
if (read)
/* Access is a READ (rather than a WRITE) */
time = wait.for.cache(count) + t.c ;

else
/* Access is WRITE under write-thru policy */

write.is.shared = get_prob_uniform() ;

134

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (write.is.shared <= P.shared.write)
time = wait.for.cache(dontcount) +

t.c + local.bus.managerO + t.L;
else
time = wait.for.cache(count) + t.c ;

>

>

else

num.cache.miss +=1;
time = f.distributed.memO;
>

return(time);
>

135

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This function simulates references to

distributed memories

int f_distributed_mem()
{
int time = 0;
cache_miss++ ;
float hit.or.miss;
/* Cache hit or miss */

hit_or_miss = get_prob_uniform();
if (hit.or.miss <= h_L)
/* If it is in local distribted memory *f

{
if (read)

time = wait_for_cache(dontcount) +
t_c + local_bus_manager() + B * t_L ;

else
time = wait_for_cache(dontcount) +
t.c + local.bus.managerO + t.L ;

>

else
/* It is in remote distributed memory */

local_mem_miss++;
if (read)
time = wait.for.cache(dontcount) + t.c
+ global.bus.managerO + B * t.G ;

else

136

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

time = wait_f or_cach.e(dontcount) + t_c
+ global_bus_manager() + t_G ;

>

return (time);
>

137

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This function calculates the wait time

to access the cache if there are other

processors trying to invalidate shared data
^***

int wait_for_cache(int W)
{
int n,wtime = 0;
int num_invalidate = 0;
float P_wait_for_cache ;

for(n=l ; n <= (active_N-l) ; n++)
{
P_wait_for_cache = get_prob_uniform() ;
if (P_wait_for_cache <= P_shared_write)

/* Another processor is using the bus at this
time to invalidate shared data */
num_invalidate +=1;

>

wtime = num_invalidate * t_c;

if (wtime > 0 kk W)
{
waiting_for_cache += 1;
count _idle_time [old.wait ing_cache] =
c + wtime ;
fprintf(fptr,"\n c = 5Ud",c);
fprintf (fptr, ;
for(n = 0; n< waiting_for_cache; n++)

138

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

fprintf(fptr,"\nwaiting for cache = '/.d",
waiting_for.cache);
fprintf (fptr," \n count _ idle_t ime [*/,d] =
5(ld" ,n,count_idle_time[n]);

>

fprintf(fptr, ;
>

return(wtime);
>

j j f e i f $ afe j f e afe a(c afe afe afe afe afe afc a fe a fe afe afe afe afe afe afe afe afe afe afe afe afe afe afe afe afe afe afe afe afe afe afe afe afe afe afe afe

This function calculates the wait

time for a local bus
y *

local_bus_manager()
{
int n,wtime = 0;
int it_is_read ;
int num_local_read = 0;
int num_local_write = 0;
int x,y;
float P_local_waiting ;
long index;

for(n=l ; n <= active_N-l ; n++)
•c
P_local_waiting = get_prob_uniform();
it_is_read = read_write();

139

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

if (it_is_read kk P_local_waiting
<= (1 - h_c))

/* Another processor is accessing the
local memory */

num_local_read += 1;
else

if (P_local_waiting <= P_shared_vrite)
num_local_write += 1 ;
else ;
>

wtime = num_local_read * B * t_L +
nnm_local_write * t_L ;

if (wtime > 0)

num_local_access +=1;
count_local_time[old_local_access] = c + wtime;

>

return (wtime);
>

j sfe * jfc * 3(s sfe * * sfc $ s(c * * $ * sfc j|e * sfc * s(c * sfc £ * sfc * * j(c if afe £ $ afe sfc j|c * 3fe $ 3|c 3(c if * * $

This function calculates the wait time

for a global bus

global_bus.manager()
{
int it_is_read;

140

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int global_read_counter = 0;
int global_write_counter = 0;
int index,x,y;
int n,wtime = 0;
float P_wait_global ;
f or(n=l ; n <= active_N-l ; n++)

P_wait_global = get_prob_uniform();
if (P_wait_global <= (l - h_c)*(l - h_L))

/* Other processors are using the bus
at this time*/

{
it_is_read = read_write();
if Cit_is_read)

/* If another processor is performing
READ operation */
/* num_global_read +=1; */

global_read_counter += 1;
else

/* Another processor is performing WRITE
operation */

/* num_global_write +=1; */

global_write_counter +=1;
>

>

wtime = global_read_counter * B * t_G +
global_write_counter * t_G ;

if (wtime > 0)

141

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

{

num_global_access +=1;
count_global_time[old_global_access]

= c + wtime;
>

return(wtime);
>

This function, decides if an operation is

write vs read then sets the effected

values of access time.

int read_write()
{
int access;
float P_read_write;
P_read_write = get_prob_uniform();
if (P_read_write <= P_read)

access =1; /* access is READ */
else

access = 0; /* access is WRITE */

return(access);
>

142

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^ * j

Random number generator
^**j

float rand(float x)
{
int i;
i = 997.0 * x / l.e6;
x = 997.0 * x - i * l.e6;
return (x) ;
>

^ *

This function computes a probability value

that is uniformly distributed on the interval

0,1

^**j

float get_prob_uniform()
{
seed = rand(seed);
retum(seed/l.eS);
/* In order to have a value between 0 and 1 */
>

^ *

END OF FILE
^ * j

143

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3 U M A Sim ulation Code

Simulation Code For a Typical

UMA Machine

Version 2.2

#include<stdio.h>
#include<math.h>
#include<stdlib.h>
#define PE 8

Global Variables
y *

int N= PE;
/* Number of processing elements */

float h_c = .50;
/* Hit rate at level 1 */
float P_read = .95;
/* Probability access is read (vs. write)*/
float P_write =1 - P.read;

/* Probability access is write */

float P_shared = 0.0164;
/* Fraction of shared data */

int read;
/* A flag to indicate an operation */

144

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int t_0 = 10 ;
/* Processor cycle time */
int t_c = 10 ;

/* Access time to private memory (cache) */
int t_g = 100;

/* Access time to global memory */
int B = 8;
/* ++ Burst size in words is 4 * /

float seed;
/* A variable which holds a random number*/

float P_local_global;
/* Probability of being in local or global
memory */

int cache.miss = 0;
/* Level 1 cache missess */

int active_N ;
long count_idle_time[PE] ;
long Pi_idle_time[PE] ;
int Pi_waiting_global = 0;
int old_pi_waiting = 0;
long c;
int old_waiting_local = 0;
int Pi_waiting_local = 0;

FILE *fptr;
int count =1; /* A flag */
int dontcount = 0;

145

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

^ *

Function Prototype
^ *

int f.PEO;
/* This function simulates the microprocessor */

int f _shared_mem() ;
/* This function simulates the shared-memory */

float rand(float);
/* This function generates random numbers */

float get_prob_uniform() ;
/* This function will provide a random address */
int local_bus(int) ;
/* This function calculates wait time for a

local bus */
int global_bus();
/* This function calculates wait time for a

global bus */
int read.write();
/* This function sets access values based

on read vs write */

^ * ^

main, function
^ * ^

void main()

int accesstime = 0;
long tot.access = 0;

146

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int k,n;
float av_access;
char answer;
long num_of.access = 0;
for (n = 0; n<N;n++)

-C

count.idle.time[n] = 0;
Pi_idle_time[PE] = 0;

>

fptr = fopen("uma_test. cpp", "a") ;

printf ("\nPlease provide a random number seed
for this experiment");

printf("\nPlease enter an odd 6 digit number
not ending in 5:");

scanf("%f",&seed);
active.N = N;

for (c=l;c<=100000;c++)

read = read_write();
if (active.N >=1)

num.of.access +=1;
accesstime = f_PE();
tot.access += accesstime;
>

else
fprintf(fptr,"\nAll processors are idle

147

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

and c = '/Id", c) ;
if (Pi_waiting_local > 0)
{
for (n = 0;n<Pi.waiting.local;n++)

if(c+1 == count_idle_time[n] I I c+1 >
count.idle.time[n])

{
for (k = n ; k<Pi_waiting_local-l ; k++)
count_idle_time[k] = count_idle_time[k+l];

Pi_waiting_local -=1;
break;

>

>

>
for (n = 0; n<Pi_waiting_global; n++)

if(c+1 == Pi_idle_time[n] I I c+1 >
Pi.idle.time[n])

{
for (k = n;k<Pi_waiting_global -l;k++)
Pi.idle.time [k] = Pi.idle.time[k+1] ;

Pi_waiting_global -=1;
>

>

old_waiting_local = Pi.waiting.local;
old.pi.waiting = Pi_waiting_global;
active.N = PE - (old_waiting_local +
old.pi.waiting);

148

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

>
av.access = (float) tot .access/(num.of. access);

fprintf (fptr," \nAver age access time = '/,5.2f ns.",
av.access);

fprintf (fptr," \n Probability of shared
= JJf",P_shared);
fprintf (fptr," \n Cache hit rate
= V.f & N = '/,d",h_c, N);

fprintf (fptr," \n Probability of READ = '/,f" ,P_read);
fprintf (fptr," \n B = '/,d",B);

fprintf (fptr," \nActive_N = ’/d" .active.N);
fprintf (fptr," \nPi_waiting_local = '/,d",
Pi_waiting_local);
fprintf (fptr, "\nPi_wait ing_global
= J(d" ,Pi_waiting_global) ;
for (n=0 ;n<=Pi_waiting_local-l ;n++)
fprintf (fptr, "\n count _idle_time['/,d]

= '/Id",n,count_idle_time[n]) ;
for (n=0 ;n<Pi_waiting_global ;n++)
fprintf (fptr," \n Pi.idle.t ime [J(d] =
'/Id" ,n, Pi.idle.t ime [n]) ;

printf ("\nNumber of memory access = */ld" ,num.of .access) ,

fclose(fptr);
>

149

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

y *

This function simulates processors request for

memory access
^***

int f_PE()
{
int time = 0;
float hit_or_miss;
I* Cache hit or miss */

hit_or_miss = get_prob_uniform();
if (hit_or_niss <= h_c) /* It is a hit */

{
if (read)
/* Access is a read (rather than a write) */

time = local.bus(count) + t_c ;

else
/* Access is write under write-thru policy */

time = local_bus(dontcount) + t_c +
global_bus() + t_g;

>

else
■(/* It is a miss */

cache_miss += 1 ;

time = f_shared_mem();
>

150

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

return (time);
>

^ * * * * * * * * * * * * * * * * * * * * * * * * *

This function simulates the shared-memory
^ *

int f_sh.ared_mem()
{
int time = 0;

if (read)
time = local.bus(dont count) + t_c +
global_bus() + B * t_g ;

else
time = local.bus(dontcount)

+ t_c + global_bus() + t_g;
return (time);
>

^********************************** ********* ■̂

This function calculates the wait time for

a local bus
^ * ^

int local.bus(int W)
{
int n,wtime = 0;
int pending.write * 0;
float P_wait_local ;

for(n=l ; n <= (active_N-l) ; n++)

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P.wait.local = get.prob.uniformO;
if (P.wait.local <= (P.read +

P.write)*P_shared)

/* Another processor is using the bus at this
time to invalidate shared data */

pending.write += 1;
>

wtime = pending.write * t.c;
if (wtime > 0 &£ W)
{
Pi_waiting_local += 1;
count.idle.timeCold.waiting.local] = c + wtime ;

}
return(wtime);
>

This function calculates the wait time

for a global bus
j *

global_bus()
{
int it.is.read;
int read_waiting_global= 0;
int write_waiting_global= 0;
int n,wtime = 0;

152

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

float P.wait.global ;
for(n=l ; n <= active.N -1 ; n++)

P.wait.global = get.prob.uniformO ;
if (P.wait.global <* (1 - h.c))

/* Other processors are using the bus at this time*/

it.is.read = read.writeO;
if (it.is.read)

/* If another processor is performing
READ operation */

read.waiting.global +=1;
else

/* Another processor is performing WRITE operation */
write_waiting_global +=1;

>

>

wtime = read_waiting_global * B * t_g +
write_waiting_global * t.g;

if (wtime > 0)

Pi_waiting_global +=1 ;
Pi.idle.time[old.pi.waiting] = c + wtime;

>

return(wtime);
>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This function decides if an operation is write vs

read then sets the effected values of access time.

int read.writeO
{
int access;
float P.read.write;
P_read_write = get_prob_uniform();
if (P.read.write <= P.read)

access =1; /* access is READ */
else

access =0; /* access is WRITE */
retum(access);
>

Random number generator

float rand(float x)
{
int i;
i = 997.0 * x / l.e6;
x = 997.0 * x - i * l.e6;
return(x);
>

154

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This function computes a probability value that

is uniformly distributed on the interval [0,1]

float get_prob_uniform()
{
seed = rand(seed);
retura(seed/l.e6);
/* In order to have a value between 0 and 1 */
>

END OF FILE

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4 LRG Sim ulation C ode

Simulation Code For

Local-Remote-Global

Architecture

Version 4.3
ji***j

#include<stdio.h>
#include<math.h>
#define PE 8

Global Variables
^ * * * * * * * j

int N = PE;
/* Number of processing elements */

int NL=2;
/* Number of processing elements on board */

float h_l = .50;
/* Hit rate at level 1 */

float P_local= .50;
/* Fraction of shared data in local memory */
float P.global;
/* Fraction of shared data in global memory*/
float P_read = .95;
/* Probability access is read (vs. write)*/
float P_write =1-P_read;

156

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/* Probability access is write */
int read;
/* A flag to indicate an operation */
int t_l ;
/* Access time to promary (internal) cache */
int t.local ;

/* Access time to local memory */
int t.global;
/* Access time to global memory */

int B = 8;
/* ++ Burst size in words is 4 */

float seed;
/* A variable which holds a random number*/

float hit_or_miss;
/* Cache hit or miss */

int t.burst_L = 20;
/* Time it takes to operate on words
when burst*/
int t_burst_FL = 20;
/* Time it takes to operate on words when burst*/
int t.burst_G = 40;
/* Time it takes to operate on words when burst*/
int snoop_time_local = 0;
/* Snooping time */
int snoop_time_global = 0;
/* ++ local and global snoop times are different */
float P_snoop_system ® 0.05;
/* Probability of snoop hit on system bus */
float P_snoop_local = 0.05;
/* Probability of snoop hit on local bus */

157

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

float P.single = 0.01;
/* Probability that access is single */
int single;
/* This variable holds value of 1 or 0 to indicate

the type of operation as single or burst */
float P_shared_write = .0164;
float P.local.global;
/* Probability of being in local or global memory */

int copyback=0;
/* This variable holds 1 or 0 to indicate the mode */
int level.l.misses = 0;

/* Level 1 cache missess */
int level_2_misses = 0;

/* Level 2 cache missess */
int active.PE;
int num_local_busy = 0;
int old_local_busy = 0;
long count_local_time[PE];
int num_global_busy = 0;
int old_global_busy = 0;
long count_global_time[PE];
long c;
long num.of.access = 0;
FILE *fptr;

Function Prototype
^ ********** :(ci(c * *** j|e ** jjt ** ******** jjc * Jlcsic** ****** #

int fprocessor();

158

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

/* This function simulates the
microprocessor (88110) */

int f_cachectrlr();
/* This function simulates the
cache controller (88410) */
int f_local_global();

/* This function simulates Addr ASICs */

float rand(float) ;
/* This function generates random numbers */

float get_prob_uniform();
/* This function will provide a
random address */

int local_bus_time();
/* This function calculates wait time
for a local bus */
int global_bus_time();
/* This function calculates wait time for

a global bus */
int pick(int,int);
I* This function picks the largest n
umber among two */
void read.write();
/* This function sets access values
based on read vs write */
void burst_vs_single();
/* This function makes decision whether

operation is burst */

159

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

main function

void main()
{

int accesstime = 0;
long tot.access = 0;
int n , k;
float av.access;
char answer;

fptr = fopen("L_R_G.cpp","a");

printf("\nPlease provide a random number
seed for this experiment");

printf("\nPlease enter an odd 6 digit number
not ending in 5:");

scanf ("'/.f",&seed);

for (n = 0 ; n < N ; n++)
{
count_local_time[n] = 0;
count _global_t ime [n] = 0;
>

active.PE = PE;

160

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

for (c = 1; c <= 100000; C + +)

{
if (active.PE > 0)
-C
num.of.access +=1,
read.writeC);
accesstime = fprocessorO;
tot.access += accesstime;

>

for(n = 0; n < num.local.busy ; n++)

if (c+1 == count_local_time[n] I I
c+1 > count_local_time[n])
■c
for (k = 0 ; k<num_local_busy -
1 ; k++)
count.local.time[k] =
count.local.time[k+1];

for (n = 0; n<num_local_busy ;n++)
num.local.busy -=1;
>

>

for(n = 0; n < num.global.busy ; n++)

if (c+1 == count_global_time[n] II c+1 >
count.global.time[n])

for (k = 0 ; k<num_local_busy - 1 ; k++)

161

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

count.global_time[k] =
count .global_time[k+l] ;
for (n = 0; n<num_local_busy ;n++)
num.global.busy -=1;
>

>

old.local.busy = num.local.busy;
old.global.busy = num.global.busy;
active.PE = N - (old.local.busy + old_global_busy);

>

av.access =(float) tot.access/(num.of.access);

fp rin tf(fp trf" \n m m m m p _ r e a d m x m m x m ");
fprintf(fptr, ") ;
fprintf (fptr,"\nExpected Access Time =

*/.5.2f ns.",av_access);
fprintf(fptr,"\nCache hit rate = Jif",h_l);
fprintf (fptr,"\nLocal memory hit rate

= */tf",P_local);
fprintf (fptr,"\nP_read = '/,f",P_read) ;
fprintf(fptr,"\nNumber of blocks = '/,d",B);
fprintf(fptr,"\nNumber of processor = J(d",N);
fprintf(fptr,"\nProbability of shared write = Jif",
P.shared.write);

fprintf(fptr,"\n*******************************");

fclose(fptr);
>

162

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This function simulates processors request

for memory access

int fprocessorO
{
int time = 0;
float is.it.private;
hit_or_miss = get.prob.unif orm() ;
if (hit.or.miss <= h.l)

•C
if (read)
/* Access is a read (rather than a write) */
time = t.l;

else
/* Access is write under write-thru policy */
{
P_local_global = get_prob_unif orm();
is.it.private = get_prob_uniform();
if(is.it.private <= (P.read + P.write)*

P.shared.write)
{
if (P.local.global <= P.local)
time = t.l + local_bus_time() + t.local;
else
time = t.l + local_bus_time() + t.local +
global_bus_time() + t_global;
>

else

163

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

time = t.l;

>

>

else
time = f_local_global();

return(time);
>

^ *

This function simulates local and global

memory references
^ *

int f_local_global()
•C
float P_snoop_h.it;
int wait_for_bus,waittime,time = 0;
level.l.misses ++;
/* To count number of cache miss */
P.local.global. = get_prob_uniform() ;
if (P.local.global <= P.local)
/* If the location is in local memory */

wait.for.bus = local_bus_time();
waittime = wait.for.bus;
time = t.l + waittime + t.local;
>

else
/* If the location is in global memory */

164

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

i

wait.for.bus = global_bus_time();
waittime = wait.for.bus;
time = t.l + local_bus_time() + t.local
+ waittime + t_global ;
>

return(time);
>

I 'pjjjg function calculates the

wait time

for a local bus

local.bus.t ime()
{
int n,wtime = 0;
int local.busy.single = 0;
int local.busy.burst = 0;
int t.local.O ; /* overlapped access time */
float P.wait.local ;
t.local.O = t.burst_ L * 3 ;
for(n=l ; n <= (N L -1) ; n++)

{
P.wait.local = get_prob_uniform() ;
if (P.wait.local <= P_local*(l - h.l))

/* Other processor is using the bus at this time*/
{
if (single)

local.busy.single =1;
else

165

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

local.busy.burst =1;
>

wtime += local.busy.single * t_local_Q +
local.busy.burst * t.local.O +
(B-l)*t.burst_L;

>

if (wtime > 0)

num.local.busy +=1;
/* if (num.local.busy > N/2)

num.local.busy = N/2; */

count.local.time [old.local.busy] = c + wtime;

>

return (wtime) ;
>

^ *

This function calculates the wait time

for a global bus
^ *

global_bus_time()

int n,wtime = 0;
int global.busy.single = 0;
int global.busy.burst = 0;

166

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

int t.global.O ;
float P.wait.global ;
t.global.O = t.burst_G*2 ;
/* overlapped access time */
for(n=l ; n <= (N-l) ; n++)

{
P.wait.global = get.prob.uniformO;
if (P.wait.global <= P_global*(l - b.l))

/* Other processors are using the bus at this time*/

if (single)
global.busy.single +=1;

else
global.busy.burst +=1;

>

>

wtime = global.busy.single * t.global.O +
global.busy.burst * (t.global.O +
(B-l)*t_burst_G);
if (wtime > 0)

num.global.busy += 1;
count .global _time[old_global_busy] = c + wtime;

>

return (wtime);
>

167

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

This function picks the largest number
^*** j

int pick(int x.int y)
i

if (x > y)
return (x);
else

return (y);
>

I 'pj-Qg function decides

if an operation is write vs read then sets the effected values of access time.

void read.writeO
{
float P.read.write;
P_read_write - get_prob_uniform();
if (P.read.write <= P_read)

{

/* If operation is read then these time
variables will be set as follows in ns.*/

t.l = 10;
t.local = 100;
t ..global = 200;
read = 1;
>

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else
•C

/* If operation is write then these time
variables will be set as follows in ns.*/

t.l = 10;
t.local = 100;
t_global = 200;
read = 0;
>

>

^ * * * * ^ *

This function makes decision if an operation

is single or burst
j i f . * sfc if: * * c sfe s fe sfe j (c i f . i f i f i f j* c * i f i f j f c i f * $ * $ i f i f s ic sfc i f sfc s fe s fe i f i f # sfc i f i f sfc i f i f s fc i f sfc i f

void burst_vs_single()
{
float P.burst.single;
P.burst.single = get.prob.uniformC) ;
if (P.burst.single <= P.single)

single = 1;
else
single = 0;

>

169

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Random number generator

float rand (float x)
{

int i;
i = 997.0 * x / l.e6;
x = 997.0 * x - i * l.e6;
return(x);
>

^4e*4e4cJ(c4c:|c4c4e 4c s i c * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *

This function computes a probability value that

is uniformly distributed on the interval

0,1

^ *

float get_prob_uniform()
{
seed = rand(seed);
retum(seed/l.e6);
/* In order to have a value between 0 and 1 */
>

^ *

END OF FILE
* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * 4c4c4c4c

170

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5 R C R C ost-Effectiveness Code

Code For Calculation of Cost Savings

Factor For RCR Architecture with Various

Number of PEs

Version 2.0
^*** j

CODE FOR CALCULATION OF COST SAVINGS FACTOR For

RCR ARCHITECTURE WITH VARIOUS NUMBER OF PEs.

#include<stdio.h>
#include<math.h>

void main.0
f
FILE *fptr;
int N,n ;
int M = 1;
int C_D = 1;
int C_S = 6;
float M_rep ;
float sav_4 = 0.0;
float sav_8 = 0.0;
float sav_16 = 0.0;
float sav_32 = 0.0;
float sav_64 = 0.0;
float sav_128 = 0.0;
float cost_without_cache = 0.0 ;
float cost_savings =0.0 ;

171

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

float cost.factor = 0.0;
fptr = fopen("Scost_r.cpp","a");
fprintf(fptr,"\n\\begin{table}");
fprintf (fptr, "\n\\capt ion{Cost Savings
Factor For Various Number of PEs.}");

fprintf(fptr,”\n\\label{costfact}");
fprintf(fptr,"\n\\begin{center}");
fprintf(fptr,"\n\\begin{tabularX|c|c|c|c|c|c|c|>

Whline") ;
fprintf(fptr,"\nM_{rep} ft $N=4$ ft $N=8$ ft
$N=16$ ft $N=32$ ft $N=64$ ft $N=128$ \\\\
\\h.line\\hline");
for (n=l;n<10; n++)
{
for (N = 4 ; N<= 128; N= N*2)

M.rep = n/10.0;
cost_vith.out_cach.e = (float)M * N * C_S ;
cost.savings = M * M.rep * (N * C_S - C_D);
cost.factor = cost_savings/cost_with.out_cach.e;
if (N == 4)

sav_4 = cost.factor * 100;
else if (N == 8)

sav_8 = cost.factor * 100;
else if (N == 16)

sav_16 = cost.factor * 100;
else if (N == 32)

sav_32 = cost.factor * 100;
else if (N == 64)

sav_64 = cost.factor * 100;

172

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

else
sav_128 = cost.factor * 100;

>

fprintf (fptr, "\n 7.4. If 4 7,4. If 4 7.4. If 4 7.4. If
4 7.4.If 4 7.4.If 4 7.4.If \\\\ Whline", M.rep, \
sav_4, sav_8, sav_16, sav.32, sav_64, sav_128);

>

fprintf (fptr, "\n\\end{tabular}") ;
fprintf (fptr, "\n\\end-Ccenter>") ;
fprintf (fptr, "\n\\end-(table}-");
fclose(fptr);
>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

6 List o f Sym bols, A bbreviations, and

N om enclature
Symbol Represents Relationship

A{ Number of Memory Accesses A,- = Ri + W{
A* Number of Shared Memory Accesses
A* The Weighted Average

Shared References
B Block Size
Ci Cache i i = 0 , 1 , 2 , N
COMA Cache Only Memory Architecture
Cd Cost per Word for DRAM
Cs Cost per Word for SRAM
Csaving Cost Savings
CSM Cache Shared Memory
CU Control Unit
CU{ Control Unit i i = 0 , 1 , 2 , N
D Delay in Terms of Memory Cycles
d Number of Ports in a Multiport

Memory Unit
6 an Arbitrary Distance from

Lowest or Highest Addresses
Currently Stored in
Replicatred Memory

Di Delay by P,-
Diof the Distance Outside

the Fence
Dir{ Directory i i = 0 , 1 , 2 , N
DS Data Stream
E(N) System Efficiency for an E(N) = ^ p -

N-Processor System

174

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Symbol Represents Relationship

GSM Global Shared Memory
H Highest Address Currently

Stord in Replicated Memory
h Hit Ratio
h,L Hit Ratio on Local Memory
h.R Hit Ratio on Replicated Memory
IS Instruction Stream
L Lowest Address Currently

Stord in Replicated Memory
LM Local Memory
LRF Lower Replicated Fence
LRG Local-Remote-Global
M Shared-Memory Size in Words
Mc Number of Memory Cycle

Memory Unit i i = 0,1,2, N
MM Main Memory
MMi Main Memory i i = 0 , 1 , 2 , N
MTep Percentage of Shared-Memory

That is Spatially Cached
N Total Number of Processors

in the System
NUMA Non-Uniform Memory Access Model
P A Processor
PC Processor Consistency Model
PE Processing Element
pe Performance for the Entire Task

Using Enhancement
Pi Processor i in the System i = 0 , 1 , N

175

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Symbol Represents Relationship

Pne

PlOF

Pl

Pthared-urrite

R

R i

RC
RCR
tR -

s
S(N)

tave

tsync

T

tbusy

tread

Performance for the Entire
Task Without Enhancement
Probability of a Word
Being Incrementally outside
the Fence
Probability of Data Being
in Local Memory
Probability of a
Shared WRITE
Number of READ References 12iLi R i = R

During Interval
Number of READ References by Pi R i = R

Number of Shared
data READs
Release Consistency Memory Model
Replicated Concurrent-Read
Read-Miss Time

t,w

Speedup
Speedup Factor for an
iV-Processor System
the Average Memory
Access Time
Synchronization Time
Execution Time
Processor Busy Time
Average READ Time
Write-Miss Time

176

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Symbol Represents Relationship

tw

*G

tc

taux

tM

tL

t Remote

fLRG
read

f LRG
''write

t LRG
wait-localJ>us

t LRG
wait-global Jms

fL R G
tave

f N U M A
read

f N U M A
''write

Time it Takes to Write
a Word to Replicated Memory
Time it Takes to
Access Global Memory
Cache Clock Cycle Time
Time it Takes to
Access Auxiliary Memory
Time to Access
Replicated Memory
Time it Takes to
Access Local Memory
Time it Takes to
Access Global Memory
the Average READ Time
for LRG Configuration
the Average WRITE Time
for LRG Configuration
the Waiting Time
for Local Bus for
LRG Configuration
the Waiting Time
for Global Bus for
LRG Configuration
the Expected Memory Access
Time for LRG Configuration
the Average READ Time
for NUMA Configuration
the Average WRITE Time
for NUMA Configuration

177

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Symbol

t N U M A
wa.it-local -bus

*N U M A
wait-global-bus

f N U M A
"flit*

f N U M A
wait-pending-write

f R C R
read

f R C R
''write

t RCR
wait-global-bus

f R C R
* ' n n *

f U M A
read

f U M A
write

f U M A
" n i t *

f U M A
wait-global Jms

Represents

the Waiting Time
for Local Bus for
NUMA Configuration
the Waiting Time
for Global Bus for
NUMA Configuration
the Expected Memory Access
Time for NUMA Configuration
the Time a Processor
may have to Wait to Access
Local Memory (NUMA Machine)
the Average READ Time
for RCR Configuration
the Average WRITE Time
for RCR Configuration
the Waiting Time
for Global Bus for
RCR Configuration
the Expected Memory Access
Time for RCR Configuration
the Average READ Time
for UMA Configuration
the Average WRITE Time
for UMA Configuration
the Expected Memory Access
Time for UMA Configuration
the Waiting Time
for Global Bus for
UMA Configuration

178

Relationship

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Symbol Represents Relationship

tw^t%ending.write the Time a Processor
may have to Wait to Access
Local Memory (UMA Machine)

r(l) Execution Time Steps in a Uniprocessor T(l) = 0(1)
T(N) Execution Time Steps for

iV-Processor System
TSO Total Store Order Weak

Consistency Model
UMA Uniform Memory Access Model
URF Upper Replicated Fence
W Number of WRITE References W = Y^= \ W«'

During Interval
Number of WRITE References by Pt W = YliLi

W a Number of WRITE References
to Shared Data

W* Number of WRITE References
to Shared Data by P,-

179

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

7 R eferences

[ADVE91] Adve, Adve, Hill, Vernon, “Comparison of Hardware and Software Cache

Coherence Schemes,” Proceedings of the 18th International Symposium on Computer

Architecture, 19(3):298-308, May 1991.

[AGARWAL88] Agarwal, Simoni, Hennessy, Horowitz, “An Evaluation of Directory

Schemes for Cache Coherence,” Proceedings of the 15th International Symposium on

Computer Architecture, 16(2):280-289, May 1988.

[ALLEN78] Allen, Probability, Statistics, and Queueing Theory With Computer Sci­

ence Applications, Academic Press, Inc., 1978.

[ARCHIBALD84] Archibald, Baer, “An Economical Solution to the Cache Coherence

Problem, ” Proceedings of the International Symposium on Computer Architecture,

pages 355-362, 1984.

[ARCHIBALD86] Archibald, Baer, “Cache Coherence Protocols: Evaluation Us­

ing a Microprocessor Simulation Model, ” ACM Transactions on Computer Systems,

4(4):273-298, November 1986.

[BAGNOLI93] Bagnoli, Casamatta, Lazzari. “Multiprocessor System Having Global

Data Replication, ” U.S. Patent Documents, US005214776, May 1993.

[BARR0S093] Barroso, DuBois, “The Performance of Cache-Coherent Ringbase

Multiprocessors, ” IEEE Computer, pages 268-277, March 1993.

[BELL92] Bell, “Ultracomputer: A Teraflop Before Its Tim e,” Communication ACM ,

35(8):27-47, MONTH 1992.

180

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[BERT0NI91] Bertoni, Wang, “Multiple Interleaved Bus Architectures, ” Proceedings

of the 1991 International Conference on Parallel Processing, pages 1-8, August 1991.

[BUCHER90] Bucher, Calahan, “Access Conflicts in Multiprocessor Memories Que-

ing Models and Simulation Studies, ” Proceedings of the International Conference on

Supercomputing. Computer Architecture News, 18(3):428-438, September 1990.

[CENSIER78] Censier, Feautrier, “A New Solution to Coherence Problems in Mul­

ticache Systems,” IEEE-Transactions on Computers, 27(12):1112-1118, December

1978.

[CHAIKEN90] Chaiken, Fields, Kurihara, Agarwal, “Directory-Based Cache Coher­

ence in Large-Scale Multiprocessors, ” it IEEE Computer, 23(6):49-58, June 1990.

[CHEONG88] Cheong, Veidenbaum, “A Cache Coherence Scheme With Fast Selec­

tive Invalidation,” Proceedings of the 15th International Symposium on Computer

Architecture, 16(2):299-307, May 1988.

[COSTA93] Costa, Leonardi, “Multiprocessor System Having Distributed Shared Re­

sources an Dynamic Global Data Replication, ” U.S. Patent Documents, US005247673,

September 1993.

[CRAWFORD94] Crawford, DeMara, “Cache Coherence in a Multiport Memory En­

vironment, ” Proceedings of the 1st International Conference on Massively Parallel

Computing Systems, May 1994.

181

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[DEMARA95] DeMara, Crawford, “Cache Coherence Strategies for Multiported Shared

Memory Architectures, ” In Preparation for Submission to Journal of Parallel and

Distributed Computing.

[DEMARA93] DeMara, Moldovan, “The SNAP-1 Parallel Prototype, ” IEEE Trans­

actions on Parallel and Distributed Systems, 4(8):841-854, August 1993.

[DEMARA94] DeMara, Motlagh, Lin, Kuo, “Barrier Synchronization Techniques for

Distributed Process Creation, ” IEEE International Parallel Processing Symposium,

Cancun, Mexico, April 1994.

[DEMARA92] DeMara, Parallelism, Design, and Performance of a Marker- Prop­

agation Reasoning System, Ph.D. Dissertation, University of Southern California,

Department of EE-Systems, 1992.

[DUBOIS82] DuBois, Briggs, “Effects of Cache Coherency in Multiprocessors, ” Pro­

ceedings of the 9th International Symposium on Computer Architecture, 10(3):299-

308, April 1982.

[DUBOIS90a] DuBois, Briggs, “Tutorial Notes on Shared-Memory Architectures for

Multiprocessors,” Proceedings of the 17th Symposium on Computer Architecture,

Seattle, WA, 1990.

[DUBOIS92a] DuBois, “Delayed Consistency,” in DuBois and Thakkar (eds.), Scal­

able Shared-Memory Multiprocessors, Kluwer Academic Publishers, Boston, MA, 1992.

[DUBOIS90a] DuBois, Thakkar (eds.), Cache and Interconnect Architectures in Mul­

tiprocessors, Kluwer Academic Publishers, Boston, MA, 1990.

182

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[DUBOIS92b] DuBois, Thakkar (eds.), Scalable Shared-Memory Multiprocessors, Kluwer

Academic Publishers, Boston, MA, 1992.

[DUBOIS86] DuBois, Scheurich, Briggs, “Memory Access Buffering in Multiproces­

sors, ” Proceedings of the 13th Annual International Symposium on Computer Archi­

tecture, pages 434-442, 1986.

[DUBOIS88] DuBois, Scheurich, Briggs, “Synchronization, Coherence and Event Or­

dering in Multiprocessors, ” IEEE Computer, 21(2), 1988.

[DUB0IS91] DuBois, Wang, “Shared Block Contention on a Cache Coherence Pro­

tocol, ” IEEE Transactions on Computers, 40(5):640-644, May 1991.

[EGGERS89] Eggers, Katz, “The Effect of Sharing on the Cache and Bus Performance

of Parallel Programs,” ASPLOS-III Proceedings, Third International Conference on

Architectural Support for Programming Languages and Operating Systems, pages 257-

270, April 1989.

[FLEISCH88] Fleisch, “Distributed Shared Memory in a Loosely Coupled Distributed

System, ” IEEE Computer, pages 182-184, 1988.

[GHARACH0RL0092a] Gharachorloo, Adve, Gupta, Hennessy, Hill, “Programming

for Different Memory Consistency Model,” Journal of Parallel and Distributed Com­

puting, August 1992.

[GHARACH0RL0092b] Gharachorloo, Gupta, Hennessy, “Hiding Memory Latency

Using Dynamic Scheduling in Shared-Memory Multiprocessors, ” Proceedings of the

19th Annual Symposium on Computer Architecture, Gold Coast, Australia, May 1992.

183

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[GHARACH0RL0092c] Gharachorloo, Gupta, Hennessy, “Performance Evaluation

of Memory Consistency Models for Shared-Memory Multiprocessors, ” Proceedings of

the fourth International Conference on Architectural Support for Programming Lan­

guages and Operating Systems, 1992.

[GHARACHORLOO90] Gharachorloo, Lenoski, Laudon, Gibbons, Hennessy, “Mem­

ory Consistency and Event Ordering in Scalable Shared-Memory Multiprocessors, ”

Proceedings of the 17th Annual International Symposium on Computer Architecture,

June 1990.

[GHARACH0RL0091] Gharachorloo, Traub, “Multithreading: A Revisionist View

of Dataflow Architecture, ” Proceedings of the 18th Annual International Symposium

on Computer Architecture, May 1991.

[GIANCOLI84] Giancoli, General Physics, Prentice Hall, Inc., 1984.

[GUPTA91] Gupta, Hennessy, Gharachorloo, Mowry, Weber, “Computative Evalua­

tion of Latency Reducing and Tolerating Techniques, ” Proceedings of the 18th Annual

International Symposium on Computer Architecture, pages 243-256, April 1989.

[GUPTA89] Gupta, Weber, “Analysis of Cache Invalidation Patterns in Multiproces­

sors, ” ASPLOS-III Proceedings of the 3rd International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 243-256, April

1989.

[HAMMING91] Hamming, The Art of Probability for Scientists and Engineers, Addison-

Wesley Publishing Company, 1991.

184

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[HENNESSY96] Hennessy, Patterson, Computer Architecture A Quantitative Ap­

proach, Morgan Kaufmann Publishers, Inc., 1996.

[HWANG93] Hwang, Advanced Computer Architecture: Parallelism, Scalability, Pro­

grammability, McGraw-Hill, Inc., 1993.

[HWANG84] Hwang, Briggs, Computer Architecture and Parallel Processing, McGraw-

Hill, Inc., 1984.

[IRANI88] Irani, Naji, “Performance Study of a Clustered Shared-Memory Multi­

processor, ” Proceedings of the International Conference on Supercomputing, pages

304-313, July 1988.

[JAIN91] Jain, The Art o f Computer Systems Performance Analysis, John Wiley &

Sons, Inc., 1991.

[JAGADISH89] Jagadish, Kumar, Patnaik, “An Efficient Scheme for Interprocessor

Communication Using Dual-Port RAMs, ” IEEE Micro, pages 10-19, 1989.

[JAMES90] James, Laundrie, Gjessing, Sohi, “Scalable Coherent Interface,” IEEE

Computer, 23(6):74-77, June 1990.

[KATZ85] Katz, Eggers, Wood, Perkins, Sheldon, “Implementing a Cache Consis­

tency Protocol,” Proceedings of the 12th International Symposium on Computer Ar­

chitecture, 12(3):276-283, June 1985.

[KESSLER89] Kessler, Livny, “An Analysis of Distributed Shared-Memory Algo­

rithms, ” IEEE Computer, pages 498-505, June 1989.

185

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[LENOSKI95] Lenoski, Weber, Scalable Shared-Memory Multiprocessing, Morgan Kauf-

mann Publishers, Inc., 1995.

[LENOSKI93] Lenoski, Laudon, Joe, Nakahira, Stevens, Gupta, Hennessy, “The

DASH Prototype: Logic Overhead and Performance, ” IEEE Transactions on Paral­

lel and Distributed Systems, 4(1):41-61, January 1993.

[LENOSKI90] Lenoski, Laudon, Gharachloo, Gupta, Hennessy, “The Directory- Based

Cache Coherence Protocol for the DASH Multiprocessor, ” Proceedings of the 17th An­

nual International Symposium on Computer Architecture, pages 148-159, 1990.

[LENOSKI92] Lenoski, Laundon, Gharachorloo, “The Stanford DASH Multiproces­

sor, ” IEEE Computer, pages 63-79, Maxch 1992.

[MAN082] Mano, Computer System Architecture, Prentice-Hall, Inc., 1982.

[MILTON86] Milton, Arnold, Probability and Statistics in the Engineering and Com­

puting Sciences, McGraw-Hill, Inc., 1986.

[MIN90] Min, Baer, Kim, “An Efficient Caching Support for Critical Sections in

Large-Scale Shared Memory Multiprocessors, ” Proceedings of the International Con­

ference on Supercomputing, 18(3):34-47, June 1990.

[NITZBERG91] Nitzberg, Lo, “Distributed Shared Memory: A Survey of Issues and

Algorithms,” IEEE Computer, 24(8):52-60, Augustt 1991.

[O’KRAFKA] O’Krafka, Newton, “An Empirical Evaluation of Two Memory- Effi­

cient Directory Methods, ” Proceedings of the International Symposium on Computer

Architecture, 18(2): 138-147, June 1990.

186

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[OLKIIN94] Olkin, Gleser, Derman, Probability Models and Applications, Macmillan

College Publishing Company, 1994.

[OWICKI89] Owicki, Agarwal, “Evaluating the Performance of Software Cache Co­

herence, ” ASPLOS-III Proceedings, Third International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 230-242, April

1989.

[PATTERSON94] Patterson, Hennessy, Computer Organization & Design: The Hard­

ware/Software Interface, Morgan Kaufmann Publishers, Inc., 1994.

[PFEIFFER73] Pfeiffer, Schum, Introduction to Applied Probability, Academic Press,

Inc., New York, 1973.

[SCHEURICH89] Scheurich, DuBois, “Dynamic Page Migration in Multiprocessors

with Distributed Global Memory,” IEEE Transactions on Computers, 38(8), August

1989.

[SINDHU92] Sindhu, Frailong, Cekleov, “Formal Specification of Memory Modules, ”

in DuBois and Thakkar (eds.), Scalable Shared-Memory Multiprocessors, Kluwer Aca­

demic Publishers, Boston, MA, 1992.

[SINGH92] Singh, Weber, Gupta, “SPLASH: Stanford Parallel Applications for Shared-

Memory, ” Computer Architecture News, 20(l):5-44, March 1992.

[SKILLICORN92] Skillicom, “Architecture Independent Parallel Computation, ” IEEE

Computer, pages 38-49, December 1992.

187

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[STENSTROM90] Stenstrom, “A Survey of Cache Coherent Schemes for Multipro­

cessors," IEEE Computer, 23(6):12-24, June 1990.

[STODLECK89] Stodleck, “The IDT FourPort™ RAM Facilitates Microprocessor

Designs, ” Application Note AN-43, pages 1-13, 1989.

[STUNKEL92] Stunkel, Fuchs, “An Analysis of Cache Performance for a Hypercube

Multicomputer,” IEEE Transactions of Parallel and Distributed Systems, 3(4):421-

432, July 1992.

[TI93] Texas Instruments, MOS Memory Commercial and Military Specifications

Data Book, Texas Instruments, Inc., 1993.

[THAKKAR90] Thakkar, DuBois, Laundrie, Sohi, “Scalable Shared-Memory Multi­

processor Architectures,” IEEE Computer, 23(6):71-74, June 1990.

[THAPAR90] Thapar, Delagi, “Stanford Distributed-Directory Protocol, ” IEEE Com­
puter, 23(6):78-80, 1990.

[THAPAR91] Thapar, Delagi, “Cache Coherence for Large Scale Shared-Memory

Multiprocessors,” Computer Architecture News, 19(1):114-119, March 1991.

[VERNON88] Vernon, Lazowska, Zahorjan, “An Accurate and Efficient Performance

Analysis Technique for Multiprocessor Snooping Cache Consistency Protocols, ” Pro­

ceedings o f the 15th Annual Symposium on Computer Architecture, 16(2):308-315,

May 1988.

188

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[WEISS91] Weiss, “Multiple-Port Memory Access in Decoupled Architecture Proces­

sors,” Proceedings of the 18th International Symposium on Computer Architecture,

pages 373-376, August 1991.

[ZULIAN90] Zulian, “Multiprocessor System Featuring Global Data Multiplation, ”

U.S. Patent Documents, US4928224, May 1990.

189

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

