
Page 1 of 3

Analyzing the energy consumption of an algorithm

using Conventional Mirror Adder approximations

Alonso Ninalaya

Department of Electrical and Computer Engineering

University of Central Florida

Orlando, FL 32816-2362

Abstract— Approximation and improving in the computing field

determines that amount of energy that can be saved every time there is

an algorithm to be processed. Although Algorithms do not vary

significantly using different approximations, the energy consumption

does, which is what we are looking for. This will bring different types

of inaccuracy in the outputs but there will always be a better

approximation to follow. Logic complexity reduction comes to be an

alternative approach to get a more accurate output. This is

demonstrated by proposing various approximations Full Adders cells

with reduced complex city or less circuits and utilize them to design

multi-but adders. For our project, we are going to use Conventional

Mirror Adder(CMA) which consist of a total of 24 transistors. Then,

these three approximations are being used to find the total energy

consumption of our code; they are, AMA, AMA2 and AMA3. This

algorithm is a program using MIPS in which the user can find how

many times any word can be found inside a determined paragraph. Our

output will include the word followed by how many times it was

mentioned in the paragraph. The lowest total energy consumption is

AMA 3 with 136.11 nJ.

Keywords— genetic algorithms, approximate computing, adder,

variable accuracy, error distance, power consumption, power

reduction, Mirror adder.

I. PROJECT DESIGN

The objective of this program is to find how many times a word
is found within a pre-selected paragraph. This word is given by
the user and it can be any random one. It can also be written
using uppercase or lowercase in any order. Because of this, we
will have to ignore whether the character is in lowercase or
uppercase. Since the word is given by the user, our output is
going to be based on what word is taken.

The program design is based on using different conditions. First,
we are going to start by saving our paragraph and word in a
string with enough space. After that, we proceed to load the
address of each string inside each register so that we can
compare them. After that, we need to compare each character of
the paragraph and the word, so we need to load each byte to a
different register for each of them. We are to load the first byte
and create another loop where we increment the address of each
register. Once it is done, we need proceed to compare them,
however, since our word can be in in uppercase or lowercase,
we have to convert each of them and compare. This can be done
by adding 32 and compare, then subtract 64 and compare. This

method will help you to compare the uppercase or lowercase of
the given word.

After comparing each character, we are going to need the 3
different cases, where a character is match, character does not
match, and the word is found. In the first case, we need to
increment the register where the addresses of our paragraph and
our word are. Then go back the redo the loop. The second case
is where we do have a character match, where we just increment
the address of the paragraph and we reload the address of our
word in the same register. Also, we need to go back to the loop.
The third case is where we found the word, where we need to
reload the address of the word, increment a counter, which will
be printed at the end of the program, and redo the loop.

Finally, the output is going to depend on the word given by the
user. Our program is going to print the word and the amount of
times it was found in the program. We are going to test 3 cases.
The first will be a word that is going to be in the paragraph, all
lowercase. The second will be a word that is also in the
paragraph, but with randomly lowercase and uppercase
characters. The last one will consider on the word that is not
inside the paragraph.

II. FULL-ADDER CIRCUIT

A full-adder function can be described as given the three 1-bit

inputs A, B, Cin. It is desired to calculate the two 1-but outputs.

Sum and Cout, where:

Sum = (A ^ B) ^ Cin

Cout = A.B + Cin(A^B)

Here, we are introduced to the conventional mirror adder which

Consists of 24 transistors having 3 different approximations.

These ones are meant to reduce the energy operation for

applications which can tolerate some impression. These

addresses utilize lesser number of transistors than original

accurate design. The first one is obtained by reducing the

number of transistors individually until the defined error

constraints are breached. Then, the last modification is reverted

to obtain the approximation. Any input combination of A, B,

and Cin does not result in short or open circuits in the simplified

schematic. Here, the Sum circuit is discarded completely, and a

buffer stage is introduced after Cout to reduce the delay.

The second approximation contains 2 errors in Cout and 3 in

Sum, we consider the inputs A and B are interchangeable,

where Cout = A. Thus, a second approximation is proposed

where we invert the input A to calculate Cout and Sum. They

are similarly calculated to the simplified MA. In the first 2

approximations, Cout is calculated by using an inverter with C

out as input.

The third approximation are accurate for 4 out of 8 outputs. 4

errors for Sum. The dependency of Sum on Cin is reduced.

Leaving with two choices. Sum = A, and Sum =B. Another one,

were Cout = A. Thus, we have one where we find that both Sum

and Cout match with accurate outputs in only 2 out of the 8

outputs. If we want t minimize the error, then we for the second

choice where we ensure that Sum makes Cout correct.

III. RESULTS AND DISCUSSION

In this section, I am using these energy values to calculate
the total energy consumption of my code.

1) ALU = Refer to Table I

2) Branch = 3 pJ

3) Jump = 2 pJ

4) Memory = 100 pJ

5) Other = 5 pJ

IV. CONCLUSION

This paper will indicate how to calculate the power energy
consumption utilizing the three different approximations of a
conventional mirror adder. We have proposed several
approximations FA cells that can be effectively utilized to build
multi-bit arithmetic units and trade off power, are and quality for
error. Our approach aims to simply the complexity of a
conventional mirror adder cell by reducing the number of
transistors and to give a margin of error to each output of the
adder. This contributes to a reduction in power dissipation.

REFERENCES

[1] A. A. Naseer, R. A. Ashraf, D. Dechev, and R. F. DeMara, “Designing
energy-efficient approximate adders using parallel genetic algorithms,”
SoutheastCon 2015, Fort Lauderdale, FL, 2015, pp. 1-7.

[2] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,
“IMPACT: imprecise adders for low-power approximate computing,” In
Proceedings of the 17th IEEE/ACM international symposium on Low-power
electronics and design (ISLPED '11), Piscataway, NJ, USA, 409-414.

[3] E. Deng, Y. Zhang, J. O. Klein, D. Ravelsona, C. Chappert and W. Zhao,
"Low Power Magnetic Full-Adder Based on Spin Transfer Torque MRAM,"
in IEEE Transactions on Magnetics, vol. 49, no. 9, pp. 4982-4987, Sept.
2013.

Table II: Total Energy consumption for the assembly

program using designs provided in [1-3].

Design Total Energy Consumption

[1] 137.39nJ

CMA [2] 137.51nJ

AMA [2] 137.41nJ

[3] 136.11nJ

,

Table I: Energy consumption for a single ALU Instruction

in the designs provided in [1-3].

Design
Energy Consumption

For Each ALU Instruction

[1] 5 fJ

CMA [2] 39 fJ

AMA [2] 12 fJ

[3] 1 fJ

http://www.scholar.google.com/

http://www.scholar.google.com/
http://www.scholar.google.com/

