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ABSTRACT

A heterogeneous device technology reconfigurable logic fabric is proposed which leverages the

cooperating advantages of distinct magnetic random access memory (MRAM)-based look-up ta-

bles (LUTs) to realize sequential logic circuits, along with conventional SRAM-based LUTs to

realize combinational logic paths. The resulting Hybrid Spin/Charge FPGA (HSC-FPGA) using

magnetic tunnel junction (MTJ) devices within this topology demonstrates commensurate reduc-

tions in area and power consumption over fabrics having LUTs constructed with either individual

technology alone. Herein, a hierarchical top-down design approach is used to develop the HSC-

FPGA starting from the configurable logic block (CLB) and slice structures down to LUT circuits

and the corresponding device fabrication paradigms. This facilitates a novel architectural approach

to reduce leakage energy, minimize communication occurrence and energy cost by eliminating un-

necessary data transfer, and support auto-tuning for resilience. Furthermore, HSC-FPGA enables

new advantages of technology co-design which trades off alternative mappings between emerging

devices and transistors at runtime by allowing dynamic remapping to adaptively leverage the intrin-

sic computing features of each device technology. HSC-FPGA offers a platform for fine-grained

Logic-In-Memory architectures and runtime adaptive hardware.

An orthogonal dimension of fabric heterogeneity is also non-determinism enabled by either low-

voltage CMOS or probabilistic emerging devices. It can be realized using probabilistic devices

within a reconfigurable network to blend deterministic and probabilistic computational models.

Herein, consider the probabilistic spin logic p-bit device as a fabric element comprising a crossbar-

structured weighted array. The Programmability of the resistive network interconnecting p-bit de-

vices can be achieved by modifying the resistive states of the array’s weighted connections. Thus,

the programmable weighted array forms a CLB-scale macro co-processing element with bitstream

programmability. This allows field programmability for a wide range of classification problems
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and recognition tasks to allow fluid mappings of probabilistic and deterministic computing ap-

proaches. In particular, a Deep Belief Network (DBN) is implemented in the field using recurrent

layers of co-processing elements to form an n×m1×m2×...×mi weighted array as a configurable

hardware circuit with an n-input layer followed by i ≥ 1 hidden layers. As neuromorphic archi-

tectures using post-CMOS devices increase in capability and network size, the utility and benefits

of reconfigurable fabrics of neuromorphic modules can be anticipated to continue to accelerate.
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7.1 a) The building block of the proposed spin-based RBMs, the stochastic bi-
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CHAPTER 1: INTRODUCTION1

1.1 Research Motivation

The objective of this dissertation is to architect a next-generation Hybrid Spin- and Charge-based

Field Programmable Gate Array (HSC-FPGA) by innovating design techniques, circuit modules,

synthesis scripts, and transportable libraries. HSC-FPGAs are reconfigurable logic arrays that

leverage the cooperative roles of emerging spintronic and CMOS devices within a runtime adapt-

able platform. HSC-FPGAs enable a new advance of “technology co-design,” which trades off

alternative mappings between emerging devices and CMOS technology during synthesis-time and

also during runtime. The targeted emerging computing devices, and yet-to-be-discovered architec-

tural innovations utilizing them, become readily explored. Many sub-fields of computing including

post-CMOS design, advances in Computer-Aided Design (CAD) models and optimizations, and

applications become reinvigorated to attain reliable and energy-sparing hardware/software systems

at low cost.

Towards the eventual realization of this objective, the HSC-FPGA Configurable Logic Block

(H-CLB) shown in Figure 1.1 provides an enabling element.Thus, the dissertation will advance

post-CMOS computing by spanning Look Up Tables (LUTs) for two spin-based devices. The

potential benefits are summarized in Figure 1.1, which can be realized similarly to how field-

programmability had enabled new hardware, CAD, pipelining, soft-cores, and application ad-

vances during the CMOS design era, by increasing access to the devices themselves.

1©2017 IEEE. Part of this chapter is reprinted, with permission, from [1].
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Figure 1.1: HSC-FPGA component vision. Physical devices consist of spintronic and CMOS elements
within each H-CLB.

Similar to their ASIC counterparts, reconfigurable computing devices strive to surmount the grow-

ing technical challenges to improve their logic density, throughput performance, and power pro-

files. Thus with the geometrical and equivalent scaling trends guided by decades of International

Technology Roadmap for Semiconductors (ITRS) projections nearing their end, new pathways to-

wards these goals have been defined in ITRS 2.0 along with the IEEE International Roadmap for

Devices and Systems (IRDS) initiative [18]. Two such technical thrusts identified for 2020 onward

are leveraging beyond-CMOS devices (ITRS 2.0 theme 5) and utilizing heterogeneous components

(ITRS 2.0 theme 4) to realize fundamentally new ways to compute. The perspective taken herein

is that a reconfigurable computing paradigm can significantly advance both of these declared ITRS

2.0 themes.

Within the post Moore era, there are several motivations for pursuing novel reconfigurable fab-

rics of heterogeneous device technologies. Foremost, their one-time design and fabrication model

minimizes the recurring engineering effort for post-CMOS devices, while amortizing development

costs across multiple applications. Thus, reconfigurable fabrics may offer a more cost-effective

2



approach to utilizing emerging devices. Additionally, post-CMOS ingrained field-programmable

fabrics expand the accessibility of emerging devices to vast populations of circuit designers, in-

cluding the majority of those who lack foundry access. Such a pre-fabrication approach with later

field-programmability minimizes the need for extensive post-CMOS circuit design, verification,

and validation expertise. Field-programmability also eliminates the computational demands, de-

lays, and inaccuracies of simulation-based modeling associated with emerging devices. Instead,

heterogeneous fabrics support rapid and direct realizations in hardware.

As a fundamentally different way to compute, the mapping of operations to device technologies

remains fluid. Flexible mappings become possible not only during circuit synthesis, but also dur-

ing execution-time. Thus when execution demands change, the architecture can adapt by utilizing

a preferred device technology within its datapaths via reconfiguration of hardware components.

This leverages the complementary characteristics of CMOS and emerging devices by increasing

the flexibility in its binding of logic and memory roles to distinct device technologies. This is in-

troduced herein as a post-CMOS era approach referred to as “technology co-design.” Overall, the

hypothesis is as follows: reconfigurable fabrics of heterogeneous CMOS and spin-based devices

offer an orthogonal dimension of technology adaptation to balance throughput, energy consump-

tion, and resilience beyond static emerging device architectures, fixed hybrid emerging/CMOS

architectures, and CMOS-only reconfigurable platforms.
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1.2 Need for Next Generation Reconfigurable Fabrics

Frequently-cited motivations for embracing reconfigurable fabrics are listed in Table 1.1, includ-

ing extensions to sub-10nm regimes. Fabric flexibility and accessibility allows realization of logic

elements at medium and fine granularities while incurring low Non-Recurring Engineering (NRE)

and Time-To-Market (TTM). Reconfigurable fabrics have been demonstrated to provide a viable

solution for process-voltage-temperature variation induced problems and could be utilized effec-

tively for fault recovery [31, 32, 33, 34, 35, 36, 37, 38]. They can support circuit synthesis specific

to the application at-hand, including localization of data stores. Moreover, highly-scaled devices

are expected to increasingly rely on in-situ reconfigurability to mitigate process variation. Thus,

their in-field adaptability to intrinsic “as-built” device switching characteristics enables resiliency,

as advocated in [39, 40]. Fabrics can also be tuned to meet energy profiles at runtime [39, 41].

Table 1.1: Strengths of Reconfigurable Logic Fabrics over ASIC/CPU/GPU at <10nm regimes.

Attribute Typical Benefits Relation to
Emerging Devices Prototypes

Flexibility
& Accessibility

- decreased NRE costs
& TTM

- hardware/software
co-design

- usable by designers
without foundry access

- knowledge/behavior
encapsulation

[19, 20, 21, 22]

Energy-sparing
Potential

- datapaths synthesized
for application

- local data stores near
data usage

- near-zero standby energy
non-volatile designs

- increased local capacities
in same energy budget

[23, 24]

Bloat-free
- customized accelerator
hardware

- reduce middleware

- logic-in-memory
capabilities

- device-physics enabled
computing

[25, 26, 27]

Resiliency - amorphous spares
- true PVT solution
and alpha-particle immunity [28, 29]

Adaptability - leverage Intrinsic behavior
- tunable to match
dynamic requirements [29, 30]
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Extending reconfiguration capabilities using emerging devices is highly desirable. Among promis-

ing devices, the 2017 Magnetism Roadmap [42] identifies nanomagnetic devices as capable post-

CMOS candidates, of which Magnetic Random Access Memories (MRAMs) are considered feasibly-

implemented. Thus, the proposed research is well-motivated by the established aims of academia

and industry to:

• Promote emerging devices to surmount scaling challenges of CMOS devices [43, 44]. We

will examine and adopt various emerging spintronic devices to further develop novel circuits

and architectures to realize higher density with significantly improved power-delay-product

(PDP) over CMOS-based FPGAs for identical design rules and power budget. While in

this dissertation we will focus on leveraging spintronic devices, alternative methods such as

asynchronous switching approaches [45, 46, 47] and Quantum-dot Cellular Automata (QCA)

methods [48, 49, 50, 51] also aim towards reduced energy consumption.

• Realize the benefits of Non-Volatile Memory (NVM) to reduce leakage energy for ultra-low-

power reconfigurable computing [52, 53, 54]. We propose to utilize the accepted spin-based

device models to configure logic arrays, and extend beyond the previous work to include

non-volatile functionality.

• Employ the characteristics of the spin-based devices for reliability benefits such as radiation

hardness [55, 56]. We will build upon reliability analysis methods for spintronic devices

[57, 58] to benefit reliability by conferring the circuit at-hand with a heterogeneous palette

of emerging devices that can be configured as needed at runtime.

• Develop transportable libraries to facilitate the wider application of spintronic devices. Our

proposed HSC-FPGA platform can enable application-scale study, thus overall benefits can

be more readily quantified. Overall, the foundational focus of this research can advance

several fields spanning post-CMOS devices, theory, modeling, and circuit innovation.
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1.3 Advancing from Homogeneity towards Heterogeneity in Reconfigurable Computing Fabrics

As depicted in Figure 1.2, FPGA fabrics continue their transition towards embracing the benefits of

increased heterogeneity along several cooperating dimensions. Since the inception of the first field-

programmable devices, various granularities of general-purpose reconfigurable logic blocks and

dedicated function-specific computational units have been added to fabric structures. These have

resulted in increased computational functionality compared to homogeneous fabrics [59, 60, 61].

Over the last ten years, reprogrammable fabrics have embraced further highly-dedicated special-

purpose co-processing units to handle complex floating-point computations [62]. Some of the

standard co-processing units that appear within many contemporary FPGAs are Digital Signal Pro-

cessing (DSP) blocks [63, 64], Multiplier-Accumulators (MACs) [65], and multi-bit block RAMs

[66], as well as processor hardcores which are commonly embedded within the fabric of many

leading commercially-available reconfigurable devices.

The upper rightmost corner of Figure 1.2 depicts that emerging devices could advance new trans-

formative opportunities for exploiting technology-specific advantages, which we refer to as Tech-

nology Heterogeneity. Technology heterogeneity recognizes the cooperating advantages of CMOS

devices for their rapid switching capabilities, while simultaneously embracing emerging devices

for their non-volatility, near-zero standby power, high integration density, and radiation-hardness

[67, 68]. Realization of technology heterogeneity in a field-programmable fabric enables synthesis-

time co-design and dynamic run-time adaptability among device technologies. Thus, we propose

exciting feasible research towards utilizing the proven spin-based devices to complement CMOS

devices.
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Figure 1.2: Escalation of field-programmable heterogeneity within chronological and structural contexts [1].

1.4 Technology Heterogeneity in Reconfigurable Fabrics

The mentioned motivations for embracing reconfigurable fabrics are achieved at a cost of in-

creased fabric area and power consumption, as well as a decreased performance compared to the

application-specific integrated circuits (ASICs). Thus, Innovations using emerging devices within

reconfigurable fabrics have been sought to bridge the gaps needed to provide these benefits.

Currently, static random access memory (SRAM) cells are the basis for most of the commercial

FPGAs, and can be found in the well-known Xilinx and Intel products. In FPGAs, SRAM cells

are employed within programmable switching blocks to control the interconnection between logic

building blocks. Moreover, they are utilized in lookup-tables (LUTs) to store the logic function

configuration data, which constitute the primary components in reconfigurable fabrics. In partic-

ular, LUT is a memory with 2m cells in which the truth table of an m-input Boolean function is

stored. The re-programmability of the SRAM cells, and the fact that they can be implemented by

highly-scaled CMOS technology, have made the SRAM-based FPGAs the most popular reconfig-
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urable fabric in market. However, SRAM cells also have some limiting attributes which caused

FPGAs to have a niche market share of ASICs.

In [69], Kuon and Rose have provided a comprehensive comparison between SRAM-based FPGAs

and ASICs in terms of area, performance, and power consumption. They have reported that in

order to achieve a same functionality and performance in an FPGA as an ASIC, FPGA requires

significantly larger area while consuming approximately 14 times more power. This is mainly due

to the crucial drawbacks of the SRAM cells such as:

• high static power: due to the existence of intrinsic leakage current which is significantly

increasing by technology scaling.

• volatility: SRAM is volatile, therefore all functions must be reprogrammed upon each power-

up. Consequently, an external non-volatile memory is required to be integrated into the chip

either in the same package or on the printed circuit board level.

• low logic density: SRAM consists of six transistors which limits the logic density.

The aforementioned SRAM’s drawbacks have motivated exploration of alternative LUT designs, as

listed in Table 1.2. One of the introduced alternatives is based on non-volatile flash-based LUTs,

however it targets a niche market due to their low reconfiguration endurance [70, 71]. Higher

endurance non-volatile LUTs can be enabled by emerging resistive technologies, such as spin-

tronic storage elements [72, 73, 74, 75, 76, 77, 78], resistive random access memory (RRAM)

[79, 80, 81, 82], and phase change memory (PCM) [83, 84]. Although PCM can offer non-

volatility, its considerable reconfiguration power and high write latency can significantly exceed

that of an SRAM LUT. Spintronic devices offer non-volatility, near-zero static power, and high

integration density [88, 89]. Two of the spin-based devices, which are previously proposed for use

in reconfigurable fabrics are magnetic tunnel junctions (MTJs) [76, 75, 78, 2, 3, 85] and domain
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wall (DW)-based racetrack memory (RM) [73, 74, 86]. RM is effective for non-volatility and area

density, although previous designs can incur significant delay and energy cost due to excessive shift

activities to configure the implemented logic function. Hence, MTJ-based LUTs are proposed to

be placed at critical points of a large-scale digital circuit to implement various logic functions as

a runtime adaptable fabric under middleware control. the magnetic LUTs provides the fabric with

sufficient reconfigurability features to mitigate process variations. The fabric will be leveraged

for fault detection and recovery using the adaptive self-healing approaches. MTJs comprising the

storage elements in the adaptable LUTs are vertically-integrated as a backend process of typical

CMOS fabrication, which significantly reduces the area cost of the redundancy.

Moreover, SRAM-based FPGAs, like all CMOS-based fabrics, are susceptible to radiation-induced

transient soft faults such as single event upsets (SEUs), which primarily affect SRAM-based stor-

age cells [87]. Thus, research into the design of suitable placements with improved soft error

immunity and energy profiles is urgently sought using a number of feasible physical devices in-

cluding RRAM [80] and magnetic random access memory (MRAM) [55, 4, 88, 89]. This trend has

been motivated by aggressive CMOS technology scaling in digital circuits has resulted in signifi-

cant increase in transient fault rates, as well as timing violations due to process variation (PV) that

consequently reduces the performance and reliability of the emerging very large scale integrated

(VLSI) circuits. For instance, the probability of single upsets, and more realistically, multiple up-

sets, is projected to increase several fold at sea-level for sub-10nm technology nodes [90, 91]. By

the extensions to sub-10nm regimes, error resiliency has become a major challenge for microelec-

tronics industry, particularly mission critical systems, e.g. space and terrestrial applications. The

ability of FPGAs to correctly execute the complicated tasks in harsh environments significantly

relies on their fault-handling and radiation hardening techniques.
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Table 1.2: Characteristics of enabling LUT technologies. “X” or “–” indicates strength/limitation relative
to SRAM-based LUT.

Design Baseline [71] [80] [84] [75] [56] [89]
Technology SRAM FLASH RRAM PCM MRAM MRAM MRAM
Non-Volatile NO YES YES YES YES YES YES
Endurance 0 – – – – – – – – – – – –
Area 0 X X X X X X
Read
Operation

Power 0 0 X 0 X – – –
Delay 0 0 0 0 0 – – –

Standby Power 0 X X X X X X X X X X X
Write
Operation

Power 0 – – – – – – – – – – – – –
Delay 0 – – – – – – – – – – – – – –

Radiation
Hardness

SEU NO NO NO NO NO YES YES
DNU NO NO NO NO NO NO YES

Leveraging MRAMs as storage elements within LUT circuits has the potential to significantly in-

creases their radiation immunity due to the radiation hardness characteristic of spin-based devices.

However, the access and sensing circuitry for MRAM still requires transistors, and thus is still

susceptible to radiation-induced faults. Therefore, circuit-level innovations are sought to achieve

immunity to radiation-induced transient faults such as SEUs and double node upsets (DNUs).

In recent years, various radiation hardening techniques are investigated to develop SEU-tolerant

MRAM-based LUTs [56, 88]. In particular, in [89] authors have proposed a single-event double-

node upset tolerant MRAM-based LUT, which provides multiple upset resiliency at the cost of

increased read energy and area consumption with baseline efficacy.

1.5 Logic Paradigm Heterogeneity

The interrelated fields of machine learning (ML), and artificial neural networks (ANN) have grown

significantly in previous decades due to the availability of powerful computing systems to train

and simulate large scale ANNs within reasonable time-scales, as well as the abundance of data

available to train such networks in recent years. The resulting research has realized a bevy of
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ANN architectures that have performed incredible feats including a wide range of classification

problems, and various recognition tasks.

Most ML techniques in-use today rely on supervised learning, where the systems are trained on

patterns with a known desired output, or label. However, intelligent biological systems exhibit

unsupervised learning whereby statistically correlated input modalities are associated within an

internal model used for probabilistic inference and decision making [92]. One interesting class

of unsupervised learning approaches that has been extensively researched is the Restricted Boltz-

mann machine (RBM) [93]. RBMs can be hierarchically organized to realize deep belief networks

(DBNs) that have demonstrated unsupervised learning abilities, such as natural language under-

standing [94]. Most RBM and DBN research has focused on software implementations, which

provides flexibility, but requires significant execution time and energy due to large matrix multipli-

cations that are relatively inefficient when implemented on standard Von-Neumann architectures

due to the memory-processor bandwidth bottleneck when compared to hardware-based in-memory

computing approaches [95]. Thus, research into hardware-based RBM designs has recently sought

to alleviate these constraints.

Previous hardware-based RBM implementations have aimed to overcome software limitations by

utilizing FPGAs [96, 97] and stochastic CMOS [98]. In recent years, emerging technologies such

as RRAM [99, 100] and PCM [101] are proposed to be leveraged within the DBN architecture as

weighted connections interconnecting building blocks in RBMs. While most of the previous hybrid

Memristor/CMOS designs focus on improving the synapse behaviors, this dissertation overcomes

many of the preceding challenges by utilizing a novel spintronic p-bit device that leverages intrinsic

thermal noise within low energy barrier nanomagnets to provide a natural building block for RBMs

within a compact and low-energy package. The contribution of this dissertation goes beyond using

low-energy barrier MTJs, as has been previously introduced for a neuron in spiking neuromorphic

systems [102, 103]. This is the first effort to use MTJs with near-zero energy barriers as neurons
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within an RBM implementation. Additionally, various parameters of a hybrid CMOS/spin weight

array structure are investigated for metrics of power dissipation, and error rate using the MNIST

digit recognition benchmarks.

Within the post-Moore era ahead, several design factors and fabrication constraints increasingly

emphasize the requirements for in-circuit adaptation to as-built variations. These include device

scaling trends towards further reductions in feature sizes [104], the narrow operational tolerances

associated with the deployment of hybrid Complementary Metal Oxide Semiconductor (CMOS)

and post-CMOS devices [91, 105], and the noise sensitivity limits of analog-assisted neuromor-

phic computing paradigms [106]. While many recent works have advanced new architectural

approaches for the evaluation phase of neuromorphic computation utilizing emerging hardware

devices, there have been comparatively fewer works to investigate the hardware-based realization

of their training and adaptation phases that will also be required to cope with these conditions.

Thus, this dissertation develops one of the first viable approaches to address post-fabrication adap-

tation and retraining in-situ of resistive weighted-arrays in hardware, which are ubiquitous in post-

Moore neuromorphic approaches. Namley, a tractable in-field reconfiguration-based approach is

developed to leverage in-field configurability to mitigate the impact of process variation. Reconfig-

urable fabrics are characterized by their fabric flexibility, which allows realization of logic elements

at medium and fine granularities, as well as in-field adaptability, which can be leveraged to realize

variation tolerance and fault resiliency as widely-demonstrated for CMOS-based approaches such

as [31, 39]. Utilizing reconfigurable computing by applying hardware and time redundancy to the

digital circuits offers promising and robust techniques for addressing the above-mentioned relia-

bility challenges. For instance, it is shown in [39] that a successful refurbishment for a circuit with

1,252 LUTs can be achieved with only 10% spare resources to accommodate both soft and hard

faults.
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1.6 Contributions of the Dissertation

The main focus of this dissertation is to architect a next-generation hybrid spin- and charge-based

reconfigurable fabric by innovating design techniques, circuit modules, synthesis scripts, and trans-

portable libraries listed in Table 1.3.

Table 1.3: Research Outcomes of the dissertation spanning Methods (M), Libraries/Models (L), Tools (T),
and Publications (P).

Abstraction
Level

Research Outcomes
& Work Products

Evaluation
Metrics

Case
Studies

Deliverables
M L T P

Device
Verilog-A model of

MTJ’s resistance
- Resistance vs.
Experimental Results N/A X [2]

[3]
[107]
[86]

MATLAB Model of
STT/SHE switching

for MTJ devices

- Switching Delay vs.
Experimental Results N/A X

Circuit

STT-MTJ based
Adaptive LUT

- Read Power
- Read Delay
- Read PDP

N/A X [3]

SHE-MTJ based
Fracturable LUT

- Read Energy
- Write Energy
- Max. CLK Freq.

N/A X X [2]

Radiation-hardened
MRAM-LUT

- SEU/DNU Tolerance
- Read PDP
- Device Count

N/A X X [4]

TG-based
MRAM bit-cell

- Write EDP
- Area N/A X [108]

Architecture

HSC-FPGA

- Read Energy
-Write Energy
- Standby Power
- Device Count

MCNC
ISCAS99

ITC99
X [109]

SNRA
- Read Power
- Standby Power
- Device Count

MNIST
Dataset X

[6]
[8]

Verilog HDL
of CD Algorithm - Error Rate

MNIST
Dataset X X [6]

PIN-Sim
- Error Rate
- Power Consumption
- Device Count

MNIST
CIFAR10 X [9]
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The main contributions of the dissertation are summarized below, which are comprehensively de-

scribed in the following chapters of the dissertation:

• Developed an approach to model the behavior of 2-terminal STT-MTJs, and 3-terminal SHE-

MTJ devices, as described in Chapter 2. In particular, Verilog-A was utilized to model the

resistive behavior of the MTJs. Then, the model was leveraged in SPICE circuit simulations

to design various hybrid spin/CMOS-based circuits. Moreover, a MATLAB based module

was developed to provide details regarding the switching characteristics of the 2-terminal and

3-terminal devices. In addition to the spin/COMS-based circuits designed in this dissertation

[2, 4, 3, 6, 108, 109], the developed modeling approach has been also widely-used by other

researchers in the related works, such as [85, 107, 86, 110, 111, 112, 113, 114, 115, 116,

117, 118].

• Researched STT-MRAM as a promising alternative for SRAM in reconfigurable fabrics. As

described in Section 3.1 of the dissertation, we leveraged physical characteristics of MTJs

to design a unique reference MTJ which has a calibrated resistance matching the STT-based

LUT (STT-LUT) circuit requirements to provide optimal reading operation. Results ob-

tained show 42% and 70% power-delay product (PDP) improvement over previous MTJ-

based LUT designs. Moreover, a four-input adaptive STT-based LUT (A-LUT) is proposed

based on the developed STT-LUT, which is configurable to function in seven independent

modes. An n-input A-LUT exhibits PDP which can be a fraction of n-input STT-LUT PDP,

when performing two-input to (n− 1)-input Boolean logic functions.

• As described in Section 3.2 of the dissertation, we leveraged SHE-MTJ devices to design

an energy-efficient nonvolatile LUT. Functionality of the proposed SHEMTJ-based LUT is

validated using SPICE simulation. Our proposed SHEMTJ-based LUT (SHELUT) is com-

pared with the most energy-efficient MTJ-based LUT circuits. The obtained results show
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more than 6%, 37%,and 67% improvement over three previous MTJ-based designs in terms

of read energy consumption. Moreover, the reconfiguration delay and energy of the pro-

posed design is compared with that of the MTJ-based LUTs which utilize the STT switching

approach for reconfiguration. The results exhibit that SHELUT can operate at 78% higher

clock frequency while achieving at least 21% improvement in terms of reconfiguration en-

ergy consumption. The operation-specific clocking mechanisms for managing the SHELUT

operations are introduced along with detailed analyses concerning tradeoffs. Results are also

extended to design a 6-input fracturable LUT using SHEMTJs.

• Developed a radiation-hardened non-volatile LUT circuit utilizing SHE-MRAM devices, as

explained in Section 3.4. The proposed hardening technique is based on using feedback tran-

sistors, as well as increasing the radiation capacity of the sensitive nodes. Simulation results

show that our proposed LUT circuit can achieve single node upset (SNU) and double node

upset (DNU) tolerance with more than 38% and 60% power-delay product improvement as

well as 26% and 50% reduction in device count compared to the previous energy-efficient

radiation-hardened LUT designs. Finally, we have performed a process variation analysis

showing that the MNU immunity of our proposed circuit is realized at the cost of increased

susceptibility to transistor and MRAM variations compared to an unprotected LUT design.

• Proposed various energy-efficient write schemes for switching operation of SHE-MTJs. A

transmission gate (TG)-based write scheme is proposed, which provides a symmetric and

energy-efficient switching behavior. Circuit Simulation results showed that the TG-based

write scheme advantages in terms of device count and switching energy. In particular, it

can operate at 12% higher clock frequency while realizing at least 13% reduction in en-

ergy consumption compared to the most energy-efficient write circuits. We analyzed the

performance of the implemented write circuits in presence of process variation (PV) in the

transistors’ threshold voltage and SHE-MTJ dimensions. Results showed that the proposed
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TG-based design is the second most PV-resilient write circuit scheme for SHE-MTJs among

the implemented designs. Finally, we proposed the 1TG-1T-1R SHE-based magnetic ran-

dom access memory (MRAM) bit cell based on the TG-based write circuit. Comparisons

with several of the most energy-efficient and variation-resilient SHE-MRAM cells indicate

that 1TG-1T-1R delivers reduced energy consumption with 43.9% and 10.7% energy-delay

product improvement, while incurring low area overhead.

• Propoesd a hybrid device technology reconfigurable logic fabric which leverages the coop-

erating advantages of distinct MRAM-based LUTs to realize sequential logic circuits, along

with conventional SRAM-based LUTs to realize combinational logic paths. The resulting

Hybrid Spin/Charge FPGA (HSC-FPGA) using MTJ devices within this topology demon-

strates commensurate reductions in area and power consumption over fabrics having LUTs

constructed with either individual technology alone. In Chapter 4 of the dissertation, a hier-

archical top-down design approach is used to develop the HSC-FPGA starting from the con-

figurable logic block (CLB) and slice structures down to LUT circuits and the corresponding

device fabrication paradigms. The Xilinx ISE Design Suite was used to implement, and

evaluate resource utilization contributing to HSC-FPGA’s fabric-level simulation that yields

70% and 30% reductions in standby and read power, respectively, for various ISCAS-89

and ITC-99 benchmark circuits. To address the MTJ fabrication process and challenges, a

circuit-level modular redundancy based method is developed to increase the resiliency of the

MRAM-LUTs against process variation. The corresponding power consumption and area

utilization are analyzed to formulate extensive device tradeoffs resulting in recommenda-

tions towards future multi-device based reconfigurable fabrics.

• In Chapter 5, a low-energy hardware implementation of deep belief network (DBN) archi-

tecture is developed using near-zero energy barrier probabilistic spin logic devices (p-bits),

which are modeled to realize an intrinsic sigmoidal activation function. A CMOS/spin based
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weighted array structure is designed to implement a restricted Boltzmann machine (RBM).

Device-level simulations based on precise physics relations are used to validate the sigmoidal

relation between the output probability of a p-bit and its input currents. Characteristics of

the resistive networks and p-bits are modeled in SPICE to perform a circuit-level simulation

investigating the performance, area, and power consumption tradeoffs of the weighted array.

In the application-level simulation, a DBN is implemented in MATLAB for digit recogni-

tion using the extracted device and circuit behavioral models. The MNIST data set is used to

assess the accuracy of the DBN using 5,000 training images for five distinct network topolo-

gies. The results indicate that a baseline error rate of 36.8% for a 784×10 DBN trained by

100 samples can be reduced to only 3.7% using a 784×800×800×10 DBN trained by 5,000

input samples. Finally, Power dissipation and accuracy tradeoffs for probabilistic computing

mechanisms using resistive devices are identified.

• Developed a spintronic neuromorphic reconfigurable Array (SNRA) to fuse together power-

efficient probabilistic and in-field programmable deterministic computing during both train-

ing and evaluation phases of restricted Boltzmann machines (RBMs), as described in Chapter

6. First, probabilistic spin logic devices are used to develop an RBM realization which is

adapted to construct deep belief networks (DBNs) having one to three hidden layers of size

10 to 800 neurons each. Second, we designed a hardware implementation for the contrastive

divergence (CD) algorithm using a four-state finite state machine capable of unsupervised

training inN+3 clocks whereN denotes the number of neurons in each RBM. The function-

ality of our proposed CD hardware implementation is validated using ModelSim simulations.

We synthesize the developed Verilog HDL implementation of our proposed test/train control

circuitry for various DBN topologies where the maximal RBM dimensions yield resource

utilization ranging from 51 to 2,421 lookup tables (LUTs). Next, we leverageed SHE-MTJ

based non-volatile LUT circuits to form a reconfigurable fabric. Finally, we compare the
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performance of our proposed SNRA with SRAM-based configurable fabrics focusing on the

area and power consumption induced by the LUTs used to implement both CD and evalu-

ation modes. The results obtained indicate more than 80% reduction in combined dynamic

and static power dissipation, while achieving at least 50% reduction in device count.

• Leveraged MRAM technologies with thermally unstable nanomagnets to develop an intrin-

sic stochastic neuron as a building block for RBMs. The embedded MRAM-based neuron

is modeled using precise physics equations. A probabilistic inference network simulator

(PIN-Sim) is developed to realize a circuit-level model of an RBM utilizing resistive cross-

bar arrays along with differential amplifiers to implement the positive and negative weight

values. The PIN-Sim is composed of five main blocks to train a DBN, evaluate its accuracy,

and measure its power consumption. The MNIST dataset is leveraged to investigate the en-

ergy and accuracy tradeoffs of seven distinct network topologies in SPICE using the 14nm

HP-FinFET technology library with the nominal voltage of 0.8V, in which an MRAM-based

neuron is used as the activation function. The software and hardware level simulations indi-

cate that a 784×200×10 topology can achieve less than 5% error rates with∼ 400pJ energy

consumption. The error rates can be reduced to 2.5% by using a 784×500×500×500×10

DBN at the cost of ∼ 10× higher energy consumption and significant area overhead. Fi-

nally, the effects of specific hardware-level parameters on power dissipation and accuracy

tradeoffs are identified via the developed PIN-Sim framework.
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CHAPTER 2: FUNDAMENTALS AND MODELING OF MAGNETIC

TUNNEL JUNCTIONS1

Figure 2.1 depicts the vertical structure of an MTJ [5, 119], which consist of two ferromagnetic

(FM) layers: (1) Fixed Layer, that is magnetically-pinned and utilized as a reference layer, and (2)

Free Layer, that its magnetic orientation can be switched. These two FM layers are separated by

a thin oxide barrier, e.g. MgO [44]. The FM layers can have two different magnetization configu-

rations called parallel (P) and antiparallel (AP), according to which the MTJ’s resistance changes

between RP and RAP , respectively. The MTJ resistance is determined by the angle (θ) between

the magnetization orientations of fixed layer and free layer due to the tunnel magnetoresistance

(TMR) effect. The MTJ resistance in P (θ=0), and AP (θ=180) states is expressed by the following

equations [11, 120, 10]:

R(θ) =
2RMTJ(1 + TMR)

2 + TMR + TMR× cos θ
=


RP = RMTJ , θ = 0

RAP = RMTJ(1 + TMR), θ = π

(2.1)

RMTJ =
tox

Factor × Area×√ϕ
exp(1.025× tox ×

√
ϕ) (2.2)

TMR(T, Vb) =
2P 2(1− αspT 3/2)2

1− P 2(1− αspT 3/2)2
.

1

1 + (Vb
V0

)2
(2.3)

1© 2017 IEEE. Part of this chapter is reprinted, with permission, from [2].
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Figure 2.1: (a) MTJ vertical structure, (b) In-plane MTJ (IMTJ), and (c) Perpendicular MTJ (PMTJ) [2].

In the above equations, tox is the oxide thickness of MTJ, Factor is obtained from the resistance-

area product (RA) value of the MTJ that relies on the material composition of its layers, Area

is the surface area of the MTJ, ϕ is the oxide layer energy barrier height, TMR is the tunneling

magnetoresistance, which relies on temperature (T) and bias voltage (Vb). P is the spin polarization

factor, V0 is a fitting parameter, and αsp is a material-dependent constant.

The energy barrier between P and AP configurations of MTJ is in a range such that it can switch

between configurations, while also retaining thermal stability. The magnetic direction of MTJ

layers can be in the film plane or out of the film plane referred to as in-plane MTJ (IMA) and

perpendicular MTJ (PMA) structure, respectively.
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Figure 2.2: MTJ state change from AP to P due to the positive current IMTJ > IAP−P condition, and vice
versa. (b) MTJ resistance hysteresis curve relative to the IMTJ [2].

Two of the conventional switching methods used for changing the magnetization orientation of

free layers are Field-induced magnetic switching (FIMS) [121] and thermally assisted switching

(TAS) [122]. In the mentioned approaches, a current source with an amplitude in range of mil-

liampere (mA) was required to generate the magnetic field, which should be applied to switch the

MTJ state. Thus, these approaches are not appropriate for low power integrated circuits, due to

the significantly high switching energy consumption. In 1996, Slonczewski [123] proposed Spin

Transfer Torque (STT) switching method, which is known as a promising alternative for changing

the MTJ states.

2.1 Spin Transfer Torque (STT) Switching Approach

Based on the STT approach, a bidirectional spin-polarized current (IMTJ ) is required for switching

MTJ nanomagnet configuration, as shown in Figure 2.2. Electrons that flow through the MTJ free

layer will experience an exchange field which aligns the spin of the electron with the magnetization

direction of the nanomagnet. This phenomenon is called spin-filtering effect. The conservation of

the angular momentum results in the exertion of an opposite sign torque with equal magnitude on
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the free layer which eventually change its magnetization direction. The P or AP configuration of

the MTJ is determined by the direction of the current that flows through it. The required bidi-

rectional current could be produced by means of simple MOS-based circuits. Due to the vertical

structure of the MTJ, it can be readily integrated at the back-end process of the CMOS fabrication

[124, 125].

STT switching behavior can be categorized into two main regions based on the relation between

IMTJ and the switching critical current (IC): (1) precessional region (IMTJ > IC) described by

Sun model [126], where MTJ experiences a rapid precessional switching, and (2) thermal activa-

tion region (IMTJ < IC) defined by Brown model [127], in which the switching can occur with a

long input current pulse due to the thermal activation. The switching duration in the precessional

and thermal activation regions are described by Equations 2.4 and 2.5, respectively [125]:

1

τSTT
= [

2

C + ln(π2∆)
].

µBP

em(1 + P 2)
(IMTJ − IC) (2.4)

1

τSTT
= τ0e

∆(1− IMTJ
IC

) (2.5)

where τSTT is the mean switching duration, C = 0.577 is the Euler’s constant, ∆ = E/4kBT is

the thermal stability factor, m is the free layer magnetic moment, and τ0 is the attempt period. In

practice, MTJ is normally designed to work in precessional region with an input current amplitude

larger than critical current to achieve high switching speed.

Equations 2.6 and 2.7 express the switching critical current for IMA (Ic−IMA) [128] and PMA
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(Ic−PMA) [5] MTJ devices, respectively:

Ic−IMA = 2αeMSV (HC +
Heff

2
)/g(θ)Ph̄ (2.6)

Ic−PMA = αγeMSV Hk/µBg(θ) (2.7)

where α is the magnetic damping constant, µB is the Bohr magneton, γ is the gyromagnetic ratio,

e is the electric charge, V is the volume of the free layer, MS is the saturation magnetization, h̄ is

the reduced Planck’s constant, HC is the in-plane coercive field, Heff is the effective out-of-plane

demagnetization field, and Hk is the anisotropy field. The effective demagnetization field in IMA

is approximately equal to the saturation magnetization, which is normally larger than anisotropy

field in PMA. Thus, switching current for PMA is smaller than that of the IMA devices according

to the Equations 2.6 and 2.7. Moreover, spin polarization efficiency factor, g(θ), is a function of

the angle between free layer and fixed layer magnetization directions (θ), and is obtained by the

Equations 2.8 [129] and 2.9 [11] for IMA and PMA MTJ devices, respectively.

gIMA = [−4 + (P 1/2 + P−1/2)(3 + cosθ)/4]−1 (2.8)

gPMA = gSV ± gtunnel = [−4 + (P 1/2 + P−1/2)3(3 + cosθ)/4]−1 ± [
P

2(1 + P 2cosθ)
] (2.9)

where P is the spin polarization percentage of the tunnel current, gSV is the spin polarization effi-

ciency in a spin valve and gtunnel is the spin polarization efficiency in tunnel junction nanopillars.
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The dynamics of the magnetic moment of the free layer (m) in an STT-MTJ device is described by

the Landau-Lifshitz-Gilbert (LLG) equation [130]:

(1 + α2)

γ
.
dm̂

dt
= −m̂× ~H − α.m̂× (m̂× ~H) + cSTT .m̂× (m̂× m̂p) (2.10)

where m̂ and m̂p are the unit vectors of the free layer and pinned layer magnetizations, respec-

tively. H is the effective perpendicular anisotropy field, α is the damping coefficient, and γ is

the gyromagnetic ratio. The STT coefficient cSTT equals ~PJ
2etfMS

, where ~ is the reduced Planck’s

constant, J is the switching current density, e is the electron charge, tf is the free layer thickness,

and MS is the saturation magnetization.

While STT-MTJ offers significant advantages in terms of read energy and speed, a significant

incubation delay due to the pre-switching oscillation [131, 132] incurs high switching energy.

Consequently, Spin Hall Effect (SHE) and Rashba effect are investigated to achieve an alternative

low power switching approach [133, 134, 135]. Recently, SHE-MTJ is introduced as an alternative

for 2-terminal MTJs, which provides separate paths for read and write operations, while expending

significantly less switching energy [136, 13].

2.2 Spin Hall Effect (SHE)-based Switching Approach

As mentioned, spin-polarized currents can be utilized to generate the torque required for switching

the magnetization directions of the free layer in MTJs. In [133], Liu et al. have shown that passing

a charge current (Ic) through a heavy metal (HM) such as β-tantalum can generate a spin-polarized

current (Is) using the spin Hall Effect (SHE). This can switch the magnetization direction of the

free layer in an MTJ with in-plane magnetic anisotropy.
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Figure 2.3: (a) SHE-MTJ vertical structure. Positive current along +x induces a spin injection current +z
direction. The injected spin current produces the required spin torque for aligning the magnetic direction of
the free layer in +y directions, and vice versa. (b) SHE-MTJ Top view. [2].

In [13], Manipatruni et al. have provided the physical equations of the three-terminal SHE-MTJ

device behavior. Figure 3.1 shows the structure of the SHE-MTJ device, in which the magnetic

orientation of the free layer changes by passing a charge current through a heavy metal (HM). MTJ

free layer is directly connected to HM which is normally made of β-tantalum [133], β-tungsten

[135]. The spin-orbit coupling in HM deflects the electrons with different spins in opposite direc-

tions, which results in a spin injection current (Is) transverse to the applied charge current (Ic).

The injected current produces the required spin torque for aligning the magnetic direction of the

free layer. The ratio of the generated spin current to the applied charge current is defined as below

[13]:

SHIE =
Is
Ic

=
π.wMTJ .lMTJ

4.tHM .wHM
θSHE

[
1− sech(

tHM
λsf

)

]
(2.11)

where wMTJ is the width of the MTJ, lMTJ is the length of the MTJ, tHM is thickness of the HM,

wHM is the width of the HM, λsf is the spin flip length in HM and θSHE is the spin Hall angle. The

spin hall injection efficiency (SHIE) value is normally greater than one. Therefore, SHE-MTJs can

achieve equivalent switching delays with lower write current amplitudes compared to STT-MTJs,

resulting in lower power consumption for write operation. The critical spin current required for
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switching the free layer magnetization orientation is expressed by Equation 2.12 [137]. Thus, the

SHE-MTJ’s critical charge current (IC) can be calculated using Equations 2.11 and 2.12.

Is = 2αeMSV (Hk + 2πMS)/h̄ (2.12)

The relation between the switching time (τSHE) and the applied charge current (ISHE) is shown in

2.13, in which vc is the critical switching voltage, τ0 is the characteristic time, and RHM is the HM

resistance, which are given by 2.14, 2.15, and 3.1, respectively [13]:

τSHE = [τ0ln(π/2θ0)]/[(
RHMISHE

vc
)− 1] (2.13)

vc = 8ρIC [πθSHElHM(1− sech(
tHM
λsf

)] (2.14)

τ0 = MSVHMe/ICPµB (2.15)

RHM =
ρHM .lHM
wHM .tHM

(2.16)

where θ0 is the effect of stochastic variation, lHM is the length of the HM, and IC is the critical

charge current for spin-torque induced switching. The magnetization dynamics of the free layer in

SHE-MTJ device can be captured by the modified Landau-Lifshitz-Gilbert (LLG) equation [138]:

(1 + α2).
dm̂

dt
= −γm̂× ~H − αγ(m̂× m̂× ~H) +

m̂× ~Is × m̂
qN

+
α(m̂× ~Is)

qN
(2.17)

where N = MSV/µB is the total number of the spins in the volume (V ) of free layer nanomagnet,

in which µB is the Bohr magneton.

26



Figure A.4 shows the block diagram of an approach proposed by authors in [2, 107] to model the

behavior of STT-MTJ and SHE-MTJ devices, in which a Verilog-AMS model is developed using

the aforementioned equations. Then, the model is leveraged in SPICE circuit simulator to design

hybrid CMOS/spin-based circuits and validate their functionality using experimental parameters

such as the ones listed in Table 2.1.

Table 2.1: Parameters of STT/SHE-MTJ devices [2].
Parameter Description Value
HM Volume HMLength ×HMWidth ×HMThickness 100×60×3 nm3

MTJ Area MTJLength ×HMWidth × π/4 60×30×π/4 nm2

MTJ Area Reference MTJ Surface 50×25×π/4 nm3

IC-SHE SHE-MTJ Critical Curren 108 µA
IP-AP STT-MTJ Critical Current for P to AP Switching 37 µA
IAP-P STT-MTJ Critical Current for AP to P Switching 18 µA
θSHE Spin Hall Angle 0.3
ρHM Resistivity 200 µΩ.cm
φ Potential Barrier Height 0.4 V
tox Thickness of oxide barrier 0.85 nm
α Gilbert Damping factor 0.007
Ms Saturation magnetization 200 7.8e5 A.m-1

µB Bohr Magneton 9.27 e-24 J.T-1

P Spin Polarization 0.52
γ Gyromagnetic Ratio 1.76e7 (Oe.s)-1

RAP , RP MTJ Resistances 2.8 KΩ, 5.6 KΩ
RP Reference MTJ Resistance 4.12 KΩ
TMR0 TMR ratio 100%
Hk Anisotropy Field 80 Oe
µ0 Permeability of Free Space 1.25663e-6 T.m/A
θSHE Spin Hall Angle 0.3
ρHM HM Resistivity 200 µΩ.cm
φ Potential Barrier Height 0.4 V
Λsf Spin Flip Length 1.5nm
e Electric charge 1.602e-19 C
~ Reduced Planck’s Constant 6.626e-34/2π J.s
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Figure 2.4: Modeling and simulation process of STT/SHE MTJ devices [2].

Figures 4.10 (a) and (b) show the CMOS-based bitcell of the 2-terminal STT-MTJ and SHE-MTJ,

respectively. In SHE-MTJ device, the spin current can be significantly larger than the applied

charge current. Therefore, the transistor utilized in the bitcell of the 2-terminal MTJ should be

larger than that of the SHE-MTJ to be able to provide equal switching delay. Thus, although

SHE-MTJ bitcell requires two MOS transistors, its integration density is comparable to that of the

2-terminal MTJs. Increasing the transistor size in 2-terminal MTJs may also impacts the reliability

of tunneling oxide barrier, which is improved in 3-terminal SHE-MTJ devices, since the current

does not flow through it during the write operation [124].

Figure 2.5: (a) 2-terminal MTJ bitcell, (b) SHE-MTJ bitcell [2].
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CHAPTER 3: MAGNETIC RANDOM ACCESS MEMORY BASED

LOOK-UP TABLE (LUT) CIRCUIT DESIGN12

A Look-Up Table (LUT) circuit is the building block of reconfigurable computing fabrics, which

includes a 2m × 1 memory block to store the configuration data of an m-input Boolean logic

function. Currently, static random access memory (SRAM)-based LUTs are primary constituents

for logic realization in most reconfigurable fabrics. However, SRAM’s drawbacks such as high

static power consumption, volatility, and restricted logic density [139, 140] have motivated ex-

ploration of alternative LUT designs. One of the introduced alternatives is based on non-volatile

flash-based LUTs, however it targets a niche market due to their low reconfiguration endurance

[70]. Higher endurance non-volatile LUTs can be enabled by emerging resistive technologies,

such as spintronic storage elements [72, 73, 74, 75, 76, 77, 78], resistive random access memory

(RRAM) [79, 80, 81, 82], and phase change memory (PCM) [83, 84]. Although PCM can of-

fer non-volatility, its considerable reconfiguration power and high write latency can significantly

exceed that of an SRAM LUT.

Spintronic devices offer non-volatility, near-zero static power, and high integration density [68, 67].

Two of the spin-based devices, which are previously proposed for use in reconfigurable fabrics are

magnetic tunnel junctions (MTJs) [76, 75, 78, 2, 3, 85] and domain wall (DW)-based racetrack

memory (RM) [73, 74]. RM is effective for non-volatility and area density, although previous

designs can incur significant delay and energy cost due to excessive shift activities to configure the

implemented logic function. Hence, MTJ-based LUTs are proposed herein to be utilized within

the reconfigurable fabrics to implement various logic functions as a runtime adaptable fabric under

middleware control. Moreover, Radiation immunity of MTJ devices decrease the susceptibility of

1© 2016 IEEE. Part of this chapter is reprinted, with permission, from [3].
2© 2017 IEEE. Part of this chapter is reprinted, with permission, from [2].
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the design to radiation-induced errors [4], as will be described in this chapter.

Three types of energy consumption profiles can be identified in FPGA LUTs. First, an initial

write energy consumption incurred at LUT configuration time. Second, the LUTs comprising

active logic paths will consume read energy, which may constitute only certain sub areas within

high gate equivalent capacity of contemporary FPGA chips. Third, the standby energy consumed

by the remaining significant quantity of the LUTs comprising the fabric that may be inactive. It

is not possible to power-gate LUT islands, as they must retain the stored configuration. It has

been estimated in [75] that if the combined effect of these three modes can be mitigated with

a suitable SRAM alternative, then typical power consumption can be reduced up to 81% under

representative applications based on measurements of fabricated devices. In [75], Suzuki et al.

have fabricated a nonvolatile FPGA with 3000 6-input STT-MTJ based LUTs under 90nm CMOS

and 75nm perpendicular MTJ technologies. They have utilized the LUT designs introduced in

[76, 78], and in addition to the mentioned energy savings they also achieved 56% area reduction.

Herein, we will study two of the MTJ-based LUT designs developed by the author that can realize

even more power reduction.

3.1 Spin Transfer Torque (STT)-Magnetic Tunnel Junction (MTJ)-based LUT Circuits

In this section, a 4-input STT-MTJ LUT [3] is introduced which consists of read and write circuits

as shown in Figure 4.1. The write circuit includes two transmission gates (TGs) which provide the

desired charge current for STT switching [108], while the read circuit is comprised of a pre-charge

Sense Amplifier (SA) [141, 142], a TG-based Multiplexer (MUX), and a reference tree. Each

MTJ cell of LUT could be accessed according to the input signals, A, B, C, and D, through MUX

which employs TGs instead of Pass Transistors (PTs). TGs have near optimal full-swing switching

behavior which results in less delay. In addition, TG-based circuits are more resilient to process
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variation comparing to PT-based designs [143, 108].

The reference tree in read circuit is designed to provide SA with required reference resistance to

properly sense each MTJ cell state. Reference tree consists of four TGs in series configuration to

compensate for the select tree active resistance. Reference MTJ resistance is designed in a manner

such that its value in parallel configuration is between low resistance (RP ) and high resistance

(RAP ) of the LUT MTJ cells as shown in equation below:

RP−referenceMTJ
∼=

1

2
(RAP−LUTMTJ +RP−LUTMTJ) (3.1)

In [144] the first prototype of a two input MTJ-based LUT is simulated. It contains four MTJs to

store data, and a separate SA and write circuit for each MTJ which lead to significant area overhead

and power consumption. In [78], Suzuki et al. has proposed an optimized STT-MTJ based LUT.

They reported a 44% reduction in active power, for a 4-input XOR operation, comparing to the

LUT designed in [144]. They employed a single SA for the whole LUT circuit instead of using

one for each memory cell which results in area and active power reduction. Herein, the proposed

STT-MTJ based LUT circuit is implemented using both TG-based and PT-based select and refer-

ence trees. The performence of the developed STT-MTJ LUT circuit is compared with the above

mentioned MTJ-based LUTs, as listed in Table 3.1. The proposed STT-MTJ LUT provides high

speed and ultra-low power circuits with improved power-delay product (PDP) values shown in sev-

enth row of the table. Furthermore, TG-based STT-LUT exhibits least PDP value while it leverages

larger number of MOS transistors comparing to PT-based STT-LUT which is the optimum choice

from the area efficiency point of view.
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In order to evaluate the scalability of the STT-MTJ LUT circuit, PDP values are calculated for

2-input to 6-input STT-MTJ LUTs, considering the worst case scenario, i.e. MTJ state is zero.

Figure 3.2 exhibits that PDP and number of LUT inputs are linearly proportional with a low slope

which validates the STT-MTJ LUT scalability. This capability led to the proposition of a 4-input

adaptive STT-MTJ LUT (A-LUT), as shown in Figure 3.3, which is compatible with the Altera’s

adaptive LUT structure [145].

Figure 3.1: A 4-input STT-MTJ LUT functional diagram [3].

Table 3.1: Performance comparison for 4-input NAND operation [3].

Features [144] [78] PT based STT-LUT TG based STT-LUT

NO. of MTJs 32 36 17 17

NO. of MOSs 154 74 59 112

Delay(†) (ps) 88 81 94 83

Active Power(∗) (µW) 13.40 7.58 4.30 4.27

PDP (ps× µW) 1179.2 613.98 404.20 354.41

Standby Power 0 0 0 0

PDP [144] — 48% 65.7% 70%

Improvement [78] — — 34% 42%

(†) Worst case delay, switching delay is not included.

(∗) Average power dissipation, switching power is not included.
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Figure 3.2: PDP growth of STT-MTJ LUT in terms of input widths [3].

Table 3.2: Configuration specifications and MTJ usage for 2-input to 4-input LUT organization [3].
S21 S22 S23 S24 S31 S32 S4 RS2 RS3 RS4 bitstream MTJs Description

mode 0 1 0 0 0 0 0 0 1 0 0 10’h204 0-3 2-input LUT
mode 1 0 1 0 0 0 0 0 1 0 0 10’h104 4-7 2-input LUT
mode 2 0 0 1 0 0 0 0 1 0 0 10’h84 8-11 2-input LUT
mode 3 0 0 0 1 0 0 0 1 0 0 10’h44 12-15 2-input LUT
mode 4 0 0 0 0 1 0 0 0 1 0 10’h22 0-7 3-input LUT
mode 5 0 0 0 0 0 1 0 0 1 0 10’h12 8-15 3-input LUT
mode 6 0 0 0 0 0 0 1 0 0 1 10’h9 0-15 4-input LUT

3.1.1 Adaptive STT-MTJ LUT Circuit

The proposed 4-input A-LUT could be configured to operate as different LUTs in seven indepen-

dent modes: four 2-input STT-MTJ LUTs, two 3-input STT-MTJ LUTs, and one 4-input STT-MTJ

LUT. Output of each configuration is individually connected to SA through a mode selector which

includes PTs to choose between different operational modes, described in Table 3.2. For example,

bitstream = 10′h104 configures A-LUT to operate as a 2-input STT-MTJ LUT based on the logic

function stored in MTJ4 to MTJ7.
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Figure 3.3: The circuit view of A-LUT schematic. [3].

The reference tree of an n-input STT-LUT could be implemented by n TGs and a reference

MTJ in series configuration, which provides a resistance equal to RReferenceTree = n.RTG +

RP−referenceMTJ . Thus, different number of LUT inputs, only affects the number of TGs which

must be utilized in reference tree, and modification to the dimensions of the reference tree MTJ is

not required to keep the optimized sensing behavior of SA. Hence, the A-LUT reference tree in-

cludes three different branches in parallel configuration that are serially connected to a single MTJ.

As shown in Figure 3.3, each of the branches contains two, three, and four TGs which are used for

2-input, 3-input, and 4-input A-LUT configurations, respectively. Figure 3.4 shows the layout of

the A-LUT which occupies a cell area of 13.5µm× 15.75µm in 90nm process. A five metal layer

design is depicted. The MTJ cell has a vertical structure which could be readily integrated at the
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backend process of CMOS fabrication.

The proposed A-LUT circuit is examined using SPICE simulation in 90nm technology. Figure 3.5

elaborates the functionality of the proposed A-LUT for a 4-input NAND operation when ABCD=

“1111” and ABCD= “0000” inputs are applied, respectively. The former set of inputs selects

MTJ15 which has a parallel configuration that denotes logic “0”, while the latter input selects

MTJ0 with anti-parallel configuration representing logic “1”. Herein, mode selector’s bitstream is

equal to 10′h9, which selects the sixth mode, i.e. A-LUT fuctioning as 4-input STT-MTJ LUT.

Figure 3.4: A 13.5µm× 15.75µm 4-input A-LUT layout [3].
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Table 3.3: PDP values for STT-MTJ LUT and A-LUT designs (ps×µW) [3].

Boolean
Function

Inputs

8-input STT-MTJ LUT 8-input A-LUT
Power × Delay

(ps× µW )

5.934× 138.14

Power

(µW )

Delay

(ps)

PDP

(ps× µW )

2 819.72 3.826 70.51 269.8

3 819.72 4.260 83 353.58

4 819.72 4.734 94.92 449.35

5 819.72 5.138 107.05 549.98

6 819.72 5.571 120.98 673.97

7 819.72 5.960 134 798.64

8 819.72 6.307 146.84 926.1

Herein, a comprehensive PDP analysis is performed to evaluate the performance of A-LUT. There-

fore, an 8-input A-LUT and 8-input STT-MTJ LUT are examined to implement 2-input to 8-input

Boolean logic functions. The PDP results are extracted for a worst case NAND operation utilizing

1.2V nominal voltage (VDD) and 1GHz circuit clock (CLK) frequency. As listed in Table 3.3,

an n-input A-LUT PDP is smaller than n-input STT-MTJ LUT PDP, when performing 2-input to

(n-1)-input Boolean functions.
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Figure 3.5: Transient response of A-LUT for 4-input NAND operation for ABCD= “1111” (top), and
ABCD= “0000” (middle) [3].

Despite the mentioned advantages of conventional STT-MTJ devices, their main challenge is rel-

atively high delay and power consumption for write operation. Moreover, two-terminal MTJ de-

vices can experience occasional read/write disturbances due to sharing a common path for read

and write operations. Recently, 3-terminal spin Hall effect (SHE)-based MTJ has been introduced

as an alternative for conventional 2-terminal MTJs. SHE-MTJ provides separate paths for read and

write operations, while expending significantly less switching energy [133, 13]. In next section,

we develop a nonvolatile LUT circuit using SHE-MTJ devices, and provide a detailed comparison

between the SHE-MTJ-based LUT (SHE-LUT) and 2-terminal MTJ-based LUTs including the

reconfiguration energy consumption and delay.
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3.2 Spin Hall Effect (SHE)-Magnetic Tunnel Junction (MTJ)-based LUT Circuits

In this section, a non-volatile LUT circuit is developed based on the SHE-MTJ devices. SHE-

LUT structure includes two main parts: write circuit and read circuit. Designing the read and

write circuits requires considering important details which can significantly influence the energy

consumption and delay of the LUT circuit.

Herein, we have utilized SHE-MTJ device as a storage element in the LUT circuit as shown in

Figure 3.6. In general, data is stored in resistive memory cells in form of different resistance

levels, e.g. high resistance state stands for logic 1 and vice versa. Therefore, a sense amplifier

(SA) is required to distinguish the resistive state of the memory cell. In [141], Zhao et al. studied

various SAs which could be leveraged for sensing the magnetic configuration of the MTJs. They

have proposed a Pre-Charge Sense Amplifier (PCSA) consisting of seven MOS transistors and a

reference MTJ, which could provide a low power and high speed read operation.

Figure 3.6 shows the PCSA circuit which includes four PMOS transistors connected to the VDD,

two NMOS transistors which connects the PMOS transistors to the select trees and data stor-

age cells, and one NMOS transistor which connects the circuit to ground (GND). Moreover, a

TG-based reference tree including four TGs in series configuration is utilized in our designs to

compensate for the select tree resistance. Reference MTJ dimensions are designed in a manner

such that its resistance value in parallel configuration is between low resistance, RLow, and high

resistance, RHigh, of the SHE-based MTJ cells as shown in Figure 3.7.
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Figure 3.6: The circuit level design of the proposed SHE-LUT [2].

Figure 3.7: SHE-MTJ read and write path equivalent resistances [2].
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Sensing with PCSA requires two operating phases which could be performed in a single clock

(CLK) period: pre-charge phase and discharge phase. During the pre-charge phase, CLK signal is

equal to zero, therefore MP0 and MP3 transistors, shown in Figure 3.6, are ON and the drains of the

MN0 (OUT) and the MN1 (OUT’) transistors are charged to VDD. In the discharge phase, CLK is

equal to VDD and all the PMOS transistors are OFF. Consequently, the voltage source (VDD) is

disconnected from the circuit and the pre-charged nodes, i.e. OUT and OUT’, begins to discharge.

The discharge speed in each of the branches of the PCSA is different due to the difference between

the resistances of the resistive storage elements, and the reference SHE-MTJ. For example, assume

that SHE-MTJ0 with AP configuration is the storage element that is being sensed. Since it has

higher resistance than the reference MTJ, the branch connected to it discharges slower than the

reference SHE-MTJ branch, thus the voltage drops faster in OUT’ node. Since OUT’ is connected

to the gate of the MP1 transistor, the voltage drop results in a voltage difference between source

and gate of the MP1 transistors that is higher than threshold voltage. Consequently, MP1 will be

ON and the OUT node which is connected to gate of the MP2 transistor will be charged to VDD.

This causes the MP2 transistor to remain OFF, and as the result OUT’ node will be completely

discharged to GND.

In practice, an external synchronizer circuit can be utilized to ensure that the input signals are

synchronous to the local clock signal of the SA, as shown in Figure 3.8. The synchronizer circuit

for an n-input LUT includes n flip-flops that samples the inputs at each clock cycle. The pre-charge

state of the SA should be sufficiently long to meet the required setup and hold times of the flip flops

to avoid metastability. The probability of synchronization failure caused by staying of a flip-flop

in the metastable state exponentially decreases with time [146].
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In this work, we have utilized a TG in the SHE-MTJ write circuit, as shown in Figure 3.9 (a). TGs

are composed of one NMOS and one PMOS transistor, and characterized by their near optimal full-

swing switching behavior [108]. TG-based write circuit provides a symmetric switching behavior,

i.e. the generated write current amplitude for P to AP switching equals the current amplitude

produced for switching from AP to P state. Moreover, TGs are capable of producing a current

amplitude larger than the switching critical currents of both 2-terminal MTJ and SHE-MTJ devices,

which are listed in Table 2.1. The produced current amplitude is sufficiently large to ensure the

complete switching of the MTJ devices utilized herein.

Figure 3.9 (b) shows the TG-based write circuit layout view. To address the feasibility of integrat-

ing SHE-MTJ with TGs, the three-dimensional (3D) cross-sectional view is provided in Figure 3.9

(c), which depicts the SHE-MTJ integration at the back-end process of CMOS fabrication. The

required current for switching the SHE-MTJ passes through the heavy metal structure, which is

built in the second metal layer. The MTJ stack is integrated between the second and forth metal

layers, and occupies the space for the third via and metal layer as well as the fourth via. Although,

TG-based designs necessitate the availability of both CLK and inverse CLK signals, it is common

and reasonable to assume access to both signal conditions within typical integrated circuits.

Figure 3.8: Schematic of 4-input SHE-based MTJ-LUT along with an external synchronizer circuit [2].
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Figure 3.9: (a) Proposed Transmission Gate-based Write Circuits. (b) TG-based write circuit layout view.
(c) Three-dimensional (3D) cross-sectional schematic of SHE-MTJ integration at the back-end process of
TG fabrication [2].

3.2.1 Fracturable 6-input SHE-MTJ LUT design

The proposed 4-input SHE-LUT circuit can be readily extended to LUT designs with greater

number of inputs. Most of the modern FPGAs utilize fracturable 6-input LUTs in their design

[147, 148]. These LUTs have six independent inputs and two separated outputs. The fracturable

6-input LUT can implement any six-input Boolean functions, as well as two five-input Boolean

functions with common inputs [148]. Herein, we have designed a fracturable 6-input LUT using

SHE-MTJ devices, in which two PCSAs and two reference trees are utilized to ensure the indepen-

dence of the outputs. Five NMOS transistors and two select signals, i.e. S5 and S6, are added to

the LUT circuit to control the 5-input and 6-input operation modes of the SHE-based fracturable

LUT. The structure of the proposed 6-input SHE-based fracturable LUT is shown in Figure 3.10.

It provides significantly higher functional flexibility at the expense of slightly more area and power

consumption.
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Figure 3.10: The structure of the 6-input SHE-based fracturable LUT [2].

3.2.2 SHE-MTJ LUT Simulation Results

Figure 3.11 exhibits the functionality of the proposed SHE-LUT in the read phase for a 4-input

NAND logic operation. The first set of inputs applied is ABCD= 1111, which selects SHE-MTJ15

with P configuration that denotes logic 0. While, the latter input ABCD=0000 selects SHE-MTJ0

with AP configuration representing logic 1. Table 3.4 provides the SHE-LUT power and delay

analysis for various input widths, as well as a comparison with a 2-terminal MTJ-based LUT

previously proposed by the authors in [3]. Results show the SHE-LUT improvement in terms of

power-delay product (PDP), ranging from 1.2% to 6.15%. Simulation results are obtained using

SPICE circuit simulator in 90nm CMOS technology model [149].
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Figure 3.11: Transient response for 4-input NAND operation implemented by SHE-MTJ LUT for ABCD=
“1111” (middle), and ABCD= “0000” (top) [2].

Herein, we have provided a comprehensive comparison between the read performances of our

proposed 4-input SHE-LUT circuit, and previous performance-efficient 4-input MTJ-LUT designs

introduced in [144, 78, 3]. Delay and power consumption for read operations are extracted for input

values precipitating worst case condition for a NAND operation utilizing 1.2V nominal voltage

(VDD) and 1GHz circuit clock (CLK) frequency. The obtained results are summarized in Table

3.5. SHE-MTJ LUT provides high speed and low energy read operation with improved PDP values

listed in the bottom row of Table 3.5.
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Table 3.4: Performance Comparison of Proposed SHE-MTJ LUT [2] versus 2-terminal MTJ-based LUT [3]
for Various Input Widths [2].

Number of
LUT Inputs

PDP = Power (µW ) × Delay(ps)
LUT MTJ state = 0 LUT MTJ state = 1

STT-MTJ
LUT [3] SHE-MTJ LUT

PDP
Improv.

STT-MTJ
LUT [3] SHE-MTJ LUT

PDP
Improv.

2 3.3× 67 3.17× 66 5.94% 3.28× 55 3.15× 54 5.7%
3 3.74× 79 3.6× 80 2.52% 3.7× 64 3.54× 63 5.82%
4 4.3× 94 4.01× 94.6 6.15% 4.1× 73 3.96× 72 4.7%
5 4.54× 108 4.4× 110 1.2% 4.49× 82 4.36× 81 4.07%
6 4.92× 123 4.78× 124 2.05% 4.86× 92 4.74× 91 3.53%

Table 3.5: Performance Comparison for the Read Operation of 4-input MTJ-LUTs [2].
Features [144] [78] [3] SHE-MTJ LUT [2]

# of MTJs 32 36 17 17
# of MOSs 154 74 112 109
Delay (ps) 88 81 94 94.6
Power (µW ) 13.4 7.58 4.3 4.01
PDP (µWtimesps) 1179.2 613.98 404.2 379.34
PDP Improvement 67.8% 38.2% 6.15% –

We have also examined the reconfiguration operation of SHE-MTJ LUT and conventional 2-

terminal MTJ-based LUTs, which involves write operation to switch the state of the MTJs. The

STT and SHE switching behaviors are modeled using the relations provided in Chapter 2. Ta-

ble 4.9 provides a comparison between the reconfiguration operation of a 4-input SHE-LUT and

a conventional MTJ-LUT. A 4-input MTJ-LUT includes sixteen MTJs having their magnetiza-

tion directions aligned in a single reconfiguration operation. As listed in Table 3.6, the proposed

SHE-LUT provided at least 20% PDP improvement compared to 2-terminal MTJ LUTs.
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Table 3.6: Performance comparison for the Reconfiguration Operation of 4-input MTJ-LUTs Involving 16
MTJs [2].

Features STT-MTJ LUT SHE-MTJ LUT

Delay (ns)
P to AP 52.8 31.68
Ap to P 53.92 31.36

Power (mW )
P to AP 1.16 1.44
AP to P 0.89 1.45

PDP (ns×mW )
P to AP 3.83 2.85
AP to P 3.3 2.84

Average PDP (ns×mW ) 3.565 2.845
Average PDP Improvement 20.1% –

To investigate the effect of MTJ scaling on the performance of the MTJ-based LUTs, a compre-

hensive comparison between a 4-input SHE-MTJ LUT and a 4-input STT-MTJ LUT is provided

herein. Figure 3.12 (a) shows the obtained results for the read operation of LUTs including the PDP

values for sensing both P and AP states. The performance of the SHE-MTJ LUT and STT-MTJ

LUT are comparable for the read operation, while there is a significant difference for the reconfig-

uration operation, as shown in Figure 3.12 (b). The obtained results exhibit the superiority of the

SHE-LUT in term of PDP for different MTJ dimensions. Moreover, LUTs with smaller MTJs have

lower PDP values for both read and reconfiguration operations. In read operation, this is mainly

achieved due to the increase in the resistance of MTJs by decreasing its dimensions. Since the

supply voltage is fixed, higher resistance of MTJs results in lower read current, and consequently

lower power consumption. For write operation, although a decrease in the produced write current

leads to lower power consumption, it can also results in higher switching delay. This decrease in

the switching speed is compensated by the significant decrease in the required switching critical

currents. Eventually, smaller MTJ dimensions results in higher switching speed, as well as lower

switching power, as shown in Figure 3.12 (b).
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Figure 3.12: The effect of MTJ scaling on SHE-MTJ LUT and STT-MTJ LUT performances. (a) Read
operation, and (b) reconfiguration operation [2].

3.2.3 SHE-MTJ based fracturable LUT Simulation Results

As mentioned, 6-input SHE-MTJ based fracturable LUT circuit can operate in two different modes:

5-input and 6-input. In 5-input mode, the fracturable LUT can simultaneously implement two

different five-input Boolean functions, as long as they share common inputs. Figure 3.13 shows

the functionality of the proposed 6-input SHE-LUT while operating in 5-input mode. The truth

table of a 5-input NAND logic operation is stored in the least significant 32 bits of the LUT circuit,

while the most significant 32-bits implement a 5-input AND Boolean function. The applied input

is ABCDEF= X11111, which selects SHE-MTJ63 and SHE-MTJ31 with AP and P configurations,

respectively. Table 3.7 lists the power consumption and delay of the 6-input fracturable LUT read

operation for different operating modes in worst case condition. The reconfiguration operation in

fracturable LUT is similar to that of the regular LUTs.
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Figure 3.13: Transient response for fracturable 6-input SHE-LUT. 5-input NAND operation for ABCDEF=
X11111 (middle), and 5-input AND operation for ABCDEF= X11111 (top) [2].

Table 3.7: Performance comparison for the read operation of the 6-input SHE-MTJ based fracturable LUT
[2].

Features Delay (ps) Power (µW )

5-input
Regular 110 4.4
Fracturable 125 9.55

6-input
Regular 124 4.78
Fracturable 152 5.85
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3.3 Advances in Clocking Schemes for MTJ-based LUTs

Clocking limitations may have a significant effect on the performance of an MTJ-LUT. The ob-

tained results extracted in previous section are related to isolated read and reconfiguration opera-

tions. Since each of the LUT operations have different clocking limitations, more comprehensive

clocking and signaling mechanisms are sought to control these operations in an MTJ-LUT. In this

section, we have investigated two potential clocking schemes supporting both read and reconfig-

uration operations for SHE-LUT. First, we consider the use of a single clock signal for both read

and write operations. Figure 3.14 shows the control signals, e.g. READ/Write enable signals, as

well as the 250MHz clock signal which is utilized for both read and write operations. The clock

frequency has been designed to ensure the complete switching of a single SHE-MTJ device. As

it was illustrated in previous section, the required time for switching the state of a SHE-MTJ cell

is significantly greater than the time needed for read operation. Thus, if a single clock signal is

utilized for both operations, its period must be long enough to ensure a complete reconfiguration

operation. Although using a single clock reduces the complexity of the design, it incurs an exces-

sive delay in the read operation, which is the predominant operation by several orders of magnitude

in reconfigurable fabrics. The clock frequency can be increased by amplifying the write current

to reduce the MTJ switching delay. Enlarging the transistors’ widths in the write circuit increases

the amplitude of the produced write current. Table 3.8 lists the maximum possible operating clock

frequencies for SHE-LUT, based on the different dimensions chosen for the transistors in the write

circuit. As listed in Table 3.8, increasing the operating clock frequency is achieved at the expense

of higher power consumption for reconfiguration operations.
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Table 3.8: SHE-MTJ LUT operating clock frequencies based on different dimensions for transistors used in
the write circuit [2].

Features
Width/90nm Ratio

NMOS= 1X
PMOS= 2X

NMOS= 2X
PMOS= 4X

NMOS= 4X
PMOS= 8X

Current Amplitude (µA)
P to AP 150.7 265.4 415.8
AP to P 151 272 443.8

Switching Delay (ns)
P to AP 1.98 1.05 0.65
AP to P 1.96 1.02 0.6

Maximum CLK Frequency (MHz) 250 450 750

Reconfiguration Power (µW )
P to AP 90.43 159.2 249.5
AP to P 90.68 163.2 266.3

Figure 3.15 shows the second approach investigated herein for controlling the functionality of a

SHE-LUT circuit, in which two distinct clock signals are utilized for read and write operations. The

use of separate clock signal for read operations avoids the excessive delay existed in the previous

clocking method caused by being restricted to the write clock frequency. In this approach, the

clock frequency for read operation is limited to the sensing delay of the read circuit. For instance,

the sensing delay for a 4-input SHE-LUT is approximately equal to 100 picoseconds. Therefore,

the clock frequency for read operation can be designed up to 5GHz assuming the 50% duty cycle.

Figure 3.15 shows the control signals required for a 4-input SHE-LUT design, in which the clock

frequencies for reconfiguration and read operations are equal to 250 MHz and 1GHz, respectively.

This significant increase has been made possible by using a differentiated read clock rate that

can substantially boost FPGA throughput, due to the prevalence of LUT read operations while

performing logic functions.
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Figure 3.14: SHE-MTJ based LUT functionality using a single clock for both read and reconfiguration
operations requiring 16ns termination time [2].
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Figure 3.15: SHE-MTJ based LUT functionality using distinct clock signals for read and reconfiguration
operations achieving 10ns termination time [2].
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3.4 Radiation-hardened Spin Hall Effect (SHE)-Magnetic Random Access Memory (MRAM)

based LUT

Radiation-induced soft errors in nanometer-scale electronic circuits are of increasing concern in

mission-critical space-based [150], high altitude [151], and terrestrial applications [152]. For in-

stance, space missions which take place in a harsh environment in terms of cosmic radiation par-

ticles, temperature, and electromagnetic disturbances have grappled with radiation-induced upsets

for many decades of continued device technology scaling [153]. As device dimensions are reduced,

the critical charge required to induce a logic state upset causing a soft error has decreased, which

is due to a number of compounding physical phenomena. These include the cumulative impact

of aggressive voltage scaling which reduces the voltage headroom available to mask errors, and

the continued miniaturization of deeply-scaled CMOS-based computing technology [154]. Appli-

cations which are especially susceptible due to factors of the mission criticality, the number and

density of sensitive devices, and the environmental exposures they endure are autonomous systems

utilizing high capacity fine-grained configurable components, such as Field Programming Gate

Arrays (FPGAs) [31].

SRAM-based FPGAs, like all CMOS-based fabrics, are susceptible to radiation-induced transient

soft faults such as single event upsets (SEUs), which primarily affect SRAM-based storage cells

[87]. Thus, research into the design of suitable placements with improved soft error immunity and

energy profiles is urgently sought using a number of feasible physical devices including RRAM

[80] and MRAM [2, 75]. This trend has been motivated by aggressive CMOS technology scaling

in digital circuits has resulted in significant increase in transient fault rates, as well as timing

violations due to process variation (PV) that consequently reduces the performance and reliability

of the emerging very large scale integrated (VLSI) circuits. For instance, the probability of single

upsets, and more realistically, multiple upsets, is projected to increase several fold at sea-level for
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sub-10nm technology nodes [90, 91]. By the extensions to sub-10nm regimes, error resiliency

has become a major challenge for microelectronics industry, particularly mission critical systems,

e.g. space and terrestrial applications. The ability of FPGAs to correctly execute the complicated

tasks in harsh environments significantly relies on their fault-handling and radiation hardening

techniques, such as the design approach proposed in this section.

Leveraging magnetic random access memories (MRAMs) as storage elements within LUT circuits

has the potential to significantly increases their radiation immunity due to the radiation hardness

characteristic of spin-based devices. However, the access and sensing circuitry for MRAM still

requires transistors, and thus is still susceptible to radiation-induced faults. Therefore, circuit-level

innovations are sought to achieve immunity to radiation-induced transient faults such as SEUs and

double node upsets (DNUs). In recent years, various radiation hardening techniques are investi-

gated to develop SEU-tolerant MRAM-based LUTs [56, 88]. In particular, in [89] authors have

proposed a single-event double-node upset tolerant MRAM-based LUT, which provides multiple

upset resiliency at the cost of increased read energy and area consumption with baseline efficacy.

In this work, we develop a nonvolatile MRAM-based LUT using SHE-MTJ devices, which can

tolerate DNUs with improved area, delay, and power consumption.

3.4.1 Fundamentals and modeling of radiation effect on hybrid CMOS/spin based circuits

Among the natural sources of α, β, and γ radioactivity only alpha particles are able to incur tran-

sient errors in hybrid CMOS/spin-based circuits due to their high energy [155]. Alpha particles are

able to deposit a charge along their track when striking a sensitive node of a circuit. The charge

will be transported into the device and collected in the sensitive region [156]. A transient fault is

generated if the injected charge (Qinj) exceeds the critical charge (QC) of the sensitive node. The
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QC can be realized by a capacitance and a conduction component as shown below:

QC = CNVDD + IDTF (3.2)

where CN is the equivalent capacitance of the struck node, V DD is the power supply, ID is the

maximum drain conduction current and TF is the flipping time of the cell. The computation of

TF requires a 3D device simulation, therefore to simplify the circuit simulation the conduction

component of the 3.2 is normally ignored that leads to an insignificant under-estimation [157, 158].

Various approaches are proposed to model the radiation-induced transient fault such as Freeman

[159] or diffusion collection [160] models. Herein, we have utilized a double exponential current

source to model the radiation effect, which is the most commonly used approach in the literature

[161]. The current sources are connected to do sensitive nodes of the circuit, which inject current

to the nodes when radiation particles are supposedly strike. The injected current pulse is given

by 3.3, in which τf and τr are falling time and rising time of the exponentials which are typically

150ps and 50ps, respectively. Moreover, Qinj values range from -200fC to 200fC which relies on

the particle energy as well as its linear energy transfer [162, 163]. The sign of the Qinj depends

on the type of the struck MOS transistor, in particular a strike in the drain of an NMOS transistor

incurs a negative spike, and vice versa. Figure 3.16 depicts the injected current pulses for various

Qinj values, which are generated by hypothetical particles striking at t=0.

I(t) =
Qinj

τf − τr
(e−t/τf − e−t/τr) (3.3)
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Figure 3.16: Transient current pulses induced by the particles striking at t=0 with the Qinj values ranging
from -200 fC to +200 fC [4].

3.5 Design and analysis of the proposed radiation-hardened MRAM-based LUT

Contrary to conventional SRAM cells, SHE-MRAM devices are characterized by their radiation

hardness, since in MRAM cells the spin direction of electrons are leveraged to store data instead

of the electron charges. The electric charges induced by the alpha particles striking the MRAM

devices do not influence the spin direction of the electrons. However, the CMOS-based circuitry in

hybrid CMOS/Spin circuits is still susceptible to radiation-induced transients. As investigated in

[164], the radiation-sensitive nodes of a CMOS-based circuit are the surroundings of the reverse-

biased drain junction of a transistor biased in the OFF state. Therefore, although the SHE-MRAM

devices are immune to radiation during stand-by mode, their write circuit could be influenced by

the striking particles. This leads to injecting a current to the write terminals of the SHE-MRAM,
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which normally cannot change their magnetic state due to the short duration of the injected current

pulses. To exhibit the transient behavior of the SHE-MRAM devices in presence of the radiation-

induced current pulses we have utilized the SHE-MRAM model developed by Camsari et al. in

[12]. Figure 3.17 shows the response of the SHE-MRAM devices to the injected current pulses.

As shown in Figure 3.17, radiation does not have a significant effect on the LUT write operation.

Thus, in this work we have focused on the effect of radiation on the LUT read operation. During

the pre-charge operation of the PCSA, its transistors are biased in the ON state and will not be

impacted by the radiation particles. While, in the discharge phase, OUT and OUT’ nodes are the

surroundings of reverse-biased junctions of NMOS or PMOS transistors that are biased in OFF

states. Hence, OUT and OUT’ are the sensitive nodes during the read operation of the LUT circuit.

Figure 3.17: Transient response of the SHE-MRAM devices to the current pulses induced by the particles
striking at t = 1ns. (a) Switching from AP to P state with the Qinj values ranging from zero to +200fC,
(b) switching from P to AP state with the Qinj values ranging from −200fC to zero. None of the injected
current pulses can completely switch the state of the SHE-MRAM, since they have relatively short duration
that is normally less than the switching duration required for completely changing the magnetic direction of
the SHE-MRAM free layer [4].
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Figure 3.18 shows the behavior of the LUT circuit depicted in figure 3.6 in presence of SEUs. Al-

though the MRAM cells are resilient toward SEUs, the conventional MRAM-based LUT structure

is still susceptible to the charges injected by the radiation particles.

Figure 3.18: Transient response of the SHE-MRAM based LUT circuit to the current pulses induced by the
particles striking at the discharge phase of the PCSA with the Qinj values ranging from −20fC to +20fC.
As depicted, the ability of the circuit to recover from the SEU relies on the amount of the injected charge,
as well as the critical charge of the circuit (QC). If the Qinj exceeds the QC the sensed data cannot be
recovered and error occurs [4].
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Herein we build upon the previous radiation hardening techniques [56, 88, 89, 55] to develop a

protected SHE-MRAM based LUT which can tolerate multiple node upsets. Our proposed ap-

proach is based on two hardening techniques: (1) leveraging feedback transistors to discharge the

electric charges injected to the sensitive nodes through struck particles, and (2) increasing the crit-

ical charge (QC) of the sensitive nodes by increasing their equivalent capacitances while balancing

tradeoffs of a corresponding increase in switching delay.

The structure of our proposed radiation-hardened 2-input SHE-MRAM LUT circuit is shown in

Figure 3.19, in which the write circuitry is not shown for simplicity. The hardening circuitry in-

cludes two TGs, and four NMOS transistors which are responsible for discharging the electric

charge induced by the radiation particles striking the OUT and OUT’ nodes. However, the uti-

lization of this feedback transistors introduces two new sensitive nodes to the LUT circuit, i.e. n1

and n2, as shown in Figure 6. Herein, the radiation-tolerance of n1 and n2 nodes are increased by

enlarging the QC through increasing the equivalent capacitances of the nodes, which are linearly

proportional to the width of the transistors connected to each node. The behavior of the proposed

design in presence of SEUs and DNUs is shown in Figure 3.20 and Figure 8, respectively. The

simulation is performed in the condition that the LUT storage cell is in P state, therefore the OUT

and OUT’ logic values are “0” and “1”, respectively, and sensitive nodes are OUT, OUT’, and n2.
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Figure 3.19: The structure of the proposed radiation-hardened 2-input SHE-MRAM based LUT circuit [4].
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Figure 3.20: The transient response of the proposed radiation hardened 2-input SHE-MRAM LUT circuit
to injected SEUs. (a) SEU on node OUT changes the voltage level of the node to VDD, however since the
n2 node is still near VDD, thus the MN1 transistor remains ON and the injected charge will be discharged
through MN1 and the output will be recovered. (b) SEU on node OUT’ changes the voltage of the node to
zero, however since OUT node is still near zero, thus the MP2 transistor remains ON and the OUT’ node
will be charged to VDD through MP2 and the output will be restored. (c) SEU on node n2 temporarily
changes its voltage to zero, however it will not affect the OUT and OUT’ nodes, and TG1 and TG0 remain
ON, thus the n2 node will be recharged to VDD through TG1 and reference tree [4].
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Figure 3.21: The transient response of the proposed radiation hardened 2-input SHE-MRAM LUT circuit
under injection of DNUs. (a) DNU on nodes n2 and OUT’: the node n2 can tolerate the injected charge
due to the increase in its QC , and since the OUT node remains near zero the OUT’ node will be charged
to VDD through MP2 and the output will be recovered. (b) DNU on nodes n2 and OUT: the radiation
tolerance of node n2 is increased and will return to VDD, thus the MN1 transistor will become ON and
the injected charge will be discharged through MN1 and the output will be recovered. (c) DNU on nodes
OUT and OUT’: it will not significantly impact node n2, therefore MN1 will remain ON and the injected
charge at OUT node will be discharged through MN1 leading to the OUT’ being recharged through MP2.
However, since the charge capacity of OUT and OUT’ are not increased in the LUT circuit, they can tolerate
the maximum charge of 80fC that is smaller than the QC of the node n2 [4].
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Table 3.9: Comparison of the proposed radiation-hardened SHE-MRAM LUT with the previously proposed
MRAM-based LUTs. The results are obtained for LUT circuits implementing a two input NAND operation
when A= 1 and B=1 inputs are applied [4].

Features [76] [56] [89] Proposed Herein
# of MTJS 12 8 8 5
# of MOSs 30 63 42 31
Delay (ps) 21.18 43.65 51.1 32.97
Power (µW ) 0.21 1.08 0.6 0.57
PDP (ps× µW ) 4.45 47.14 30.66 18.79
Minimum TMR Required (%) 100 700 400 100
SEU Immune No Yes Yes Yes
DNU Immune No No Yes Yes

A comprehensive comparison of the different SHE-MRAM LUT circuits implemented and exam-

ined in this work is listed in Table 3.9. Herein, to provide a fair comparison, all the LUT circuits

are simulated by SPICE circuit simulator using the SHE-MRAM model introduced in Chapter 2

along with the 45nm CMOS library with 1.0V nominal voltage. Moreover, we have utilized TGs

to implement both select trees and write circuits in all of the investigated LUT designs. The re-

sults obtained are listed in Table 3.9. They indicate that the proposed SHE-MRAM LUT circuit can

achieve DNU immunity with more than 38% and 60% improvement in power-delay product (PDP)

as well as 26% and 50% device count improvement compared to the previous energy-efficient

radiation-hardened LUT designs proposed in [89] and [56], respectively. The radiation-hardening

ability is realized at the cost of increased PDP values compared to the unprotected MRAM-LUT

design proposed in [76]. Finally, the sixth row of the Table 3.9 shows the minimum TMR required

for MRAM cells in the LUT circuits to ensure their correct operation. As listed in the table, our

proposed radiation-hardened LUT can properly operate with the TMR values similar to that of the

unprotected LUT circuit. While, the previous radiation-hardened LUT designs require larger TMR

values imposing more complex fabrication process [165].
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Table 3.10: Parameters used for a Monte Carlo simulation in SPICE to perform the PV analysis [4].
Device Parameter Mean Standard Deviation
NMOS VTH 0.34V 10%
PMOS VTH -0.23V 10%

MTJ
tOX 0.95nm 5%
Area 60nm × 30nm × π/4 15%

3.6 Process Variation analysis of the proposed radiation-hardened MRAM-based LUT

To increase the radiation-tolerance of the LUT circuit, a number of transistors have been added in

the sensing path. This can increase the error rate of the read operation caused by device mismatches

due to process variation (PV). Therefore, in this section the effect of PV on various protected and

unprotected LUT circuits is assessed. The impact of PV on hybrid CMOS/spin-based circuits

results from a combination of systematic variations which are mostly caused by deposition and

lithography aberrations, and random variations induced by random doping deviations [166, 167].

Table 3.10 lists the parameters utilized in this work for analyzing the PV.

Herein, we have fitted the experimental data extracted in [168] to an exponential curve to obtain

the effect of oxide thickness (tOX) variation on TMR values, as shown in Figure 3.22. The relation

between the tOX and TMR can be expressed by Equation 3.4, in which C1, C2, and C3 are fitting

parameters.

TMR = C1− C2

C3
(1− e−3tOX ) (3.4)

To examine the behavior of LUT circuits in presence of these sources of PV, we have leveraged a

Monte Carlo simulation in SPICE, and the results are obtained for 10,000 simulation points. The

results obtained exhbit that the radiation hardening is achieved at the cost of increased susceptibil-

ity to process variation, which is caused by the transistors inserted within the sensing path.
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Figure 3.22: TMR ratio plotted as a function of MgO layer thickness [4].
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CHAPTER 4: HSC-FPGA: A HYBRID SPIN/CHARGE FPGA

LEVERAGING THE COOPERATING STRENGTHS OF CMOS AND

MTJ DEVICES

Field programmable gate arrays (FPGAs) are renown for their flexibility to support circuit synthesis

that is specific to the application at-hand using a palette of heterogeneous fine-grained logic ele-

ments [31, 169, 170]. Since the first FPGAs, various granularities of general-purpose configurable

logic blocks and dedicated function-specific computational units have been added to reconfigurable

fabrics. Over the last decade, reprogrammable fabrics have further embraced highly-dedicated

special-purpose co-processing units to handle complex floating-point computations [1]. At the op-

posite end of the spectrum, FPGA fabrics can embrace increased heterogeneity along transforma-

tive dimensions by utilizing emerging logic and memory devices to leverage technology-specific

benefits.

Recent research efforts have begun to explore the feasibility of spin-based devices such as mag-

netic tunnel junctions (MTJs) as an alternative for static random access memory (SRAM) cells

in FPGAs [75, 171, 77]. Herein, we have used a device-to-architecture design approach to de-

velop a Hybrid Spin/Charge based FPGA (HSC-FPGA), which leverages the cooperating strengths

of CMOS devices for their rapid switching capabilities and MTJ devices for their non-volatility

and near-zero standby power characteristics. The HSC-FPGA fabric includes hybrid spin/CMOS

based configurable logic blocks (CLBs) using SRAM-based and magnetic random access memory

(MRAM)-based look-up table (LUT) circuits to implement combinational and sequential logic,

respectively.

The proposed HSC-FPGA provides a practical and feasible solution for exploiting spintronic de-

vices within an FPGA architecture without requiring significant modifications to the interconnect
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structure and place/route/programming paradigms. In this chapter, we have provided thorough

circuit-level and fabric-level simulations and analyses to exhibit the advantages of the proposed

HSC-FPGA. Moreover, device-level optimizations are provided, which can address some of the

challenges of the conventional hybrid spin/CMOS based circuits. In contrast to previous academic

works of post-CMOS LUTs, we have considered challenges of the fabrication process of MTJs

to investigate the feasible approaches to integrating spintronic and CMOS devices from practical

viewpoints.
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4.1 Structure of the HSC-FPGA

In this section, we will focus on the top-down hierarchical structure of the HSC-FPGA, which

is designed to have the highest compatibility with the routing structure, programming paradigms,

and synthesis tools of commercial FPGAs, while fully-leveraging the strengths of technology het-

erogeneity. Figure 4.1 shows the structure of the HSC-FGA, which consists of configurable logic

blocks (CLBs), input-output blocks (IOBs), block RAMs, programmable switch matrices (SMs),

and delay-locked loops (DLLs) for clock distribution. The logic functions are stored in the CLBs

through conventional configuration bitstreams.
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Figure 4.1: The structure of HSC-FPGA that is identical to commercial FPGAs.
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4.1.1 CLB Structure

CLBs are the primary building blocks in FPGAs to implement both sequential and combinational

logic circuits. Herein, we seek to identify practical methods for using the unique characteristics of

the spintronic devices in the CLB structure to improve its performance without sacrificing needed

functionalities provided by contemporary CMOS-based FPGAs. The CLBs being proposed will be

required to provide the following logic circuits to ensure functional equivalence with modern FP-

GAs: (1) six-input look-up table (LUT) circuit, (2) dual five-input LUTs, (3) distributed memory,

(4) shift register, and (5) dedicated carry logic for arithmetic operations.
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Figure 4.2: The structure of the CLB with two slices. The interconnection between CLBs is provided by
switch matrices.
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Spintronic devices such as MTJs can be leveraged as storage elements in the LUT circuits as an

alternative for SRAM cells. However, in order to sense the state of the MTJs, a sense amplifier is

required to be pre-charged and discharged using a clock signal for each read operation. Therefore,

although MTJ-based LUT circuits can provide significant standby and read power-reductions, they

are not directly suitable to implement combinational logic. Thus, as shown in Figure 4.2, we

have proposed a CLB architecture containing two slices called Slice-S and Slice-C, which are

utilized to implement sequential and combinational logic paths, respectively. Slice-C consists of

SRAM-based LUT circuits that can also operate as shift registers and distributed RAM elements,

while Slice-S includes spin-based LUTs that are paired with latches and flip-flops to implement

sequential logic. Dedicated carry logic block are allocated to both of the slices for arithmetic

operations. The simplified diagram of the proposed Slice-C and Slice-S structures are shown in

Figure 4.3 and Figure 4.4, respectively.

4.1.2 Look-Up Table (LUT) circuits

An m-input LUT circuit is a 2m× 1 memory block, in which the truth table of an m-input Boolean

logic function is stored. The inputs of the Boolean function address a specific memory cell in

the LUT, where their corresponding output is stored. Herein, we propose a hybrid-technology

CLB structure, in which SRAM-based and MRAM-based LUTs are utilized to implement combi-

national and sequential logic circuits, respectively. In commercial FPGAs, each LUT circuit can

implement any six-input Boolean function, as well as two five-input Boolean functions with shared

inputs. Therefore, our MRAM-based LUT circuit should also have similar characteristics to ensure

functional equivalence with SRAM-LUTs.
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Figure 4.4: The structure of the Slice-S, which utilizes spin-based LUTs that are paired with latching and
flip-flop circuits to implement sequential logic.
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4.1.2.1 MRAM-based LUT Circuit

Figure 4.5 shows the structure of the proposed six-input MRAM-LUT, which includes MRAM-

based storage cells, a decoding multiplexer (MUX), a mode selector, and two pre-charge sense

amplifiers (PCSAs) to implement any six-input Boolean functions or two five-input Boolean func-

tions with common shared inputs. The logic configuration is stored in MRAM cells as different

resistive levels. High resistance represents logic “1” and vice versa. The resistance of the MRAM

cells rely on their magnetization orientation, which can be tuned via the spin transfer torque (STT)

effect that is described in next the section. The red-colored transmission gates (TGs) shown in Fig-

ure 4.5 are used as write circuits to produce the STT required for switching the state of the MRAMs.

Each MRAM cell in the LUT circuit can be read through the TG-based decoding multiplexer us-

ing the corresponding input address provided by A5-A0 input signals. TGs are characterized by

their full-swing switching behavior providing an energy-efficient write operation for MRAM cells

[108], as well as a process variation resilient read operation for LUT circuits [3, 143].

The PCSA circuit reads the state of the MRAM cells by comparing its resistance by a reference

cell, which its resistance is designed between the high and low resistance values of MRAM cells.

In particular, the output terminals of the PCSA (O6-O6’ or O5-O5’) are charged to VDD when the

clock signal (CLK) is low. When the CLK and read enable (RE) signals are high, the pre-charged

nodes begin discharging and the node that has a lower resistance path to the ground discharges

faster and its voltage becomes zero connecting the other node to VDD through PMOS transistors.

Thus, if the MRAM cell is in low resistance state, the output node of the PCSA connected to this

MRAM cell through the MUX (i.e. O6 or O5) will discharge faster and its voltage will becomes

zero and vice versa. The reference tree is placed in the MRAM-LUT circuit to compensate for the

resistance of the MUX. The readers are referred to Chapter 3 for additional information regarding

PCSA operation. The M5 and M6 signals are used to select the 5-input or 6-input modes.
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Figure 4.5: The MRAM-LUT structure consisting of MRAM cells as storage elements, decoding multi-
plexer, and two PCSAs.

4.1.2.2 SRAM-based LUT Circuit and Shift Register

Figure 4.6 shows the structure of our developed SRAM-LUT circuit. In the normal operation

mode, the data stored in each SRAM cell can be accessed through the decoding MUX according

to the A5-A0 input signals. Inverters are utilized before and after the MUX circuit to amplify

the output of the SRAM cells. The SRAM-LUTs in Slice-C are designed such that they can be

configured to operate as shift registers as well. In the shift-register mode, the shift-enable signal

(SHFTE) is ON and the A5-A0 inputs are in high impedance (Hi-Z) states. Thus, data can be

transferred from one SRAM cell to another by means of the pass transistors allocated for this

74



purpose. The developed SRAM-LUT circuit is utilized to implement combinational logic circuits,

while it can also be configured to operate as a 64-bit shift register. The SHFTIN and SHFTOUT

lines can cascade different SRAM-LUTs in Slice-C to construct a larger shift register, as shown in

Figure 4.3. The MRAM-LUTs can also be designed to operate as shift registers [172], however

their energy consumption will be significantly higher than SRAM-based shift registers due to their

high write energy, which will be investigated in the next section.
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Figure 4.6: The structure of the SRAM-LUT consisting of SRAM cells as storage elements, decoding
multiplexer, and the circuitry required for the shift operation.

75



4.2 HSC-FPGA Simulations

4.2.1 Circuit-Level Simulation

SPICE circuit simulation tool is utilized to verify the functionality of our proposed LUT circuits

using 45nm CMOS technology and 1.1V nominal voltage. We have used the MTJ SPICE model

proposed in [10] to implement our MRAM-LUT circuit using the parameters listed in Table 4.1.

4.2.1.1 MRAM-LUT circuit

Figure 4.7 (a) and (b) exhibit the SPICE simulation results for the MRAM-LUT circuit imple-

menting a six-input NAND operation for A5-A0 = “111111” and A5-A0 = “000000” input signals,

respectively. In order to write logic “0” (logic “1”) in the MRAM-63 (MRAM-0) storage cell of the

LUT, the word-line (WL), bit-line (BL), and source-line (SL) signals are required to be in high

(high), high (low), and low (high) states, respectively. This results in a positive (negative) write

current generated by the TG-based write circuit, which can change the MTJ state from AP (P ) to

P (AP ) in less than 2ns. To produce the sufficient switching current, the write circuit transistors

have been enlarged four-fold.

During the read operation, when the RE signal is low, the PCSA circuit remains in the pre-charge

state. Upon RE signal becoming high, the PCSA begins the discharge phase and senses the state

of the MRAM cell in less than 50ps and 30ps for logics “0” an “1”, respectively. Thus, the read

operation can be performed by a maximum clock frequency of 10 GHz. Herein, we are using a

CLK signal with 1GHz frequency, therefore the read delay is determined by the clock period and

not the delay of the PCSA circuit.
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Figure 4.7: Transient response of MRAM-LUT implementing six-input NAND operation for (a) A5 −A0=
“111111” and (b) A5 − A0= “000000”. SRAM-LUT implementing six-input NAND operation for (c)
A5 −A0= “000000” and (d) A5 −A0= “111111”.

Table 4.1: Parameters of STT-MTJ device [10, 11].
Parameters Description Value

Area MTJ surface 65nm× 65nm× π/4
tf Free Layer thickness 1.3 nm
RA MTJ resistance-area product 5 Ω.µm2

T Temperature 358 K
α Damping coefficient 0.007
P Polarization 0.52
V0 Fitting parameter 0.65
αsp Material-dependent constant 2e-5
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4.2.1.2 SRAM-LUT circuit

Figure 4.7 (c) and (d) show the SPICE simulation results for the SRAM-LUT circuit implementing

a six-input NAND operation for A5-A0 = “000000” and A5-A0 = “111111” input signals, respec-

tively. During the write operation, the WE signal is high and the logic state stored in the SRAM

cell is defined by the BL signal. If BL is high, then logic “1” will be stored in the corresponding

SRAM cell and vice versa. During the read operation, RE signal is activated and the stored data in

SRAM cells (bit) is propagated to the output through the decoding MUX and inverters. The read

and write operations in SRAM-LUTs can be completed in less than 30ps and 20ps, respectively.

4.2.1.3 Performance comparison

There are three types of power consumption profiles in the LUT circuits. During the configuration

operation LUTs consume write power, which occurs infrequently. LUTs within the active logic

path consume read power, while the remaining LUT circuits consume standby power that is a sig-

nificant cause of power dissipation in commercial SRAM-based FPGAs. Table 6.3 lists the power

and delay measurements for developed MRAM-LUT and SRAM-LUT circuits. The simulation

results exhibit more than 40% and 83% reduction in average read and standby power consump-

tion, respectively, for MRAM-LUT circuit compared to the SRAM-LUT. Both of the LUT circuits

provide a high speed read operation, therefore the read delay is limited by the clock/signaling

limitations rather than the device and circuit characteristics.
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Table 4.2: Comparison between SRAM-LUT and MRAM-LUT.
Power (µW ) Delay

Read Write Standby Read Write

SRAM-LUT
Logic “0” 2.58 28.4 1.5 30 ps 20 ps
Logic “1” 7.55 27.7 1.85 30 ps 20 ps
Average 5.06 25.08 1.67 30 ps 20 ps

MRAM-LUT
Logic “0” 2.85 260.9 0.28 50 ps 2 ns
Logic “1” 3.14 265.7 0.27 30 ps 2 ns
Average 2.99 263.3 0.28 40 ps 2 ns

Table 4.3 provides a comparison between the SRAM-LUT and MRAM-LUT circuits in terms of

device count and average energy consumption. As listed, the MRAM-LUT realizes at least 40%

energy reduction during the read operation. However, This improvement is achieved at the cost

of higher energy consumption during the configuration operation, which occurs rarely compared

to the read operation. As mentioned, the write circuit transistors in the MRAM-LUT circuit are

required to be enlarged four-fold to generate the sufficient switching current for the STT-MRAM

cells. Therefore, we have multiplied the write circuit transistors by four to realize a rough area

estimation. The MTJs can be vertically fabricated on top of the MOS transistors, thus incurring

negligible area overhead.

Table 4.3: Area and Energy Consumption comparison between SRAM-LUT
and MRAM-LUT.

Features SRAM-LUT MRAM-LUT

Device Count

Storage Cells 384 MOS 64 MTJ
Write/Control 384 MOS 256×4+64 MOS 1

Read 261 MOS 165 MOS + 4MTJ
Total 1029 MOS 1253 MOS + 68 MTJ

Average Energy
Consumption

Read 2.53 fJ 1.5 fJ
Write 14 fJ 526.6 fJ

1 The write transistors are four-fold larger than minimum feature size.
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4.2.2 Fabric-Level Analysis

Herein, we have used Xilinx ISE Design Suite solely to obtain the resource utilization for various

ISCAS-89, ITC-99, and MCNC benchmark circuits to provide a fabric-level comparison between

our proposed HSC-FPGA and conventional SRAM-based FPGAs. The resource utilization sum-

mary for the implemented benchmark circuits is provided in Table 4.4. In conventional FPGAs,

SRAM-based LUTs are paired with flip-flops (FFs) to form a LUT-FF circuit implementing the se-

quential logic circuits. However, in the proposed HSC-FPGA architecture, LUT-FF pairs are con-

structed by combining an MRAM-LUT circuit with a CMOS-based slave latch. The MRAM-LUT

circuit can intrinsically perform the master latch behavior, while realizing the basic LUT circuit op-

eration. Therefore, the fully-used LUT-FFs listed in Table 4.4 are implemented by MRAM-LUTs

in Slice-S, while the remainder of the Slice LUTs exist in the Slice-C of the HSC-FPGA fabric.

Figure 6.6 exhibit a power consumption comparison between the HSC-FPGA and conventional

SRAM-based FPGA for various benchmark circuits. As shown, the HSC-FPGA can achieve

standby power reductions ranging from 7% to 66%, as well as 15% average read power reduction

for various ISCAS-89 and ITC-99 benchmarks. However, the performance of the HSC-FPGA is

equivalent to SRAM-based FPGA while implementing fully-combinational circuits such as bigkey

and sbc benchmark circuits examined herein, since combinational logic is only implemented by

SRAM-LUTs in the HSC-FPGA fabric. Finally, Figure 4.9 shows the normalized power-delay

product (PDP) values of HSC-FPGA for the read operation compared to SRAM-based FPGA for

the examined benchmarks. The results obtained exhibit PDP improvements ranging from 2% to

17% for various ISCAS-89 and ITC-99 benchmark circuits.
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Table 4.4: Resource utilization for various benchmark circuits.

Benchmark Circuits
Slice

Registers
Slice
LUTs

Fully-used
LUT-FFs

Bonded
IOBs

ISCAS 89
s298 14 15 11 11
s382 21 31 19 11
s510 7 32 6 28
s641 14 43 12 56
s832 6 68 5 39
s1488 12 115 9 29
s5378 152 337 147 86
s9234 130 255 112 69
s15850 128 106 84 100
s38417 1355 1971 1072 136
ITC 99
b5 47 135 31 39
b8 21 54 18 15
b10 19 37 14 19
b12 119 206 70 13
b15 419 1814 396 108
b18 2960 11915 2699 61
b20 429 2235 361 56
b22 629 3150 611 56
MCNC
bigkey 0 567 0 425
sbc 0 179 0 96
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Figure 4.8: Normalized power consumption of HSC-FPGA compared to the SRAM-based FPGAs, (a)
standby power, (b) read power.

Figure 4.9: Normalized PDP values of the HSC-FPGA compared to the SRAM-based FPGA for read oper-
ation.
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Figure 4.10: SHE-MRAM bit-cell structure.

4.3 Device Optimizations

MRAM-LUT circuits offer significant advantages in terms of read and standby power consump-

tion. However, STT-MTJs suffer from high power and low speed switching behavior, which signif-

icantly increases the energy consumption of the MRAM-LUTs during the configuration operation.

Therefore, device-level innovations are sought to improve the switching performance in MRAM

cells. Herein, we have used a SPICE model of the SHE-MTJ device developed in [12] to ver-

ify the functionality and assess the performance of the SHE-MRAM based LUT circuit using the

parameters listed in Table 4.5 [12, 13].

Figure 4.10 shows a SHE-MRAM bit-cell, which can be utilized in MRAM-LUT circuits as an al-

ternative for STT-MRAMs without requiring any changes in the read circuitry. The write behavior

of SHE-MTJ is depicted in Figure 4.11, realizing an equivalent switching delay compared to the

STT-MRAM with significantly smaller switching current, which results in reduced write power

consumption. Moreover, write circuits with minimum feature size MOS transistors are capable

of generating the write current required for switching the logic state of the SHE-MRAM cells,
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leading to significant area savings. Comparison results provided in Table 4.6 exhibit that SHE-

MRAM LUT realizes approximately 67% and 61% reductions in terms of configuration energy

consumption and device count, respectively, compared to the STT-MRAM LUT circuit.

Figure 4.11: SHE-MRAM switching operation, (a) write logic “0” (AP to P), (b) write logic “1” (P to AP)
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Table 4.5: Parameters of the SHE-MTJ device [12, 13].
Parameter Description Value

MTJArea lMTJ × wMTJ × π
4

60nm× 30nm× π
4

HMV olume lHM × wHM × tHM 100nm× 60nm× 3nm

α Gilbert Damping factor 0.007
P Spin Polarization 0.52

θSHE Spin Hall Angle 0.3
ρHM HM Resistivity 200µΩ.cm
λsf Spin Flip Length 1.5nm

Table 4.6: Area and Write Energy Consumption comparison between STT-MRAM
LUT and SHE-MRAM LUT circuits.

Features STT-MRAM LUT SHE-MRAM LUT

Device Count

Storage Cells 64MTJ 64MTJ
Write/Control 256×4+64 MOS 1 256×1+64MOS 2

Read 165MOS+4MTJ 165MOS+4 MTJ
Total 1253MOS+68 MTJ 485MOS+68MTJ

Average Write Energy per Cell 526.6 fJ 173.8 fJ
1 Write circuit transistors are 4× larger than minimum feature size.
2 Transistors with minimum feature size are used in the SHE-MRAM LUT.

Fabric-level simulation results depicted in Figure 4.12 indicate that SHE-MRAM based HSC-

FPGA achieves write energy reductions ranging from 50% to 66% compared to STT-MRAM based

HSC-FPGA for various ITC-99 and ISCAS-89 benchmarks. Moreover, Figure 4.13 shows average

area reduction of 18% and 23% for SHE-MRAM based HSC-FPGA compared to SRAM-based

FPGA and STT-MRAM based HSC-FPGA, respectively. Both improvements are obtained via

technology-aware design leveraging the complementary features of each device technology.
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Figure 4.12: Normalized configuration energy consumption of the SHE-MRAM based HSC-FPGA com-
pared to the STT-MRAM based HSC-FPGA.

Figure 4.13: Normalized area of the STT-MRAM and SHE-MRAM based HSC-FPGAs compared to the
SRAM-FPGA.
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Figure 4.14: The MTJ stack structure consisting of, Ta (5)/Ru (10)/Ta (5)/CoFeB (1-1.5)/MgO (0.85-
0.95)/CoFeB (1-1.5)/ Ta (5)/ Ru (5). Numbers represent the thickness in nm [5].

4.4 MTJ Fabrication Process and Challenges

In order to devise practical solutions to process variation (PV) for MRAM-based LUTs, it is helpful

to consider Figure 4.14 which shows the stack structure of a perpendicular-anisotropy CoFeB-MgO

based MTJ [5]. MTJ fabrication involves the following main processes: First, MTJ films are de-

posited on SiO2/Si substrate by using RF magnetron sputtering. Then, electron-beam lithography

is followed by an Ar-ion milling to achieve high resolution Nano-pillar patterns. Next, SiO2 is

deposited to provide a barrier between different devices. This process is followed by a chemi-

cal mechanical polishing until the top contact of Nano-pillar is opened. Finally, the contacts are

opened via reactive ion etching, and metallization approach is utilized to coat metal on the top of

the MTJs’ electrode ends. Similar techniques can be utilized to fabricate SHE-MTJ devices with

in-plane anisotropy. Readers are referred to [173, 133] for additional information regarding the

fabrication of MTJ devices.
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Table 4.7: Parameters used for the PV analysis [14, 15, 16].
Device Parameter Mean Std. Deviation
NMOS VTH 0.34 V 1-10 %
PMOS VTH -0.23 V 1-10%

MTJ
tf 1.3 nm 5%
lMTJ 65 nm 10%
wMTJ 65nm 10%

4.4.1 Process Variation Analysis

Device mismatches can be caused due to the PV in different steps of MTJ fabrication. In partic-

ular, the RF sputtering process can induce variations in the thickness of the films (σt), while the

lithography and etching processes primarily result in variations in the width (σwMTJ ) and length

(σlMTJ ) of the MTJs. On the other hand, CMOS transistors can also suffer from random variations

in their threshold voltage (σVTH) induced by the random doping deviations. Table 4.7 lists the

parameters used herein to examine the effect of PV on the proposed MRAM-LUT circuit.

To examine the functionality of our developed SRAM-LUT and MRAM-LUT circuits in presence

of PV, we have utilized Monte Carlo simulation in SPICE with 1,000 simulation points, as shown in

Figure 4.15. The obtained results exhibit an unacceptable average error rate of∼ 44% for MRAM-

LUT, while SRAM-LUT circuit can maintain its correct operation in presence of significant PV.

These results were obtained by applying PV to all of the CMOS and MTJ devices existing in

different parts of the MRAM-LUT structure, including the storage elements, write circuit, decoding

multiplexer and sense amplifiers. In an effort to find the most PV-susceptible part of the MRAM-

LUT circuit, we have applied random variations to all of the MOS and MTJ devices in the circuit

except for the sense amplifier transistors and measured the error rate. The results exhibited a

reduced error rate 4% showing the significant impact of the variations in SA circuit on the accuracy

of the MRAM-LUT.
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Figure 4.15: Effect of PV on the functionality of the developed LUT circuits. (a) MRAM-LUT reading logic
“1”, (b) MRAM-LUT reading logic “0”, (c) SRAM-LUT reading logic “1”, (d) MRAM-LUT reading logic
“0”.

There are various approaches to increase the tolerance of the hybrid spin/CMOS based circuits to

PV, including increasing the size of the transistors in the sensing path or increasing the TMR ratio

in the MTJ devices [43]. While these approaches mostly rely on the device-level innovations, we

leverage a circuit-level method herein, which is based on the modular redundancy (MR) technique

[56], to improve the resiliency of the MRAM-LUT circuit. Figure 4.16 shows the structure of

the PV-tolerant MRAM-LUT circuit including three SAs and a voter circuit, which determines the

output of the MRAM-LUT according to the majority of the SAs’ outputs. Thus, the MR-based

MRAM-LUT circuit is capable of returning the correct output even if one of the SAs malfunctions

due to process variation.

Table 4.8 provides a comparison between the MR-based MRAM-LUT and regular MRAM-LUT in

terms of error rate, and read power consumption. The results exhibit that the MR-based MRAM-

LUT realizes an error rate of 12% at the cost of 24% and 6% read power and area overheads,

respectively, compared to MRAM-LUT. Error rates of less than 0.1% can be achieved by further

device-level innovations [174]. Figures 4.17 and 4.18 show the fabric-level comparisons between

the HSC-FPGAs with MR-based MRAM-LUTs, HSC-FPGA with regular MRAM-LUTs, and con-
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ventional SRAM-based FPGAs in terms of average read power consumption and area, respectively.

The results obtained show that the PV-resilience in the MR-MRAM based HSC-FPGA fabrics is

achieved at the cost of approximately 6% and 1.5% overheads in terms of read power and area

consumption, respectively, compared to HSC-FPGA with regular MRAM-LUTs. However, the

MR-MRAM based HSC-FPGA still achieves more than 9% and 17% read power and area reduc-

tion compared to SRAM-based FPGA, respectively, while maintaining the significant advantages

in standby power reductions, as well as non-volatility feature which enables fine-grained power-

gating within the HSC-FPGA fabric.

Figure 4.16: The structure of the MR-based MRAM-LUT circuit consisting of three PCSAs and two voter
circuits.

Table 4.8: Comparison between the regular MRAM-LUT and MR-based MRAM-LUT circuits.
Features Logic “0” Logic “1”

Error Rate (%)
MRAM-LUT 42.6 % 44.8 %
MR-based MRAM-LUT 8.2 % 16.2 %

Read Power (µW )
MRAM-LUT 2.85 3.14
MR-based MRAM-LUT 3.21 4.22
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Figure 4.17: Normalized read power consumption of the regular MRAM and MR-MRAM based HSC-
FPGAs compared to the SRAM-FPGA.

Figure 4.18: Normalized area consumption of the regular MRAM and MR-MRAM based HSC-FPGAs
compared to the SRAM-FPGA.
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CHAPTER 5: LOGIC PARADIGM HETEROGENEITY: LOW-ENERGY

DEEP BELIEF NETWORKS USING INTRINSIC SIGMOIDAL

SPINTRONIC-BASED PROBABILISTIC NEURONS1

An orthogonal dimension of fabric heterogeneity is also non-determinism enabled by either low-

voltage CMOS or probabilistic emerging devices. It can be realized using probabilistic devices

within a reconfigurable network to blend deterministic and probabilistic computational models.

Herein, we will leverage the probabilistic spin logic “p-bit” device [7] as a fabric element com-

prising a crossbar-structured weighted array. Programmability of the resistive network intercon-

necting p-bit devices can be achieved by modifying the resistive states of the array’s weighted

connections. Thus, the programmable weighted array forms a CLB-scale macro co-processing

element with bitstream programmability. This allows field programmability for a wide range of

classification problems and recognition tasks to allow fluid mappings of probabilistic and deter-

ministic computing approaches. In particular, we will focus on Deep Belief Network (DBN),

which can be programmed in the field using recurrent layers of co-processing elements to form an

n ×m1 ×m2 × ... ×mi weighted array as a configurable hardware circuit with an n-input layer

followed by i ≥ 1 hidden layers.

The interrelated fields of machine learning (ML), and artificial neural networks (ANN) have grown

significantly in previous decades due to the availability of powerful computing systems to train and

simulate large scale ANNs within reasonable time-scales, as well as the abundance of data avail-

able to train such networks in recent years. The resulting research has realized a bevy of ANN

architectures that have performed incredible feats including a wide range of classification prob-

lems, and various recognition tasks such as image classification and natural language processing

1© 2018 ACM. This chapter is reprinted, with permission, from [8].
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in the form of dialog management systems [175, 176, 177].

Most ML techniques in-use today rely on supervised learning, where the systems are trained on

patterns with a known desired output, or label. However, intelligent biological systems exhibit

unsupervised learning whereby statistically correlated input modalities are associated within an

internal model used for probabilistic inference and decision making [92]. One interesting class

of unsupervised learning approaches that has been extensively researched is the Restricted Boltz-

mann machine (RBM) [93]. RBMs can be hierarchically organized to realize deep belief networks

(DBNs) that have demonstrated unsupervised learning abilities, such as natural language under-

standing [94]. Most RBM and DBN research has focused on software implementations, which

provides flexibility, but requires significant execution time and energy due to large matrix multipli-

cations that are relatively inefficient when implemented on standard Von-Neumann architectures

due to the memory-processor bandwidth bottleneck when compared to hardware-based in-memory

computing approaches [95]. Thus, research into hardware-based RBM designs has recently sought

to alleviate these constraints.

Previous hardware-based RBM implementations have aimed to overcome software limitations by

utilizing FPGAs [96, 97] and stochastic CMOS [98]. In recent years, emerging technologies such

as resistive RAM (RRAM) [99, 100] and phase change memory (PCM) [101] are proposed to be

leveraged within the DBN architecture as weighted connections interconnecting building blocks

in RBMs. While most of the previous hybrid Memristor/CMOS designs focus on improving the

synapse behaviors, the work presented herein overcomes many of the preceding challenges by

utilizing a novel spintronic p-bit device that leverages intrinsic thermal noise within low energy

barrier nanomagnets to provide a natural building block for RBMs within a compact and low-

energy package. The contribution of this work goes beyond using low-energy barrier magnetic

tunnel junctions (MTJs), as has been previously introduced for a neuron in spiking neuromorphic

systems [102, 103]. This is the first effort to use MTJs with near-zero energy barriers as neurons
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within an RBM implementation. Additionally, various parameters of a hybrid CMOS/spin weight

array structure are investigated for metrics of power dissipation, and error rate using the MNIST

digit recognition benchmarks.

5.1 Fundamentals of Restricted Boltzmann Machines

Restricted Boltzmann machines (RBMs) are a class of recurrent stochastic neural networks, in

which each state of the network, k, has an energy determined by the connection weights between

nodes and the node bias as described by (1), where ski is the state of node i in k, bi is the bias, or

intrinsic excitability of node i, and wij is the connection weight between nodes i and j [178].

E(k) = −
∑
i

ski bi −
∑
i<j

ski s
k
jwij (5.1)

Each node in a RBM has a probability to be in state one according to (2), where σ is the sigmoid

function. RBMs, when given sufficient time, reach a Boltzmann distribution where the probability

of the system being in state v is found by (3), where u could be any possible state of the system.

Thus, the system is most likely to be found in states that have the lowest associated energy.

P (si = 1) = σ(bi +
∑
j

wijsj) (5.2)

P (v) =
e−E(v)∑
u e
−E(u)

(5.3)

Restricted Boltzmann machines (RBMs) are constrained to two fully-connected non-recurrent lay-

ers called the visible layer and the hidden layer. RBMs can be readily implemented by a crossbar
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architecture, as shown in Figure 5.1. The most well-known approach for training RBMs is con-

trastive divergence (CD), which is an approximate gradient descent procedure using Gibbs sam-

pling [179]. CD operates in four steps as described below:

1. Feed-forward: the training input vector, v, is applied to the visible layer, and the hidden layer,

h, is sampled.

2. Feed-back: The sampled hidden layer output is fed-back and the generated input is sampled, v′.

3. Reconstruct: v′ is applied to the visible layer and the reconstructed hidden layer is sampled to

obtain h′.

4. Update: The weights are updated according to (4), where η is the learning rate and W is the

weight matrix.

∆W = η(vhT − v′h′T ) (5.4)

RBMs can be readily stacked to realize a DBN, which can be trained similar to RBMs. Training a

DBN involves performing CD on the visible layer and the first hidden layer for as many steps as

desired, then fixing those weights and moving up a hierarchy as follows. The first hidden layer is

now viewed as a visible layer, while the second hidden layer acts as a hidden layer with respect

to the CD procedure identified above. Next, another set of CD steps are performed, and then the

process is repeated for each additional layer of the DBN.
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Figure 5.1: (a) An RBM structure, (b) a 3×3 RBM implemented by a 4×4 crossbar architecture, (c) a DBN
structure including multiple hidden layers [6].
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Figure 5.2: Structure of a p-bit [7].

5.2 Spin-Based Building Block For RBM

In this section, we provide a detailed description of the p-bit that provides the building block for our

proposed spin-based BM architecture. Individual building blocks are interconnected by networks

of memristive devices whose resistances can be programmed to provide the desired weights. For

instance, in this work, we will assume that the memristive devices are implemented using the three

terminal spin-orbit torque (SOT)-driven domain wall motion (DWM) device proposed in [180].

The activation function is achieved by a spintronic building block that has been used in the design

of probabilistic spin logic devices (p-bits) for a wide variety of Boolean and non-Boolean problems

[7, 181, 182, 183]. The basic functionality of the p-bit shown in Figure 5.2 [7] is to produce

a stochastic output whose steady-state probability is modulated by an input current to generate

a sigmoidal activation function. For instance, a high positive input current produces a stochastic

output with a high probability of “0”, and vice versa. In the absence of any input current, the device

generates either 0 or VDD outputs with roughly equal probability of 0.5, as shown in Figure 5.3.
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This device consists of a 3-terminal, spin-Hall driven MTJ [133] that uses a circular, unstable

nanomagnet (∆� 40kT ), whereby its output is amplified by CMOS inverters as shown in Figure

5.2. This MTJ with an unstable free layer can be fabricated using standard technology such that the

surface anisotropy to achieve perpendicular magnetic anisotropy (PMA) that is not strong enough

to overcome the demagnetizing field. Thus, the magnetization stochastically rotates in the plane,

due to the presence of thermal fluctuations.

The charge current that is injected to the spin-Hall layer creates a spin-current flowing into the

circular FM (in the +y direction), which does not have an axis with any preferential geometry. The

spin-polarization of this spin-current is in the (±z) direction, and pins the magnetization in the (+z)

or (-z) direction depending on the direction of the charge current, through the spin-torque mech-

anism [182]. The inherent physics of the spin-current driven low-barrier nanomagnet provides a

natural sigmoidal function when a long time average of magnetization is taken. Through the tun-

neling magnetoresistance effect, a charge current flowing through the MTJ with a stable fixed layer

detects the modulated magnetization as a voltage change. To achieve this, a small read voltage VR

is applied between the V+ and V− terminals through a reference resistance R0, adjusted to the

average conductance of the MTJ (R−0 1 = GP + GAP/2) where GP and GAP represented con-

ductance in parallel (P) and anti-parallel (AP) states, respectively. This voltage becomes an input

to the CMOS inverters that are biased at the middle point of their DC operating point, creating a

stochastic output whose probability can be tuned by the input charge current.
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Figure 5.3: Time-averaged results over 100 ns for p-bit [8].

Each component of the device is represented by an independent spin-circuit based on experimentally-

benchmarked models that have been established in [12] and simulated as a spin-circuit in a SPICE-

like platform. Here, we obtain an analytical approximation to the time-averaged behavior of the

output characteristics. We start by relating the charge current flowing in the spin Hall layer to the

spin-current absorbed by the magnet, assuming short-circuit conditions for simplicity, i.e. 100%

spin absorption by the FM:

Is/Ic = β =
L

t
(θ)(1− sech(

t

λ
)) (5.5)

where Is is the spin-current, Ic is the charge current, θ is the spin-Hall angle, L, t, λ are the length,

thickness and spin diffusion lengths for the spin-Hall layer. The length and width of the GSHE

layer are assumed to be the same as the circular nanomagnet. With a suitable choice of the L and t,

the spin-current generated can be greater in magnitude than the charge current generating “gain.”

For the parameters used in this work, which are listed in Table 5.1, the gain factor β is∼ 10. Next,
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we approximate the behavior of the magnetization as a function of an input spin-current, polarized

in the (±z) direction. For a magnet with only a PMA in the ±z direction, a distribution function

at steady state can be written analytically as below, as long as the spin-current is also fully in the

±z direction:

ρ(mz) =
1

Z
exp(∆m2

z + 2ismz) (5.6)

where Z is a normalization constant, mz is the magnetization along +z, is the thermal bar-

rier of the nanomagnet, and is is a normalization quantity for the spin-current such that is =

Is/(4q/~αkT ), α being the damping coefficient of the magnet, q the electron charge and ~ the

reduced Planck constant. It is possible to use (4) to obtain an average magnetization < mz >=∫ +1

−1
dmzmzρ(mz)/

∫ +1

−1
dmzρ(mz). Assuming ∆ � kT , < mz > can be evaluated to give the

Langevin function, < mz >= L(is) where L(x) = 1
x
− coth 1

x
, which is an exact description

for the average magnetization in the presence of a z-directed spin-current for a low barrier PMA

magnet.

Table 5.1: Parameters for p-bit Based Activation Function [7, 8].
Parameter Description Value
Circular FM

φ Diameter 100nm
t Thickness 2nm
α Damping coefficient 0.01

MTJ
G0 Conductance 150e−6S
P Spin Polarization 0.52

Giant Spin Hall Layer(GSHE)
λ Spin-diffusion length 2.1nm
θ Spin Hall Angle 0.5

V olume l × w × t 100nm× 100nm× 3.15nm
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In the present case, however, the nanomagnet has a circular shape with a strong in-plane anisotropy

and no simple analytical formula can be derived, thus We use the Langevin function with a fitting

parameter that adjusts the normalization current by a factor η, so that the modified normalization

constant becomes (4q/~αkT )(η). This factor increases with elevating the shape anisotropy (Hd ∼

4πMs) and becomes exactly one when there is no shape anisotropy. Once the magnetization and

charge currents are related, we can approximate the output probability of the CMOS inverters by a

phenomenological equation along with fitting parameter χ as follows:

p =
VOUT
V DD

≈ 1

2
[1− tanh(χ < mz >)] (5.7)

which allows us to relate the input charge current to the output probability, with physical param-

eters. Figure 5.3 shows the comparison of the full SPICE-model with respect to aforementioned

equations showing good agreement with two fitting parameters η and χ, which fit the magnetization

and CMOS components, respectively.

5.3 Proposed Weighted Array Design

Figure 5.4 shows the structure of the weighted array proposed herein to implement the RBM ar-

chitecture including the SOT-DWM based weighted connections and biases, as well as the p-bit

based activation functions. Transmission gates (TGs) are utilized in write circuits within the bit

cells of the weighted connection to adjust weights by moving the DW position. As investigated in

[108], TGs can provide energy-efficient and symmetric switching operation for SOT-based devices,

which are desirable during the training phase. Table 6.1 lists the required signaling for controlling

the training and read operations in the weighted array structure. Herein, a chain of inverters are

considered to drive signal lines, in which each successive inverter is twice as large as the previous

one.
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Figure 5.4: 32× 32 hybrid CMOS/spin-based weighted array structure for RBM implementation [8].

Table 5.2: Signaling to Control The Array Operations [8].
Operation WWL RWL BL SL V+ V-

Increase Weight VPULSE GND VDD GND Hi-Z Hi-Z
Decrease Weight VPULSE GND GND GND Hi-Z Hi-Z

Read GND VDD VIN Hi-Z VDD VDD/2

During the read operation, write word line (WWL) is connected to ground (GND) and the source

line (SL) is in high impedance (Hi-Z) state, which disconnects the write path. The read word line

(RWL) for each row is connected to VDD, which turns ON the read transistors in the weighted

connection bit cell. The bit line (BL) will be connected to the input signal (VIN), which results in

producing a current that affects the output probability of the p-bit device. The direction of the gen-

erated current relies on the VIN signal. In particular, since V- is supplied by a voltage source equal

to VDD/2, if VIN is connected to VDD the injected current to the p-bit based activation function

will have positive value, and if VIN is zero the input current will be negative. The amplitude of

the generated current depends on the resistance of the weighted connection which is defined by the

position of the DW in the SOT-DWM device.
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Table 5.3: Relation between the input currents of activation functions and array size for RP = 1MΩ [8].

Features
Array Size

8× 8 16× 16 32× 32 64× 64
Max. Positive Current (µA) 2.71 5.14 10.79 21.46
Max. Negative Current (µA) 3.57 7.14 14.23 28.28
Max. output “0” Probability 0.77 0.88 0.95 0.97
Min. output “0” Probability 0.175 0.08 0.038 0.026

During the training operation, the RWL is connected to GND, which turns OFF the read transis-

tors and disconnects the read path. The WWL is connected to an input pulse (VPULSE) signal

which activates the write path for a short period of time. The duration of the VPULSE should be

designed in a manner such that it can provide the desired learning rate, η, to the training circuit.

For instance, a high VPULSE duration results in a significant change in the DW position in each

training iteration, which effectively reduces the number of different resistive states that can be re-

alized by the SOT-DWM device. Resistance of the weighted connections can be adjusted by the

BL and SL signals, as listed in Table 6.1. A higher resistance leads to a smaller current injected to

the p-bit device. Therefore, the input signal connected to the weighted connection will have lower

impact on the output probability of the p-bit device, which means the input signal exhibits a lower

weight. The bias nodes can also be adjusted similar to the weighted connection.

5.4 Simulation Results And Discussion

To analyze the RBM implementation using the proposed p-bit device and the weighted array struc-

ture, we have utilized a hierarchical simulation framework including circuit-level and application-

level simulations. In circuit level simulation, the behavioral models of the p-bit and SOT-DWM

devices were leveraged in SPICE circuit simulations using 20nm CMOS technology with 0.9V

nominal voltage to validate the functionality of the designed weighted array circuit. In application-

level simulation, the results obtained from device-level and circuit-level simulations are used to
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implement a DBN architecture and analyze its behavior in MATLAB.

5.4.1 Circuit-level simulation

The device-level simulations shown in Figure 5.3 verified a sigmoidal relation between the input

current of the p-bit based activation function and its output probability. The shape of the acti-

vation on function is one of the major factors affecting the performance of the RBM. Therefore,

we have provided comprehensive analyses on the impacts of weighted connection resistance and

weighted array dimensions on the input currents of the p-bit based activation functions, and the

power consumption of the weighted array.

Table 5.3 lists the range of the activation function input currents for various weighted array dimen-

sions, while the resistance of the SOT-DWM device in parallel state (RP ) is constant and equals

1MΩ. The experimental results provided in [184, 185] exhibit that an MTJ resistance in the MΩ

range can be obtained by increasing the oxide thickness in an MTJ structure. The highest positive

and negative currents can be achieved while the weighted connections are in parallel state, i.e.

lowest resistance, and all of the input voltages (VIN) are equal to VDD and GND, respectively.

The difference between the amplitude of positive and negative currents in a given array size with

constant RP is caused by the different pull-down and pull-up strengths in NMOS read transistors.

The maximum and minimum output-level “0” probabilities are listed in Table 5.3, which can be

obtained according to the measured input currents and the sigmoidal activation function shown in

Figure 5.3.

Moreover, Table 5.4 illustrates the relation between the RP values and input currents of the acti-

vation functions, and their corresponding output probabilities, for a given 32× 32 weighted array.

The lowerRP resistance and higher array size provides a wider range of output probabilities which

can increase the RBM performance. However, this is achieved at the cost of higher area and power
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consumption. The trade-offs between the array size, weighted connection resistance, and average

power consumption in a single read operation is shown in Figure 5.5. The lowest power consump-

tion of 22.6 µW is realized by an 8 × 8 array with RP = 1MΩ. However, this array provides the

narrowest range of the output probabilities, which significantly reduces the DBN’s performance.

Figure 5.5: Weighted array power consumption versus the resistance of the weighted connections and array
size [8].

Table 5.4: Relation between the input currents of activation functions and RP in a 32× 32 array [8].

Features
RP (MΩ)

0.25 0.5 0.75 1
Max. Positive Current (µA) 36.56 20.02 13.97 10.79
Max. Negative Current (µA) 54.95 28.12 18.9 14.23
Max. output “0” Probability 0.98 0.965 0.96 0.95
Min. output “0” Probability 0.01 0.026 0.032 0.038
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5.4.2 Application-level simulation

In the application-level simulation, we have leveraged the obtained device and circuit behavioral

models to simulate a DBN architecture for digit recognition. In particular, learning rate and the

shape of the sigmoid activation function is extracted by the SOT-DWM and p-bit device-level

simulations, respectively, while the circuit-level simulations defines the range of the output prob-

abilities. To evaluate the performance of the system, we have modified a MATLAB implementa-

tion of DBN by Tanaka and Okutomi [186] and used the MNIST data set [187] including 60,000

and 10,000 sample images with 28 × 28 pixels for training and testing operations, respectively.

We have used Error rate (ERR) metric to evaluate the performance of the DBN, as expressed by

ERR = NF/N , where, N is the number of input data, NF is the number of false inference [186].

The simplest model of the DBN that can be implemented for MNIST digit recognition consists

784 nodes in visible layer to handle 28 × 28 pixels of the input images, and 10 nodes in hidden

layer representing the output classes. Figure 5.6 shows the relation between the performance of

various DBN topologies, and the number of input training samples ranging from 100 to 5,000,

which is obtained using 1,000 test samples. The ERR and RMSE metrics can be improved by en-

larging the DBN structure through increasing the number of hidden layers, as well as the number

of nodes in each layer. This improvement is realized at the cost of larger area and power consump-

tions. Increasing the input training samples can improve the DBN performance as well, however it

will quickly converge due to the limited weight values that can be provided by SOT-DWM based

weighted connections. As shown in Figure 5.6, some random behaviors are observed for networks

with smaller sizes that are trained by lower number of training samples, which will be significantly

reduced by increasing the number of training samples.
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Figure 5.6: ERR for various DBN topologies [8].

The simulation results exhibit the highest error rate of 36.8% for a 784×10 DBN that is trained by

100 training samples. Meanwhile, the lowest error rate of 3.7% was achieved using a 784× 800×

800 × 10 DBN trained by 5,000 input training samples. This illustrates that the recognition error

rate can be decreased by increasing the number of hidden layers, and training samples, which is

also realized at the cost of higher area and power overheads.
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5.4.3 Disucussion

Table 6.3 lists previous hardware-based RBM implementations, which have aimed to overcome

software limitations by utilizing FPGAs [96, 97], stochastic CMOS [98], and hybrid memristor-

CMOS designs [99, 100, 101]. FPGA implementations demonstrated RBM speedups of 25-145

over software implementations [96, 97], but had significant constraints such as only realizing a sin-

gle 128× 128 RBM per FPGA chip, routing congestion, and clock frequencies limited to 100MHz

[97]. In [188], optimization methods are proposed to reduce memory requirements for weights and

biases, however implementing each activation function still requires dedicated piecewise linear ap-

proximator, random number generator (RNG), and comparator circuits which lead to increased

area and energy consumption per neuron than the p-bit based approach herein. The stochastic

CMOS-based RBM implementation proposed in [98] leveraged the low-complexity of stochastic

CMOS arithmetic to save area and power. However, the need for extremely long bit-stream lengths

negate energy savings and lead to very long latencies. Additionally, a significant amount of Lin-

ear Feedback Shift Registers (LFSRs) were required to produce the uncorrelated input and weight

bit-streams. In both the FPGA and stochastic CMOS designs, improvements were achieved by

implementing parallel Boolean circuits such as multipliers and pseudo-random number generators

for probabilistic behavior, which has significant area and energy overheads compared to leverag-

ing the physical behaviors of emerging devices to perform the computation intrinsically. Bojnordi

et al. [100] leveraged resistive RAM (RRAM) devices to implement efficient matrix multiplica-

tion for weighted products within Boltzmann machine applications, and demonstrated significant

speedup of up to 100-fold over single-threaded cores and energy savings of over 10-fold. Similarly,

Sheri et al. [99] and Eryilmaz et al. [101] utilized RRAM and PCM devices to implement matrix

multiplication, while the corresponding activation function circuitry is still based on the CMOS

technology, which suffers from the aforementioned area and power consumption overheads.
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Table 5.5: Various DBN hardware implementations with a focus on activation function structure [8, 9].

Design Weighted Connection Activation Function
Energy

per Neuron
Normalized area

per neuron
[96] Embedded multipliers CMOS-based LUTs N/A N/A

[97] Embedded multipliers
- 2-kB BRAM

- Piecewise Linear Interpolator
- Random number Generator

∼10-100 nJ ∼ 3000×

[188]
- Multiplier
- Adder tree

- Piecewise Linear approximator
- Random number Generator

- Comparator
∼10-100 nJ ∼ 2000×

[98]
- LFSR

- bit-stream
- AND/OR gates

-LFSR
- Bit-wise AND

- tree adder
- FSM-based tanh unit

∼10-100 nJ ∼ 90×

[99] RRAM Memristor Off-chip N/A N/A

[100] RRAM

- 64× 16 LUTs
- Pseudo Random
Number Generator

- Comparator

∼1-10 nJ ∼ 1250×

[101] PCM Off-chip N/A N/A
Proposed Herein SOT-DWM p-bit 1-10 fJ 1×

While most of the previous hybrid Memristor/CMOS designs focus on improving the performance

of weighted connections, the work presented herein overcomes many of the preceding challenges

of generating sigmoidal probabilistic activation functions by utilizing a novel p-bit device that

leverages intrinsic thermal noise within low energy barrier nanomagnets to provide a natural build-

ing block for RBMs within a compact and low-energy package. As listed in Table 7.3, the proposed

design can achieve approximately three orders of magnitude improvement in term of energy con-

sumption compared to the most energy-efficient designs, while realizing at least 90X device count

reduction for considerable area savings. Note that these calculations do not take into account the

weighted connections, since the main focus of this work is on the activation function. While SOT-

DWM devices are utilized herein for the weighted connections, any other memristive devices could

be utilized without loss of generality.
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CHAPTER 6: SNRA: A SPINTRONIC NEUROMORPHIC

RECONFIGURABLE ARRAY FOR IN-CIRCUIT TRAINING AND

EVALUATION OF DEEP BELIEF NETWORKS1

Within the post-Moore era ahead, several design factors and fabrication constraints increasingly

emphasize the requirements for in-circuit adaptation to as-built variations. These include device

scaling trends towards further reductions in feature sizes [104], the narrow operational tolerances

associated with the deployment of hybrid Complementary Metal Oxide Semiconductor (CMOS)

and post-CMOS devices [91, 105], and the noise sensitivity limits of analog-assisted neuromor-

phic computing paradigms [106]. While many recent works have advanced new architectural ap-

proaches for the evaluation phase of neuromorphic computation utilizing emerging hardware de-

vices, there have been comparatively fewer works to investigate the hardware-based realization of

their training and adaptation phases that will also be required to cope with these conditions. Thus,

this work develops one of the first viable approaches to address post-fabrication adaptation and re-

training in-situ of resistive weighted-arrays in hardware, which are ubiquitous in post-Moore neu-

romorphic approaches. Namley, a tractable in-field reconfiguration-based approach is developed

to leverage in-field configurability to mitigate the impact of process variation. Reconfigurable

fabrics are characterized by their fabric flexibility, which allows realization of logic elements at

medium and fine granularities, as well as in-field adaptability, which can be leveraged to realize

variation tolerance and fault resiliency as widely-demonstrated for CMOS-based approaches such

as [31, 39]. Utilizing reconfigurable computing by applying hardware and time redundancy to the

digital circuits offers promising and robust techniques for addressing the above-mentioned relia-

bility challenges. For instance, it is shown in [39] that a successful refurbishment for a circuit with

1,252 look-up tables (LUTs) can be achieved with only 10% spare resources to accommodate both

1© 2018 IEEE. This chapter is reprinted, with permission, from [6].
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soft and hard faults.

Within the post-Moore era, reconfigurable fabrics can also be expected to continue their transition

towards embracing the benefits of increased heterogeneity along several cooperating dimensions

to facilitate neuromorphic computation [1]. Since the inception of the first field-programmable de-

vices, various granularities of general-purpose reconfigurable logic blocks and dedicated function-

specific computational units have been added to their structures. These have resulted in increased

computational functionality compared to homogeneous architectures. In recent years, emerging

technologies are proposed to be leveraged in reconfigurable fabrics to advance new transforma-

tive opportunities for exploiting technology-specific advantages. Technology heterogeneity rec-

ognizes the cooperating advantages of CMOS devices for their rapid switching capabilities, while

simultaneously embracing emerging devices for their non-volatility, near-zero standby power, high

integration density, and radiation-hardness. For instance, spintronic-based LUTs are proposed in

[4, 189, 171] as the primary building blocks in reconfigurable fabrics realizing significant area and

energy consumption savings. In this chapter, we extend the transition toward heterogeneity along

various logic paradigms by proposing a heterogeneous technology fabric realizing both probabilis-

tic and deterministic computational models. The cooperating advantages of each are leveraged

to address the deficiencies of the others during the neuromorphic training and evaluation phases,

respectively.

In this chapter, we propose a spintronic neuromorphic reconfigurable Array (SNRA) that uses

probabilistic spin logic devices to realize deep belief network (DBN) architectures while leverag-

ing deterministic computing paradigms to achieve in-circuit training and evaluation. Most of the

previous DBN research has focused on software implementations, which provides flexibility, but

requires significant execution time and energy due to large matrix multiplications that are relatively

inefficient when implemented on standard Von-Neumann architectures. Previous hardware-based

implementation of RBM have sought to overcome software limitations by using FPGAs [96, 97],
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stochastic CMOS [98], and hybrid memristor-CMOS designs [100]. Recently, Zand et al. [8]

utilized a spintronic device that leverages intrinsic thermal noise within low energy barrier nano-

magnets to provide a natural building block for RBMs. While most of the aforementioned designs

only focus on the test operation, the work presented herein concentrates on leveraging technol-

ogy heterogeneity to implement a train and evaluation circuitry for DBNs with various network

topologies on our proposed SNRA fabric.

6.1 Proposed RBM Structure

A feasible hardware implementation of a 4×2 RBM structure is shown in Figure 6.1(a), in which

three terminal spin Hall effect (SHE)-driven domain wall motion (DWM) device [184] is used

as weights and biases, while the probabilistic spin logic devices (p-bits) are utilized to produce

a probabilistic output voltage that has a sigmoid relation with the input currents of the devices,

as shown in Figure 6.1(b) and Figure 6.1(c), respectively. The p-bit device consists of a SHE-

driven magnetic tunnel junction (MTJ) with a circular near-zero energy barrier nanomagnet, which

provides a natural sigmoidal activation function required for DBNs as studied in [7, 181, 182, 183].

Transmission gates (TGs) are used within the bit cell of the weighted connections to adjust the

weights by changing the domain wall (DW) position in SHE-DWM devices, as well as controlling

the RBM operation phases. TGs can provide an energy-efficient and symmetric switching behavior

[108], which is specifically desired during the training operation.

Table 6.1 lists the required signaling to control the RBM’s training and test operations. During

the feed-forward, feed-back, and reconstruct operations, write word line (WWL) is connected to

ground (GND) and the bit line (BL) and source line (SL) are both in high impedance (Hi-Z) state

disconnecting the write path. The read word line (RWL) is connected to VDD, which turns ON

the read TGs in the weighted connection bit cell shown in Figure 6.1(b). The voltage applied by
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the input neuron generates a current through TG1 and TG2, which is then injected to the output

neuron and modulates the output probability of the p-bit device. The amplitude of the current

depends on the resistance of the weighted connection which is defined by the position of the DW

in the SHE-DWM device.

Figure 6.1: (a) A 4×2 RBM hardware implementation [6], (b) SHE-DWM based weighted connections, and
(c) p-bit based probabilistic neuron [7].
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Table 6.1: Required signaling to control the RBM operation phases [6].
Operation Phase WWL RWL BL SL
Feed-Forward / Test

GND VDD Hi-Z Hi-ZReconstruct
Feed-Back

Update
Increase Weight

VDD GND
Vtrain GND

Decrease Weight GND Vtrain

During the update phase, the RWL is connected to GND, which turns off TG1 and TG2 and discon-

nects the read path. Meanwhile, the WWL is set to VDD which activate the write path. Resistance

of the weighted connections can be adjusted by the BL and SL signals, as listed in Table 6.1. The

amplitude of the training voltage (Vtrain) connected to BL and SL should be designed in a manner

such that it can provide the desired learning rate, η, to the training circuit. For instance, a high am-

plitude V train results in a significant change in the DW position in each training iteration, which

effectively reduces the number of different resistive states that can be realized by the SHE-DWM

device. On the other hand, a higher SHE-DWM resistance leads to a smaller current injected to the

p-bit device. Thus, the input signal connected to the weighted connection with higher resistance

will have lower impact on the output probability of the p-bit device, representing a lower weight

for the corresponding connection between the input and output neurons.

6.2 Proposed Hardware Implementation of Contrastive Divergence Algorithm

To implement the contrastive divergence (CD) algorithm required for training the weights in an

RBM structure, we have designed a four-state finite state machine (FSM) as shown in Figure 6.2.

The proposed FSM is in the feed-forward state during the test operation. When the training begins,

the input of the visible layer and the corresponding output of the hidden layer will be stored in the

v and h registers, respectively. The size of the v and h registers depend on the number of neurons in

the visible and hidden layers. For instance, in the sample 4×2 RBM shown in Figure 6.1 the size of
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the v and h registers are 4-bits and 2-bits, respectively. In the feed-back state, the sampled hidden

layer is fed-back to the RBM array and the corresponding output of the visible layer is stored in the

v bar register. Next, the stored values in v bar are applied to the RBM to reconstruct the hidden

layer, and the obtained output of the hidden layer will be stored in h bar register. Finally in the

update state, the data stored in v, h, v bar, and h bar registers are used to provide the required BL

and SL signals to adjust the weights according to Equation (5.4).

Figure 6.2: FSM designed to control the train and test operations in a DBN [6].

Figure 6.3: The hardware realization for the update state in the FSM developed to train a 4×2 RBM, (a)
first clock cycle, and (b) second clock cycle [6].
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Figure 6.3 depicts the schematic of the hardware designed for the update state of the FSM devel-

oped for a 4×2 RBM. In each clock cycle, The designed circuit adjusts the weights in a single

column of the RBM shown in Figure 6.1. Thus, the number of clock cycles required to complete

the update state depends on the number of neurons in the hidden layer of the RBM. A counter

register is used in the design to ensure that all of the columns in the RBM are updated. The counter

value starts from zero and will be incremented in each clock cycle until it reaches the hn value,

which is the total number of nodes in the hidden layer. Once the counter reaches hn, the update

state is completed and the FSM goes to the feed-forward state. The logical AND gates are used

to implement the vhT and v′h′T expressions required to find ∆W for the weights in each column.

The output of Boolean gates implementing vhT and v′h′T are stored in BL reg and SL reg regis-

ters, respectively, which provide the required signaling for adjusting the weights according to the

Table 6.1.

Herein, to better understand the functionality of the hardware developed for the update state, we

have used an example with the v, h, v′, and h′ matrices having the hypothetical values mentioned

below:

v =



v0

v1

v2

v3


=



1

0

1

0


h =

1

0

 v′ =



0

0

1

0


h′ =

0

1



Hence, the ∆W can be calculated using (4) as shown below:

∆W = η(vhT − v′h′T ) = η



1 0

0 0

1 −1

0 0


=



δw00 δw01

δw10 δw11

δw20 δw21

δw30 δw31



116



According to the obtained ∆W , w21 should be decreased while the w00 and w20 increases, and

the remaining weight values remain unchanged. The hardware realization of the mentioned ex-

ample is shown in Figure 6.3, in which the values stored in the registers are v=4’b0101, h=2’b01,

v bar=4’b0100, and h bar=2’b10. It is worth noting that, the v0 element in the v matrix is stored

in the least significant bit of the v register, while v3 is stored in the most significant bit. Other

matrices are stored to their corresponding registers in the similar manner. In this example, RBM

has two output neurons, therefore hn is equal to two and the update operation can be completed in

two clock cycles. In the first cycle shown in Figure 6.3(a), the counter is equal to zero and the first

bits of h and h bar registers are selected by the multiplexers to be used as the input of the AND

gates. Therefore, the below BL and SL signals are generated,

BL =



BL0

BL1

BL2

BL3


=



1

0

1

0


SL =



SL0

SL1

SL2

SL3


=



0

0

0

0


As listed in Table 6.1, the above BL and SL signals will increase w00 and w20 weights shown in

Figure 6.1, if the WWL0 and WWL1 signals are “1” and “0”, respectively. Similarly, in the second

clock cycle, the counter is equal to one and the second bits of h and h bar registers are used to

produce below BL and SL signals as below,

BL =



BL0

BL1

BL2

BL3


=



0

0

0

0


SL =



SL0

SL1

SL2

SL3


=



0

1

0

0



This results in a decrease in the w21 weight, while the other weights remain unchanged. Thus, the
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proposed hardware provides the desired functionality required for the update state according to

Equation (5.4).

Herein, we have used the Verilog hardware description language (HDL) to implement our proposed

four-state FSM. The ModelSim simulator is used to simulate the developed register-transfer level

(RTL) Verilog codes. Figure 6.4 shows the obtained waveforms required for training a 4×2 RBM

array with the hypothetical register values mentioned above. The results show that the desired

BL, SL, RWL, and WWL control signals are generated in five clock cycles, which verifies the

functionality of our proposed FSM.

Figure 6.4: The output signals generated by the proposed FSM. The clock frequency is 500MHz, which can
be modified based on the design requirements [6].
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Figure 6.5: (a) The schematic of the hardware designed to control the testing and training operations of a
4×2 RBM, (b) the structure of a 6-input SHE-MTJ based fracturable LUT used as the building block of the
proposed SNRA architecture [6].

To obtain the hardware resources required for our proposed DBN control circuitry, we have syn-

thesized and implemented it using Xilinx ISE Design Suite 14.7. The schematic of the hardware

developed to control the testing and training operations for a 4×2 RBM is shown in Figure 6.5(a),

in which 32 six-input fracturable look-up table (LUT) and Flip Flop (FF) pairs are used to im-

plement both sequential and combinational logic. It is worth noting that out of the 32 LUT-FF

pairs only three of them are utilized for the test operation, thus roughly 90% of the circuit can

be power-gated during the test operation. However in conventional homogeneous technology FP-

GAs, volatile static random access memory (SRAM) cells are employed in LUTs to store the logic

function configuration data. Therefore, by power-gating the SRAM-based LUTs the configuration

data will be lost and the FPGA is required to be re-programmed. In addition to volatility, SRAM

cells also suffer from high static power and low logic density [69]. Hence, alternative emerging

memory technologies have been attracting considerable attention in recent years as an alternative

for SRAM cells.
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6.3 The proposed SNRA architecture

Herein, we propose a heterogeneous-technology spintronic neuromorphic reconfigurable array

(SNRA), which can combine both deterministic and probabilistic logic paradigms. The SNRA

fabric is organized into islands of probabilistic modules surrounded by Boolean configurable logic

blocks (CLBs). Both the probabilistic and deterministic elements are field programmable using a

configuration bit-stream based on conventional FPGA programming paradigms.

Herein, the probabilistic modules consist of RBMs, which can be connected hierarchically within

the field-programmable fabric to form various topologies of DBNs. Each RBM leverages SHE-

MTJs with unstable nanomagnets (∆ � 40kT ) to generate the probabilistic sigmoidal activation

function of the neurons. With respect to the deterministic logic, the CLBs are comprised of LUTs

which realize the training and evaluation circuitry. Non-volatile high energy barrier (∆ ≥ 40kT )

SHE-MTJ devices are used as an alternative for SRAM cells within LUT circuits. The routing

networks include routing tracks, as well as switch and connection blocks similar to that of the con-

ventional FPGAs. The feasibility of integrating MTJs and CMOS technologies in an FPGA chip

has been verified in 2015 by researchers in Tohoku University [189]. They have fabricated a non-

volatile FPGA with 3,000 6-input MTJ-based LUTs under 90nm CMOS and 75nm MTJ technolo-

gies. The measurement of fabricated devices under representative applications exhibited significant

improvements in terms of power consumption and area. Despite the mentioned improvements, the

conventional spin transfer torque (STT)-based MTJ devices suffer from high switching energy and

reliability issues. Thus, we propose using SHE-MTJ based LUT circuits with reduced switching

energy and increased reliability of tunneling oxide barrier [13]. Readers are referred to [124] for

additional information regarding the STT-MTJ and SHE-MTJ devices.

Figure 6.5(b) shows the structure of a six-input SHE-MTJ based fracturable LUT [2], which can

implement a six-input Boolean function or two five-input Boolean functions with common inputs.
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In general, LUT is a memory with 2m cells in which the truth table of anm-input Boolean function

is stored. The logic function configuration data is stored in SHE-MTJs in form of different resistive

levels determined based on the magnetization configurations of ferromagnetic layer in MTJs, i.e

parallel configuration results in a lower resistance standing for logic “0” and vice versa. The LUT

inputs can be considered as the address according to which corresponding output of the Boolean

function will be returned through the select tree. The LUT circuit shown in Figure 6.5(b) includes

two pre-charge sense amplifiers (PCSAs) that are used to read the logic state of the SHE-MTJs.

The PCSA compares the stored resistive value of the SHE-MTJ cells in the LUT circuit with a

reference MTJ cell that its resistance is designed between the low and high resistances of the

LUT’s SHE-MTJ cells. Therefore, if the resistive value of a SHE-MTJ cell in the LUT circuit is

greater than the resistance of the reference cell, the output of the PCSA will be “1” and vice versa.

The readers are referred to Chapter 3 for additional information regarding the functionality of a

SHE-MTJ based LUT circuit.

6.4 Results and Discussions

Herein, we have modified a MATLAB implementation of DBN developed in [186] and utilized

MNIST data set [187] to calculate the error rate and evaluate the performance of our DBN archi-

tecture. The simplest model of the belief network that can be used for MNIST digit recognition

includes a single RBM with 784 nodes in the visible layer to handle 2828 pixels of the input im-

ages, and 10 nodes in hidden layer representing the output classes. Herein, we have examined the

error rate for five different network topologies using 1,000 test samples as shown in Figure 5.6. As

it is expected, increasing the number of the hidden layers, nodes, and training images improves the

performance of the DBN, however these improvements are realized at the cost of higher area and

power dissipation.
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To compare the resource utilization between the five network topologies investigated in this work,

we have used Xilinx ISE Design Suite 14.7 to implement their control circuitry based on the

proposed FSM design. The obtained logic resource utilization for each of the mentioned DBN

topologies is listed in Table 6.2. Since the training operation in different layers of the DBN does

not happen simultaneously, the resources can be shared for training each RBM. Therefore, the

amount of logic resources utilized to implement the FSM of a DBN relies on the size of the largest

RBM in the network. For instance, as listed in Table 6.2, the resource utilization for training a

784×500×10 DBN is equal to that of a 784×500×500×10 DBN, since the size of the largest

RBM in both networks is 784×500.

Table 6.2: FSM logic resource utilization and power dissipation for various DBN topologies [6].

Topology
Slice

Registers
Slice
LUTs

Fully-used
LUT-FFs

Power
Consumption

784×10 3185 123 51 0.32 mW
784×500×10 4655 3545 1771 14.2 mW
784×800×10 5533 2449 2421 19.3 mW
784×500×500×10 4655 3545 1771 25.3 mW
784×800×800 ×10 5617 2449 2421 34.5 mW

Table 6.3: Comparison between six-input fracturable SRAM-based LUT and SHE-MTJ based LUT [6].
Features SRAM-LUT SHE-MTJ LUT

Device Count
MOS 1163 565
MTJ - 66

Power (µW)
Read 6.28 1.1
Write 28 188
Static 1.6 0.21

Delay
Read < 10 ps < 30 ps
Write < 0.1 ns < 2 ns

Energy
Read ∼ 62.8 aJ ∼ 33 aJ
Write ∼ 2.8 fJ ∼ 376 fJ
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To provide a fair power consumption comparison between the investigated DBN topologies, we

have simulated an SRAM-based six-input fracturable LUT-FF pair in SPICE circuit simulator us-

ing 45nm CMOS library with 1.0V nominal voltage. The obtained static and dynamic power

dissipation are listed in Table 6.3. Herein, we have only focused on the power dissipated by the

LUT-FF pairs, and used the below relation to measure the power consumption for each topology:

Ptotal =
∑
i

AiPread + IiPstandby (6.1)

whereAi and Ii are the number of active and idle LUT-FF pairs in RBM i of the DBN, respectively.

The obtained power dissipation values for various DBN topologies are listed in the last column of

Table 6.2. The provided trade-offs between the error rate and power consumption can be leveraged

to design a desired DBN based on the application requirements.

To investigate the effect of technology heterogeneity on the performance of the proposed DBN

control circuitry, we have simulated a SHE-MTJ based six-input fracturable LUT in SPICE using

45nm CMOS and 60nm MTJ technologies. The modeling approach proposed in [2, 107] is lever-

aged to model the behavior of SHE-MTJ devices. In particular, first, a Verilog-A model of the

device is developed and used in SPICE to obtain the write current, as well as the power dissipation

of the read/write operations. Next, the write current is used in a descriptive MATLAB model of a

SHE-MTJ device to extract the corresponding write delay. The simulation results obtained for a

SHE-MTJ based six-input fracturable LUT circuit are listed in Table 6.3.

Three types of power consumption profiles can be identified in FPGA LUTs. During the config-

uration phase, the LUTs must be initialized and thus written. This incurs an initial write energy

consumption, which occurs infrequently thereafter. Second, upon configuration the LUTs com-

prising active logic paths will consume read power including a certain sub areas within high gate

equivalent capacity of FPGA chips. Third, the remainder of the LUTs, which can be a large
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number, may be inactive and consume standby power. SRAM-based FPGA is challenged by the

difficulty with power-gating LUTs which must retain the stored configuration. While, a SHE-MTJ

based LUT can be readily power-gated and incur near-zero standby energy due to its non-volatility

characteristic. On the other hand, replacing SRAM cells with SHE-MTJ devices results in a consid-

erable reduction in the transistor count of the LUT circuit since each SRAM cell includes 6 MOS

transistors in its structure, while SHE-MTJ devices can be fabricated on top of the MOS circuitry

incurring very low area overhead. In particular, SHE-MTJ based LUT circuit achieves at least 51%

reduction in MOS transistor count compared to the conventional SRAM-based LUT, as listed in

Table 6.3. Transistors with minimum feature size are utilized in the SHE-MTJ based LUT circuit

to control the SHE-MTJ write and read operations. Thus, the device count results can provide a

fair comparison between SHE-MTJ based LUTs and conventional SRAM-based LUTs in terms of

area consumption, since all of the MOS transistors used in both designs have the minimum feature

size possible by the 45nm CMOS technology.

Figure 6.6 provides a comparison between the conventional SRAM-based FPGA and the proposed

SNRA with a focus on the power dissipation induced by LUT-FF pairs utilized to implement the

developed DBN control circuitry. The combined improvements in the read and standby modes of

the proposed SNRA resulted in realizing at least 80% reduction in power consumption compared

to the conventional CMOS-based reconfigurable fabrics for various DBN topologies. The results

obtained for the read operation are comparable to that of the STT-MTJ based FPGA proposed

by the Suzuki et al. [189]. However, the utilization of SHE-MTJ based LUTs within the SNRA

architecture instead of STT-MTJs can result in at least 20% reduction in configuration energy as

demonstrated by in Chapters 3 and 4.
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Figure 6.6: Power dissipation of developed FSM for various DBN topologies [6].
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CHAPTER 7: COMPOSABLE PROBABILISTIC INFERENCE

NETWORKS USING MRAM-BASED STOCHASTIC NEURONS

In Chapter 5, a current-driven low energy-barrier spintronic device has been proposed to be utilized

in RBMs as the activation function [8], while similar devices have been previously proposed for

spiking [190, 191] and hard axis clocked [183] neural systems. However, the current-mode oper-

ation of these devices imposes a significant power consumption to the activation functions, while

requiring weighted connections with MΩ resistances. The design proposed in this chapter takes a

new approach from the device-level upward to overcome the challenges mentioned above by uti-

lizing a voltage-driven spintronic device with embedded magnetoresistive random access memory

(MRAM) constructed by low energy barrier nanomagnets, which leverages intrinsic thermal noise

to provide a natural and power-efficient building block for RBMs. Moreover, we propose a simu-

lation framework for probabilistic learning networks, called PIN-Sim, which is utilized herein to

realize a feasible circuit-level implementation of DBN architectures using a SPICE model of our

proposed embedded MRAM-based neuron. the main contributions of this chapter are as follows:

1. A Probabilistic Inference Network Simulator (PIN-Sim) to realize a circuit-level implementation

of DBN using voltage-controlled embedded MRAM-based neurons as the probabilistic sigmoidal

activation functions. The PIN-Sim framework can be used for design space exploration to achieve

an optimized network implementation based on the application requirements.

2. Detailed results and analyses of the effects of various circuit- and device-level tunable parame-

ters on the accuracy and power consumption of the DBNs implemented by PIN-Sim framework.

3. Discussions regarding the effects of noise, and variations in the resistance of the weighted

connections on the accuracy of our proposed probabilistic spin logic-based DBN circuits.
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7.1 Embedded MRAM Based Neuron as a Building Block for RBMs

The basic building block of Boltzmann Machines is a stochastic binary neuron that produces a

binary output with a given probability. This probability is modulated by the weighted input the

neuron receives from the other neurons [192], as shown Figure 7.1 (a). Here, we show that a

recently proposed building block that leverages the highly scaled embedded magnetoresistive ran-

dom access memory (MRAM) technology, which is conventionally used as a memory device, can

enable an approximate hardware representation of the binary stochastic neuron in RBM structure

as shown in Figure 7.1 (b).

The functional component of an MRAM architecture is a magnetic tunnel junction (MTJ) that is

a multilayer 2-terminal device that exhibits a resistance change depending on the orientation of its

magnetic layers. One of these magnetic layers is designed to have a fixed magnetic orientation

(fixed layer) while the magnetization of the other layer can be switched by a magnetic field or by

a spin-polarized current (free layer). In the latter, a current that flows through the fixed layer can

exert a “spin-transfer-torque” to switch the magnetization of the free layer allowing an electrical

writing mechanism [193]. In conventional memory devices, the free layer is designed to have a

large energy barrier with respect to the thermal energy (kT) so that the fixed layer can function as

a non-volatile memory. In recent years the use of superparamagnetic MTJs that are not thermally

stable have been experimentally and theoretically investigated in search of functional spintronic

devices [194, 195, 196, 197, 198, 199, 200, 201, 8].
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Figure 7.1: a) The building block of the proposed spin-based RBMs, the stochastic binary neuron and its
ideal input output characteristics are shown. The dashed red curve indicates the mean of the output that is
given by the sigmoid function, σ(z) = 1/(1 + exp(−z)), where z is the input. The dashed blue curve is
the instantaneous output while the input is being swept. The running average of the output, as indicated by
the black curve, shows a mean that is equal to the sigmoid function. b) A hardware representation of the
stochastic binary neuron in terms of an Embedded Magnetic Tunnel Junction architecture is shown. The
free layer of a conventional Embedded MTJ has an energy barrier EB of 40-60 kT and thus is non-volatile.
Reducing the energy barrier of the free layer results in a resistive behavior that is fluctuating between a
low (RP parallel orientation) and a high (RAP anti-parallel) resistance. The gate voltage of the transistor
(VIN) controls the resistance of the transistor to regulate the output voltage to approximate the behavior of a
stochastic binary neuron in hardware [9].

Herein, we use a recently proposed design that makes minimal modifications to the 1 Transistor

/ 1 MTJ architecture of the commercially available embedded MRAM technology [17]. The first

modification is to replace the stable free layer with a low-barrier nanomagnet (EB � 40kT )

that can be achieved by either reducing the total number of spins in the nanomagnet (by reducing

MsVol., where Ms is the saturation magnetization and Vol. is the volume [202]) or by using circular

disk magnets that have no preferential easy-axis [198]. The resistance of an MTJ with such a

low-barrier nanomagnet randomly fluctuates between high (RAP) and low resistance states (RP),
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creating a fluctuating output voltage at the drain of the NMOS transistor (Figure 7.1b). If the

transistor resistance that is controlled by the input voltage (VIN) is matched to that of the average

MTJ resistance at VIN = VDD/2, large voltage fluctuations are obtained at the drain output. For

typical RAP/RP ratios, a CMOS inverter can amplify these fluctuations to produce a rail-to-rail

stochastic output at this input value. Changing the input voltage modulates the transistor resistance,

and can suppress these fluctuating outputs either by making the transistor resistance too small and

shorting the output to ground, or by making the transistor resistance too high and making the output

node VDD. The basic device operation can be understood by considering the MTJ conductance [17]:

GMTJ = G0

[
1 +mz

TMR

(2 + TMR)

]
(7.1)

where mz is the instantaneous free layer magnetization that is fluctuating stochastically in the

presence of thermal noise, G0 is the average MTJ conductance, (GP + GAP )/2, and TMR is the

tunneling magnetoresistance ratio, that is defined as TMR = (GP − GAP )/GAP . The voltage

division between the transistor and the MTJ (Figure 7.1b) produces a drain voltage that can be

expressed as:

VDRAIN/VDD =
(2 + TMR) + TMR mz

(2 + TMR)(1 + α) + TMR mz

(7.2)

where we introduce a parameter, α, that is defined as the ratio of the transistor conductance (GT )

to the average MTJ conductance (G0), i. e, α = GT/G0. As the input voltage VIN changes

the transistor conductance GT , the drain output behaves as a noisy inverter. It can be seen from

Equation 7.2 that the noise amplitude at the drain is maximum when α ≈ 1, therefore the MTJ

resistance is matched to the NMOS resistance (α = 1) when VIN/VDD = 0.5 to obtain an output

with large fluctuations at the symmetry point. Even though the drain voltage shows fluctuations of

the order of hundreds of mV for typical TMR values, an additional inverter is used to amplify the

noise to produce rail-to-rail voltages for a range of input voltages.
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The full circuit behavior of the embedded MRAM based neuron is modeled by a solving the mag-

netization dynamics of the low barrier nanomagnet using the stochastic Landau-Lifshitz-Gilbert

(LLG) equation self-consistently with the transport equations in a SPICE framework [12]. The

NMOS transistor is modeled by the predictive technology models (PTM) and for simplicity a bias-

independent MTJ model is used that is modeled according to Equation 7.1. The magnetization

input for the MTJ conductance is instantaneously provided from the stochastic LLG equation. The

stochastic LLG reads:

(1+α2)dm̂/dt = −|γ|m̂× ~H−α|γ|(m̂×m̂× ~H)+1/qN(m̂×~IS×m̂)+
(
α/qN(m̂× ~IS)

)
(7.3)

where α is the damping coefficient of the nanomagnet, γ is the electron gyromagnetic ratio, q is the

electron charge, and ~IS is the spin current incident to the free layer. The spin current is polarized

along the direction of the fixed layer polarization (ẑ) and its amplitude is proportional to the charge

current Ic flowing through the MTJ, such that ~IS = PIcẑ. N is the total number of spins in the free

layer (CoFeB), N = MsVol./µB, where Ms is the saturation magnetization of CoFeB and µB is

the Bohr magneton. For the free layer, we use a monodomain circular disk magnet whose effective

field ~H is given as −4πMsmxx̂ + ~Hn, x̂ being the out-of-plane direction of the magnet. ~Hn is

the isotropic thermal noise field, uncorrelated in three directions: (Hx,y,z
n )2 = 2αkT/(|γ|MsVol.).

The transistors are based on 14nm HP-FinFET PTM.

Table 7.1: Parameters Used for Modeling and Simulation [17]
Parameters Value

Saturation magnetization (CoFeB) (Ms) 1100emu/cc [203]
Free Layer diameter, thickness 22nm, 2nm

Polarization 0.59 [204]
TMR 110% [204]

MTJ RA-product 9Ω− µm2 [204]
Damping coefficient 0.01 [203]

Temperature 26.85◦C
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In this chapter, we use a circular disk magnet with � kT energy barrier in the absence of any

shape anisotropy. Such magnets have been fabricated and characterized in [205, 206]. Moreover,

elliptical magnets showing GHz telegraphic oscillations have also been experimentally observed

in [207]. The demonstrated parameters listed in Table 7.1 [17] are used to generate all of the results

that are provided within this chapter. We also note for the chosen parameters with a circular free

layer with an in-plane anisotropy that the results are not significantly influenced by the current

that is flowing at the midpoint (VIN = VDD/2), and note that any pinning at higher input voltages

benefits the switching operation of the device.

7.1.1 RBM Hardware Implementation

Figure 7.2 exhibits a feasible hardware implementation of an n × m RBM, in which neurons

based on the concise embedded MRAM-based design described in the previous section are used

to generate the required probabilistic sigmoidal activation function. The resistive crossbar arrays

are utilized to realize the matrix multiplication. In this work, the weights are trained off-chip and

the resistive weighted connections will be programmed accordingly. Any resistive devices such

as memristors [208] or spin-orbit torque (SOT)-driven domain wall motion (DWM) devices [180]

can be utilized for weighted connections without the loss of generality.

7.2 Proposed DBN structure

To implement the positive and negative weights in the w matrix, two resistive weighted arrays

with the same dimensions are required [209], as shown in Figure 7.2. The outputs of the positive

and negative weighted connections are linked to differential amplifiers which are implemented by

op-amps as shown in Figure 7.2. The output voltage of the op-amp, i.e. Vout = R1

R0
(V +

in − V −in ),

131



is applied to the MRAM-based neuron as an input signal. The neuron with embedded MRAM

will generate an output voltage signal, which fluctuates between VDD and GND with a probability

that is modulated based on the applied input voltage. Finally, a resistor-capacitor (RC) integrator

circuit is utilized to convert the probabilistic output of the neuron to an analog voltage level, which

can be later converted to a digital output through digital to analog conversion. In order to verify

the functionality and assess the performance of our proposed RBM implementation, we have sim-

ulated a 2 × 2 RBM via SPICE circuit simulation using the 14nm HP-FinFET technology library

with an MRAM-based neuron used as the activation function. The results obtained validate the

functionality of our proposed design as elaborated in Figure 7.3.

Figure 7.2: An n ×m RBM hardware implementation. Two resistive arrays are leveraged along with dif-
ferential amplifiers to implement both positive and negative weights. The embedded MRAM-based neurons
are used to evaluate the activation functions. The fluctuating output voltage of the neurons are integrated
through an RC circuit to generate the output of the proposed RBM structure [9].
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Figure 7.3: (a) a 2 × 2 RBM implementation using the embedded MRAM based neuron. The DC bias
voltage of VDD/2 = 400mV is added to the output of the differential amplifier to set our proposed neuron
at its midpoint. (b) The behavior of the implemented RBM for IN0 = VDD and IN1 = VDD while the
positive and negative weight resistances are 1kΩ and 2kΩ, respectively. The input voltage connected to
the positive terminal of the differential amplifier is larger than the negative terminal resulting in an output
voltage larger than VDD/2. The output of the differential amplifier is connected to the input of the neuron,
thus the VIN/VDD =∼ 0.7 for the neuron leading to output logic “1”, as shown in Figure 7.1 (b). (c) The
behavior of the RBM for IN0 = 0 and IN1 = 0. The inputs of the differential amplifiers are near zero,
thus VIN/VDD =∼ 0.5 and the state of the neuron fluctuates between “0” and “1”. (d) The RBM behavior
for IN0 = VDD and IN1 = VDD while the positive and negative weight resistances are 2kΩ and 1kΩ,
respectively. The VIN/VDD =∼ 0.3 resulting in the neuron being in state “0” according to Figure 7.1 (b)
[9].
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7.2.1 Probabilistic Inference Network Simulator (PIN-Sim)

In order to automate and scale up the design space exploration of DBNs at the circuit-level, we

have developed a hierarchical simulation framework called PIN-Sim, which can be utilized to

implement any probabilistic learning networks. The block diagram of the PIN-Sim framework used

to implement DBNs in our work is shown in Figure 7.4, which is comprised of five primary blocks.

The PIN-Sim methodology is described in Algorithm 1. First, we have modified a MATLAB

implementation of DBN developed in [186] to train the network and obtain the trained weight (W)

and bias (B) matrices. The extracted (W) and (B) matrices are then applied to a MATLAB module

called mapWEIGHT, the functionality of which is described in Algorithm 2. The mapWEIGHT

module first converts each of the W and B matrices with positive and negative elements to two

separate matrices with only positive elements as described below:

w+
(i,j) =


w(i,j), if w(i,j) ≥ 0

0, if w(i,j) < 0

, w−(i,j) =


0, if w(i,j) ≥ 0

−w(i,j), if w(i,j) < 0

(7.4)

b+
j =


bj, if bj ≥ 0

0, if bj < 0

, b−j =


0, if bj ≥ 0

−bj, if wj < 0

(7.5)

Next, the mapWEIGHT module maps the elements in W+, W−, B+, and B− matrices to their

corresponding conductance values using the below equations:

∀w(i,j) ∈ (W+,W−) : gw(i,j) =
(gmax − gmin)× (w(i,j) − wmin)

wmax − wmin
+ gmin (7.6)
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∀b(i,j) ∈ (B+, B−) : gb(i,j) =
(gmax − gmin)× (b(i,j) − bmin)

bmax − bmin
+ gmin (7.7)

where ∀g(i,j) ∈ G : gmin ≤ g(i,j) ≤ gmax, in which gmin = 1/rmax and gmax = 1/rmin are

minimum and maximum conductances of all weighted connections in the crossbar weighted array.

Moreover, bmax, bmin, wmax, and wmin are the maximum and minimum values in all of the bias and

weight matrices, respectively. Finally, Equation 7.8 is utilized to convert and quantize all of the

obtained conductance values to their corresponding resistance values, which can then be utilized

to implement the required resistive crossbar array.

∀g(i,j) ∈ (GW+, GW−, GB+, GB−) : r(i,j) =
round(Q× 1/g(i,j))

Q
(7.8)

whereQ is the quantization factor, andGW+,GW−,GB+, andGB− are positive weight, negative

weight, positive bias, and negative bias conductance matrices, respectively.

Once the positive and negative weight and bias resistance matrices are obtained, they will be con-

verted to text files and applied to a Python module called mapRBM.py, shown in Figure 7.4, which

produces plural crossbar weighted array circuits in SPICE automatically based on the defined net-

work topology. Finally, a testDBN.py module is developed using Python scripts, which utilize the

generated circuit of the DBN, and the model of the probabilistic neuron to perform a SPICE circuit

simulation and calculate the error rate using the test inputs and test labels, which are provided for

the testDBN module in form of text files.
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Figure 7.4: (a) The PIN-Sim framework can be utilized to explore the design space to realize the optimized
network implementation based on the application requirements. (b) The block diagram of the PIN-Sim
framework, which consists of five main modules: (1) trainDBN: a MATLAB-based module used for training
the DBN architecture. (2)mapWeight: a module developed in MATLAB that converts the trained weights
and biases to their corresponding resistance values. (3) mapDBN: a Python-based module which provides
a circuit-level implementation of the RBMs using the obtained weight and bias resistances. (4) neuron: A
SPICE model of the MRAM-based stochastic neuron. (5) testDBN: the main module developed in Python
that executes test evaluations to assess the error rate and power consumption using the outputs of the other
modules in PIN-Sim [9].

7.3 Simulation Results and Discussion

Herein, we have leveraged a hierarchical simulation method to examine the performance of our

DBN implementation. In software-level simulation, the behavioral results of the developed embed-

ded MRAM-based neuron model are used to implement a DBN in MATLAB for MNIST pattern

recognition application [187]. In the hardware-level simulation, the proposed framework is used to

develop a circuit-level DBN implementation using the p-bit SPICE model and 14nm HP-FinFET

PTM technology in SPICE circuit simulator with 0.8V nominal voltage.
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Algorithm 1: PIN-Sim Methodology [9]
Input: test dataset (Dtest) with the target labels (Label), # of test samples(S), #of RBMs(M),
#of nodes in hidden layer x (Nx)
Output: Error Rate

1 Initialize: Err = 0
2 weight.mat, bias.mat⇐ Contrastive Divergence Algorithm
3 posWeight.txt, negWeight.txt, posBias.txt, negBias.txt⇐

mapWeight(Weight.mat,Bias.mat)
4 for i= 1 : S do
5 input data = Dtest(i) ;
6 for j= 1 : M do
7 RBM(j).sp⇐

mapRBM(input data,Nj+1, posWeight.txt, negWeight.txt, posBias.txt, negBias.txt);

8 Run RBM(j).sp in HSPICE and store the obtained output voltages in array outRBM ;
9 for k= 1 : Nj do

10 Run neuron.sp model with outRBM(k) as the input of the kth Neuron;
11 end
12 Store the output of the neurons in array OUTPUT ;
13 if ( j = M ) then
14 if (OUTPUT 6= Label(i)) then
15 Err+ = 1 ;
16 end
17 else
18 input data = OUTPUT ;
19 end
20 end
21 end
22 ErrorRate = Err/S ;
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Algorithm 2: mapWeight Methodology [9]
Input: weight.mat, bias.mat, #of RBMs (M)
Output: posWeight(n).txt, negWeight(n).txt, posBias(n).txt, negBias(n).txt, where n is

the RBM number
1 Require: rmin, rmax, Quantization Factor (Q)
2 gmax = 1/rmin;
3 gmin = 1/rmax;
4 Q = Q/(rmax − rmin)
5 for i= 1 : M do
6 W+,W− ⇐ weight(i) Matrix ;
7 B+, B− ⇐ bias(i) Matrix ;
8 wmin = smallest weight value in Wpos,Wneg ;
9 wmax = largest weight value in Wpos,Wneg ;

10 bmin = smallest weight value in Bpos, Bneg ;
11 bmax = largest weight value in Bpos, Bneg ;
12 GW+ = (gmax−gmin)×(W+−wmin)

wmax−wmin
+ gmin , RW+ = round(Q×1/GW+)

Q
;

13 GW− = (gmax−gmin)×(W−−wmin)
wmax−wmin

+ gmin , RW− = round(Q×1/GW−)
Q

;

14 GB+ = (gmax−gmin)×(B+−bmin)
bmax−bmin

+ gmin , RB+ = round(Q×1/GB+)
Q

;

15 GB− = (gmax−gmin)×(B−−bmin)
bmax−bmin

+ gmin , RB− = round(Q×1/GB−)
Q

;
16 posWeight(i).txt⇐ RW+ ;
17 negWeight(i).txt⇐ RW− ;
18 posBias(i).txt⇐ RB+ ;
19 negBias(i).txt⇐ RB− ;
20 end
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7.3.1 MATLAB simulation

Herein, we have modified the sigmoid activation function in a MATLAB implementation of DBN

[186] by using the device-level simulation results of the proposed embedded MRAM-based neuron.

To assess the performance of the implemented DBN, we have used the MNIST data set [187]

including 60,000 training and 10,000 test sample images of hand-written digits, each of which

having 28×28 pixels. We have used Error rate (ERR) and root-mean-square error (RMSE) metrics

to evaluate the performance of the DBN, as expressed by the following equations [186]:

ERR =
NF

N
(7.9)

RMSE =

√√√√ 1

MN

N∑
k=1

(yk − F (xk)2) (7.10)

where M is the number of output classes, N is the number of input data, NF is the number of false

inference, F is the inference of the trained DBN, xk is the k-th input data and yk represents its

corresponding target output.

As shown in Figure 7.5, the most elementary model of the DBN requires 784 nodes in visible

layer for the 28 × 28 pixels of the input images, and 10 nodes in hidden layer for 0-9 output

digits. Figure 7.6 shows the relation between the error rate and the number of training samples for

seven distinct DBN topologies, which is obtained using 1,000 test samples. The results obtained

by MATLAB simulation exhibit that an error rate of 28.2% for a 784 × 10 DBN trained by 500

training inputs can be decreased to a 2.5% error rate achieved using 784×500×500×500×10 and

784×500×500×10 DBN topologies, which are trained by 10,000 input training samples. Thus, the

recognition accuracy can be improved by increasing the number of hidden layers in the network,
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number of nodes in each layer, and number of training samples. However, these improvement

can lead to higher power consumption and area overheads as investigated in the hardware-level

simulations elaborated below.

Figure 7.5: The most elementary 784 × 10 DBN required for MNIST digit recognition application. The
visible layer includes 784 nodes to handle 28× 28 pixels of the input images, while the 10 nodes in hidden
layer represent the output classes [9].

Figure 7.6: (a) ERR vs. training samples for various DBN topologies, (b) RMSE vs. training samples for
various DBN topologies [9].
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7.3.2 PIN-Sim simulation

In this section, we utilize our proposed PIN-Sim framework to provide a circuit-level model of

DBN architecture. Next, we will provide the energy and power consumption profiles of the seven

different DBN topologies investigated in the previous section to analyze the energy and accuracy

trade-offs of these networks. Finally, we will focus on the effect of various important hardware-

level parameters. These are vital parameters during design space exploration that influence the

accuracy of DBN architectures as tradeoffs necessary to obtain efficient hardware-level implemen-

tation for pattern recognition applications.

7.3.2.1 Power and Energy Consumption Analysis

Figure 7.7(a) depicts the power consumption of various DBN topologies while evaluating a single

input image. As shown, a significant amount of power is consumed in the weighted connections,

while less than 10% of the total power is consumed in the neurons of an embedded MRAM-

based p-bit approach. For instance, the total power consumption of a 784 × 200 × 10 DBN is

approximately equal to 86 mW, only 5.6 mW of which is dissipated in the activation functions. This

is achieved by using the proposed power-efficient embedded MRAM-based neurons to implement

the activation functions, as opposed to more elaborate floating-point circuits and pseudo-random

number generators. Moreover, it is shown that the total power consumption depends primarily

upon the aggregate number of neurons that are used in a network and not the number of layers.

For instance, the power consumption of a 784 × 500 × 10 DBN is greater than that of a 784 ×

200× 200× 10 network, although the latter has higher number of hidden layers. However, the test

operation delay is linearly proportional to the number of hidden layers which is determined by the

signal propagation and computation progression. In particular, the RC integrator circuit shown in

Figure 7.2 is sampled every 2 ns, leading to an operating clock frequency of 500 MHz and a delay
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of 2 ns for each RBM. Thus, the 784× 200× 200× 10 DBN mentioned above requires three clock

cycles to complete the evaluation operation, while a 784×500×10 DBN can produce its output in

two clock cycles. Figure 7.7(b) shows the energy consumption for various DBN topologies, which

simultaneously includes the impact of number of nodes and hidden layers on power consumption

and delay, respectively.

Figure 7.7: Test operation: (a) Power Consumption for various DBN topologies, (b) Energy Consumption
for various DBN topologies [9].

Table 7.2: PIN-Sim tunable parameters and their default values [9].
Parameters Description Default Value
Topology Defines the number of layers and nodes 784× 200× 10
TrainNum # of training images 3,000

Rmin Minimum resistance of the weighted connections 1 kΩ
∆RW Difference between min and max resistances of weighted connections 400%
Q Quantization factor 8

R0, R1 Resistances of the resistors in the differential amplifiers 1 kΩ, 5 kΩ
Ri, Ci Resistance and capacitance of the RC integrator circuits 100 kΩ, 20 fF
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7.3.2.2 PIN-Sim tunable parameters and their affect on DBN performance

Table 7.2 lists the tunable parameters in the PIN-Sim framework, which can be adjusted based on

the application requirements. The last column of the table shows the default values that are utilized

herein for the MNIST digit recognition application. Figure 7.8 shows the output voltages of the

neurons in the last hidden layer of a 784× 200× 10 DBN utilized for MNIST pattern recognition

tasks, each of which represents an output class. The probabilistic outputs of the p-bit devices are

shown in Figure 7.8(a), while Figure 7.8(b) exhibits the outputs of their corresponding integrator

circuits. The outputs of the integrators are sampled after 2 ns, which is equal to the time constant of

the integrator circuit. The output with the highest voltage amplitude represents the class to which

the input image belongs. The results obtained exhibit a correct recognition operation for a sample

input digit “4” within the MNIST dataset.

Next, we will focus on the effect of some of the tunable parameters on the accuracy and power

consumption of DBN architectures implemented by the proposed PIN-Sim framework. First, the

effect of ∆RW is investigated, which defines the possible resistance range of weights and biases

as follows, rmax = (1 + ∆RW

100
) × rmin. The rmax and rmin parameters are utilized in the map-

WEIGHT module in the PIN-Sim tool to map the trained weights and biases to their corresponding

resistance values according to Equations 7.6 and 7.7, respectively. Figure 7.9(a) shows the effect

of ∆RW on the recognition accuracy and power consumption of our default 784× 200× 10 DBN

implementation. As it can be seen in the figure, the error rate is reduced from 53% to 24% by

increasing the ∆RW from 100% to 400%, however a significant change in the error rate cannot be

observed for ∆RW values larger than 400%. These results are particularly beneficial for magnetic

tunnel junction (MTJ)-based weighted connections [180, 210], in which the difference between

maximum and minimum resistance is defined by the tunneling magneto-resistance (TMR) effect.

The results obtained show that a TMR of 400% could be adequate to achieve the desired error rate.
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However, it is worth noting that this is quite application specific and can vary for different datasets.

These results are worthy since the realization of higher TMR values would impose more complex

fabrication processes [211], of which 700% [212] have been demonstrated experimentally and oth-

ers of 250% [213] via current scalable means. Moreover, as it is shown in Figure 7.9(a), increasing

the ∆RW results in reduced power dissipation in the weighted array, while the power dissipated in

activation functions remains almost unchanged. The higher resistance range for the weighted con-

nections increases the overall resistance of the weighted array. Therefore, since the input voltages

remain unchanged the current flowing through the synapses will be decreased, which consequently

reduces the power dissipated in the weighted array.

Figure 7.8: Output of a 784×200×10 DBN for a sample digit of “4” in the MNIST dataset: (a) Probabilistic
output of the p-bit devices, (b) Output of the integrator circuit. The output voltage of the neuron-4, which
represents the digit “4” in the output classes, is greater than the other output voltages verifying a correct
evaluation operation [9].
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Figure 7.9: (a) Error rate and power consumption versus ∆RW , and (b) error rate versus quantization
factor (Q) for a 784 × 200 × 10 DBN trained by 3,000 training images. The software implementation is
technology-independent, in which the ideal sigmoid activation function and weight values are utilized in
MATLAB to calculate the error rate. Thus, the changes in the tunable parameters used in the circuit-level
SPICE implementation do not affect the measured error rates [9].

In practice, providing an accurate and continuous range of weight resistances at nanoscale is not

attainable due to the fabrication complexities and process variation. Therefore, a realistic circuit-

level model of the resistive crossbar architecture should leverage quantized weights. Thus, leverag-

ing PIN-Sim framework for design space exploration, we have assigned a quantization factor (Q)

parameter, which can be tuned by the user based on the application requirements. Figure 7.9(b)

shows the effect of weight discretization on the recognition accuracy of a 784 × 200 × 10 DBN

with ∆RW of 400% that is trained with 3,000 training samples. As shown, the error rate for the

hardware implementation with Q = 4, which means the weights are discretized into four equal

intervals between Rmin and Rmax, is increased to 21.2% from the 19% error rate that is achieved

by the DBN with unquantized weights. As it is expected, this increase in the error rate is mainly

caused by the information loss that occurs during the discretization. Moreover, implementations

with largerQ values result in error rates closer to that of the DBN with unquantized weights, which
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can also be expected since the discretization intervals are so small that the weight values are get-

ting close to their unquantized values. However, an interesting phenomenon can be observed in

the hardware implementation with Q = 8, where the error rate of 17.8% is realized which is lower

than the error rate of the unquantized DBN. We have performed multiple tests to ensure that this is

a repetitive behavior for the DBNs with Q = 8, and in all of the cases the error rate obtained was

lower than that of the DBN with unquantized weights. These results can be particularly interesting

in the hardware-implementation, since for instance in our examined case there is a 0.5 kΩ gap

between various weight resistances, considering the Rmin = 1kΩ and ∆RW = 400%, which can

provide some robustness against process variations without incurring a significant increase in the

error rate. In particular, we have investigated the impacts of the variations in the input voltages of

neurons, which can be induced by different noise sources, as well as variations in the resistance

of the weighted connections on the recognition accuracy of the network. According to the results

shown in Figure 7.10 (a), a 784 × 200 × 10 DBN trained by 3,000 images loses 1% accuracy in

presence of variations in weighted connections ranging from 0.1 kΩ to 0.4 kΩ. Moreover, Figure

7.10 (b) exhibits 1.4% increase in the error rate for variations in the input voltages of neurons with

a standard deviation of 20 mV.

Figure 7.10: (a) Error rate versus the variation in the resistance of weighted connections, and (b) error rate
versus the variations in the input voltages of the neurons for a 784×200×10 DBN trained by 3,000 training
images [9].
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7.3.3 Discussion

Some of the previous hardware implementations of DBNs are listed in Table 6.3. The designs

proposed in [96, 97] leverage FPGAs to achieve speedups of 25-145 compared to software im-

plementations, however these approaches suffer from constrained clock frequencies and routing

congestion, as well as major resource deficiencies due to the significant embedded memory uti-

lization for both weighted connections and activation functions. In [188], those authors have pro-

posed optimization methods to reduce memory requirements for weights and biases, however im-

plementing each activation function still requires dedicated piecewise linear approximator (PLA),

random number generator (RNG), and comparator circuits which lead to increased area and en-

ergy consumption per neuron than the embedded MRAM-based approach herein. In [98], the low-

complexity characteristics of stochastic CMOS-based arithmetic units are leveraged to implement

RBM with reduced area and power consumption. However, the large number of linear feedback

shift registers (LFSRs) that are required to generate the long input and weight bit-streams results

in increased latencies that considerably limits the energy savings.

On the other hand, emerging technologies such as resistive RAM (RRAM) and phase change mem-

ory (PCM) have been recently utilized within the crossbar arrays to implement matrix multiplica-

tion within RBMs [100, 99, 101]. In particular, [100] has achieved 100× and 10× improvement

in terms of operation speed and energy consumption, respectively, compared to single-threaded

cores by using RRAM devices as weighted connections. In all of the above-mentioned designs,

CMOS-based circuits such as multipliers and RNGs are utilized to realize the probabilistic be-

havior of activation functions. In [8], authors have utilized low energy barrier spin-orbit torque

(SOT) MTJs to implement the probabilistic sigmoidal activation function, which realizes signif-

icant area and energy reductions. However, the current-mode behavior of the SOT-MTJ devices

imposes significant power consumption to the activation functions, while requiring weighted con-
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Table 7.3: Various DBN hardware implementations with a focus on activation function structure [8, 9].

Design Weighted Connection Activation Function
Energy

per Neuron
Normalized area

per neuron
[96] Multipliers CMOS-based LUTs N/A N/A

[97] Multipliers
- 2-kB BRAM

- PLA
- RNG

∼10-100 nJ ∼ 3000×

[188]
- Multiplier
- Adder tree

- PLA
- RNG

- Comparator
∼10-100 nJ ∼ 2000×

[98]
- LFSR

- bit-stream
- AND/OR gates

-LFSR
- Bit-wise AND

- tree adder
- FSM-based tanh unit

∼10-100 nJ ∼ 90×

[99] RRAM Memristor Off-chip N/A N/A

[100] RRAM

- 64× 16 LUTs
- Pseudo Random
Number Generator

- Comparator

∼1-10 nJ ∼ 1250×

[101] PCM Off-chip N/A N/A

[8]
SOT-DWM

MΩ resistances
Low-energy barrier

SOT-MTJ ∼1-10 fJ ∼ 1.25×

Proposed Herein Memristive Devices
MRAM-based

Stocahstic Neuron
Neuron: ∼1-10 fJ

Integrator: ∼10-20 fJ
Neuron: 1×

Integrator: ∼ 3×

nections in MΩ resistances which can incur significant area overhead and fabrication complexity

[180, 185]. The work presented herein utilizes a voltage-driven embedded MRAM-based neu-

ron with low energy barrier unstable nanomagnets, which leverages the intrinsic thermal noise to

generate sigmoidal probabilistic activation functions required for RBMs within a power-efficient

package. As listed in Table 6.3, the proposed RBM implementation using embedded MRAM-

based neuron can achieve approximately three orders of magnitude energy reduction compared

to the previous energy-efficient CMOS-based implementations, while realizing at least 90× de-

vice count reduction. However, as it was described in previous sections, the embedded MRAM

based neuron requires an RC circuit to integrate its output voltage. The SPICE circuit simula-

tion results exhibits an approximate average energy consumption of 10-20 fJ for the RC circuit as

listed in Table 6.3. Moreover, the area required to implement the RC circuit with 100 KΩ resis-

tor and 20fF capacitor is approximately three times larger than that of the MRAM-based neuron
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[214, 215]. Thus, the proposed MRAM-based activation function can achieve approximately 20×

and 300× area reduction compared to the CMOS-based stochastic neurons proposed in [98] and

[100], respectively. The area of the MRAM-based neuron, which is utilized as the baseline for the

area comparisons, is approximately equal to 32λ × 32λ, that is obtained by the layout design, in

which λ is a technology-dependent parameter. Herein, we have used the 14nm FinFET technology,

which leads to the approximate area consumption of 0.05µm2 per neuron. MRAM devices can be

fabricated on top of the transistors, thus incurring near-zero area overhead.
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CHAPTER 8: CONCLUSION

8.1 Summary

The proposed HSC-FPGA offers an intriguing feasible architecture for the next generation of con-

figurable fabrics, which allows embracing the advantages of both CMOS and beyond-CMOS tech-

nologies without requiring significant modification to the routing structure, programming paradigms,

and synthesis tool-chain of the commercial FPGAs. In the HSC-FPGA’s fabric structure, hy-

brid spin/CMOS CLBs are used to implement both sequential and combinational logic circuits.

Within its CLBs, the intrinsic characteristics of the MTJ and its corresponding sensing circuit

make MRAM-LUT a suitable alternative for CMOS-based LUT-FF pairs to implement sequential

logic, while combinational logic circuits can be implemented by SRAM-LUTs.

SPICE simulation results indicate at least 40% and 83% reduction can be realized in average read

power and standby power, respectively, for MRAM-LUT compared to SRAM-based LUT-FF pairs.

However, these advantages are achieved at the cost of significantly larger write energy, which

fortunately occurs rarely, as well as more than 20% increase in the LUT circuit area that is mainly

caused due to the large size of the CMOS transistors in the MTJ’s write circuit. Thus, device-level

optimizations were proposed, according to which STT-MTJ based devices were replaced by SHE-

MTJ devices in MRAM-LUT circuits realizing approximately 67% and 61% reductions in terms

of write energy consumption and area, respectively. Next, fabric-level analysis for the developed

HSC-FPGA show that the HSC-FPGA can achieve at least 18%, 70%, and 15% reduction in terms

of area, standby power, and read power consumption, respectively, for various ISCAS-89 and ITC-

99 benchmark circuits.

Moreover, the impact of process variation on MRAM-LUT and SRAM-LUT circuits is investi-
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gated using the Monte Carlo SPICE circuit simulations. The results obtained exhibited an average

error rate of 44% for the MRAM-LUT in presence of variations in both CMOS and MTJ devices.

The detailed analyses recognized the sense amplifier circuits as the most susceptible portion of

the MRAM-LUT circuit to PV. Therefore, we have used a modular redundancy circuit-level ap-

proach to improve the PV-tolerance of the MRAM-LUT. The average error rate of the developed

MR-based MRAM-LUT circuit was reduced to 12%, while further device-level innovations could

reduce the error rate to less than 0.1% as provided in the literature. The PV-tolerance is achieved at

the cost of 24% and 6% read power consumption and area overheads compared to regular MRAM-

LUT, while the standby and write power consumptions remain unchanged. The fabric-level sim-

ulations show that the MR-MRAM based HSC-FPGA realizes at least 9% and 17% read power

and area reductions compared to conventional SRAM-based FPGAs, while maintaining the 70%

reduction in standby power, which can be further decreased by the power-gating allowed by the

non-volatility feature of MRAM-LUTs.

An orthogonal dimension of fabric heterogeneity is also non-determinism enabled by either low-

voltage CMOS or probabilistic emerging devices. It can be realized using probabilistic devices

within a reconfigurable network to blend deterministic and probabilistic computational models.

Herein, we developed a hybrid CMOS/spin-based DBN implementation using p-bit based activa-

tion functions modeled to produce a probabilistic output that can be modulated by an input current.

The device-level simulations exhibited a sigmoid relation between the input currents and output

probability. The SPICE model of the p-bit is used to design a weighted array structure to imple-

ment RBM. The circuit simulations showed that the performance of the array can be improved by

enlarging the array size, as well as reducing the resistance of the weighted connections. However,

these improvements are achieved at the cost of increased area and power consumption. For in-

stance, the lowest power dissipation among the examined designs belongs to an 8 × 8 array with

the maximum resistance of 1MΩ for weighted connections. However, this structure can only pro-
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vide the output probabilities ranging from 0.175 to 0.77, which is the narrowest range among the

examined designs resulting in a DBN implementation with lowest accuracy.

Next, we simulated a DBN for digit recognition application in MATLAB using the device and

circuit-level behavioral models. Trade-offs include the relations between the recognition accuracy

of the DBN and the number of training samples, which are comparable to conventional hardware

implementations. The recognition error rate decreased substantially for the first thousand training

samples, regardless of the size of the array, while benefits continue through several thousand inputs.

However, at least two hidden layers are desirable to achieve suitable error rates. Finally, we have

provided a comparison between previous hardware-based RBM implementations and our design

with an emphasis on the probabilistic activation function within the neuron structure. The results

exhibited that the p-bit based activation function can achieve roughly three orders of magnitude

energy improvement, while realizing at least 90X reduction in terms of device count, compared to

the previous most energy-efficient designs.

Finally, we proposed a spintronic neuromorphic reconfigurable array (SNRA) that offers an in-

triguing architectural approach to realize beyond von-Neumann paradigms which embrace both

probabilistic and Boolean computation. As developed herein, the inclusion of in-field programma-

bility offers several practical benefits beyond simulation towards a feasible post-Moore fabric.

Most importantly, it can accommodate process variation issues that would otherwise preclude the

validity of the baseline training values that differ from the manufactured component.

To coordinate training, a four-state FSM is shown to be sufficient to implement the contrastive

divergence (CD) algorithm, as well as the control circuitry for the test operation of DBNs with var-

ious topologies. The proposed FSM is capable of unsupervised training of an RBM in N+3 clocks

where N denoted the number of nodes in the hidden layer of RBM. Interpolating the synthesis re-

sults indicate a conventional FPGA footprint can accommodate training circuitry for significantly
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deeper belief networks. This is facilitated using the flexible allocation and routing of layers and

their downstream destinations which is a central tenant of CD training. For instance, it was shown

that the FSM for both 784×500×10 and 784×500×500×10 DBN topologies can be implemented

with 1,771 LUTs, since the size of the largest RBM in both networks is 784×500.

Beyond the flexible architectural approach, within the SNRA fabric, the device parameters are

tuned to realize either stochastic switching or deterministic behavior. In particular, near-zero

energy barrier SHE-MTJ devices are used to provide a natural probabilistic sigmoidal function

required for implementation of the neuron’s activation function within an RBM structure. Mean-

while, non-volatile SHE-MTJ devices with high energy barrier (∆ ≥ 40kT ) can be used to imple-

ment LUTs. Use of SHE-MTJ based LUTs achieves more than 80% and 50% reduction in terms of

power dissipation and area, respectively, compared to conventional SRAM-based reconfigurable

fabrics. These improvements are achieved at the cost of higher energy consumption during the

reconfiguration operation, which occurs rarely and can be tolerated due to the significant area and

power reductions realized during the normal operation of the SNRA.

Next, it was shown that a volatge-based embedded MRAM-based neurons with thermally unstable

superparamagnetic MTJs can realize a probabilistic output that can be modulated by an input volt-

age. The device-level simulations exhibited a desired sigmoidal relation between the input voltages

and output probability of the neuron. Once the functionality of the proposed stochastic neuron was

verified, we have developed an embedded MRAM-based RBM leveraging two resistive crossbar

arrays with differential amplifiers to implement the matrix multiplication operation for both pos-

itive and negative weights. SPICE circuit simulations for a 2 × 2 weighted array validated the

functionality of the proposed embedded MRAM-based RBM.

To provide a circuit-level implementation of DBN, we have developed a PIN-Sim framework which

is a transportable framework for rapid, automated, and accurate design space exploration of hybrid
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CMOS and post-CMOS neuromorphic circuits. PIN-Sim is composed of five main modules to train

the network, map the trained weights to their corresponding resistances, create the SPICE model

of the RBMs, and measure the accuracy and energy consumption. MNIST dataset is utilized to

investigate the accuracy and energy tradeoffs for seven distinct DBN topologies implemented by

the developed PIN-Sim framework. The simulation results showed that at least two hidden layers

are required to achieve suitable error rates. In particular, a 784 × 200 × 10 DBN can realize 5%

error rate while consuming less than 500 pJ energy. The error rates could be decreased to 2.5% by

using a 784× 500× 500× 500× 10 DBN topologies trained by 10,000 input training samples at

the cost of ∼ 10× higher energy consumption and significantly larger area overheads. Moreover,

PIN-Sim can be used to optimize network topologies based on different application requirements

for energy versus accuracy tradeoffs.

Finally, we have focused on the effect of various hardware-level parameters that can be adjusted

in the PIN-Sim tool on the performance of the network. One particular parameter which is specif-

ically important for MTJ and RRAM based crossbar architectures is the difference between the

largest and smallest possible resistance values in a weighted connection (∆RW ). It was shown that

at least a ∆RW of 400% is required to realize suitable error rates, however it is worth noting that

increasing the ∆RW to values larger than 400% does not lead to a significant reduction in error

rate. Therefore, some fabrication complexities for increasing the ∆RW in MTJ-based weighted

connections can be avoided. Moreover, to realize a realistic hardware implementation we have

studied the effect of weight quantization on the accuracy of our network. It was shown that a quan-

tization factor of eight, which provides eight different resistive levels in each weighted connection,

can lead to even lower error rates compared to a network with unquantized weights. This also

shows the robustness of our proposed circuit-level DBN implementation to minor variations in the

resistance of the weighted connections, which is inevitable during the fabrication process. Finally,

the comparison results exhibited that the embedded MRAM-based neuron can contribute to several
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orders of magnitude energy reduction, and reduce the area requirement by 20-fold, with respect to

recent energy-optimized designs. Although this is a simulation-based result, hardware realization

may endure significant process variation and impacts of sneak currents in large crossbar arrays.

To address these further, the development of the PIN-Sim framework provides several possibilities

for future work, including: (1) leveraging optimization techniques to reduce the performance gap

between the ideal implementation of the DBN using simulation tools such as MATLAB, and the

realistic circuit-level implementation of DBN using PIN-Sim framework, (2) training DBNs with

binary weights which can be implemented by MTJs or RRAMs, (3) implementing convolutional

DBNs using PIN-Sim for more complex pattern recognition applications.

8.2 Future Directions

8.2.1 Pinpoint Vertical Integration of Spintronic Devices for Reconfigurable Resiliency

Aggressive CMOS technology scaling in digital circuits has resulted in significant increase in

manufacturing defects and transient fault rates that consequently reduces the performance and

reliability of the emerging VLSI circuits. By the extensions to sub-10nm regimes, error resiliency

has become a major challenge for microelectronics industry, particularly mission critical systems,

e.g. space and terrestrial applications. Research to overcome these challenges has been focused

on measuring and analyzing electrical parameters within the structure of a very large scale logic

circuit. However, the exponential growth in the complexity of the modern digital circuits has

made these extensive measurement approaches impractical, due to the extreme computation cost

and effort. Utilizing reconfigurable computing by applying hardware and time redundancy to the

digital circuits offers promising and robust technique for addressing the aforementioned reliability

challenges. However, in addition to the induced energy consumption and area overheads due to

the applied logic-level redundancy, approaches relying on golden elements that are assumed to
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be fault-free, while in practice they employ conventional MOS technology in their structure, and

also suffer from mentioned scaling challenges, as well as susceptibility to radiation-induced soft

errors. Meanwhile spintronic devices offer radiation immunity and incur near-zero standby energy

consumption, making them ideal elements for these golden components. They also realize a fabric

of amorphous resources in standby mode to regain lost functionality from hard or intermittent

faults, and PV. The challenge is to provide a flexible yet effective mapping of spintronic devices to

adapt their functionality for resilience at run-time.

MTJ-based LUTs can be placed at the critical points of an ASIC to implement various logic func-

tions as a run-time adaptable fabric under middleware control. Radiation immunity of MTJ de-

vices decrease the susceptibility of these golden elements of the design to radiation-induced er-

rors. Moreover, the pinpointed magnetic LUTs provides the fabric with sufficient reconfigurability

features to mitigate PV. The fabric will be leveraged for fault detection and recovery using the

adaptive self-healing approaches. Synthesis tools should be utilized to determine the composition

of the fabric, as well as synthesizing and optimizing the HDL codes. MTJs comprising the storage

elements in the adaptable LUTs are vertically-integrated as a backend process of typical CMOS

fabrication. In addition to soft error immunity, this significantly reduces the area cost of the redun-

dancy. Therefore, the research presented in this dissertation can serve as a framework to investigate

innovations in device, circuit, and architecture levels to address the following Research Questions:

• How can the cooperating advantages of CMOS and spin-based devices be leveraged within

golden elements, both at design-time and at recovery-time?

• What is the necessary and sufficient quantity of reconfigurability to instill operationally-

significant resilience without incurring detrimental overheads?

• How can spintronic devices facilitate scalable and cost-effective techniques to address the

reliability challenges of highly-scaled FPGA and ASIC platforms?
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8.2.2 Device-Cognizant Design Space Exploration for Neuromorphic Hardware

Benefits of alternatives to von Neumann architectures for neuromorphic applications include avoid-

ance of the processor-memory bottleneck, reduced energy consumption, and area-sparing compu-

tation. Viable solutions to the challenge of designing neuromorphic architectures span the interre-

lated fields of machine learning, computer architecture, circuit design, and the potential to leverage

the complementary characteristics of emerging device technologies. Using emerging technologies

within neuromorphic architectures attempts to utilize the more complex intrinsic switching behav-

iors of the devices at-hand to achieve significant reductions in energy and execution time. However,

in order to surmount the device-level and circuit-level challenges such as susceptibility to noise and

process variation that are introduced when developing emerging neuromorphic circuits, more flex-

ible, powerful, and intelligent simulation frameworks will be required. Thus, machine intelligence

techniques are sought to optimize neuromorphic architectures by placing these aspects within-

the-loop of the design process. Advanced Cross-Layer neuromorphic simulation frameworks and

design methodologies are proposed to be researched to explore the neuromorphic hardware design

space in various architecture-to-device granularities to realize an optimized circuit-level imple-

mentation of Deep Neural Networks (DNNs).
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