

GATE AND THROUGHPUT OPTIMIZATIONS FOR
NULL CONVENTION SELF-TIMED DIGITAL CIRCUITS

by

Scott Christopher Smith

 MSEE, University of Missouri-Columbia, 1998
 BSEE, University of Missouri-Columbia, 1996
 BSCompE, University of Missouri-Columbia, 1996

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Engineering

in the field of Computer Architecture and Digital Systems
in the School of Electrical Engineering and Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Spring Term
2001

Major Professor: Dr. Ronald DeMara

UNIVERSITY OF CENTRAL FLORIDA
DISSERTATION APPROVAL

The members of the Committee approve the dissertation entitled Gate and
Throughput Optimizations for NULL Convention Self-Timed Digital Circuits
of Scott Christopher Smith, defended April 2, 2001.

Dr. Ronald DeMara, Chair

Dr. Jiann Yuan Dr. Brian Petrasko
Committee Member Committee Member

Dr. Michael Georgiopoulos Dr. Annie Wu
Committee Member Committee Member

It is recommended that this dissertation be used in partial fulfillment of the
requirements for the degree of Doctor of Philosophy from the School of Electrical
Engineering and Computer Science in the College of Engineering and Computer
Science.

Dr. Erol Gelenbe, Department Head

Issa Batarseh, Assistant Dean for Graduate Studies

Martin P. Wanielista, Dean of College

Patricia J. Bishop
Vice Provost and Dean of Graduate Studies

The committee, the college, and the University of Central Florida are not liable for any use of the
materials presented in this study.

ABSTRACT

NULL Convention Logic (NCL) provides an asynchronous design methodology

employing dual-rail signals, quad-rail signals, or other Mutually Exclusive Assertion

Groups (MEAGs) to incorporate data and control information into one mixed path. In

NCL, the control is inherently present with each datum, so there is no need for worse-

case delay analysis and control path delay matching. This dissertation focuses on

optimization methods for NCL circuits, specifically addressing three related architectural

areas of NCL design.

First, a design method for optimizing NCL circuits is developed. The method

utilizes conventional Boolean minimization followed by table-driven gate substitutions. It

is applied to design time and space optimal fundamental logic functions, a time and space

optimal full adder, and time, transistor count, and power optimal up-counter circuits. The

method is applicable when composing logic functions where each gate is a state-holding

element; and can produce delay-insensitive circuits requiring less area and fewer gate

delays than alternative gate-level approaches requiring full minterm generation.

Second, a pipelining method for producing throughput optimal NCL systems is

developed. A relationship between the number of gate delays per stage and the worse-

case throughput for a pipeline as a whole is derived. The method then uses this

relationship to minimize a pipeline�s worse-case throughput by partitioning the NCL

combinational circuitry through the addition of asynchronous registers. The method is

applied to design a maximum throughput unsigned multiplier, which yields a speedup of

2.25 over the non-pipelined version, while maintaining delay-insensitivity.

Third, a technique to mitigate the impact of the NULL cycle is developed. The

technique further increases the maximum attainable throughput of a NCL system by

reducing inherent overheads associated with an integrated data and control path. This

technique is applied to a non-pipelined 4-bit by 4-bit unsigned multiplier to yield a

speedup of 1.61 over the standalone version.

Finally, these techniques are applied to design a 72+32×32 multiply and

accumulate (MAC) unit, which outperforms other delay-insensitive/self-timed MACs in

the literature. It also performs conditional rounding, scaling, and saturation of the output,

whereas the others do not; thus further distinguishing it from the previous work. The

methods developed facilitate speed, transistor count, and power tradeoffs using

approaches that are readily automatable.

 iv

ACKNOWLEDGEMENTS

I would like to thank Theseus Logic, Inc. for their financial support and the

opportunity to work with such novel and exciting technology. I would like to thank

Dr. DeMara for his technical and editorial advice that has helped shape this work. I

would like to thank the committee members who have taken the time to review and

comment on this dissertation. I would also like to thank the state of Florida for the

fellowships provided that have allowed me the opportunity to pursue this degree. But

most of all I would like to thank my loving wife Tamara, for her patience and support in

my continued education.

 v

TABLE OF CONTENTS

LIST OF TABLES..x

LIST OF FIGURES .. xi

CHAPTER 1. INTRODUCTION ...1

1.1. Objective ..1

1.2. History and Benefits of NCL ...1

1.3. Research Challenges ..5

1.4. Dissertation Overview ...6

CHAPTER 2. PREVIOUS WORK...8

2.1. Overview of Asynchronous Methods ..9

2.1.1. Gate-Level Delay-Insensitive Methods ..11

2.1.2. Transistor-Level Delay-Insensitive Methods................................12

2.2. Overview of NCL ..12

2.2.1. Delay-Insensitivity..13

 2.2.2. Logic Gates and Functional Blocks ..15

 2.2.3. Completeness of Input ..20

 2.2.4. Observability...22

 2.2.5. NCL Registration..23

 2.2.6. NCL Completion...29

 vi

CHAPTER 3. THRESHOLD COMBINATIONAL REDUCTION METHOD.............31

3.1. Chapter Outline..32

3.2. TCR Method Definition...32

3.2.1. Method 1: Incomplete Functions ..34

 3.2.2. Method 2: Dual-Rail Optimizations..34

 3.2.3. Method 3: Quad-Rail Optimizations...36

 3.2.4. Performance Assessment ..37

3.3. Application to Input-Complete Fundamental Logic Functions38

3.4. Application to Full Adder ..40

3.5. Application to Up-Counter ..47

 3.5.1. Method 1: Incomplete Functions ..51

 3.5.2. Method 2: Dual-Rail Encoding Optimizations53

 3.5.3. Method 3: Quad-Rail Encoding Optimizations57

 3.5.4. Other MEAG Optimizations ...61

 3.5.5. Up-Counter Performance Summary ...64

CHAPTER 4. GATE-LEVEL PIPELINING OPTIMIZATIONS..................................66

4.1. Chapter Outline..67

4.2. Previous Work ...67

4.2.1. Relation of NCL to Previous Work ..70

4.3. Method Definition..72

4.3.1. Throughput Derivation..75

 4.3.1.1. Idealized Completion Circuitry......................................77

 vii

 4.3.1.2. Non-Zero Delay Completion Circuitry..........................79

 4.3.2. Bit-Wise Completion ..82

4.4. Application to Unsigned Multiplier ...85

 4.4.1. Pipelined Multipliers with Full-Word Completion.......................87

 4.4.2. Summary of Multiplier Designs using Full-Word Completion93

 4.4.3. Applying Bit-Wise Completion ..93

4.5. Conclusion ...94

CHAPTER 5. NULL CYCLE REDUCTION TECHNIQUE...96

5.1. Introduction..96

5.2. NULL Cycle Reduction ...97

5.2.1. Demultiplexer ...99

5.2.2. Completion Detection Circuitry..100

5.2.3. Sequencer #1...100

5.2.4. Multiplexer..101

5.2.5. Sequencer #2...102

5.3. Simulation Results ...103

CHAPTER 6. NCL MULTIPLY AND ACCUMULATE UNIT106

6.1. Introduction..107

6.2. Previous Work ...108

6.3. Self-Timed MAC Design Methods..109

6.3.1. Non-Pipelined Modified Baugh-Wooley MAC..........................111

 6.3.1.1. Operation..111

 viii

 6.3.1.2. Design Optimizations...115

 6.3.1.3. Average Cycle Time Determination117

 6.3.2. Non-Pipelined Modified Booth2 MAC118

 6.3.2.1. Operation..118

 6.3.2.2. Design Optimizations...120

 6.3.2.3. Average Cycle Time Determination120

 6.3.3. Pipelined Modified Baugh-Wooley MAC..................................120

 6.3.3.1. Operation..120

 6.3.3.2. Throughput Maximization ...122

 6.3.4. Pipelined Modified Booth2 MAC...126

 6.3.4.1. Operation..126

 6.3.4.2. Throughput Maximization ...128

6.3.5. Simulation Results ..128

6.4. Carry-Propagate Adder Comparison..129

6.5. Gate Requirements for Proposed Designs ...132

 6.5.1. Modified Baugh-Wooley MAC ..133

 6.5.2. Modified Booth2 MAC...133

 6.5.3. Array MAC ...134

 6.5.4. Modified Booth3 MAC...135

 6.5.5. Modified Booth4 MAC...136

 6.5.6. Combinational 2-Bit × 2-Bit MAC...137

 6.5.7. Combinational 2-Bit × 3-Bit MAC...138

 ix

 6.5.8. Combinational 2-Bit × 4-Bit MAC...139

 6.5.9. Combinational 3-Bit × 3-Bit MAC...140

 6.5.10. Quad-Rail MACs ..142

6.6. Conclusion ...142

CHAPTER 7. Conclusion ...145

7.1. Summary ..145

7.2. Future Work ...147

LIST OF REFERENCES..150

 x

LIST OF TABLES

I. Attributes of clocked Boolean and asynchronous methods3

II. Attributes of self-timed methods ...10

III. 27 NCL macros ..36

IV. Performance characteristics of input-complete NCL logic functions....................40

V. Full adder using various delay-insensitive methods ..43

VI. Delay-insensitive methods for f(a, b, c, d) = a • b� • c • d�...................................47

VII. Alternate designs for NCL up-counter increment circuit65

VIII. Discrete timing chart for the idealized NCL cycle ..77

IX. Discrete timing chart for the general NCL cycle ...80

X. Stage delay and throughput for various multiplier designs93

XI. Sequencer output..101

XII. NCR vs. pipelining for multiplier application ...104

XIII. Saturation table ..115

XIV. Propagation delay and gate count for 4-bit adders...131

XV. Algorithm, technology, and cycle time for various self-timed MACs144

 xi

LIST OF FIGURES

1. Symbolic incompleteness of a Boolean AND gate..13

2. NCL AND function: Z = X • Y and associated waveforms ..15

3. THmn threshold gate..16

4. Static CMOS implementation of a TH23 gate...16

5. NULL flowing through combinational circuitry..18

6. Completion detection of NULL output..19

7. DATA flowing through combinational circuitry ...19

8. Completion detection of DATA output ...19

9. DATA-to-DATA cycle time (TDD) ..20

10. Incomplete AND function: Z = X • Y ...21

11. Conventional input-complete AND function: Z = X • Y ..21

12. Incorrect XOR function: Z = X ⊕ Y (orphans may propagate through a gate)...........22

13. Correct XOR function: Z = X ⊕ Y (orphans may not propagate through any gate) ...23

14. n-bit dual-rail registration ..24

15. Initial register state...26

16. Register state after traversing combinational circuitry ..27

17. Register state after NULL wavefront passes through downstream register27

 xii

18. Register state after DATA wavefront passes through current register27

19. Register state after NULL wavefront passes through upstream register28

20. Static register state ...28

21. Single-bit dual-rail register..29

22. Single-signal quad-rail register ..30

23. N-bit completion component ...30

24. TCR design flow..33

25. Conventional input-complete OR function: Z = X + Y ...39

26. Conventional input-complete XOR function: Z = X ⊕ Y ...39

27. Truth table for full adder..41

28. K-map for Co output of full adder..41

29. K-map for S output of full adder..41

30. Optimized NCL full adder ...41

31. Full adder using Anantharaman�s approach or DIMS ...43

32. Full adder using Seitz�s approach ..44

33. Full adder using David�s approach ..45

34. Full adder using Singh�s approach...46

35. 4-bit up-counter block diagram..48

36. Up-counter with three-register feedback ...48

37. Dual-rail 4-bit counter waveforms...49

38. 16-rail MEAG 4-bit counter waveforms..50

39. Quad-rail 4-bit counter waveforms..51

 xiii

40. Boolean increment circuit ..52

41. Increment circuit using incomplete AND functions ..52

42. Increment circuit using dual-rail reduced minterm expressions54

43. Increment circuit using dual-rail factored minterm expressions..................................55

44. Dual-rail increment circuit using complex gates ...56

45. Karnaugh maps for quad-rail counter ..57

46. Increment circuit using quad-rail reduced minterm expressions58

47. Increment circuit using quad-rail factored minterm expressions.................................60

48. Quad-rail increment circuit using complex gates ..61

49. 16-rail MEAG increment circuit ..62

50. 16-rail MEAG register ...63

51. Two-phase handshaking protocol ..69

52. Four-phase handshaking protocol ..69

53. GLP design flow ..73

54. Sub-cycles of the NCL cycle ...76

55. Pipeline showing NCL sub-cycle times...76

56. Full-word completion...84

57. Bit-wise completion ...84

58. 4×4 multiplier block diagram...85

59. Non-pipelined, 1-stage 4×4 multiplier using full-word completion86

60. Half adder...87

61. GEN_S7 component ..87

 xiv

62. 2-stage 4×4 multiplier using full-word completion ...89

63. 3-stage 4×4 multiplier using full-word completion ...90

64. 4-stage 4×4 multiplier using full-word completion ...91

65. 7-stage 4×4 multiplier using full-word completion ...92

66. 7-stage 4×4 multiplier using bit-wise completion ...95

67. NCR architecture ...98

68. 1-bit Demultiplexer..99

69. Sequence generator ..101

70. 1-bit Multiplexer ..102

71. NCL pipeline with one slow stage ...105

72. MAC block diagram ..111

73. Taxonomy of 72+32×32 MAC ..111

74. Non-pipelined Modified Baugh-Wooley MAC...113

75. Output divisions for up-scaling, no scaling, and down-scaling114

76. Non-pipelined Modified Booth2 MAC..119

77. Pipelined Modified Baugh-Wooley MAC...121

78. Pipelined Modified Booth2 MAC..127

79. 4-bit carry-lookahead adder ...130

 1

1.0 INTRODUCTION

1.1 Objective

This Ph.D. dissertation is intended to familiarize the reader with the syntax and

semantics of NULL Convention Logic (NCL), to develop NCL design methods and

optimization techniques, and to discuss analytical and experimental results. The main

focus will be on architectural aspects of NCL as discussed at the gate level.

1.2 History and Benefits of NCL

 Various design aspects of NCL were patented by Karl Fant and Scott Brandt in

April of 1994 [1]. Acknowledging that clocked circuits unnecessarily restricted execution

flow, consumed power proportional to the operating frequency, occupied significant

device area for the clock tree, and greatly complicated the design process, they sought a

clockless design approach. But eliminating clocks as in traditional asynchronous design

presented race conditions and made timing optimizations like pipelining difficult. By

eliminating clocks but retaining control information in the datapath, NCL aims at

designing VLSI devices with greater ease, with a reduced power budget, lower

electromagnetic interface effects, and reduced noise margins.

 Karl Fant founded Theseus Logic, Inc., which began operations in Minnesota in

January of 1996, to develop NCL-based Application Specific Integrated Circuits (ASICs)

 2

and �soft cores� for electronics manufacturers. The company has demonstrated the

viability of NCL technology through government programs with Honeywell, Lockheed

Martin, the Defense Advanced Research Projects Agency (DARPA), the Ballistic Missile

Defense Organization (BMDO), the US ARMY Communication Electronics Command

(CECOM), and the National Security Agency (NSA). A privately held company, Theseus

is now headquartered in Orlando, Florida and also has a research and development office

in Sunnyvale, California.

In August 1999, Theseus and the University of Central Florida were awarded a

state�funded grant for a joint research project involving NCL ASIC design and

development of formal design methods for NCL. In October 1999 Theseus formed a

strategic technology alliance with Motorola's Semiconductor Products Sector to jointly

implement NCL versions of various Motorola microcontrollers. And in September 2000

Theseus formed a strategic technology alliance with Synopsys for development of NCL-

based design tools. Many potential applications from mobile, handheld low-power DSP

devices to general purpose CPUs lie ahead.

Table I lists the advantages of asynchronous design, both bounded-delay and

delay-insensitive models, over clocked Boolean design. It shows that clocked Boolean

design necessitates a global clock, where asynchronous design does not; and that only

delay-insensitive methods have no glitch power, deliver average-case verses worse-case

performance, and provide for ease of design reuse. Table I also lists that power, noise,

and EMI are disadvantages for clocked Boolean circuits, but are advantages for their

asynchronous counterparts, as detailed below.

 3

Table I. Attributes of clocked Boolean and asynchronous methods.

 Performance
 Global Glitch Average- Worse- Reuse

Design Paradigm Clock Power Case Case Ease Power Noise EMI
Clocked Boolean Y Y N Y N D D D
Bounded-Delay N Y N Y N A A A
Delay-Insensitive N N Y N Y A A A

Traditional clocked Boolean circuits suffer from the layout nightmare of clock

distribution and require high power surges at the clock edge, when switching is most

prevalent. Synchronous circuits also cannot operate at their maximum potential due to

clock skew. These trends have led to a large revival of interest in the asynchronous

approach.

In asynchronous design approaches each component in the system is not

controlled by a clock signal. Thus, timing design margins are not required to compensate

for clock skew. An asynchronous design theoretically should allow data to flow through a

circuit at the maximum rate of the underlying switching technology being used. As the

required inputs arrive, a function should be executed and its results sent to the required

destination(s).

Nonetheless, traditional asynchronous design techniques have drawbacks of their

own. An asynchronous circuit is traditionally designed as having a datapath and a control

path. Since there is no clock to synchronize these two paths, there must be extensive

timing analysis performed in order to determine the worse-case delay in the datapath.

This delay must then be matched in the control path in order to synchronize the two paths

without the use of a clock. This method of asynchronous circuit design is classified as

 4

bounded-delay. Both clocked Boolean and bounded-delay designs suffer from the

problem of limiting the maximum operating frequency based on the worse-case delay in

the datapath. Bounded-delay design also alleviates the complex task of clock distribution,

but it introduces another complex task of determining the worse-case datapath delay and

matching this delay in the control path. An important benefit of NCL is asynchronous

execution that is completely delay-insensitive, assuming that wire forks are isochronic

[2, 3]. When designing in NCL there is no need for worse-case delay analysis and delay

matching, which makes the NCL design process significantly less complex than

traditional asynchronous design.

NCL on the other hand, allows a system to run at its maximum frequency

regardless of the input. For inputs which traverse a path with minimal delay, the output

will arrive much faster than for inputs which traverse a longer delay path. This property

allows a NCL circuit to potentially operate faster than a traditional Boolean asynchronous

design. NCL circuits are also much more adaptive, and facilitate easier reuse than

Boolean asynchronous circuits, since timing analysis is unnecessary due to NCL�s delay-

insensitivity.

As the trend towards higher clock frequency continues, power consumption,

noise, and electromagnetic interference (EMI) of synchronous designs increase

significantly. PCs are becoming more widespread and consume an increasingly

substantial percentage of the world�s electrical power. With the absence of a clock, NCL

systems promise to reduce power consumption, noise, and EMI. NCL circuits, designed

using CMOS, also exhibit an inherent idle behavior since they only switch when useful

 5

work is being performed, unlike clocked Boolean circuits that switch every clock pulse.

NCL circuits adhere to monotonic transitions between DATA and NULL, so there is no

glitching, unlike clocked Boolean circuits that produce substantial glitch power. NCL

systems also distribute the demand for power over time and area, reducing the occurrence

of hot spots, system noise, and peak power demand, unlike clocked Boolean circuits

where all circuitry switches simultaneously at the clock edge. Furthermore, NCL systems

are very tolerant of power supply variations such that cheaper power supplies can be used

and voltage can be reduced dramatically to meet performance criterion while reducing

power consumption. Therefore, a very fast NCL circuit can be run at a lower voltage to

reduce power consumption when high performance is not required.

The initial version of Motorola STAR08 processor using NCL technology shows

a 40% reduction in power and a 10 dB reduction in noise over its clocked Boolean

counterpart, while operating at a comparable frequency. Since NCL circuits have been

demonstrated to consume significantly less power than clocked Boolean designs, NCL

has a promising future in the field of mobile electronics, where power consumption is a

major design consideration.

1.3 Research Challenges

 This dissertation focuses on three architectural areas of NCL, all related to circuit

design and optimization. Since NCL is still conceptually young, there is no current

formal method for designing optimal NCL circuits. NCL differs significantly from

Boolean logic; so traditional Boolean techniques for circuit simplification cannot be

 6

applied to NCL circuits without major modifications. Thus, the first goal is to devise a

new formal method for NCL circuit simplification, such that optimal designs are readily

obtained.

 The unique structure of NCL lends itself to pipelining, even though a clock is not

present. Since there is no clock in NCL to synchronize pipeline stages, the design of a

NCL pipeline will be significantly different than a Boolean pipeline design. A related

need is to develop a means for determining the maximum number of gate delays per stage

to yield the maximum attainable throughput when pipelining a given design. Thus, the

second goal is to develop a formal method for designing throughput optimal NCL

systems.

 The NULL cycle accounts for approximately half of the cycle time of a NCL

circuit, therefore reducing the system�s maximum attainable throughput by a factor of

two. Thus, the third goal is to devise a technique to reduce the NULL cycle, further

increasing system performance. This further speedup may be essential for especially time

critical circuits.

1.4 Dissertation Overview

 This dissertation is organized into seven chapters. Chapter 2 presents previous

work and contains an in-depth discussion of fundamental NCL terminology, concepts,

and components, which will provide the notation and basis for the rest of the dissertation.

In Chapter 3, a formal method for designing different types of optimal combinational,

simplified NCL circuits is developed. This method is then tested on the design of

 7

fundamental logic functions, a full adder, and a 4-bit counter, with simulation times, gate

counts, and transistor counts included. In Chapter 4, a formal method for producing

pipelined designs, which yield the maximum attainable throughput, is devised. This

method is tested on the design of a 4-bit by 4-bit multiplier, and includes comprehensive

simulation times and pipeline stage information. Chapter 5 develops a technique for

reduction of the NULL cycle, and applies it to a non-pipelined 4-bit by 4-bit multiplier.

Chapter 6 details the design of a throughput and area optimal 72+32×32 MAC. Chapter 7

highlights the contributions of this dissertation and provides direction for future research.

 8

2.0 PREVIOUS WORK

 For the last two decades the focus of digital design has been primarily on

synchronous, clocked architectures. However, as clock rates have significantly increased

while feature size has decreased, clock skew has become a major problem. High

performance chips must dedicate increasingly larger portions of their area for clock

drivers to achieve acceptable skew, causing these chips to dissipate increasingly higher

power. As these trends continue, the clock is becoming more and more difficult to

manage. This has caused renewed interest in asynchronous digital design.

NULL Convention Logic (NCL) offers a delay-insensitive logic paradigm where

control is inherent with each datum. NCL follows the so-called �weak conditions� of

Seitz�s delay-insensitive signaling scheme [4]. As with other delay-insensitive logic

methods discussed herein, the NCL paradigm assumes that forks in wires are isochronic

[2, 3]. The origins of various aspects of the paradigm, including the NULL (or spacer)

logic state from which NCL derives its name, can be traced back to Muller�s work on

speed-independent circuits in the 1950s and 1960s [5].

Earlier work by Seitz presents an extensive discussion of delay-insensitive logic,

illustrating its advantages over traditional clocked logic, and includes one approach to

designing such circuits [2]. Some other methods of designing delay-insensitive circuits

are detailed in [6, 7, 8, 9]. These techniques concentrate on developing circuits from a

 9

standardized set of gates, while other techniques [10, 11] emphasize formal logic

methods that directly yield designs at the transistor-level. In the application of CMOS

technology, processors implemented with this type of signaling scheme include the MIPS

R3000 [12] and another at Caltech [13], the FLYSIG processor at the University of

Paderborn [14], the MSL16A at the Chinese University of Hong Kong [15], and the

TITAC processor at the Toyko Institute of Technology [16]. NCL differs from the above

mentioned methods in that they only utilize one type of state-holding gate, the C-element

[5]. On the other hand, all NCL gates are state-holding. Thus, NCL optimization methods

can be considered as a subclass of the techniques for developing delay-insensitive circuits

using a pre-defined set of more complex components with built-in hysteresis behavior. In

functions that do not require full minterm generation, such attributes may allow

optimizations that produce smaller, faster delay-insensitive combinational circuits.

2.1 Overview of Asynchronous Methods

Asynchronous circuits fall into two main categories: delay-insensitive and

bounded-delay models. Paradigms, like NCL, assume delays in both logic elements and

interconnects to be unbounded, although they assume that wire forks are isochronic. This

implies the ability to operate in the presence of indefinite arrival times for the reception

of inputs. Completion detection of the output signals allows for handshaking to control

input wavefronts. On the other hand, bounded-delay models such as Huffman circuits

[17], burst-mode circuits [18], and micropipelines [19] assume that delays in both gates

and wires are bounded. Delays are added based on worse-case scenarios to avoid hazard

 10

conditions. This leads to extensive timing analysis of worse-case behavior to ensure

correct circuit operation. Since NCL exhibits neither of these characteristics, bounded-

delay models are not addressed further.

Table II summarizes the attributes of various self-timed methods. It lists that only

micropipelines add explicit delays, while the other methods rely on completion detection;

and that only micropipelines exhibit worse-case performance, verses the average-case

performance of the other methods. Table II also shows that only Seitz�s, Anantharaman�s,

and DIMS approaches require full minterm generation, while all approaches use

C-elements exclusively for their state-holding gates, except for micropipelines that do not

require any state-holding elements, NCL that utilizes numerous state-holding gates, and

Martin�s method that does not use a standardized set of gates but instead develops each

element at the transistor level, as detailed below.

Table II. Attributes of self-timed methods.

 Explicit Full Minterm State- Performance
Self-Timed Delays Completion Generation Holding Average- Worse-
Method Inserted Detection Required Gates Case Case
Micropipelines Y N N None N Y
Seitz N Y Y C-elements Y N
DIMS N Y Y C-elements Y N
Anantharaman N Y Y C-elements Y N
Singh N Y N C-elements Y N
David N Y N C-elements Y N
NCL N Y N Numerous Y N
Martin N Y N N/A Y N

 11

2.1.1 Gate-Level Delay-Insensitive Methods

 Most gate-level delay-insensitive methods combine C-elements [5] with Boolean

gates for circuit construction. A C-element behaves as follows: when all inputs assume

the same value then the output assumes this value, otherwise the output does not change.

Seitz�s method [2] employs a sum of products network using AND and OR gates,

combined with a network to OR both rails of all inputs together. The output of the OR

network is then combined with the sum of products outputs, using C-elements, to produce

the circuit outputs. DIMS [9] and Anantharaman�s approach [7] are similar to each other

in that each produces a sum of products circuit using OR gates and C-elements, instead of

AND gates. Singh�s method [8] combines small self-timed logic functions to produce the

desired functionality, while David�s method [6] produces self-timed circuits with

n inputs and m outputs, composed of four subnets, ORN, CEN, DRN, and OUTN. ORN

consists of n 2-input OR gates, which OR together both rails of each dual-rail input. CEN

is an n-input C-structure, which is equivalent to an n-input C-element, whose inputs are

the n outputs from ORN. DRN is a monotonic implementation of each rail of the dual-rail

output(s). OUTN produces the circuit output and consists of 2m 2-input C-elements, each

with the output of CEN as one input, and an output from DRN as the other input. Seitz�s

method, Anantharaman�s approach, and DIMS require the generation of all minterms to

implement a function, where a minterm is defined as the logical AND, or product, of

input signals. While Singh�s and David�s methods do not require full minterm generation,

they rely solely on C-elements for delay-insensitivity.

 12

Since Seitz�s and Anantharaman�s approaches, along with DIMS, require the

generation of all minterms, no optimization is possible. However, Singh�s and David�s

approaches allow for some Boolean optimization to be performed, but they may not

facilitate the same potential for optimization provided by NCL�s many state-holding

gates, as will be shown in Chapter 3.

2.1.2 Transistor-Level Delay-Insensitive Methods

 Other delay-insensitive methods such as Martin�s [30] consist of constructing

transistor-optimized circuits from their Boolean equations through formal logic

transformations. Most of the resulting transistor level circuits are state-holding. However,

since these methods do not target a specific set of gates, they are not directly comparable

to gate-level delay-insensitive methods, including NCL.

2.2 Overview of NCL

NCL gates are a special case of the logical operators or gates available in digital

VLSI circuit design [20]. Such an operator consists of a set condition and a reset

condition that the environment must ensure are not both satisfied at the same time. If

neither condition is satisfied then the operator maintains its current state. A number of

NCL-based designs have been commercially developed by Theseus Logic, Inc., which

has formed strategic alliances with Motorola for microcontroller design and Synopsys for

NCL-based design tool development.

 13

2.2.1 Delay-Insensitivity

NCL uses symbolic completeness of expression [21] to achieve self-timed

behavior. A symbolically complete expression is defined as an expression that only

depends on the relationships of the symbols present in the expression without a reference

to the time of evaluation. Traditional Boolean logic is not symbolically complete; the

output of a Boolean gate is only valid when referenced with time. For example, assume it

takes 1 ns for output Z of an AND gate to become valid once its inputs X and Y have

arrived. As shown in Figure 1, suppose X = 1, Y = 0, and Z = 0, initially. If Y changes

to 1, Z will change to 1 after 1 ns; so Z is not valid from the time Y changes until 1 ns

later. Therefore output Z not only depends on the inputs X and Y, but time must also be

referenced in order to determine the validity of Z. This can be critical when Z is used as

an input to another circuit.

Figure 1. Symbolic incompleteness of a Boolean AND gate.

In particular, dual-rail signals, quad-rail signals, or other Mutually Exclusive

Assertion Groups (MEAGs) can be used to incorporate data and control information into

one mixed signal path to eliminate time reference [22]. A dual-rail signal, D, consists of

two wires, D0 and D1, which may assume any value from the set {DATA0, DATA1,

NULL}. The DATA0 state (D0 = 1, D1 = 0) corresponds to a Boolean logic 0, the

X

Y
Z

X

Y

Z
Valid

Output
Invalid
Output

Valid
Output

1 ns

0
1

0
1
0
1

 14

DATA1 state (D0 = 0, D1 = 1) corresponds to a Boolean logic 1, and the NULL state

(D0 = 0, D1 = 0) corresponds to the empty set meaning that the value of D is not yet

available. The two rails are mutually exclusive, so that both rails can never be asserted

simultaneously; this state is defined as an illegal state. A quad-rail signal, Q, consists of

four wires, Q0, Q1, Q2, and Q3, which may assume any value from the set {DATA0,

DATA1, DATA2, DATA3, NULL}. The DATA0 state (Q0 = 1, Q1 = 0, Q2 = 0, Q3 = 0)

corresponds to two Boolean logic signals, X and Y, where X = 0 and Y = 0. The DATA1

state (Q0 = 0, Q1 = 1, Q2 = 0, Q3 = 0) corresponds to X = 0 and Y = 1. The DATA2 state

(Q0 = 0, Q1 = 0, Q2 = 1, Q3 = 0) corresponds to X = 1 and Y = 0. The DATA3 state

(Q0 = 0, Q1 = 0, Q2 = 0, Q3 = 1) corresponds to X = 1 and Y = 1, and the NULL state

(Q0 = 0, Q1 = 0, Q2 = 0, Q3 = 0) corresponds to the empty set meaning that the result is

not yet available. The four rails of a quad-rail NCL signal are mutually exclusive, so no

two rails can ever be asserted simultaneously; these states are defined as illegal states.

Both dual-rail and quad-rail signals are space optimal delay-insensitive codes, requiring

two wires per bit. Other higher order MEAGs are not typically wire count optimal,

however they can be more power efficient due to the decreased number of transitions per

cycle.

Consider the behavior of a symbolically complete AND function using NCL as

shown in Figure 2. Assume it takes 1 ns for output Z of a NCL AND function to become

valid once its inputs X and Y have arrived. Also, initially suppose X is DATA1, Y is

DATA0, and Z is DATA0. Before the next set of inputs can be applied, all inputs must

first transition to NULL, which causes the output to transition to NULL, 1 ns later. Once

 15

the output has transitioned to NULL, the next input set can be applied. If the next input

set consists of X = DATA1 and Y = DATA1, Z will become DATA1 after 1 ns, signaled

by Z transitioning from NULL to DATA. Output Z will remain DATA1 until both inputs,

X and Y, transition to NULL, due to the hysteresis behavior inherent in each threshold

gate. Time is never referenced to determine the validity of Z. The 1 ns delay is an

arbitrary gate transition delay and does not affect the validity of Z.

Figure 2. NCL AND function: Z = X • Y and associated waveforms.

2.2.2 Logic Gates and Functional Blocks

 NCL uses threshold gates with hysteresis [23] for its composable logic elements.

One type of threshold gate is the THmn gate, where 1 ≤ m ≤ n, as depicted in Figure 3. A

THmn gate corresponds to an operator with at least m signals asserted as its set condition

and all signals de-asserted as its reset condition. THmn gates have n inputs. At least m of

the n inputs must be asserted before the output will become asserted. Because threshold

gates are designed with hysteresis, all asserted inputs must be de-asserted before the

output will be de-asserted. Hysteresis is used to provide a means for monotonic

NCL AND
Function

X0

X1

Y0

Y1

Z0

Z1

Valid
Output

NULL
Output

Valid
Output

0
1

0
1
0
1

X0

X1

Y0

0
1

0
1
0
1

Y1

Z0

Z1

1 ns1 ns

 16

transitions and a complete transition of multi-rail inputs back to a NULL state before

asserting the output associated with the next wavefront of input data. In a THmn gate,

each of the n inputs is connected to the rounded portion of the gate. The output emanates

from the pointed end of the gate. The gate�s threshold value, m, is written inside of the

gate. Figure 4 shows a static CMOS implementation of a TH23 gate, with inputs A, B,

and C, and output Z. [23] details various design implementations (static, semi-static, and

dynamic) of THmn gates.

 Another type of threshold gate is referred to as a weighted threshold gate, denoted

as THmnWw1w2�wR. Weighted threshold gates have an integer value, m ≥ wR > 1,

applied to inputR. Here 1 ≤ R < n; where n is the number of inputs; m is the gate�s

threshold; and w1, w2, �wR, are the integer weights of input1, input2, � inputR,

Input 1
Input 2

Input n

Outputm

Figure 3. THmn threshold gate [21]. C

B

A

Z

A

B C

C

B

A
A B

C

Figure 4. Static CMOS implementation of a TH23 gate.

 17

respectively. For example, consider a TH34W2 gate, whose n = 4 inputs are labeled A, B,

C, and D. The weight of input A, W(A), is therefore 2. Since the gate�s threshold, m, is 3,

this implies that in order for the output to be asserted, either inputs B, C, and D must all

be asserted, or input A must be asserted and any other input, B, C, or D must also be

asserted. NCL threshold gates may also include a reset input to initialize the gate's output.

Resetable gates are denoted by either a D or an N appearing inside the gate, along with

the gate's threshold, referring to the gate being reset to logic 1 or logic 0, respectively.

 By employing threshold gates for each logic rail, NCL is able to determine the

output status without referencing time. Inputs are partitioned into two separate

wavefronts, the NULL wavefront and the DATA wavefront. The NULL wavefront

consists of all inputs to a circuit being NULL, while the DATA wavefront refers to all

inputs being DATA, some combination of DATA0 and DATA1. Initially all circuit

elements are reset to the NULL state. First, a DATA wavefront is presented to the circuit.

Once all of the outputs of the circuit transition to DATA, the NULL wavefront is

presented to the circuit. Once all of the outputs of the circuit transition to NULL, the next

DATA wavefront is presented to the circuit. This DATA/NULL cycle continues

repeatedly. As soon as all outputs of the circuit are DATA, the circuit�s result is valid.

The NULL wavefront then transitions all of these DATA outputs back to NULL. When

they transition back to DATA again, the next output is available.

 Figure 5 shows the primary functional blocks of a NCL circuit. The NCL

registration stages act to control the DATA/NULL wavefronts, through their request

input lines, Ki, and their request output lines, Ko. The NCL completion detects complete

 18

DATA and NULL sets, where all outputs are DATA or all outputs or NULL,

respectively, at the output of NCL registration. NCL combinational circuits provide the

fundamental functionality of a NCL system. Since every NCL circuit continually cycles

through NULL followed by DATA, one complete cycle will consist of NULL flowing

through the combinational circuitry as shown in Figure 5, followed by NULL flowing

through the completion circuitry as shown in Figure 6, followed by DATA flowing

through the combinational circuitry as shown in Figure 7, and finally followed by DATA

flowing through the completion circuitry, back to the input as shown in Figure 8. rfn

refers to request for NULL and rfd refers to request for DATA. Each phase of this cycle,

depicted in the Gantt chart of Figure 9, will be referred to here on out as the DATA-to-

DATA cycle; and the period of this cycle will be called the DATA-to-DATA cycle time

(TDD). TDD has an analogous role to the clock period in a synchronous system.

Figure 5. NULL flowing through combinational circuitry.

NCL
Registration

NCL
Combinational

Circuit

KiKo

In Out

NCL
Registration

KiKo

In Out
NULL DATANULL DATA

NCL
Completion

rfn rfdrfnrfd

 19

Figure 6. Completion detection of NULL output.

Figure 7. DATA flowing through combinational circuitry.

Figure 8. Completion detection of DATA output.

NCL
Registration

NCL
Combinational

Circuit

KiKo

In Out

NCL
Registration

KiKo

In Out
NULL NULLNULL NULL

NCL
Completion

rfd rfnrfnrfd

NCL
Registration

NCL
Combinational

Circuit

KiKo

In Out

NCL
Registration

KiKo

In Out
DATA NULLDATA NULL

NCL
Completion

rfd rfnrfdrfn

NCL
Registration

NCL
Combinational

Circuit

KiKo

In Out

NCL
Registration

KiKo

In Out
DATA DATADATA DATA

NCL
Completion

rfn rfdrfdrfn

 20

Figure 9. DATA-to-DATA cycle time (TDD).

2.2.3 Completeness of Input

 The input-completeness criterion [21], which NCL circuits must maintain in order

to be delay-insensitive, requires that:

1. the outputs of a circuit may not transition from NULL to DATA until all inputs have

transitioned from NULL to DATA, and

2. the outputs of a circuit may not transition from DATA to NULL until all inputs have

transitioned from DATA to NULL.

In circuits with multiple outputs, it is acceptable for some of the outputs to transition

without having a complete input set present, as long as all outputs cannot transition

before all inputs arrive. This signaling scheme is equivalent to the �weak conditions� of

delay-insensitive signaling defined by Seitz [4]. Consider the incomplete NCL AND

function shown in Figure 10. The output can change from NULL to DATA0 without both

inputs first transitioning to DATA. For instance, if A = DATA0 and B = NULL then

C = DATA0, which breaks the completeness of input criterion. Figure 11 shows a

complete NCL AND function since the output cannot transition until both inputs have

transitioned.

DATA
Completion

Acknowledgement

NULL
Combinational

Evaluation

NULL
Completion

Acknowledgement

DATA
Combinational

Evaluation

DATA-to-DATA Cycle Time (TDD)

 21

Completeness of DATA can be ensured for an N input function as shown in

Algorithm 2.1. If a function is complete with respect to DATA, it is also complete with

respect to NULL due to the hysteresis functionality of every NCL gate. This

completeness check takes O(N • 2N-1); however, this is unnecessary for many functions

due to their inherent completeness. For example, the XOR function, the full adder, and

the increment circuitry, all are inherently complete such that it is impossible to know the

output without all of the inputs being known.

for (i = 1 to N) loop
 INPUTi = NULL
 group INPUTSj (1 ≤ j ≤ N, j ≠ i)

such that they form an N-1 bit word called REMAINDER
 for (k = 0 to 2N-1-1) loop

 REMAINDER = k
 if (all output bits are DATA) then
 return (INCOMPLETE)
end loop

end loop
return (COMPLETE)

2

1
X0

Z1

Z0

Y1

X1

Y0

2 Z1

2

2

2

X0

X1

Y0

Y1

1 Z0

Figure 10. Incomplete AND function: Z = X • Y.

Figure 11. Conventional input-complete
 AND function: Z = X • Y.

Algorithm 2.1. Input-completeness pseudocode.

2.2.4 Observability

 There is one more condition that must be met in order for NCL to retain delay-

insensitivity. No orphans may propagate through a gate. An orphan is defined as a wire

that transitions during the current DATA wavefront, but is not used in the determination

of the output. Orphans are caused by wire forks and can be neglected through the

isochronic fork assumption, as long as they are not allowed to cross a gate boundary. This

observability condition ensures that every gate transition is observable at the output.

Consider an incorrect version of an XOR function shown in Figure 12, where an orphan

is allowed to pass through the TH12 gate. For instance, when X = DATA0 and

Y = DATA0, the TH12 gate is asserted, but does not take part in the determination of the

output, Z = DATA0. This orphan path is shown in boldface in Figure 12. A correct, fully

observable version of the XOR function is given in Figure 13, where no orphans

propagate through any gate. An orphan checker tool, as a Synopsys shell, is run on each

design to ensure observability.

2

X0

X1

Y0

Y1

1 3 Z1

2 Z0

Figure 12.

 Incorrect XOR function: Z = X ⊕ Y
(orphans may propagate through a gate).
22

 23

2.2.5 NCL Registration

With the input-completeness and observability criteria met, a NCL circuit is

therefore delay-insensitive, because the output will not transition until all of its inputs

transition and two consecutive DATA wavefronts will always remain separated despite

arbitrarily large gate delays. Henceforth, the circuit will wait indefinitely until it receives

all of its inputs and the inputs traverse the logic, before requesting the next either NULL

or DATA wavefront.

 With this in mind, there must be a device that monitors the outputs of NCL

circuits in order to detect when there is a complete DATA set or a complete NULL set,

and upon detection of a complete output set, request the next wavefront. The NCL

register, shown in Figure 14, does just that. When the request input line, Ki, is rfd, any of

the register inputs, I, that are asserted are allowed to pass through their respective TH22

gate, to the output of the register. Likewise, when the request input line, Ki, is rfn, any of

the register inputs, I, that are de-asserted are allowed to pass through their respective

TH22 gate, to the output of the register. Only after all n inputs to the register have

2

X0

X1

Y0

Y1

2 2 Z1

2 Z0

Figure 13. Correct XOR function: Z = X ⊕ Y
(orphans may not propagate through any gate).

 24

transitioned to DATA, causing their respective outputs to transition to DATA as well,

will the register�s request output line, Ko, transition to rfn, meaning that the register has

received the DATA wavefront and is requesting the NULL wavefront. And, only after all

n inputs to the register have transitioned to NULL, causing their respective outputs to

transition to NULL as well, will the register�s request output line, Ko, transition to rfd,

meaning that the register has received the NULL wavefront and is requesting the DATA

wavefront.

THn(2n)

2

2

2

I10

I11

2

2

I20

I21

In0

In1

O1
0

O1
1

O2
0

O2
1

On
0

On
12

Ko

Ki

Figure 14: n-bit dual-rail registration.

 25

 The NCL register does not assure completeness of input, it only assures

completeness of output. The NCL register will not request the NULL wavefront until the

current DATA wavefront has been received; and likewise the next DATA wavefront will

not be requested until the current NULL wavefront has been received. This would not

prevent the NULL wavefront from being requested before all of the inputs become

DATA, if the output was all DATA, caused by some inputs being DATA and

combinational logic which is not complete with respect to its inputs.

 Assume that the registers shown in Figure 15 have the following values: the

output of the upstream register is DATA, so it is requesting NULL; the output of the

current register is NULL, so it is requesting DATA; and the output of the downstream

register is DATA, so it is requesting NULL. Also assume that the input to the upstream

register is NULL and that the request input, Ki, to the downstream register is rfn. The

NULL input to the upstream register will be blocked because the upstream register�s

request input line, Ki, is set to rfd. The DATA output from the upstream register will flow

through the first set of combinational logic, to the input of the current register, while the

NULL output of the current register flows through the second set of combinational logic

to the input of the downstream register, as depicted in Figure 16. Once the DATA

wavefront reaches the input of the current register, it is blocked, because the current

register�s request input line, Ki, is rfn. But when the NULL wavefront reaches the input

of the downstream register, it is allowed to pass through to the output because the

downstream register�s request input line, Ki, is rfn. When every output of the downstream

register transitions to NULL, the downstream register�s request output line, Ko, will

transition to rfd, shown in Figure 17, which will allow the DATA wavefront at the input

of the current register to pass through to the output of the current register and start

flowing through the second set of combinational logic. When all outputs of the current

register have transitioned to DATA, the request output line, Ko, of the current register

will transition to rfn, as shown in Figure 18, which will allow the NULL wavefront at the

input of the upstream register to pass through to the output of the upstream register and

start flowing through the first set of combinational logic, as depicted in Figure 19. As

shown in Figure 20, once the NULL wavefront has passed through the first set of

combinational logic, the circuit will be in a static state; and no more transitions can occur

until the request input line, Ki, of the downstream register transitions to rfd, signifying

that the NULL wavefront at the output of the downstream register has been received by

the next register after the downstream register. The registers will continue to control the

NULL/DATA cycles in this fashion, insuring that the next wavefront is sent only after

the current wavefront has produced all of its outputs.

NCL
Register

NCL
Combinational

Circuit #1

KiKo

In Out

NCL
Register

NCL
Combinational

Circuit #2

KiKo

In Out

NCL
Register

KiKo

In Out

upstream current downstream

NULL NULLDATA DATA

rfd rfn rfnrfn

.
Figure 15. Initial register state
26

 27

NCL
Register

NCL
Combinational

Circuit #1

KiKo

In Out

NCL
Register

NCL
Combinational

Circuit #2

KiKo

In Out

NCL
Register

KiKo

In Out

upstream current downstream

NULL NULLDATA DATA

rfd rfn rfnrfn

DATA NULL

NCL
Register

NCL
Combinational

Circuit #1

KiKo

In Out

NCL
Register

NCL
Combinational

Circuit #2

KiKo

In Out

NCL
Register

KiKo

In Out

upstream current downstream

NULL NULLDATA NULL

rfd rfd rfnrfn

DATA NULL

NCL
Register

NCL
Combinational

Circuit #1

KiKo

In Out

NCL
Register

NCL
Combinational

Circuit #2

KiKo

In Out

NCL
Register

KiKo

In Out

upstream current downstream

NULL DATADATA NULL

rfn rfd rfnrfn

DATA NULL

Figure 17. Register state after NULL wavefront passes through downstream register.

Figure 18. Register state after DATA wavefront passes through current register.

Figure 16. Register state after traversing combinational circuitry.

All NCL systems hav

output; and all NCL systems

feedback loop [21]. This tech

[24, 9]. These register stages

overwriting DATA seti-1 by e

separated by a NULL set.

NCL
Register

NCL
Combinational

Circuit #1

KiKo

In Out

NCL
Register

NCL
Combinational

Circuit #2

KiKo

In Out

NCL
Register

KiKo

In Out

upstream current downstream

NULL DATANULL NULL

rfn rfd rfnrfd

DATA DATA

Figure 19. Register state after NULL wavefront passes through upstream register.

NCL
Register

NCL
Combinational

Circuit #1

KiKo

In Out

NCL
Register

NCL
Combinational

Circuit #2

KiKo

In Out

NCL
Register

KiKo

In Out

upstream current downstream

NULL DATANULL NULL

rfn rfd rfnrfd

NULL DATA

.
Figure 20. Static register state
28

e at least two register stages, one at both the input and

 with feedback have at least three register stages in the

nique of organizing registers into a ring is fully discussed in

 interact through handshaking to prevent DATA seti from

nsuring that the two consecutive DATA sets are always

 29

2.2.6 NCL Completion

 Actual NCL registration is realized through cascaded arrangements of single-bit

dual-rail registers or single-signal quad-rail registers, depicted in Figure 21 and 22,

respectively. Therefore, an N-bit register stage, comprised of N single-bit dual-rail NCL

registers, requires N completion signals, one for each bit. The NCL Completion

component, shown in Figure 23, uses these N Ko lines to detect complete DATA and

NULL sets at the output of every register stage and request the next NULL and DATA

set, respectively. The single-bit output of the completion component is connected to all Ki

lines of the previous register stage. Since the maximum input threshold gate currently

supported is the TH44 gate, the number of logic levels in the completion component for

an N-bit register is given by log4 N. Likewise, the completion component for an N-bit

quad-rail registration stage requires 2
N inputs, and can be realized in a similar fashion

using TH44 gates. The registers shown in Figures 21 and 22 are reset to NULL. Either

register could be instead reset to a DATA value by replacing exactly one of the TH22n

gates with a TH22d gate.

2n

2n

I0

I1

O0

O1

1Ko

Ki
Reset

Figure 21. Single-bit dual-rail register.

 30

2n

2n

I0

I1

2n
I2

I3

O0

O1

O2

O32n

1Ko

Ki

Reset

Ko(1)
Ko(2)
Ko(3)
Ko(4)

Ko(N-3)
Ko(N-2)
Ko(N-1)

Ko(N)

4

4

4 4
Ko(N-7)
Ko(N-6)
Ko(N-5)
Ko(N-4)

4

4

Ko(5)
Ko(6)
Ko(7)
Ko(8)

4 Ko

Figure 23. N-bit completion component.

Figure 22. Single-signal quad-rail register.

 31

3.0 THRESHOLD COMBINATIONAL REDUCTION METHOD

Delay-insensitive logic design methods are developed using Threshold

Combinational Reduction (TCR) within the NULL Convention Logic (NCL) paradigm.

NCL logic elements are realized using 27 distinct transistor networks implementing the

set of all functions of four or fewer variables, thus facilitating a variety of gate-level

optimizations. TCR optimizations are formalized for NCL and then assessed by

comparing levels of gate delays, gate counts, and transistor counts of the resulting

designs. The methods are illustrated to produce fundamental logic functions, and a full

adder with reduced critical path delay and transistor count over various alternative gate-

level synthesis approaches. As an example of circuits employing feedback, TCR is

applied to derive time and space optimized increment circuits for a 4-bit up-counter.

Results demonstrate support for a variety of optimizations utilizing conventional Boolean

minimization followed by table-driven gate substitutions. Whereas previous work on

optimization of circuits constructed from logical operators has concentrated on transistor-

sizing [25] and decomposition of high fan-in operators [26], this chapter will emphasize

composable circuit construction utilizing a set of complex state-holding gates, and will

illustrate circuit minimization techniques, their application, and associated tradeoffs.

 32

3.1 Chapter Outline

This chapter is organized into five sections. In Section 3.2, the TCR method for

optimizing combinational NCL circuits is developed. The method is demonstrated in

Sections 3.3, 3.4, and 3.5. Section 3.3 presents optimal input-complete AND/NAND,

OR/NOR, and XOR/NXOR logic functions, designed using TCR. Section 3.4 applies

TCR to produce a delay-insensitive Full Adder that significantly reduces critical path

delay and transistor count over previous gate-level delay-insensitive approaches.

Section 3.5 illustrates the use of TCR to derive a variety of time and space optimized

NCL increment circuitries for an up-counter with a feedback circuit.

3.2 TCR Method Definition

 As depicted in Figure 24, the design process begins with a specification of the

circuit functional behavior and desired optimization criteria. Circuit behavior is specified

as Boolean logic expressions, truth tables, and/or narrative descriptions. The optimization

criteria include parameters such as critical path delay, gate count, transistor count, or

power consumption, that are to be minimized in the target design. Several alternate

designs are generated, which are then assessed against the optimization criteria, allowing

the preferred design to be selected for implementation.

 First, a logic encoding scheme is selected such as dual-rail, quad-rail, or other

MEAG representations, as depicted in Figure 24. Typically either dual-rail or quad-rail is

chosen since these encodings yield the minimum of two wires per bit. If a dual-rail

encoding is used, the next step is to select the optimization space in which minimization

 33

will be performed. The proposed TCR design methods have been numbered �1�, �2�, and

�3�, each with design steps labeled �A�, �B�, or �C�, appropriately.

Figure 24. TCR design flow.

Select Best Design

1A) Use Incomplete NCL functions 2A) Derive Reduced Minterm Expressions
produce 2-level logic

2B) Factor Minterm Expressions
reduce gate count

2C) Transform to Complex Gates
reduce gate count and logic levels

3A) Derive Reduced Quad-Rail Expressions
produce 2-level logic

3B) Factor Quad-Rail Expressions
reduce gate count

3C) Transform to Complex Gates
reduce gate count and logic levels

1B) Ensure Delay-Insensitivity

Functional
Specification

Optimization
Parameters

Select Logic Encoding

Select Optimization Space

circuit behavior
description

critical path delay,
gate count,

transistor count,
power

dual-rail
encoding

Method 3:
Quad-rail

Optimization

other MEAGS

Method 2:
Dual-rail

Optimization

Method 1:
Boolean

Optimization

Optimal NCL
Circuit

Special-
Purpose
Circuits

quad-rail
encoding

 34

3.2.1 Method 1: Incomplete Functions

As depicted in Figure 24, Method 1 corresponds to Boolean optimization.

Maximal use of incomplete NCL logic functions, such as the incomplete AND function

shown in Figure 10, generates the individual outputs, while maintaining the completeness

of input criterion for the circuit as a whole. For example, gates in Boolean designs that

target the basic logical operators (AND, OR, XOR, NAND, NOR, NXOR, NOT) are

directly mapped to a NCL design by using as many incomplete NCL functions as

possible. As described in Step 1A of Figure 24, each Boolean gate is replaced with its

NCL equivalent function, using incomplete versions whenever possible. Step 1B ensures

input-completeness for the circuit as a whole by employing complete functions only for

selected gates in the data path, so that the computation of an entire output set implies that

the complete input set has arrived. The observability criterion must also be ensured.

3.2.2 Method 2: Dual-Rail Optimizations

 Method 2 is based on dual-rail optimization. In Step 2A, the NCL circuit is

optimized by using reduced minterm expressions for both rails of the output. These

expressions are then mapped to TH1n and THnn gates. As in Boolean circuits, a

Karnaugh map can be constructed for each output. The 0s in the Karnaugh map refer to a

signal�s rail0 line and the 1s refer to a signal�s rail1 line. Reduced minterm expressions

for both the 1s and 0s in the Karnaugh map are derived. After these expressions for the

outputs have been obtained, an assessment must be made to ensure that the complete

output set cannot be generated without all of the inputs being present. If under any timing

 35

scenario, a complete output set can be generated without all of the inputs being present,

the missing logic terms must be added to the reduced expressions to guarantee that the

completeness of input criterion holds. This method will always generate two-level logic,

given that threshold gates with a sufficiently large number of inputs are available. The

first level will consist of THnn gates, to produce the required minterms; and the second

level will consist of TH1n gates, which act to OR the minterms together to produce the

desired outputs. Step 2A is similar to Anantharaman�s approach [7] and DIMS [9]. In

Step 2B, the common sub-expressions are factored and consolidated to reduce the gate

count. Finally, the factored expressions for each rail are manipulated in Step 2C to obtain

equations of the forms contained in Table III. The observability criterion must be ensured

for every circuit output from Steps 2A, 2B, and 2C.

 Table III lists the 27 transistor networks, along with their corresponding Boolean

equations, used to construct NCL circuits. These 27 transistor networks, implemented as

macros, constitute the set of all functions consisting of four or fewer variables. Since each

rail of a NCL signal is considered a separate variable, a four variable function is not the

same as a function of four literals, which would normally consist of eight variables.

Twenty four of these macros can be realized using complex threshold gates, identical to

the standard threshold gate forms for functions of four or fewer variables [27, 28, 29].

The other three macros could be constructed from threshold gate networks, but have been

implemented as transistor networks to provide completeness. Table III also contains the

transistor count for these 27 macros.

 36

Table III. 27 NCL macros.

NCL Macro Boolean Function Transistor Count
TH12 A + B 6
TH22 AB 12
TH13 A + B + C 8
TH23 AB + AC + BC 18
TH33 ABC 16
TH23w2 A + BC 15
TH33w2 AB + AC 14
TH14 A + B + C + D 10
TH24 AB + AC + AD + BC + BD + CD 27
TH34 ABC + ABD + ACD + BCD 26
TH44 ABCD 20
TH24w2 A + BC + BD + CD 23
TH34w2 AB + AC + AD + BCD 22
TH44w2 ABC + ABD + ACD 23
TH34w3 A + BCD 19
TH44w3 AB + AC + AD 16
TH24w22 A + B + CD 18
TH34w22 AB + AC + AD + BC + BD 22
TH44w22 AB + ACD + BCD 24
TH54w22 ABC + ABD 18
TH34w32 A + BC + BD 17
TH54w32 AB + ACD 20
TH44w322 AB + AC + AD + BC 20
TH54w322 AB + AC + BCD 21
THxor0 AB + CD 20
THand0 AB + BC + AD 20
TH24comp AC + BC + AD + BD 18

3.2.3 Method 3: Quad-Rail Optimizations

 For some circuits, it may be advantageous to use quad-rail optimization, referred

to as Method 3 in Figure 24. Two dual-rail signals yield the same five logic states as one

quad-rail signal, however using quad-rail logic signals may lead to a more efficient

design. Quad-rail optimization follows the same steps as does dual-rail optimization. In

Step 3A, the NCL circuit is optimized by using reduced minterm expressions for all four

rails of the output. These expressions are then mapped to TH1n and THnn gates. As in

 37

dual-rail optimization, a Karnaugh map can be constructed for each output, but instead of

only 0s and 1s, corresponding to a signal�s rail0 and rail1, respectively, the K-map also

contains 2s and 3s, which correspond to a signal�s rail2 and rail3, respectively. Reduced

minterm expressions for the 0s, 1s, 2s, and 3s in the Karnaugh map are derived. After

these expressions for the outputs have been obtained, an assessment must be made to

ensure that the complete output set cannot be generated without all of the inputs being

present. If under any timing scenario, a complete output set can be generated without all

of the inputs being present, the missing logic terms must be added to the reduced

expressions to guarantee that the completeness of input criterion holds. This method will

always generate two-level logic, given that threshold gates with a sufficiently large

number of inputs are available. The first level will consist of THnn gates, to produce the

required minterms; and the second level will consist of TH1n gates, which act to OR the

minterms together to produce the desired outputs. In Step 3B, the common sub-

expressions are factored and consolidated to reduce the gate count. Finally, the factored

expressions for each rail are manipulated in Step 3C to obtain equations of the forms

contained in Table III. The observability criterion must be ensured for every circuit

output from Steps 3A, 3B, and 3C.

3.2.4 Performance Assessment

 To assess the performance of alternate designs, Synopsys, a commercial design

tool, was used to simulate the circuits to generate their timing characteristics. All NCL

circuits presented herein have been exhaustively tested and their average cycle time, TDD,

 38

has been reported. The Synopsys technology library for the 27 macros is based on Spice

simulations of static 0.25 µm CMOS gates, operating at 3.3V. Along with the average

cycle time, the number of gates and transistors has also been tabulated for comparison.

The design that best meets the desired criteria can then be selected for implementation.

3.3 Application to Input-Complete Fundamental Logic Functions

 Several optimizations can be used to generate designs that are very competitive in

terms of speed and area as compared to other self-timed approaches. For example,

Figures 11, 25, and 26 show the conventional implementations of the logic functions:

AND, OR, and XOR, respectively. Each of these may be obtained directly from their

minterm form. Method 2 is readily applicable. Dual-Rail Encoding Optimization achieves

significant reduction in both area and speed. TCR Step 2C can be applied directly from

the minterm form to reduce the circuit complexity and improve performance.

Specifically, consider the objective of realizing an optimized input-complete 2-input OR

function: Z = X + Y. The minterm expression for Z0 is given by: Z0 = X0Y0, which

directly maps to a TH22 gate in Table III. The minterm expression for Z1 is given by:

Z1 = X1Y1 + X0Y1 + X1Y0, which directly maps to a THand0 gate. Similarly, an

optimized input-complete 2-input AND function: Z = X • Y can be realized. The minterm

expression for Z0 is given by: Z0 = X0Y0 + X0Y1 + X1Y0, which directly maps to a

THand0 gate. The minterm expression for Z1 is given by: Z1 = X1 Y1, which directly

maps to a TH22 gate. The derivation of an optimized 2-input XOR function: Z = X ⊕ Y

is a bit more complex. The minterm expression for Z0 is given by: Z0 = X0Y0 + X1Y1,

 39

which directly maps to a THxor0 gate. The minterm expression for Z1 is given by:

Z1 = X1Y0 + X0Y1, which also directly maps to a THxor0 gate. However, two transistors

can be eliminated for each rail of Z by adding the two don�t care terms, representing the

cases when both rails of either X or Y are simultaneously asserted. The new equations for

Z0 and Z1 are as follows: Z0 = X0Y0 + X1Y1 + X0X1 + Y0Y1 and

Z1 = X1Y0 + X0Y1 + X0X1 + Y0Y1, both of which now map to TH24comp gates.

 As shown in Table IV, the AND, OR, and XOR func

outperform the conventional minterm designs in terms of bo

particular, the TCR optimized AND and OR functions are 2

fewer transistors than the conventional minterm designs. Fu

XOR function is 2.3-fold faster and requires 40% fewer tran

minterm design. The inverse logic functions, NAND, NOR,

2

2

2

X0

X1

Y0

Y1

Z0

2

1 Z1 2

2

2

X0

X1

Y0

Y1

2

1

1

Z0

Z1

Figure 25. Conventional input-complete
OR function: Z = X + Y.

Figure 26.
 Conventional input-complete
XOR function: Z = X ⊕ Y.
tions produced using TCR

th area and throughput. In

.2-fold faster and require 43%

rthermore, the optimized

sistors than the conventional

 and NXOR, can easily be

 40

attained by exchanging the output rails of the AND, OR, and XOR functions,

respectively.

Table IV. Performance characteristics of input-complete NCL logic functions.

Complete AND Component List Gate Delays Gate Count Transistor Count TDD
Conventional 4xTH22, 1xTH13 2 5 56 1.58 ns
TCR Method 2 1xTHand0, 1xTH22 1 2 32 0.71 ns

Complete OR Component List Gate Delays Gate Count Transistor Count TDD
Conventional 4xTH22, 1xTH13 2 5 56 1.58 ns
TCR Method 2 1xTHand0, 1xTH22 1 2 32 0.71 ns

XOR Component List Gate Delays Gate Count Transistor Count TDD
Conventional 4xTH22, 2xTH12 2 6 60 1.70 ns
TCR Method 2 2xTH24comp 1 2 36 0.75 ns

3.4 Application to Full Adder

The truth table for a full adder circuit is shown in Figure 27, where X and Y

denote the input addends and Ci denotes the carry input. S and Co denote the sum and

carry output, respectively. This circuit can be extensively optimized using TCR

Method 2. Applying TCR Step 2A, the K-map for the Co output is obtained as shown in

Figure 28, yielding: Co
0 = X0Y0 + Ci

0X0 + Ci
0Y0 and Co

1 = X1Y1 + Ci
1X1 + Ci

1Y1. Both

functions directly map to a TH23 gate, so factoring in Step 2B is not necessary. Since a

TH23 gate does not produce an output which is complete with respect to any of its inputs,

there must be another output or set of outputs that enforce the completeness of input

criterion. As explained below, the sum output, S, will enforce the completeness of input

criterion for the circuit as a whole, thus allowing the carry output to be incomplete.

 41

 The K-map for S, based on X, Y, Ci, and the intermediate output Co, is shown in

Figure 29, with essential prime implicants covered. This cover yields:

S0 = Co
1X0 + Co

1Y0 + Co
1Ci

0 + X0Y0Ci
0 and S1 = Co

0X1 + Co
0Y1 + Co

0Ci
1 + X1Y1Ci

1, both

of which directly map to TH34W2 gates, so factoring in Step 2B is not necessary. Co is

taken as the A input such that W(Co) = 2, as shown in Figure 30. Checking input-

completeness, the carry output requires at least two inputs to be generated and the sum

output requires either the carry output and one more input, or all three inputs to be

X Y Ci Co S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

00
00 01

X Y

Ci Co

1

1011

0

1

1

10

0

1

Figure 27. Truth table
for full adder.

Figure 28. K-map for Co output of full adder.

X0

X1

Co
0

2

2
3

3

Co
1

Ci
0

Ci
1

Y0

Y1

S0

S1

X0
00

X Y

10

1

X0

X

X1

0X X

X0

1

X1

Ci Co
1101

S

00

01

11

10

Figure 29. K-map for S output of full adder. Figure 30. Optimized NCL full adder [21].

 42

generated; so all three inputs are needed to generate the sum output. Therefore, the

completeness of input criterion holds for the circuit as a whole.

As shown in Table V, the NCL design of the full adder produced using TCR

optimizations can outperform those of other delay-insensitive methods, such as

Anantharaman�s and DIMS, Seitz�s, David�s, and Singh�s approaches, shown in Figures

31, 32, 33, and 34, respectively. Here n-input C-elements are drawn as THnn gates since

their functionality is identical. The NCL design has far fewer gates and transistors, while

requiring fewer logic levels to produce the carry output, Co. NCL also requires fewer

logic levels to produce the sum output, S, than three of the five other methods, and has the

same number of logic levels for S as the other two. Notice that the NCL full adder uses

the carry output as an input to compute the sum output, whereas the other methods

compute the sum and carry outputs independently. This is because for the other methods

it is not practical to use the carry output to help generate the sum output. For the other

methods the carry output is generated in the same number of logic levels, or more, as the

sum output. Therefore, to use the carry output as an input for calculating the sum output

would require more logic levels, as well as more gates. Besides NCL, only Seitz�s full

adder can be designed such that Co can be computed before the Ci input is known for the

cases A = DATA0, B = DATA0 and A = DATA1, B = DATA1. This optimization is

important if the full adder component is to be used in an N-bit ripple-carry addition; since

it allows the addition to be performed in O(log2 N) on average instead of O(N). This

optimization could be applied to DIMS, Anantharaman�s approach, and David�s method,

 43

if their signaling scheme was slightly changed such that it coincided with the �weak

conditions� of delay-insensitive signaling defined by Seitz [4] and used by NCL.

Table V. Full adder using various delay-insensitive methods.

Method

Design
Level

Gate Delays
for Co

Gate Delays
for S

Gate
Count

Transistor
Count

Seitz [4] gate 2 3 18 154
Anantharaman [7] gate 2 2 12 168
DIMS [9] gate 2 2 12 168
David [6] gate 3 3 20 186
Singh [8] gate 6 4 19 192
TCR (Method 2) gate 1 2 4 80
Martin [30] transistor 1 1 3 42 or 34

3

3

3

3

3

3

3

3
X0

Y0

Ci
0

X0

Y0

Ci
1

X0

Y1

Ci
0

X0

Y1

Ci
1

X1

Y0

Ci
0

X1

Y0

Ci
1

X1

Y1

Ci
0

X1

Y1

Ci
1

S0

Co
1

Co
0

S1

Figure 31. Full adder using Anantharaman�s approach or DIMS [9].

 44

Figure 32. Full adder using Seitz�s approach [4].

NCL circuits are often able to outperform other self-timed methods since NCL

targets a wider range of logical operators whereas other methods target a more standard,

restricted set. For example, the full adder can be further optimized by design methods at

the transistor level as demonstrated by Martin [30]. His full adder requires three complex

transistor networks: the first computes both rails of the sum output, while the second and

third each compute one rail of the carry output. The resulting design consists of only 42

X0

Y0

Ci
0

X0

Y0

Ci
1

X0

Y1

Ci
0

X0

Y1

Ci
1

X1

Y0

Ci
0

X1

Y0

Ci
1

X1

Y1

Ci
0

X1

Y1

Ci
1

2

2

S0

Co
1

Co
0

S1

X0

Y0

Ci
0

X1

Y1

Ci
1

X1

Y1

X0

Y0

 45

transistors, when the input and output inverters are included, or 34 transistors otherwise.

However, this method is not directly comparable to the other above mentioned methods

since it optimizes designs at the transistor level instead of targeting use of a predefined

set of gates.

Figure 33. Full adder using David�s approach.

X0

Y0

Ci
0

Ci
1

Y1

X1

3

2

2

2

2

S0

Co
1

Co
0

S1

X0

Y0

Ci
0

X0

Y0

Ci
1

X0

Y1

Ci
0

X0

Y1

Ci
1

X1

Y0

Ci
0

X1

Y0

Ci
1

X1

Y1

Ci
0

X1

Y1

Ci
1

 46

Figure 34. Full adder using Singh�s approach.

 As for general-purpose methods, DIMS, Seitz�s method, and Anantharaman�s

approach require full minterm generation, so that no simplification is possible. DIMS and

Anantharaman�s approach cannot outperform NCL, and at best will be identical only if

the NCL design requires full minterm generation. Seitz�s approach can outperform NCL

in terms of area, but not speed, for a limited class of circuits. These include functions

2

2

2

2

X0

Y1

X1

Y0

X0

Y0

Y1

X1

2

2

2

2
Ci

1

Ci
0

Ci
0

Ci
1

S0

S1

2

2

2

2

Co
0

Co
1

 47

with 4 or more inputs, with one or few outputs, that contain almost all 1s or 0s in their

truth table. These are the types of circuits that will receive little benefit from TCR

optimizations. David�s and Singh�s approaches also favor these same classes of

functions, and typically produce more efficient circuits than those obtainable by Seitz�s

approach. Singh�s approach will require less area, but more delay than TCR for these

types of functions, whereas David�s approach will provide the same speed with

significantly less area. For example, consider the function: f(a, b, c, d) = a • b� • c • d�

[6]. Table VI shows that Seitz�s, David�s, and Singh�s circuits are all better than those

obtainable by TCR, in terms of area for this function and that Anantharaman�s approach

is the same. However, only David�s approach outperforms TCR in both area and speed.

David�s approach is better because this function, and others like it, require full minterm

generation in NCL to ensure input-completeness, so no simplification is possible by TCR

methods.

Table VI. Delay-insensitive methods for f(a, b, c, d) = a • b� • c • d�.

Method Gate Delays Gate Count Transistor Count
Seitz [4] 4 25 250
Anantharaman [7] 3 21 368
DIMS [9] 3 21 368
David [6] 3 9 88
Singh [8] 4 15 168
NCL 3 21 368

3.5 Application to Up-Counter

 A number of experiments based on the 4-bit counter shown in Figure 35 have

been conducted. The specifications for this counter include a full NCL interface with

 48

request and acknowledge signals labeled Ki and Ko, respectively. Functionality was

specified to reset count to 0000b when the reset signal is applied, to increment count by 1

when inc = 1, and to keep count the same when inc = 0. The counter will rollover to

0000b when count = 1111b and inc = 1.

 The functional design of the 4-bit counter, shown in Figure 36, will be the same

for all counter models considered here. However, the Increment Circuitry will differ

based on the particular TCR optimization method that is used. Figure 36 shows that there

4-bit Counter Count(3:0)

Ki

Inc

Ko

Reset

Figure 35. 4-bit up-counter block diagram.

Increment
Circuitry

COMP

NCL Register NCL Register NCL Register

COMP

Ki Ko KiKiKo Ko

Inc

Ko

Ki

Reset
Reset to DATA 0 Reset to NULL Reset to NULL

(3:0) (3:0)(3:0)(3:0)

Count (3:0)

X(3:0)

component to be optimized

Registration Stages

Figure 36. Up-counter with three-register feedback.

 49

are three NCL registers to feedback the current count to the increment circuitry. These

Registration Stages act to control the DATA/NULL wavefronts, through their request in

lines, Ki, and their request out lines, Ko. The completion logic (COMP) detects complete

DATA and NULL sets, where all outputs are DATA or all outputs are NULL,

respectively, at the output of NCL registration. The waveforms for the dual-rail, 16-rail,

and quad-rail counters are shown in Figures 37, 38, and 39, respectively, with timing

information depicted in nanoseconds. From these simulations the average

DATA-to-DATA cycle time can be computed as follows: TDD = 32
TT ; where TT is the total

time for all input combinations and 32 is the number of combinations of the 5 circuit

inputs (i.e. 25 = 32). The timing information shown for the dual-rail and quad-rail

waveforms is for their respective complex gate model.

Figure 37. Dual-rail 4-bit counter waveforms.

TT

 50

Figure 38. 16-rail MEAG 4-bit counter waveforms.

TT

 51

Figure 39. Quad-rail 4-bit counter waveforms.

3.5.1 Method 1: Incomplete Functions

This technique was applied to the optimized Boolean increment circuitry of the

4-bit counter shown in Figure 40, which is based on a carry look-ahead adder. The

Boolean XOR gates were replaced with the XOR function described in Section 3.3, and

the Boolean AND gates were replaced with incomplete versions of the AND function

shown in Figure 10. The resulting logic diagram is depicted in Figure 41. The

completeness of input criterion for the circuit as a whole is satisfied since all of the inputs

are needed to produce a complete output set, due to the inherent completeness of input of

an XOR function. This model has a worse-case path delay of two NCL gates in the

increment circuitry. It consists of 14 NCL gates and TDD was determined to be 4.81 ns

using Synopsys.

TT

 52

X3 X2 X0X1 Inc

S0S1S2S3

Inc0

Inc1

X0
0

X0
1

4

X1
0

X1
1

1

3

X2
0

X2
1

1

X3
0

X3
1

S0
1

S0
0

Incomplete 4 input AND

Incomplete 3 input AND

2

1

Incomplete 2 input AND

TH24compB

D
C

A

TH24compB

D
C

A

S1
1

S1
0TH24compB

D
C

A

TH24compB

D
C

A

S2
1

S2
0TH24compB

D
C

A

TH24compB

D
C

A

S3
1

S3
0TH24compB

D
C

A

TH24compB

D
C

A

XOR

XOR

XOR

XOR

Figure 40. Boolean increment circuit.

Figure 41. Increment circuit using incomplete AND functions.

 53

3.5.2 Method 2: Dual-Rail Encoding Optimizations

 The resulting logic diagram after deriving reduced minterm expressions from

Step 2A is shown in Figure 42. This model has a theoretical worse-case path delay of 2

threshold gates in the increment circuitry. However, TH15 and TH55 gates are not

supported in the 27 NCL macros, since they require 5 inputs. Therefore, the TH15 gate

was realized by connecting a TH14 gate in series with a TH12 gate. However, this

technique could not be applied to the TH55 gate, since this decomposition would violate

the observablity criterion. Instead the two TH55 gates were decomposed into one TH44

gate and two TH22 gates, in order to maintain observability of every gate transition at the

output. This decomposition is valid since every transition of the TH44 gate will result in

exactly one of the two TH22 gates also transitioning. The decompositions caused the

worse-case path delay to be three NCL gates, instead of two. The reduced minterm model

consists of 39 gates, but only 36 gates are necessary if TH55 and TH15 gates are used.

From Synopsys simulation, TDD was determined to be 5.34 ns.

 To further reduce the gate count, the expressions for S1, S2, and S3 can be factored

using Step 2B. This factoring increases the worse-case path delay from two NCL gates to

three NCL gates. Since constructing TH55 and TH15 gates for the reduced minterm

model from smaller gates caused a worse-case path delay of 3 threshold gates, factoring

did not increase the depth of the critical path. The logic diagram for the increment

circuitry factored form is shown in Figure 43. The factored minterm model consists of 28

gates, but only 27 gates are necessary if TH55 gates are used. From Synopsys simulation,

TDD was determined to be 5.28 ns.

 54

Figure 42. Increment circuit using dual-rail reduced minterm expressions.

2

2

2

2

1

1

S0
0

S0
1

2

2

3

1 S1
0

2

2

3

1 S1
1

2

2

2

4

1 S2
0

2

2

2

4

1 S2
1

2

2

2

2

1

5

2

2

2

2

1

5

S3
0

S3
1

X3
1 Inc1X3

0 X2
1 X2

0 X1
1 X1

0 Inc0X0
0X0

1

 55

Figure 43. Increment circuit using dual-rail factored minterm expressions.

1

2

2

2

2

1

1

S0
0

S0
1

3

3

4

4

1
2

1 S2
0

2
1 S2

1

1
2

1 S3
0

2
1 S1

0

2
1 S1

1

5

5

2
1 S3

1

X3
1 X3

0 X2
1 X2

0 X1
1 X1

0 X0
1 X0

0 Inc1 Inc0

 56

 Step 2C maps the factored expressions to the full 27 macros in Table III, reducing

both the number of gates and the number of logic levels. Note that the expressions for S0,

S2, and S3 can be mapped to TH24comp gates by adding two don�t care terms as for the

XOR function explained in Section 3.3. The logic diagram for the increment circuitry

using complex gates is shown in Figure 44. It has a worse-case path delay of two NCL

gates in the increment circuitry. The complex dual-rail model consists of 13 gates, and

from Synopsys simulation TDD was determined to be 4.81 ns.

3
3 S1

0

3 S1
1

S3
0

S3
1

S2
1

S2
0

3

TH24compB

D
C

A

TH24compB

D
C

A

S0
0

S0
1

X3
1 X3

0 X2
1 X2

0 X1
1 X1

0 X0
1 X0

0 Inc1 Inc0

1

1

4

TH24compB

D
C

A

TH24compB

D
C

A

TH24compB

D
C

A

TH24compB

D
C

A

Figure 44. Dual-rail increment circuit using complex gates.

 57

3.5.3 Method 3: Quad-Rail Encoding Optimizations

 Quad-rail optimizations proceed in a similar fashion to dual-rail optimizations. In

Step 3A, the NCL circuit is optimized by using reduced minterm expressions for all four

rails of both outputs, S0 and S1, the low order two bits and the high order two bits,

respectively, derived from the Karnaugh maps shown in Figure 45. Note that not all of

the coverings that eliminate Inc are shown, so as not to clutter the drawing. The reduced

minterm expressions derived from these K-maps are as follows: S0

0 = Inc0X0
0 + Inc1X0

3,

S0
1 = Inc0X0

1 + Inc1X0
0, S0

2 = Inc0X0
2 + Inc1X0

1, S0
3 = Inc0X0

3 + Inc1X0
2, S1

0 = Inc0X1
0 +

X0
0X1

0 + X0
1X1

0 + X0
2X1

0 + Inc1X0
3X1

3, S1
1 = Inc0X1

1 + X0
0X1

1 + X0
1X1

1 + X0
2X1

1 +

Inc1X0
3X1

0, S1
2 = Inc0X1

2 + X0
0X1

2 + X0
1X1

2 + X0
2X1

2 + Inc1X0
3X1

1, S1
3 = Inc0X1

3 +

X0
0X1

3 + X0
1X1

3 + X0
2X1

3 + Inc1X0
3X1

2. These equations can now be directly mapped to

TH1n and THnn gates to produce the reduced minterm model, shown in Figure 46. This

10
0 1

0

1

X0

Inc S0

32

3

03

2

21

00

X1 S1

1

21

0

11

22

3

3

03

2

33

2

3

0

1

Inc = 1

X0

00

X1

0

11

0

11

222 2 2

3333

2

3

0

1

Inc = 0

X0 32103210

Figure 45. Karnaugh maps for quad-rail counter.

 58

Figure 46. Increment circuit using quad-rail reduced minterm expressions.

2

2

2

2

1

1

S0
0

S0
1

3

2

2

2

2

1

1

S0
2

S0
3

2

2

2

2

3

2

2

2

2

3

2

2

2

2

3

2

2

2

2

1

1

1

1

S1
0

S1
1

S1
2

S1
3

X1
3 Inc1X1

2 X1
1 X1

0 X0
3 X0

2 Inc0X0
0X0

1

 59

model has a theoretical worse-case path delay of two NCL gates in the increment

circuitry. However, TH15 gates are not supported in the 27 NCL macros, since they

require 5 inputs. Therefore, the actual worse-case path delay is three NCL gates. The

reduced minterm model consists of 40 gates, but only 36 gates are necessary if TH15

gates are used. From Synopsys simulation, TDD was determined to be 5.59 ns.

 To further reduce the gate count, the expressions for S1 can be factored using

Step 3B. This factoring increases the worse-case path delay from two NCL gates to three

NCL gates. Since constructing TH15 gates for the reduced minterm model from smaller

gates caused a worse-case path delay of 3 gates, factoring did not increase the depth of

the critical path. The factored minterm model, shown in Figure 47, reduced the gate count

to only 25 gates, and from Synopsys simulation, TDD was determined to be 5.57 ns.

 Step 2C maps the factored expressions to the full 27 macros in Table III, reducing

both the number of gates and the number of logic levels. Note that the expressions for S0

and S1 can be mapped to TH24comp gates by adding two don�t care terms as for the

XOR function explained in Section 3.3. The logic diagram for the increment circuitry

using complex gates is shown in Figure 48. It has a worse case path delay of two NCL

gates in the increment circuitry. The complex quad-rail model consists of 10 gates and

from Synopsys simulation TDD was determined to be 5.47 ns.

 60

Figure 47. Increment circuit using quad-rail factored minterm expressions.

2

2

2

2

1 S0
1

3

2

2

2

2

1

1

S0
2

S0
3

2

3

2

3

2

3

2

1
1

S0
0

X1
3 Inc1X1

2 X1
1 X1

0 X0
3 X0

2 Inc0X0
0X0

1

1 S1
0

1 S1
1

1 S1
2

1 S1
3

 61

Figure 48. Quad-rail increment circuit using complex gates.

3.5.4 Other MEAG Optimizations

 To reduce power, this technique was applied to design a 16-rail MEAG counter.

The resulting increment circuitry is shown in Figure 49. Note that TH24comp gates can

be used by adding two don�t care terms as for the XOR function explained in Section 3.3.

This model has a worse-case path delay of one NCL gate in the increment circuitry and

consists of 16 NCL gates. However, a special 16-rail register, shown in Figure 50, was

required to implement the feedback circuitry. The register is depicted as reset to NULL,

however it could be instead reset to a DATA value by replacing exactly one of the TH22n

X1
3 Inc1X1

2 X1
1 X1

0 X0
3 X0

2 Inc0X0
0X0

1

S0
0TH24compB

D
C

A

S0
1TH24compB

D
C

A

S0
2TH24compB

D
C

A

S0
3TH24compB

D
C

A

2

1

S1
0TH24compB

D
C

A

TH24compB

D
C

A

S1
1

TH24compB

D
C

A

S1
2

TH24compB

D
C

A

S1
3

 62

gates with a TH22d gate. This register requires two levels of logic to generate the Ko

signal, instead of only one level required by both the dual-rail and quad-rail registers,

causing the 16-rail MEAG counter to have a longer feedback path and therefore operate

slower. Furthermore this 16-rail representation is exponential in the number of bits,

reducing its applicability for general purpose designs. TDD was determined to be 8.77 ns

using Synopsys and the average power per cycle, denoted PDD, was determined to be

5.37 µW using Cadence.

Inc1X3 X2 Inc0X0X1

S0TH24compB

D
C

A

S1TH24compB

D
C

A

S2TH24compB

D
C

A

S3TH24compB

D
C

A

S4TH24compB

D
C

A

S5TH24compB

D
C

A

S6TH24compB

D
C

A

S7TH24compB

D
C

A

X6 X5 X4X9 X8 X7X12 X11 X10X14 X13X15

S8TH24compB

D
C

A

S9TH24compB

D
C

A

S10TH24compB

D
C

A

S11TH24compB

D
C

A

S12TH24compB

D
C

A

S13TH24compB

D
C

A

S14TH24compB

D
C

A

S15TH24compB

D
C

A

Figure 49. 16-rail MEAG increment circuit.

 63

Figure 50. 16-rail MEAG register.

2n
I0

O0

Reset

2n

2n

2n

2n

2n

2n

2n

2n

2n

2n

2n

2n

2n

2n

2n

O1

O2

O3

O4

O5

O6

O7

O8

O9

O10

O11

O12

O13

O14

O15

I1

I2

I3

I4

I5

I6

I7

I8

I9

I10

I11

I12

I13

I14

I15

Ki

1

1

1

1

1Ko

 64

3.5.5 Up-Counter Performance Summary

 Table VII lists the timing, gate counts, and transistor count for each of the eight

counter models. It also lists the average power per operation for both the optimal dual-rail

and quad-rail counters, as well as for the 16-rail MEAG counter. The theoretical gate

count is the number of gates that would be required if TH55 and/or TH15 gates were

used. Since these gates are not part of the 27 NCL macros, they have been constructed

from existing gates, as discussed in Section 3.5.2, to yield the actual gate count.

Table VII indicates that the factored forms of both the dual-rail and quad-rail circuits

yield fewer gates and transistors, as well as smaller cycle times, compared to their

original reduced forms. However, the complex gate models yield the best time and space

performance for Method 2 and Method 3, as expected. The optimal design in terms of

speed is generated from both Method 1 and Method 2C, although the design from

Method 2C is preferred since it contains fewer gates and transistors. The most area

efficient design is generated from Method 3C, requiring 22% fewer transistors than the

speed optimal design of Method 2C. Furthermore, the most power efficient design is the

16-rail MEAG counter, requiring 63% less power than the optimal dual-rail design from

Method 2C and 42% less power than the optimal quad-rail design from Method 3C,

although it requires 36% and 73% more transistors and is 82% and 60% slower than the

two, respectively.

 65

Table VII. Alternate designs for NCL up-counter increment circuit.

 Theoretical Actual Transistor
Model Type Gate Count Gate Count Count TDD PDD
1) Incomplete AND 14 14 216 4.81 ns
2a) Reduced Dual-Rail 36 39 460 5.34 ns
2b) Factored Dual-Rail 27 28 308 5.28 ns
2c) Complex Dual-Rail 13 13 212 4.81 ns 14.44 µW
3a) Reduced Quad-Rail 36 40 440 5.59 ns
3b) Factored Quad-Rail 25 25 266 5.57 ns
3c) Complex Quad-Rail 10 10 166 5.47 ns 9.30 µW
 16-rail MEAG 16 16 288 8.77 ns 5.37 µW

 66

4.0 GATE-LEVEL PIPELINING OPTIMIZATIONS

Gate-Level Pipelining (GLP) techniques are developed to design throughput-

optimal delay-insensitive NCL systems. Pipelined NCL systems consist of

Combinational, Registration, and Completion circuits implemented using threshold gates

equipped with hysteresis behavior. NCL Combinational circuits provide the desired

processing behavior between Asynchronous Registers that regulate wavefront

propagation. NCL Completion logic detects completed DATA or NULL output sets from

each register stage. GLP techniques cascade registration and completion elements to

systematically partition a combinational circuit and allow controlled overlapping of input

wavefronts. Both full-word and bit-wise completion strategies are applied progressively

to select the optimal size grouping of operand and output data bits. To illustrate the

method, GLP is applied to a case study of a 4-bit by 4-bit unsigned multiplier, yielding a

speedup of 2.25 over the non-pipelined version, while maintaining delay-insensitivity.

Even though delay-insensitive design methods do not utilize clocked control signals, they

are still amenable to significant throughput increases by pipelining of wavefronts. The

objective of this chapter is to develop and illustrate a pipelining method for maximizing

throughput of delay-insensitive systems at the gate level.

 67

4.1 Chapter Outline

 This chapter is organized into five sections. An overview of previous work is

given in Section 4.2. In Section 4.3, the GLP method is developed. This method is then

demonstrated in Section 4.4 by applying GLP to design an optimal 4-bit by 4-bit

unsigned multiplier whose throughput is increased by 125% over the non-pipelined

version. Section 4.5 concludes the 4×4 multiplier case study.

4.2 Previous Work

Pipelining facilitates temporal parallelism by partitioning a process into stages

such that each stage operates simultaneously on different wavefronts of input operands.

If a process that requires N time units can be partitioned into S identical stages then a

steady-state throughput not to exceed S/N results per time unit may be realized. In

practice numerous constraints, such as registration overhead between computational

stages, limit the actual speedup achievable by pipelining. For instance, throughput

limitations may be encountered as clocked Boolean circuits are partitioned to

increasingly finer granularities. In particular, the clock period used to advance data

between stages becomes increasingly dominated by the required design margins,

including accommodations for clock skew. Clearly, asynchronous design methods need

not provide design margins to accommodate clock skew. Nonetheless, they do possess

their own constraints governing speedup by pipelining and can benefit substantially from

optimized pipeline design strategies.

 68

One approach to pipelining asynchronous circuits was described in Ivan

Sutherland�s work on micropipelines [19]. This method employs two-phase handshaking

supporting transmission of bundled data. Figure 51 shows a two-phase handshaking

protocol. Two control wires, labeled request and acknowledge, are used to support an

arbitrary number of data wires. In two-phase handshaking, both the rising and falling

edges of the request and acknowledge signals are indicative of circuit behavior. A cycle

begins with the sender setting the data lines and generating a request event by toggling

the request line. When the request is received, the data is latched and the receiver

generates an acknowledge event by toggling the acknowledge line. The cycle terminates

when the sender receives the acknowledge signal, at which time the data lines may be set

for the next cycle. The use of bundled data refers to the fact that the data lines and request

signal are treated as a bundle. Data bundling implies that the data transmission delay

cannot exceed the delay to transmit the request. Otherwise, the request event might reach

the receiver prior to valid data, causing invalid data to be latched. Subsequent work on

micropipelines [31, 32, 33] suggest that performance may be increased by using four-

phase handshaking protocols. Four-phase handshaking also requires two control wires,

request and acknowledge, along with an arbitrary number of data wires. But, in four-

phase handshaking only one edge, either the rising or falling edge of the request and

acknowledge signals, is active. The four-phase handshaking protocol is shown in

Figure 52, using the rising edge as active. A cycle begins with the sender placing data on

the bus and generating a request event by asserting the request line. When the request is

received, the data is latched and the receiver generates an acknowledge event by asserting

 69

the acknowledge line. When the sender receives the acknowledge signal, the request

signal is de-asserted and the data lines may be set for the next cycle. The cycle concludes

with the acknowledge line being de-asserted, as precipitated by the de-assertion of the

request line. Micropipelining techniques such as these are evident in several processors

that have been designed and implemented using bundled data methods [34, 35].

Figure 51. Two-phase handshaking protocol [19].

Figure 52. Four-phase handshaking protocol [33].

Another approach to pipelining asynchronous circuits is through the use of wave

pipelining. Hauck and Huss [36] describe a technique that allows multiple data

wavefronts to simultaneously propagate between two asynchronous registers by

partitioning each combinational logic block with dynamic latches, controlled only by the

request line. Synchronous wave pipelining and asynchronous micropipelining methods

can be combined using these techniques. However, a potential limitation of eliminating

the acknowledge signal is that delay-insensitive behavior may be compromised, thus

making the protocol inelastic. Further work by Park and Chung [37] presents a

modification to this approach in which both the number of latches and the number of

delay elements can be reduced, resulting in higher throughput.

 70

A third asynchronous pipelining approach uses delay-insensitive multi-ring

structures [38]. This method employs a four-phase handshaking protocol using dual-rail

signals for data representation and Delay-Insensitive Minterm Synthesis (DIMS) [9] for

each functional block. It also presents a formal method for analyzing the performance of

these multi-ring structures, based on signal transition graphs. Nonetheless, formal

methods to design throughput-optimal multi-ring structures are not directly feasible due

to underlying difficulties in partitioning of DIMS expressions.

In [39] Kim and Beerel present an optimal branch and bound algorithm to

partition asynchronous circuits composed of precharge-logic blocks [12, 24] designed at

the transistor level. The algorithm uses a labeled directed graph to represent the model

being pipelined. However, this method is not directly amenable to pipelining NCL

circuits due to the differences in the fundamental components.

4.2.1 Relation of NCL to Previous Work

For Sutherland�s micropipelines using either two-phase or four-phase

handshaking, the determination of the maximum throughput design for a given

combinational circuit is straightforward. Since micropipelines assume bundled data and

therefore employ single-rail signals, there is no completeness of input criterion that must

be met when partitioning a circuit, therefore further partitioning cannot invalidate a

design. Furthermore, delay is added in the control path such that completion detection is

unnecessary, therefore further partitioning cannot decrease throughput. Thus, the design

that will yield the maximum throughput is the one containing only one gate delay per

 71

stage. Since micropipelines necessitate the addition of delay in the control path, they

exhibit worse-case performance verses the average-case performance of NCL systems

and are layout and process dependent unlike NCL systems. Micropipelines also assume

bundled data such that synchronicity is required, while NCL systems require no

synchronization so that inputs may arrive at any time and in any order. Therefore, NCL

systems are potentially more independent than micropipelines.

Since the maximum throughput rate for asynchronous wave pipelines is

determined by the difference between the longest and shortest path through the

combinational logic, there is even more timing analysis required than for micropipelines.

In asynchronous wave pipelines throughput will be maximized by designing the shortest

and longest path to be nearly equal, therefore extensive timing analysis is required.

Asynchronous wave pipelines are therefore very susceptible to process dependencies and

environmental variations, unlike NCL. These fundamental differences between NCL and

both micropipelines and asynchronous wave pipelines place NCL in a different class than

either and would make direct comparisons difficult.

NCL circuits are in the same class as other delay-insensitive approaches [4, 6, 7,

8, 9], that were compared to NCL in Chapter 3. The functionality of NCL circuits is the

same as those designed using the approaches presented in [4, 6, 7, 8, 9]. Thus, the NCL

combinational circuit, as part of the NCL gate-level pipelining framework, could be

replaced with an equivalent circuit designed using [4, 6, 7, 8, 9], and the resulting single-

stage system would function correctly. This is exactly what delay-insensitive multi-ring

structures are. Their framework is equivalent to that of NCL, except for the

 72

combinational circuits, which use the approach described in [9]. But, since all of the basic

gates used in the other delay-insensitive approaches, including delay-insensitive multi-

ring structures, do not include hysteresis, their combinational designs cannot be

partitioned, as can NCL combinational circuits. Thus, a given combinational circuit

designed using [4, 6, 7, 8, 9] can either be used as a non-pipelined design, or if increased

throughput is desired, each stage of the pipeline must be separately redesigned. Therefore

a method which iteratively divides a combinational circuit of a delay-insensitive multi-

ring structure to increase throughput cannot do so with little effort, as does the method

presented herein for NCL; since after each iteration all combinational blocks which were

divided would have to be redesigned to include input-completeness necessary for delay-

insensitivity.

4.3 Method Definition

 In Chapter 3 it was shown how to design an optimal NCL combinational circuit.

So, starting with an N-level NCL combinational logic circuit, the design process for

optimizing throughput begins, as depicted in Figure 53. Other criteria such as maximum

latency and maximum area may also be considered during throughput optimization.

Several alternate designs are generated which are then assessed against the optimization

criteria, allowing the preferred design to be selected for implementation.

 It is assumed that if a maximum latency bound is specified then it is at least one

stage, and that if a maximum area bound is specified then it is at least as large as the non-

pipelined design, otherwise the non-pipelined design will be output. If no maximum

 73

latency or maximum area requirements are specified, then both are assumed to be infinity

such that they are not considered in determining the optimal design. If more than one

design has the same throughput, the one with the least latency will be chosen. If multiple

designs have the same throughput and latency, the one with the least area will be chosen.

Figure 53. GLP design flow.

N-level
combinational

design

max_latency,
max_area

max_throughput = calculate
throughput for non-pipelined design

best_design = non-pipelined design

i = N/2

i = 0

current_design = partition combinatorial
logic such that each stage has at
most i gate delays and ensure

completeness of input at the output
of each stage if possible

no

latency of
 current_design

max_latency
≤

area of
 current_design

max_area
≤

yes

completeness of input
achieved for all stages of

current_design

yes

temp_throughput = calculate
throughput for current_design

yes

i = i - 1

no

temp_throughput >
max_throughput

max_throughput = temp_throughput

best_design = current_design

yes

current_design = apply bit-wise
completion to current_design

no

area of
 current_design

max_area
≤

no

no

temp_throughput = calculate
throughput for current_design

temp_throughput >
max_throughput

max_throughput = temp_throughput

best_design = current_design

yes

yes

no

best_design uses
full-word completion no

yes

current_design = apply bit-wise
completion to best_design

area of
 current_design

max_area
≤

temp_throughput = calculate
throughput for current_design

temp_throughput >
max_throughput

max_throughput = temp_throughput

best_design = current_design

yes

yes

area of
current_design <

area of best_design

best_design = current_design

output best_design
and max_throughput

yes

yes

no no

no

no

area of
 current_design

max_area
≤

current_design = apply bit-wise
completion to current_design

yes

no

default =∞

 74

The original combinational circuit with no pipelining will always be input-

complete since TCR only yields input-complete designs. Thus, starting with the

combinational logic design and adding registration along with corresponding completion

logic at the input and output will yield an initial 1-stage design. Partitioning this initial

design, first into 2 stages, then further into as many as N stages may or may not produce

better designs. First, completeness of input must be ensured at the output of each stage, as

discussed in Chapter 2, otherwise the design will not be delay-insensitive and is therefore

invalid. After input-completeness is ensured, the throughput for the current design must

be calculated and compared to the throughput of the best design. If the current design�s

throughput is greater than that of the best design, it is designated as the best design,

otherwise bit-wise completion is applied to the current design and the throughput is

reevaluated. If the throughput of the current design using bit-wise completion is still not

greater than that of the best design, the best design does not change since the current

design doesn�t increase throughput and has longer latency, otherwise the current design

using bit-wise completion becomes the best design. As mentioned in Chapter 2 the

completion delay is proportional to log4 N. Thus, if partitioning causes registers of

significantly larger width to be required then the decrease in the combinational delay per

stage will be offset by the increase in the completion delay such that the throughput of the

system may not necessarily increase, as discussed in Section 4.3.1. If after traversing the

loop of Figure 53 (i=0), which generates each subsequent pipelined design, or if the

maximum latency or area requirements have been exceeded, then if the best design

utilizes full-word completion, bit-wise completion is applied to this design to possibly

 75

further increase throughput. If throughput is not increased the design with the least area is

chosen since both designs will have the same throughput and latency. This is because

application of bit-wise completion won�t decrease throughput, as explained in

Section 4.3.2, and doesn�t impact the number of stages. The output of this flowchart will

be the optimal design (best_design) that produces the maximum throughput

(max_throughput), and does not exceed the maximum latency or maximum area

requirements, if any were given.

4.3.1 Throughput Derivation

Quarter-cycle timing is used to determine the worst-case achievable throughput of

a pipelined NCL system. The name is derived from the fact that the analysis requires each

NCL cycle to be broken into its four sub-cycles. The NCL cycle is comprised of the

DATA and NULL propagation through the combinational circuitry, as well as the

generation of the request for DATA and request for NULL from the completion circuitry.

The four sub-cycles that are contained in the NCL cycle are shown in Figure 54. D

denotes the interval when any DATA bits are propagating through the combinational

circuit, N denotes the interval when any NULL bits are propagating through the

combinational circuit, RFD is the request for DATA generation, and RFN is the request

for NULL generation. Assuming Ko = rfd, the cycle starts with DATA propagation and

the sequence of the four sub-cycles is as follows: D, RFN, N, and RFD. The propagation

delays associated with this sequence are labeled as follows: TD, TRFN, TN, and TRFD,

respectively. TD and TN are defined to be the delay experienced by the slowest bit

 76

through their respective sub-cycles. In this chapter TD, TRFN, TN, and TRFD are

calculated in terms of gate delays, making the predicted throughput an estimate since

different gates do have slightly different delays. If this method were to be automated, the

actual delay of each gate would be used to calculate the predicted throughput.

Figure 54. Sub-cycles of the NCL cycle.

 The NCL cycle is bounded by the current registration stage, denoted as i, and the

previous registration stage, denoted by i-1, as depicted in Figure 55. The calculation

resulting in the maximum cycle time forms a lower bound on the throughput of the ith and

i-1th registration pair. This process of bounding the throughput for registration pairs is

repeated for all adjacent registration pairs in a pipelined configuration. The maximum

value calculated over all adjacent registration pairs determines a lower bound on steady-

state throughput for the entire design.

DATA
Combinational

Evaluation

DATA
Completion

Acknowledgement

NULL
Completion

Acknowledgement

NULL
Combinational

Evaluation

DATA-to-DATA Cycle

D RFN N RFD

Registration
Stage i-2

Combinational
Circuit

KiKo

In Out

Registration
Stage i-1

KiKo

In Out

Completion

Combinational
Circuit

Registration
Stage i

KiKo

In Out

Completion

Stage i-1 Stage i

TDi, TNi

TRFDi, TRFNi

TDi-1, TNi-1

TRFDi-1, TRFNi-1

Figure 55. Pipeline showing NCL sub-cycle times.

 77

4.3.1.1 Idealized Completion Circuitry

Consider the idealized case where TRFN and TRFD are assumed to be zero. The

discrete timing chart in Table VIII identifies the interaction of stagei and stagei-1 under

these idealized conditions. For the initial state, the analysis begins with stagei and stagei-1

both reset to NULL. At wavefront #1, DATA propagates through the combinational

circuitry of stagei-1, while stagei remains idle. At wavefront #2, NULL propagates

through the combinational circuitry of stagei-1, while DATA propagates through the

combinational circuitry of stagei. At wavefront #3, DATA propagates through the

combinational circuitry of stagei-1, while NULL propagates through the combinational

circuitry of stagei. This pattern of NULL propagating through stagei-1, while DATA

propagates through stagei, followed by DATA propagating through stagei-1, while NULL

propagates through stagei, repeats continuously and forms the simplified NCL cycle,

shown in boldface in Table VIII.

Table VIII. Discrete timing chart for the idealized NCL cycle.

 Sub- Initial Wavefronts

Stage cycle State 1 2 3 4 5
i-1 Di-1 X X X

 Ni-1 X X X
i Di X X
 Ni X X X

 Using the above terminology, the worst-case DATA-to-DATA cycle time for

stagei assuming idealized completion is:

TDDi
idealized = MAX (TNi-1, TDi) + MAX (TDi-1, TNi) (eq. 4.1).

 78

Interpreting Equation 4.1 as a set of exclusive events implies exactly one of the following

relationships:

 either TDDi
idealized = TNi-1 + TDi-1 (eq. 4.2), or

 TDDi
idealized = TNi-1 + TNi (eq. 4.3), or

 TDDi
idealized = TDi + TDi-1 (eq. 4.4), or

 TDDi
idealized = TDi + TNi (eq. 4.5).

Notice that Equations 4.2 and 4.5 are equivalent except for their stage index. Under the

proposed method of evaluating each stage pair in increasing order to determine the global

maximum value, Equation 4.2 would therefore have been evaluated in the previous

registration pair calculations, so it does not need to be reevaluated in the current

registration pair calculations. This is true for every registration pair except the first pair,

stage 1 and stage 2. For the first registration pair, Equation 4.2 does need to be

considered since there is no previous registration pair that incorporates this calculation.

Equation 4.3 considers the case of adjacent NULL propagation delays.

Equation 4.4 considers the case of adjacent DATA propagation delays. Equation 4.5

considers the case of NULL and DATA propagation delays for a single registration stage.

The pseudocode listed in Algorithm 4.1 calculates the worst-case throughput for an

idealized N-stage NCL pipeline.

 79

 max_cycle_time = TD1 + TN1
 for (i = 2 to N) loop
 temp_cycle_time = MAX(TNi-1 + TNi, TDi-1 + TDi, TDi + TNi)
 if (temp_cycle_time > max_cycle_time) then
 max_cycle_time = temp_cycle_time
 end if
 end loop
 worst_case_throughput = 1 / max_cycle_time

Algorithm 4.1. Calculation of worst-case throughput for an idealized N-stage pipeline.

Evaluation of the above loop is followed by taking the reciprocal of the maximum

adjacent stage pair delay to obtain a lower bound on the pipeline�s throughput.

4.3.1.2 Non-Zero Delay Completion Circuitry

 Now the general case will be examined, where TRFN and TRFD are not zero. The

discrete timing chart in Table IX shows the interaction of stagei and stagei-1. For the

initial state, assume stagei and stagei-1 are both reset to NULL, so both stages will initially

be requesting DATA. At wavefront #1, DATA propagates through the combinational

circuitry of stagei-1, while stagei remains idle. At wavefront #2, DATA propagates

through the combinational circuitry of stagei, while stagei-1 requests NULL. At

wavefront #3, NULL propagates through the combinational circuitry of stagei-1, while

stagei requests NULL. At wavefront #4, NULL propagates through the combinational

circuitry of stagei, while stagei-1 requests DATA. At wavefront #5, DATA propagates

through the combinational circuitry of stagei-1, while stagei requests DATA. This pattern,

from wavefront #2 to wavefront #5, repeats continuously and forms the generalized NCL

cycle, shown in boldface in Table IX.

 80

Table IX. Discrete timing chart for the general NCL cycle.

 Sub- Initial Wavefronts
Stage cycle State 1 2 3 4 5 6 7 8 9

 Di-1 X X X
i-1 Ni-1 X X X

 RFDi-1 X X X
 RFNi-1 X X
 Di X X
i Ni X X X
 RFDi X X X
 RFNi X X

 The worst-case cycle time for the generalized case of stagei is then given by:

TDDi
 = MAX (TDi, TRFNi-1) + MAX (TNi-1, TRFNi) +

 MAX (TNi, TRFDi-1) + MAX (TDi-1, TRFDi) (eq. 4.6).

Interpreting Equation 4.6 as a set of exclusive events implies exactly one of the following

relationships:

 either TDDi
 = TDi + TNi-1 + TNi + TDi-1 (eq. 4.7), or

 TDDi
 = TDi + TNi-1 + TNi + TRFDi (eq. 4.8), or

 TDDi
 = TDi + TNi-1 + TRFDi-1 + TDi-1 (eq. 4.9), or

 TDDi
 = TDi + TNi-1 + TRFDi-1 + TRFDi (eq. 4.10), or

 TDDi
 = TDi + TRFNi + TNi + TDi-1 (eq. 4.11), or

 TDDi
 = TDi + TRFNi + TNi + TRFDi (eq. 4.12), or

 TDDi
 = TDi + TRFNi + TRFDi-1 + TDi-1 (eq. 4.13), or

 TDDi
 = TDi + TRFNi + TRFDi-1 + TRFDi (eq. 4.14), or

 TDDi
 = TRFNi-1 + TNi-1 + TNi + TDi-1 (eq. 4.15), or

 TDDi
 = TRFNi-1 + TNi-1 + TNi + TRFDi (eq. 4.16), or

 81

 TDDi
 = TRFNi-1 + TNi-1 + TRFDi-1 + TDi-1 (eq. 4.17), or

 TDDi
 = TRFNi-1 + TNi-1 + TRFDi-1 + TRFDi (eq. 4.18), or

 TDDi
 = TRFNi-1 + TRFNi + TNi + TDi-1 (eq. 4.19), or

 TDDi
 = TRFNi-1 + TRFNi + TNi + TRFDi (eq. 4.20), or

 TDDi
 = TRFNi-1 + TRFNi + TRFDi-1 + TDi-1 (eq. 4.21), or

 TDDi
 = TRFNi-1 + TRFNi + TRFDi-1 + TRFDi (eq. 4.22).

Observe that Equations 4.17 and 4.12 are equivalent except for their stage index, as in the

simplified case. Thus, Equation 4.17 would have been evaluated in the previous

registration pair calculations, so it does not need to be reevaluated in the current

registration pair calculations, except for the first pair, stage 1 and stage 2. Equations 4.7

through 4.11, 4.14, 4.15, and 4.18 through 4.22, inclusive, can also be omitted based on

the fact that they contain terms with overlapping time intervals. For example, consider

Equation 4.11 containing TNi, then from Equation 4.6, TNi > TRFDi-1, which means that

RFDi-1 completes before Ni. Since Di-1 can begin as soon as RFDi-1 completes and RFDi-1

completes before Ni, then the intervals labeled Di-1 and Ni must at least partially overlap.

Thus, Equation 4.11 can be disregarded since it does not take into account this overlap.

To remove the overlap, TNi could be replaced with TRFDi-1, which would yield the

existing equation, 4.13. Through a similar analysis, three other overlapping terms can be

found. Therefore, any equation containing one or more of these overlapping pairs:

TNi and TDi-1, TDi and TNi-1, TRFNi and TRFNi-1, or TRFDi and TRFDi-1 must also be

invalid, leaving only three valid equations, 4.12, 4.13, and 4.16.

 82

In particular, Equation 4.16 considers the case of adjacent NULL propagation

delays, including the request times. Equation 4.13 considers the case of adjacent DATA

propagation delays, including the request times. Equation 4.12 considers the case of

NULL and DATA propagation delays for a single registration stage, including the request

times. Based on this analysis, the pseudocode listed in Algorithm 4.2 can be used to

calculate the worst-case throughput for a generalized N-stage NCL pipeline.

 max_cycle_time = TRFD1 + TD1 + TRFN1 + TN1
 for (i = 2 to N) loop
 temp_cycle_time = MAX(TRFDi + TDi + TRFNi + TNi,

 TRFDi-1 + TDi-1 + TDi + TRFNi,
 TRFNi-1 + TNi-1 + TNi + TRFDi)

 if (temp_cycle_time > max_cycle_time) then
 max_cycle_time = temp_cycle_time
 end if
 end loop
 worst_case_throughput = 1 / max_cycle_time

Algorithm 4.2. Calculation of worst-case throughput for a generalized N-stage pipeline.

Evaluation of the above loop is followed by taking the reciprocal of the maximum

adjacent stage pair delay to obtain a lower bound on the pipeline�s throughput.

4.3.2 Bit-Wise Completion

 In addition to minimizing stage delay, throughput may be further increased using

bit-wise completion, briefly mentioned in [40]. Until now only full-word completion has

been utilized, where the completion signal for each bit in registeri is conjoined by the

completion component, whose single-bit output is connected to all Ki lines of registeri-1.

On the other hand, bit-wise completion only sends the completion signal from bit b in

 83

registeri back to the bits in registeri-1 that took part in the calculation of bit b. This method

may therefore require fewer logic levels than that of full-word completion, thus

increasing throughput. Bit-wise completion will never reduce throughput, since in the

worse case all bits of registeri-1 are used to calculate each bit of registeri, such that the

completion logic and therefore throughput does not change by selecting bit-wise

completion rather than full-word completion. Bit-wise completion may or may not

require more logic gates and therefore transistors than full-word completion, thus bit-wise

completion will be used if it increases throughput, or if throughput is the same as for full-

word completion but area is reduced.

Figure 56 shows full-word completion for a combinational stage of six 2-input

AND functions, generating all combinations of the 4-bit input X. Figure 57 shows bit-

wise completion for the same six AND functions. There is only one level of logic in the

completion components for the bit-wise completion approach verses two levels of logic

in the completion component for the full-word completion approach. Also notice that

four gates are required for bit-wise completion verses three gates for full-word

completion, a difference of 8 additional transistors. To maximize throughput in this case,

bit-wise completion would be selected in spite of its larger size since it reduces the

completion logic path from two gate delays down to only one gate delay, which translates

to an increase in throughput by Algorithm 4.2.

 84

Figure 56. Full-word completion.

NCL Completion

X(3) X(2) X(1) X(0)

NCL
Register

A(5) A(0)A(1)A(2)A(3)A(4)

Ki

NCL
Register

NCL
Register

NCL
Register

Ko

Ki

Ko

Ki

Ko

Ki

Ko

NCL
RegisterKi

NCL
Register

NCL
Register

NCL
Register

Ko

Ki

Ko

Ki

Ko

Ki

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko

Ki

NCL Completion

Ko Reset

4

4
3

NCL Completion

X(3) X(2) X(1) X(0)

NCL
Register

A(5) A(0)A(1)A(2)A(3)A(4)

Ki

NCL
Register

NCL
Register

NCL
Register

Ko

Ki

Ko

Ki

Ko

Ki

Ko

NCL
RegisterKi

NCL
Register

NCL
Register

NCL
Register

Ko

Ki

Ko

Ki

Ko

Ki

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko

Ki(5)

Ko(3) Reset

3

NCL Completion NCL CompletionNCL Completion

Ki(4) Ki(3) Ki(2) Ki(1) Ki(0)

Ko(2) Ko(1) Ko(0)

Figure 57. Bit-wise completion.

 85

4.4 Application to Unsigned Multiplier

A number of designs based on the 4-bit by 4-bit multiplier shown in Figure 58

have been evaluated as a case study to assess the impact of GLP methods on throughput.

The specifications for this multiplier were simply to perform an unsigned multiply of the

two 4-bit input vectors, X and Y, and then output their 8-bit product, S. As with all NCL

systems, a full NCL interface with request and acknowledge signals labeled Ki and Ko,

respectively, is included for requesting and acknowledging complete DATA and NULL

wavefronts.

Figure 58. 4×4 multiplier block diagram.

The non-pipelined version of the 4×4 multiplier is shown in Figure 59. It consists

of incomplete AND functions, denoted as I and depicted in Figure 10, as well as

complete AND functions, denoted as C and developed in Chapter 3. The multiplier also

utilizes half adders, as shown in Figure 60 and denoted HA, as well as full adders, as

shown in Figure 30 and denoted FA. The last components of the multiplier include

GEN_S7, as shown in Figure 61, and the completion components, denoted as COMP.

Remember that the number of gate delays in the completion logic for an N-bit register is

log4 N, as discussed in Chapter 2.

4x4Multiplier

S(7:0)

Ki

X(3:0)

Y(3:0)

Ko

Reset

 86

Figure 59. Non-pipelined, 1-stage 4×4 multiplier using full-word completion.

X3
X2

Y3

X0

X1

Y0

Y1

Y2

8 bit NCL Register

HA
C S

FA
C S

FA
C S

FA
C S

HA
C S

HA
C S

HA
C S

HA
C S

HA
C S

FA
C S

S7 S0S1S2S3S4S5S6

8
bi

t N
C

L
R

eg
is

te
r

Ki

Ko

Ki
Ko

Reset

COMP

C
O

M
P

Ko

HA
C S

FA
C S

FA
C S

GEN_S7
S

ZYC X

CCCC I IIIIIIIIIII

FA
C S

10 gate
delays

 87

4.4.1 Pipelined Multipliers with Full-Word Completion

The throughput for the non-pipelined design is calculated using Algorithm 4.2,

and is determined to be (24 gate delays)-1. Here, TRFD1 = TRFN1 = log4 8 = 2 gate

delays and TN1 = TD1 = 10 gate delays as given by the I, FA, FA, HA, FA, FA, and FA

components along the critical path shown in bold face in Figure 59. Thus,

TDD = TRFD1 + TD1 + TRFN1 + TN1 = 2 + 10 + 2 + 10 = 24. Since the 4×4 multiplier has

a longest path delay of 10 threshold gates, then from the flowchart in Figure 53, the

4×4 multiplier can be pipelined with either 5, 4, 3, 2, or 1 gate delays per stage, if

completeness of input can be achieved for each such partition.

For a partition of 5 gate delays per stage, 2 stages are required, as shown in

Figure 62. The throughput of this 2-stage design is determined to be (14 gate delays)-1, as

all equations from Algorithm 4.2 yield this same maximum cycle delay. For a partition of

TH24compB

D
C

A

TH24compB

D
C

A

1

2

S1

S0

Co
0

Co
1

X0

X1

Y0

Y1

C1
C0

X1
X0

Y1
Y0

Z0

Z1

4

4
1 S1

S0

Figure 61. GEN_S7 component.

Figure 60. Half adder

 88

4 gate delays per stage, 3 stages are required, as shown in Figure 63. The first and second

stages only have 3 gate delays, while stage 3 has 4 gate delays. The throughput of this

3-stage design is determined to be (12 gate delays)-1, as calculated from Algorithm 4.2 for

stage 3. For a partition of 3 gate delays per stage, 4 stages are required, as shown in

Figure 64. The first stage has 3 gate delays, stage 2 only has 2 gate delays, and stage 3

and stage 4 both have 3 gate delays. The throughput of this 4-stage design is determined

to be (10 gate delays)-1. The equations from Algorithm 4.2 for stage 1, stage 3, stage 4,

and stages 3 and 4 combined all yield this result. For a partition of 2 gate delays per

stage, 7 stages are required, as shown in Figure 65. The first stage and the fourth stage

only have 1 gate delay, while the other stages all have 2 gate delays. The throughput of

this 7-stage design is determined to be (8 gate delays)-1. The equations from

Algorithm 4.2 for stages 2, 3, 5, 6, and 7, as well as those for stages 2 and 3 combined,

stages 5 and 6 combined, and stages 6 and 7 combined yield this result.

A partition into a single gate delay per stage cannot be achieved since the

completeness of input criterion is unattainable using only one level of logic with a

maximum gate fan-in of 4 inputs. This would require inserting a register between the two

levels of logic within the full adder, which would violate the completeness of input

criterion upon which it was designed.

 89

Figure 62. 2-stage 4×4 multiplier using full-word completion.

X3
X2

Y3

X0

X1

Y0

Y1

Y2

8 bit NCL Register

HA
C S

FA
C S

FA
C S

FA
C S

HA
C S

HA
C S

HA
C S

HA
C S

HA
C S

FA
C S

S7 S0S1S2S3S4S5S6

8
bi

t N
C

L
R

eg
is

te
r

Ki

Ko

Ki
Ko

Reset

COMP

C
O

M
P

Ko

HA
C S

FA
C S

FA
C S

FA
C S

GEN_S7
S

ZYC X

CCCC I IIIIIIIIIII

12 bit NCL Register

COMP

Stage 1:
5 gate
delays

Stage 2:
5 gate
delays

 90

Figure 63. 3-stage 4×4 multiplier using full-word completion.

X3
X2

Y3

X0

X1

Y0

Y1

Y2

8 bit NCL Register

HA
C S

FA
C S

FA
C S

FA
C S

HA
C S

HA
C S

HA
C S

HA
C S

HA
C S

FA
C S

S7 S0S1S2S3S4S5S6

8
bi

t N
C

L
R

eg
is

te
r

Ki

12 bit NCL Register

13 bit NCL Register

Ko

Ki

Ko

Ki

Ko

Ki
Ko

Reset

COMP

COMP

COMP

C
O

M
P

Ko

HA
C S

FA
C S

FA
C S

FA
C S

GEN_S7
S

ZYC X

CCCC I IIIIIIIIIII

Stage 1:
3 gate
delays

Stage 2:
3 gate
delays

Stage 3:
4 gate
delays

 91

Figure 64. 4-stage 4×4 multiplier using full-word completion.

X3
X2

Y3

X0

X1

Y0

Y1

Y2

8 bit NCL Register

HA
C S

FA
C S

FA
C S

FA
C S

HA
C S

HA
C S

HA
C S

HA
C S

HA
C S

FA
C S

S7 S0S1S2S3S4S5S6

8
bi

t N
C

L
R

eg
is

te
r

Ki

13 bit NCL Register

Ko

Ki

Ko

Ki
Ko

Reset

COMP

COMP

COMP

C
O

M
P

Ko

HA
C S

FA
C S

FA
C S

FA
C S

GEN_S7
S

ZYC X

12 bit NCL Register

11 bit NCL Register

Ko

Ki

Ko

Ki

COMP

C CIIIICIIIICIIII

Stage 1:
3 gate
delays

Stage 2:
2 gate
delays

Stage 3:
3 gate
delays

Stage 4:
3 gate
delays

 92

Figure 65. 7-stage 4×4 multiplier using full-word completion.

X3
X2

Y3

X0

X1

Y0

Y1

Y2

8 bit NCL Register

HA
C S

FA
C S

FA
C S

FA
C S

HA
C S

HA
C S

HA
C S

HA
C S

HA
C S

FA
C S

S7 S0S1S2S3S4S5S6

8
bi

t N
C

L
R

eg
is

te
r

Ki

12 bit NCL Register

13 bit NCL Register

Ko

Ki

Ko

Ki

Ko

Ki
Ko

Reset

COMP

COMP

COMP

C
O

M
P

Ko

HA
C S

FA
C S

FA
C S

FA
C S

GEN_S7
S

ZYC X

16 bit NCL Register

12 bit NCL Register

11 bit NCL Register

Ki

COMP
Ko

Ko

Ki

Ko

10 bit NCL Register

COMP

Ko

Ki

Ki

COMP

COMP

IC IIIICIIIICIII C

Stage 1:
1 gate
delay

Stage 2:
2 gate
delays

Stage 3:
2 gate
delays

Stage 4:
1 gate
delay

Stage 5:
2 gate
delays

Stage 6:
2 gate
delays

Stage 7:
2 gate
delays

 93

4.4.2 Summary of Multiplier Designs using Full-Word Completion

The maximum throughput when pipelining the 4×4 multiplier using full-word

completion was (8 gate delays)-1 as attained by the 7-stage design. Table X compares the

throughputs attained from Synopsys simulation and shows that the 7-stage design indeed

outperforms all other configurations, as expected by comparing the analytically predicted

throughputs. This design has a 19% increase in throughput over the next highest

throughput from the 4-stage multiplier, and an 83% increase in throughput over the

original non-pipelined design. This increase in throughput was achieved at the expense of

inserting 6 asynchronous registers along with corresponding completion logic, as dictated

by the flowchart of Figure 53. The simulated throughput was obtained by averaging the

throughputs resulting from all 256 possible combinations of input pairs.

Table X. Stage delay and throughput for various multiplier designs.

 Maximum Combinational Maximum Completion Predicted Simulated
Multiplier Delay per Stage Delay per Stage Throughput Throughput
Design (gate delays) (gate delays) (gate delays)-1 (ns)-1
1-stage 10 2 1/24 = 0.042 0.114
2-stage 5 2 1/14 = 0.071 0.150
3-stage 4 2 1/12 = 0.083 0.172
4-stage 3 2 1/10 = 0.100 0.176
7-stage 2 2 1/8 = 0.125 0.209

4.4.3 Applying Bit-Wise Completion

After traversing the loop of Figure 53 such that i=0, the highest throughput design

utilized full-word completion. Bit-wise completion was applied to this design as specified

by the flowchart. When switching from full-word completion to bit-wise completion the

 94

incomplete AND functions had to be replaced with complete AND functions to satisfy

the completeness of input criterion over the new completion sets. The resulting design,

shown in Figure 66, reduced the completion logic from 2 gate delays to only 1 gate delay

for all registers, thus increasing the throughput from (8 gate delays)-1 to (6 gate delays)-1.

From Synopsys simulation throughput was determined to be 0.257 ns-1, an increase of

21% over the design with an identical number of stages using full-word completion.

Thus, the 7-stage 4×4 multiplier utilizing bit-wise completion optimizes throughput.

4.5 Conclusion

Since increasingly finer pipelining of the multiplier did not increase the

completion delay, the most finely grained pipelined design was optimal. The non-

pipelined design (Figure 59) required a maximum register width of 8 bits while the

7-stage pipelined design (Figure 65) required a maximum register width of 16 bits, and

log4 8 = log4 16 = 2. However, if the 7-stage design required a maximum register

width of 17 bits instead of 16 bits, the throughput for the 7-stage design using full-word

completion would have been the same as for the 4-stage design using full-word

completion. Thus, the 4-stage design using full-word completion would have been

preferable over its 7-stage counterpart, since it would have had less latency. Bit-wise

completion would still have had to be performed on the 7-stage design and possibly the

4-stage design to determine the overall optimal throughput design.

 95

 Figure 66. 7-stage 4×4 multiplier using bit-wise completion.

X3 X2 Y3X0X1 Y0Y1Y2 Ko(0)Ko(1)Ko(2)Ko(3)Ko(4)Ko(5)Ko(6)Ko(7)

COMPCOMP COMPCOMP COMPCOMP COMPCOMP

NCL
RegisterKi

KoNCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko

NCL
RegisterKi

KoNCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko

CCCCCCCC C C C C C C CC C C C C C C

HA
C S

FA
C S

FA
C S

FA
C S

HA
C S

COMP

NCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko

COMPCOMPCOMPCOMP

HA
C S

NCL
RegisterKi

KoNCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko

FA
C S

HA
C S

HA
C S

HA
C S

COMP COMP COMP COMP COMP

NCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko

HA
C S

COMP

NCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko

COMP FA
C S

NCL
RegisterKi

Ko NCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

KoNCL
RegisterKi

Ko

COMP FA
C S

GEN_S7
S

ZYC X

FA
C S

COMP

NCL
RegisterKi

Ko NCL
RegisterKi

Ko

Ki(7) S7 Ki(6) S6 Ki(5) S5 Ki(4) S4 Ki(3) S3 Ki(2) S2 Ki(1) S1 Ki(0) S0

Reset

 96

5.0 NULL CYCLE REDUCTION TECHNIQUE

 A NULL Cycle Reduction (NCR) technique is developed to increase the

throughput of delay-insensitive digital systems. NCR reduces the time required to flush

complete DATA wavefronts, commonly referred to as the NULL or Empty cycle. The

NCR technique exploits parallelism by partitioning input wavefronts such that one circuit

processes a DATA wavefront, while its duplicate processes a NULL wavefront. To

illustrate the technique, NCR is applied to a case study of a dual-rail non-pipelined

4-bit by 4-bit unsigned multiplier, yielding a speedup of 1.61 over the standalone version,

while maintaining delay-insensitivity.

5.1 Introduction

 Most multi-rail delay-insensitive logic paradigms employ both a DATA

wavefront and a NULL wavefront in order to maintain delay-insensitivity [4, 6, 7, 8, 9,

21]. The DATA wavefront realizes circuit functionality, while the NULL wavefront

flushes the previous DATA wavefront. The NULL cycle accounts for approximately half

of the total cycle time, thus decreasing attainable throughput by a factor of two. The

objective of this chapter is to develop and illustrate a technique for reducing the NULL

cycle time such that throughput does not depend as heavily on the DATA flush time, yet

still maintains delay-insensitivity.

 97

 Many architectures and algorithms employ the well-known divide and conquer

strategy. The divide and conquer technique partitions a problem into smaller sub-

problems that can be solved simultaneously, then merges their outputs to construct the

solution to the original problem, thus reducing computation time. The NCR technique

described herein also employs this divide and conquer strategy to increase the throughput

of NCL systems. Successive input wavefronts are partitioned such that one circuit

processes a DATA wavefront, while its duplicate processes a NULL wavefront. The first

DATA/NULL cycle flows through the original circuit, while the next DATA/NULL

cycle flows through the other circuit. The outputs of the two circuits are then multiplexed

to form a single output stream.

5.2 NULL Cycle Reduction

 The technique for reducing the NULL cycle, thus increasing throughput for any

NCL system is shown in Figure 67. NCL Circuit #1 and NCL Circuit #2 have identical

functionality and are both initialized to output NULL and request DATA upon reset. Both

have an asynchronous NCL register at the input and output, while the combinational

functionality can be designed using TCR described in Chapter 3. These circuits may also

be pipelined as described in Chapter 4, to further increase throughput. The Demultiplexer

partitions the input, D, into two outputs, A and B, such that A receives the first

DATA/NULL cycle and B receives the second DATA/NULL cycle. The input

continuously alternates between A and B. The Completion Detection circuitry detects

when either a complete DATA or NULL wavefront has propagated through the

 98

Demultiplexer, and requests the next NULL or DATA wavefront, respectively.

Sequencer #1 is controlled by the output of the Completion Detection circuitry and is

used to select either output A or B of the Demultiplexer. Output A of the Demultiplexer is

input to NCL Circuit #1 when requested by Ki1; and output B of the Demultiplexer is

input to NCL Circuit #2 when requested by Ki2. The outputs of NCL Circuit #1 and NCL

Circuit #2 are allowed to pass through their respective output registers, as determined by

Sequencer #2, which is controlled by the external request, Ki. The Multiplexer rejoins the

partitioned datapath by passing a DATA input on either A or B to the output, or asserting

NULL on the output when both A and B are NULL. Figure 67 shows the state of the

system when a DATA wavefront is being input, before its acknowledge flows through the

Completion Detection circuitry, and when a DATA wavefront is being output, before it is

acknowledged by the receiver.

Figure 67. NCR architecture.

Input

NCL Circuit #2

Ko

Ko

Output

DATA

NULL

rfd

DATA

NULL

Ko

Ki

Ki

Ki

Demultiplexer

Sequencer #1

S1 S2

S1 S2

Ki

Completion
Detection

Sequencer #2

S2 S1

Ki

Multiplexer

D

A

B

Ki1

Ki2

Ko

Reset to NULL

Reset to NULL

Reset

ResetReset

Reset

DATA DATA

1000 0010 0010 1000

A

B

D

NCL Circuit #1

Reset to NULL

rfn
rfd rfn

rfd

rfd rfn

rfn

rfd

 99

5.2.1 Demultiplexer

 A logic diagram for one bit of the Demultiplexer is shown in Figure 68. Upon

reset both A and B are initialized to NULL. When S1 is asserted and Ki1 is rfd, a

DATA input on D will be passed to output A. Likewise, when S2 is asserted and Ki2 is

rfd, a DATA input on D will be passed to output B. Ko becomes rfd when both A and B

are NULL, and becomes rfn when either A or B is DATA. When A becomes DATA, it

will return to NULL only after S1 is de-asserted, Ki1 becomes rfn, and the input, D,

becomes NULL. Likewise, when B becomes DATA, it will return to NULL only after S2

is de-asserted, Ki2 becomes rfn, and the input, D, becomes NULL. Therefore, A and B

can never both be DATA since S1 and S2 can never be simultaneously asserted and both

A and B must be NULL before the next DATA wavefront is requested. Each bit of the

Demultiplexer is the same, and the number of bits is determined by the width of the input

datapath.

3N

3N

3N

3N

1

D0

D1

B1

B0

A1

A0

Ki1

Ki2

Reset
S2
S1

Ko

Figure 68. 1-bit Demultiplexer.

 100

5.2.2 Completion Detection Circuitry

 The Completion Detection circuitry is the same as that explained in Chapter 2 and

shown in Figure 23. The number of Ko lines from the Demultiplexer is also determined

by the width of the input datapath.

5.2.3 Sequencer #1

 Sequencer #1 is controlled by the output of the Completion Detection circuitry

and is used to select either output A or B of the Demultiplexer. Upon reset it selects

output A to receive the first DATA/NULL cycle, after Ki becomes rfd. It then selects

output B to receive the second DATA/NULL cycle. Sequencer #1 continuously alternates

the DATA/NULL cycles between outputs A and B. A logic diagram of Sequencer #1 is

shown in Figure 69. This is a 4-stage single-rail ring structure with one token, where a

token is defined as a DATA wavefront with corresponding NULL wavefront, and two

bubbles, where a bubble is defined as either a DATA or NULL wavefront occupying

more than one neighboring stage [38]. When Ki becomes rfd, the DATA wavefront

moves through the two NULL bubbles ahead of it, creating two DATA bubbles in its

wake. Likewise, when Ki becomes rfn, the NULL wavefront moves through the two

DATA bubbles ahead of it, creating two NULL bubbles in its wake. The DATA/NULL

wavefront restricts the forward propagation of the NULL/DATA wavefront, respectively,

for each change of Ki, limiting the forward propagation to only the two bubbles. A

complete cycle of the Sequencer is shown in boldface and italics in Table XI. The cycle

for S1 is 1000, while the cycle for S2 is 0010.

 101

Figure 69. Sequence generator.

Table XI. Sequencer output.

Cycle # Initial State 1 2 3 4 5 6 7 8
Reset 1 0 0 0 0 0 0 0 0

Ki X 1 0 1 0 1 0 1 0
S1 0 1 0 0 0 1 0 0 0
S2 0 0 0 1 0 0 0 1 0

5.2.4 Multiplexer

 A logic diagram for one bit of the Multiplexer is shown in Figure 70. It simply

consists of two OR gates that pass a DATA input on either A or B to the output, D, or

assert NULL on the output when both A and B are NULL. The Multiplexer does not

require any select signals, since A and B can never simultaneously be DATA. This mutual

exclusion is ensured by Sequencer #2, which controls the outputs of NCL Circuit #1 and

NCL Circuit #2. Each bit of the Multiplexer is the same, and the number of bits is

determined by the width of the output datapath.

3N 3N3N3D

S2 S1

Reset

Ki

 102

5.2.5 Sequencer #2

 Sequencer #2 is controlled by the external request, Ki, and is used to allow DATA

and NULL wavefronts to flow through the output register of NCL Circuit #1 and NCL

Circuit #2. Upon reset it selects NCL Circuit #1 to output the first DATA/NULL cycle,

after Ki becomes rfd. It then selects NCL Circuit #2 to receive the second DATA/NULL

cycle. Sequencer #2 continuously alternates the DATA/NULL cycles between NCL

Circuit #1 and NCL Circuit #2. When S1 is asserted, DATA will be output from NCL

Circuit #1. Likewise, when S2 is asserted, DATA will be output from NCL Circuit #2.

When the output of NCL Circuit #1 becomes DATA, it will return to NULL only after S1

is de-asserted. Likewise, when the output of NCL Circuit #2 becomes DATA, it will

return to NULL only after S2 is de-asserted. Therefore, NCL Circuit #1 and NCL

Circuit #2 can never both output DATA since S1 and S2 can never be simultaneously

asserted and the outputs of both circuits must be NULL before the next DATA wavefront

is requested by asserting either S1 or S2. The structure of Sequencer #2 is the same as that

of Sequencer #1 shown in Figure 69.

1

1

D0

D1

A0

B0

A1

B1

Figure 70. 1-bit Multiplexer.

 103

5.3 Simulation Results

 A case study of a dual-rail non-pipelined 4-bit by 4-bit multiplier, shown in

Figure 59, has been evaluated to assess the impact of the NCR technique on throughput.

The specifications for this multiplier were simply to perform an unsigned multiply of the

two 4-bit input vectors, X and Y, and then output their 8-bit product, S. A full NCL

interface with request and acknowledge signals labeled Ki and Ko, respectively, is

provided for requesting and acknowledging complete DATA and NULL wavefronts.

From Synopsys simulation it was determined that the standalone version of the dual-rail

non-pipelined 4-bit by 4-bit multiplier had an average DATA-to-DATA cycle time of

8.75 ns with approximately equal DATA and NULL cycles. When the NCR technique

was applied to this design, the NULL cycle was reduced to approximately ¼ of the

DATA cycle. This resulted in an overall average DATA-to-DATA cycle time of only

5.43 ns, which corresponds to a 61% increase in throughput. Values for average

throughput were obtained from the arithmetic mean of throughputs corresponding to all

256 possible pairs of input operands.

 Table XII compares the throughput of the multiplier using NCR with the

throughputs achieved by pipelining the multiplier as explained in Chapter 4. Table XII

shows that the NCR technique is roughly comparable to pipelining for some applications,

since it falls in between the 4-stage and 7-stage pipelined designs in terms of both

throughput and gate count. Furthermore, it is not necessary to duplicate the entire circuit

when applying the NCR technique. Rather, its benefits can be obtained without doubling

area and power requirements by applying it to selective portions of a circuit, which

 104

cannot be pipelined more finely due to the completeness of input criterion. However, if

NCR was applied to stagei to boost throughput, both stagei-1 and stagei+1 may have to be

non-functional stages to realize the full increase due to the adjacent DATA propagation

delays of Equation 4.13 for determining throughput, as explained in Chapter 4. A non-

functional stage can be easily added by inserting an additional asynchronous register.

Thus, throughput of a pipelined design with a small number of slow stages can be readily

boosted with relatively little cost by using NCR.

Table XII. NCR vs. pipelining for multiplier application.

 Maximum Combinational Maximum Completion Simulated
Multiplier Delay per Stage Delay per Stage Throughput Gate
Design (gate delays) (gate delays) (ns)-1 Count
4-stage 3 2 0.176 264

NCR (1-stage) 10 2 0.184 365
7-stage 2 2 0.209 390

 To illustrate this point, NCR was applied to only a single stage of the pipeline

shown in Figure 71. Multiplier #1 and Multiplier #3 are both 2-stage unsigned multipliers

with a worse-case stage delay of 5 gate delays, as depicted in Figure 62. Multiplier #2 is a

non-pipelined unsigned multiplier consisting of 10 gate delays, as depicted in Figure 59.

Therefore, the 10 gate delays of Multiplier #2 is much longer than the 5 gate delays per

stage of the other multipliers, making Multiplier #2 a good candidate for NULL Cycle

Reduction. Without NCR, the pipeline of Figure 71 operates with TDD = 8.42 ns;

however, with NCR only applied to Multiplier #2, TDD is decreased to 6.96 ns, a speedup

of 1.21. Henceforth, applying NCR to only slow stages in a pipeline can boost throughput

 105

for the pipeline as a whole. Note that additional registration was not needed to form non-

functional stages around the NCR stage, since these non-functional stages already existed

when the multipliers were connected to form the pipeline of Figure 71, since each

multiplier contains both an input and output register.

Figure 71. NCL pipeline with one slow stage.

10 gate
delays

5 gate
delays

5 gate
delays

NCL
Register

NCL
Register

NCL
Register

5 gate
delays

5 gate
delays

NCL
Register

NCL
Register

NCL
Register

Multiplier #1 Multiplier #3Multiplier #2

NCL
Register

NCL
Register

 106

6.0 NCL MULTIPLY AND ACCUMULATE UNIT

 The TCR and GLP techniques developed in earlier chapters are illustrated in the

context of a sophisticated arithmetic application. Approaches for maximizing throughput

of self-timed multiply and accumulate units (MACs) are developed and assessed using

NCL. It is shown that the self-timed MAC throughput optimization problem can be

transformed into the selection of the multiplication algorithm requiring the fewest

number of gates. A number of alternative MAC algorithms are compared and contrasted

in terms of throughput and area to determine which design will yield the maximum

throughput with the least area. It was determined that two algorithms that meet these

criteria well are Modified Baugh-Wooley and Modified Booth2. Dual-rail non-pipelined

versions of these algorithms were first designed using the Threshold Combinational

Reduction (TCR) method described in Chapter 3. The non-pipelined designs were then

optimized for throughput using the Gate-Level Pipelining (GLP) method described in

Chapter 4. Finally, each design was simulated using Synopsys to quantify the advantage

of the dual-rail pipelined Modified Baugh-Wooley MAC, which yielded a speedup of 2.5

over its initial non-pipelined version. This design also required 20% fewer gates than the

dual-rail pipelined Modified Booth2 MAC that operated at the same throughput. The

resulting design employs a three-stage feed-forward multiply pipeline connected to a

four-stage feedback multifunctional loop to perform a 72+32×32 MAC in 12.7 ns on

 107

average using a 0.25 µm CMOS process at 3.3V, thus outperforming other delay-

insensitive/self-timed MACs in the literature.

6.1 Introduction

 This chapter evaluates a number of both bitwise and digitwise multiplication

algorithms suitable for self-timed MAC design. The bitwise algorithms include Array

Structured multiplication and multiplication using the Modified Baugh-Wooley algorithm.

Digitwise algorithms include Modified Booth multiplication as well as combinational

N-Bit × M-Bit multiplication. These algorithms are compared in terms of throughput and

area to first maximize steady-state throughput and then minimize total gate count within

the NCL multi-rail paradigm. This chapter considers 2s-complement operands with

rounding, scaling, and saturation of the output.

 The chapter is organized into six sections. An overview of previous work is given

in Section 6.2. In Section 6.3, the non-pipelined and pipelined versions of both the

Modified Baugh-Wooley and Modified Booth2 MACs are designed; and their

throughputs are estimated analytically and also simulated. Section 6.4 details the

rationale for selecting a ripple-carry adder over a carry-lookahead adder for carry-

propagation. In Section 6.5 the above designs, along with a variety of others, are

compared in terms of gate count. Section 6.6 provides conclusions and compares the

NCL MAC developed herein to other delay-insensitive/self-timed MACs.

 108

6.2 Previous Work

Approaches to self-timed MAC design are an area of recent interest [41, 42, 43].

Self-timed MAC design itself presents some interesting design considerations such as

feedback loop throughput maximization, carry-propagate adder selection, and

multiplication algorithm selection. As detailed in Section 6.3.3.2, throughput is

maximized for a self-timed feedback loop by inserting enough, but not too many,

asynchronous registers. In Section 6.4 it is shown that for NCL, a ripple-carry adder is

better than a carry-lookahead adder since timing is based on average-case scenarios. And

as explained in Section 6.3.5, the throughput of a pipelined self-timed MAC is

independent of the selected multiplication algorithm, making the best choice the

algorithm requiring the least area.

The Modified Baugh-Wooley algorithm, the Array algorithm, and the Modified

Booth algorithm for multiplication are all described in [44]. The Modified Baugh-Wooley

algorithm removes the need for negatively weighted bits present in the traditional

2s-complement multiplication algorithm by modifying the most significant bit of each

partial product and the last row of partial products, and by adding two extra bits to the

partial product matrix. This allows for summation of the partial products without using

special adders equipped to handle negative inputs and without increasing the height of a

tree of 3-input, 2-output carry-save adders.

 Array multiplication of 2s-complement numbers also begins with each partial

product bit generated according to the Modified Baugh-Wooley algorithm. Its

distinguishing characteristic is the technique for partial product summation. In the

 109

Modified Baugh-Wooley algorithm the partial products are summed using a Wallace tree

[44], which reduces the number of partial products by a factor of 3
2 after each level of the

tree and requires O(log2 N) time and O(N) space, where N denotes the number of partial

products [45]. On the other hand, Array multiplication reduces the number of partial

products by one at each level, therefore this method requires both O(N) time and space

[45].

The Modified Booth algorithms reduce the number of partial products to be

summed by partitioning the multiplier into groups of overlapping bits, which are then

used to select multiples of the multiplicand for each partial product. Consider, for

example an N-bit by N-bit 2s-complement multiply. Using the Modified Booth2

algorithm the multiplier is partitioned into overlapping groups of three bits, each of which

selects a partial product from the following list: +0, +M, +2M, -2M, -M, and �0, where M

represents the multiplicand. This recoding reduces the number of partial products from N

to 2
2+N . The tradeoff is more logic in the recoding portion of the multiplier in exchange

for fewer partial products to sum.

6.3 Self-Timed MAC Design Methods

A block diagram for the MACs developed in this chapter is shown in Figure 72.

Each MAC unit performs a 32-bit by 32-bit fixed-point fractional multiply, accepting

(signed × signed), (signed × unsigned), and (unsigned × unsigned) 2s-complement

operands. The product may be added to or subtracted from the 72-bit accumulator. The

MAC also supports 2s-complement and convergent rounding, up-scaling and down-

 110

scaling, output saturation, and it includes a multiply only option. The output is the 72-bit

2s-complement result along with a bit to detect overflow.

The taxonomy in Figure 73 is useful to illustrate relationships between some

possible multiplication algorithms that could be used in a self-timed MAC design. These

include bitwise algorithms such as Array multiplication and the Modified Baugh-Wooley

algorithm; and digitwise algorithms like Modified Booth as well as combinational

N-Bit × M-Bit multiplication. The Modified Booth algorithms [44] considered were

Booth2, Booth3, and Booth4, as higher radix Booth recodings incur an excessive number

of gates, as discussed in Section 6.4.5. The N-Bit × M-Bit algorithms considered were

2-Bit × 2-Bit, 2-Bit × 3-Bit, 2-Bit × 4-Bit, and 3-Bit × 3-Bit combinational multiplication,

since larger operand implementations are not competitive in terms of gate count, as

discussed in Section 6.4.9. For all of these algorithms both dual-rail and quad-rail

encodings were assessed and compared in terms of throughput and area to determine that

the dual-rail pipelined Modified Baugh-Wooley MAC achieves highest throughput with

the fewest number of gates. The next best performing approach is dual-rail Modified

Booth2, which was also implemented as both a pipelined and non-pipelined design for

comparison. For each design in Section 6.3, the circuit operation, optimization, and

performance are discussed in that order. Unless otherwise stated, designs are

implemented in dual-rail logic.

 111

Figure 72. MAC block diagram.

Figure 73. Taxonomy of 72+32×32 MAC.

6.3.1 Non-Pipelined Modified Baugh-Wooley MAC

6.3.1.1 Operation

The structure of the non-pipelined Modified Baugh-Wooley MAC is shown in

Figure 74. NCL enables several optimizations as discussed in Section 6.3.1.2. In Phase 1,

the multiplication begins by generating all of the partial products that can be generated in

one gate delay. Next, these partial products are used in the first level of the Wallace tree,

while the last row of partial products and most significant bit of each partial product,

X(31:0)

Mac/Mpy
Add/Sub
Sign(1:0)
Saturate
Scale(1:0)
Rnd_Type
Round
Y(31:0)

Aout(71:0)

OV

72+32x32 MAC

bitwise digitwise

Modified
Baugh-Wooley
- 32 partial products
- 8 levels

dual-rail
- 18,880 transistors
(2,048 gates)
for partial product
generation

quad-rail
- 32,800 transistors
(2,080 gates)
for partial product
generation

non-pipelined
- TDD = 31.8 ns
- 10,703 total gates

pipelined
- TDD = 12.7 ns
- 13,613 total gates

Modified
Booth

Booth2
- 17 partial products
- 6 levels

Booth3
- 22 partial products
- 7 levels

Booth4
- 17 partial products
- 6 levels

dual-rail
- 129,030 transistors
(7,854 gates)
for partial product
generation

quad-rail
- 142,494 transistors
(8,976 gates)
for partial product
generation

non-pipelined
- TDD = 31.2 ns
- 14,101 total gates

pipelined
- TDD = 12.7 ns
- 17,015 total gates

N-Bit x M-Bit

2-Bit x 2-Bit
- 32 partial products
- 8 levels

2-Bit x 3-Bit
- 26 partial products
- 7 levels

2-Bit x 4-Bit
- 23 partial products
- 7 levels

3-Bit x 3-Bit
- 21 partial products
- 7 levels

dual-rail
- 38,400 transistors
(2,816 gates)
for partial product
generation

quad-rail
- 49,664 transistors
(3,328 gates)
for partial product
generation

Array
- 32 partial products
- 31 levels

dual-rail
- 70,432 transistors
(4,768 gates)
for partial product
generation

 112

requiring two gate delays, are generated. Concurrently, the previous value in the

accumulator is shifted, if necessary, to account for the type of multiplication being

performed. It is complemented if the result is to be subtracted from the accumulator, or is

zeroed if multiply only is specified. Next, the modified accumulator and the uncombined

partial products are used, along with the output from the first level of the Wallace tree, as

the input to the second level of the Wallace tree. After this, there are six more Wallace

tree levels before the partial products are reduced to two 65-bit words, where a ripple-

carry addition is performed. The rationale for selecting a ripple-carry adder is detailed in

Section 6.4.

During the summation of the partial products in Phase 1, Phase 2 begins with the

multiply sign and the accumulate sign being generated as inputs to overflow detection.

Also, the control signals are ensured for input-completeness in order for the MAC to

remain delay-insensitive, as described in Chapter 2. After the ripple-carry addition, the

result is again shifted if necessary to account for the type of multiplication being

performed and is complemented if the result is to be subtracted from the accumulator.

 113

Figure 74. Non-pipelined Modified Baugh-Wooley MAC.

 In Phase 3, the result can then be rounded and saturated if required. To round the

result it is determined if the lower portion (LSB) is greater than or equal to 0.5, greater

than 0.5, or less than 0.5. The LSB is contained in either the lower 31, 32, or 33 bits,

depending on whether up-scaling, no scaling, or down-scaling is selected, respectively, as

shown in Figure 75. After this is determined, a rounding bit is generated to be added to

the upper portion of the result (MSB), based on the LSB and the selected rounding

algorithm, either 2s-complement or convergent rounding, described in Algorithm 6.1 and

Generate
Partial Products
(1 gate delay)

Complement and Shift
or Zero Ain
if necessary

(3 gate delays)

Calculate
Multiply Sign

(2 gate delays)

Calculate
Accumulate

Sign
(1 gate delay)

Calculate:
LSB >= 1/2 and

LSB > 1/2
(3 gate delays)

Calculate:
RND31-33

(2 gate delays)

Calculate Rounded
Result - Upper
(6 gate delays)

Calculate Rounded
and Saturated
Result - Lower
(3 gate delays)

Calculate Saturated
Result - Upper
(3 gate delays)

Calculate Overflow
(3 gate delays)

Ensure
Completeness

of Control
Signals

(2 gate delays)

CSA - 6 words
(2 gate delays)

CSA - 8 words
(2 gate delays)

CSA - 11 words
(2 gate delays)

CSA - 16 words
(2 gate delays)

CSA - 24 words
(2 gate delays)

CSA - 3 words
(2 gate delays)

CSA - 4 words
(2 gate delays)

Wallace Tree
(14 gate delays)

65-bit Ripple-Carry Adder
(average delay = 8.33 gates)
(maximum delay = 66 gates)
(minimum delay = 3 gates)

Shift Result and
Complement
if necessary

(3 gate delays)

Saturate and Round
if necessary

(14 gate delays)

145 Bit NCL Register

X Mac/MpyAdd/SubSignSaturateScaleRnd_TypeRoundY Ain

73 Bit NCL Register

Aout OV

Combinational Logic =
34 gate delays +
ripple carry adder

Generate Last Row
and MSBs of

Partial Products
(2 gate delays)

CSA - 31 words
(2 gate delays)

1

1

72 Bit NCL Register

Completion Logic
(4 gate delays)

Completion Logic
(4 gate delays)

Ko Ki

Ki

Ko
Ki

Ki Ko

Completion Logic
(4 gate delays)

Completion Logic
(4 gate delays)

Ko

Phase 1: Partial Product
 Generation and

 Summation

Phase 2: Ripple-Carry
 Addition

Phase 3: Scale, Saturate,
 and Round

 114

Algorithm 6.2, respectively. Next, this bit, either RND31, RND32, or RND33, is added to

the MSB of the result using a carry-lookahead adder. After the carry-lookahead addition,

the result can then be saturated as shown in Table XIII, by checking bits 71, 64, and 63.

While the result is processed by the saturation logic, the overflow bit is generated from

bit 71 and the multiply and accumulate signs calculated earlier. The result is then output

and fed back to the input register through an additional asynchronous register such that

there are three registers in the feedback loop to prevent a lockup scenario as explained in

Chapter 2.

 71 64 63 31 30 0
a) Extension MSB LSB

 71 64 63 32 31 0
b) Extension MSB LSB

 71 64 63 33 32 0
c) Extension MSB LSB

Figure 75. Output divisions for a) up-scaling, b) no scaling, and c) down-scaling.

 if (LSB >= 0.5) then
 MSB = MSB + 1
 else if (LSB < 0.5) then
 MSB = MSB
 end if
 LSB = 0

Algorithm 6.1. 2s-complement rounding.

 115

 if (LSB > 0.5) then
 MSB = MSB + 1
 else if (LSB < 0.5) then
 MSB = MSB
 else if (LSB = 0.5) and (the least significant bit of MSB = 0) then
 MSB = MSB
 else if (LSB = 0.5) and (the least significant bit of MSB = 1) then
 MSB = MSB + 1
 end if
 LSB = 0

Algorithm 6.2. Convergent rounding.

Table XIII. Saturation table.

B71 B64 B63 Saturated Result Saturated and Rounded Result
0 0 0 No Change Result of Rounding Algorithm
0 0 1 00 7FFF FFFF 00 7FFF 0000
0 1 0 00 7FFF FFFF 00 7FFF 0000
0 1 1 00 7FFF FFFF 00 7FFF 0000
1 0 0 FF 8000 0000 FF 8000 0000
1 0 1 FF 8000 0000 FF 8000 0000
1 1 0 FF 8000 0000 FF 8000 0000
1 1 1 No Change Result of Rounding Algorithm

6.3.1.2 Design Optimizations

 There are two optimizations considered: the first is architectural and the second is

NCL-specific. The first optimization deals with accumulation. The accumulator is shifted

and complemented at the beginning and added to the second level of the Wallace tree,

and the result is then shifted and complemented again following the ripple-carry addition

to reduce the circuit delay. The shifting accounts for the various multiply types:

(signed × signed), (signed × unsigned), and (unsigned × unsigned), while the

complementing is used for subtraction from the accumulator. The alternative is to shift

 116

and 2s-complement the two outputs of the Wallace tree and then accumulate. This

approach results in four words to be summed before the ripple-carry addition: the

accumulator, the two shifted and complemented partial products, and the extra bit to be

added to the least significant bit of each partial product due to their required

2s-complementing. In the second approach, the four extra words that need to be summed

before the ripple-carry addition can begin require two carry-save adders. This

optimization will always reduce the critical path by twice the worst-case propagation

delay of a full adder. In this design four gate delays were eliminated from the critical

path.

 Other optimizations include partial product generation facilitated through

completeness optimizations in NCL. All partial products except for the most significant

bits and the last partial product are directly generated by AND functions. To ensure

completeness of the X and Y inputs only the XiYj partial products, where i = j and

30 ≥ i, j ≥ 0, require the use of complete AND functions, developed in Chapter 3. The rest

of the partial products, XiYj, where i ≠ j, can be generated using incomplete AND

functions, depicted in Figure 10. Since the incomplete AND functions require 14 fewer

transistors than the complete AND functions, and can be used for 930 of the 961 AND

functions required for partial product generation, a net total of 13,020 transistors were

saved in this design.

 117

6.3.1.3 Average Cycle Time Determination

 To determine the average cycle time for the MAC, the average cycle time for a

ripple-carry adder was required. A C-language program was written that calculates the

number of occurrences of each possible number of gate delays for an N-bit ripple-carry

adder, from the minimum number of three gate delays for no carries, to the maximum

number of N+1 gate delays for a carry occurring at each adder. The program then

calculates the weighted average of the number of occurrences of each scenario to

determine the expected average number of gate delays for the N-bit ripple-carry adder,

assuming that all inputs are equiprobable. With N = 65, as in this design, the program

calculates TDD = 8.33 gate delays. With the average number of gate delays for the ripple-

carry adder known, the calculation of TDD follows Algorithm 4.2 in Chapter 4, as the

average number of gate delays through the combinational logic for both DATA and

NULL plus the number of gate delays through the completion circuitry for both DATA

and NULL. Since the delay in the completion logic is 4 gates and the number of gate

delays through the combinational circuitry is 34 plus the average delay of the ripple-carry

adder, determined to be 8.33 from the program, TDD = (2 × 4) + (2 × (34 + 8.33)) = 92.66

gate delays, accounting for both the DATA and NULL cycle. Simulation results are

presented in Section 6.3.5. Experience with the program for a range of values of

parameter N indicates logarithmic behavior for the ripple-carry addition as corroborated

by [45].

 118

6.3.2 Non-Pipelined Modified Booth2 MAC

6.3.2.1 Operation

The structure of the non-pipelined Modified Booth2 MAC is shown in Figure 76.

In Phase 1, the multiplication begins by generating all of the partial products and the

shifted and complemented, or zeroed, accumulator value, since both of these operations

require three gate delays. Next, the partial products and the modified accumulator are

combined through the first of six levels of the Wallace tree. The two partial products

output from the Wallace tree are used in a 67-bit ripple-carry addition. The Modified

Booth2 MAC requires a 67-bit ripple-carry addition, verses the 65-bit ripple-carry

addition required in the Modified Baugh-Wooley MAC, since the Modified Booth2 MAC

has two less Wallace tree levels, each of which reduces the length of the ripple-carry

addition by one.

During the summation of the partial products in Phase 1, Phase 2 begins with the

multiply sign and the accumulate sign being generated as inputs to overflow detection.

Also, the control signals and the multiplier and multiplicand, X and Y, respectively, are

ensured for completeness in order to maintain delay-insensitivity. Both X and Y must be

ensured here because they are not implicitly complete in the partial product generation

circuitry, as they are in the Modified Baugh-Wooley design, ensured by selectively

complete AND functions. After the ripple-carry addition, the result is again shifted, if

necessary, to account for the type of multiplication being performed and is complemented

if the result is to be subtracted from the accumulator.

 119

Figure 76. Non-pipelined Modified Booth2 MAC.

 In Phase 3, the result can then be rounded and saturated if required and the

overflow bit generated in exactly the same manner as for the Modified Baugh-Wooley

MAC. The result is then output and fed back to the input register through an additional

asynchronous register such that there are the required three registers in the feedback loop.

Generate
Partial Products
(3 gate delay)

Complement and Shift
or Zero Ain
if necessary

(3 gate delays)

Calculate
Multiply Sign

(2 gate delays)

Calculate
Accumulate

Sign
(1 gate delay)

Calculate:
LSB >= 1/2 and

LSB > 1/2
(3 gate delays)

Calculate:
RND31-33

(2 gate delays)

Calculate Rounded
Result - Upper
(6 gate delays)

Calculate Rounded
and Saturated
Result - Lower
(3 gate delays)

Calculate Saturated
Result - Upper
(3 gate delays)

Calculate Overflow
(3 gate delays)

Ensure
Completeness

of X, Y, and
Control Signals
(4 gate delays)

CSA - 4 words
(2 gate delays)

CSA - 6 words
(2 gate delays)

CSA - 9 words
(2 gate delays)

CSA - 13 words
(2 gate delays)

CSA - 18 words
(2 gate delays)

CSA - 3 words
(2 gate delays)

Wallace Tree
(12 gate delays)

67-bit Ripple-Carry Adder
(average delay = 8.38 gates)
(maximum delay = 68 gates)
(minimum delay = 3 gates)

Shift Result and
Complement
if necessary

(3 gate delays)

Saturate and Round
if necessary

(14 gate delays)

145 Bit NCL Register

X Mac/MpyAdd/SubSignSaturateScaleRnd_TypeRoundY Ain

73 Bit NCL Register

Aout OV

Combinational Logic =
32 gate delays +
ripple carry adder

1

1

72 Bit NCL Register

Completion Logic
(4 gate delays)

Completion Logic
(4 gate delays)

Ko Ki

Ki

Ko
Ki

Ki Ko
Completion Logic

(4 gate delays)

Ko

Phase 1: Partial Product
 Generation and

 Summation

Phase 2: Ripple-Carry
 Addition

Phase 3: Scale, Saturate,
 and Round

 120

6.3.2.2 Design Optimizations

 The same optimizations for selecting multiplication type and adding/subtracting

the partial products to/from the accumulator used in the Modified Baugh-Wooley design,

explained in Section 6.3.1.2, were implemented in the Modified Booth2 design.

6.3.2.3 Average Cycle Time Determination

 TDD can be calculated from Algorithm 4.2 in Chapter 2, as described in

Section 6.3.1.3. Since the delay in the completion logic is 4 gates and the number of gate

delays through the combinational circuitry is 32 plus the average of the ripple-carry adder

determined to be 8.38 from the C-program, TDD = (2 × 4) + (2 × (32 + 8.38)) = 88.76 gate

delays, accounting for both the DATA and NULL cycle. Therefore, the Modified Booth2

algorithm should be faster than the Modified Baugh-Wooley algorithm for the non-

pipelined MAC designs.

6.3.3 Pipelined Modified Baugh-Wooley MAC

6.3.3.1 Operation

The structure of the pipelined Modified Baugh-Wooley MAC is shown in

Figure 77. The first stage begins by generating all of the partial products that can be

generated in one gate delay. Next, these partial products are used in the first level of the

Wallace tree, while the remaining partial products that require two gate delays are

generated. The remaining partial products, along with the output from the first level of

the Wallace tree, are then used as the input to the second level of the Wallace tree.

 121

Figure 77. Pipelined Modified Baugh-Wooley MAC.

Calculate
Multiply Sign

(2 gate delays)

Calculate
Accumulate

Sign
(1 gate delay)

Calculate:
LSB >= 1/2 and

LSB > 1/2
(3 gate delays)

Calculate:
RND31-33

(2 gate delays)

Calculate Rounded
Result - Upper
(6 gate delays)

Calculate Rounded
and Saturated
Result - Lower
(3 gate delays)

Calculate Saturated
Result - Upper
(3 gate delays)

Calculate Overflow
(3 gate delays)

71-bit Ripple-Carry Adder
(average delay = 8.46 gates)
(maximum delay = 72 gates)
(minimum delay = 3 gates)

73 Bit NCL Register

X Mac/MpyAdd/SubSignSaturateScaleRnd_TypeRoundY

73 Bit NCL Register

OV

219 Bit NCL Register

CSA - 3 words
(2 gate delays)

Aout

Zero Ain for
Multiply Only
(1 gate delay)

control signals

83 Bit NCL Register

Ensure
Completeness

of Control
Signals

(2 gate delays)

Stage 1:
Combinational Logic =

7 gate delays

Stage 6:
Combinational Logic =

5 gate delays

Stage 2:
Combinational Logic =

8 gate delays

Generate
Partial Products
(1 gate delay)

Generate Last Row
and MSBs of

Partial Products
(2 gate delays)

Wallace Tree
(4 gate delays)

CSA - 16 words
(2 gate delays)

CSA - 23 words
(2 gate delays)

378 Bit NCL Register

CSA - 6 words
(2 gate delays)

CSA - 8 words
(2 gate delays)

CSA - 11 words
(2 gate delays)

Stage 3:
Combinational Logic =

7 gate delays

CSA - 31 words
(2 gate delays)

CSA - 4 words
(2 gate delays)

CSA - 3 words
(2 gate delays)

Wallace Tree
(8 gate delays)

2s-Complement and
Shift Partial Products

if necessary
(3 gate delays)

CSA - 3 words
(2 gate delays)

147 Bit NCL Register

154 Bit NCL Register

86 Bit NCL Register

Completion Logic
(4 gate delays)

Ko

Ki

Ko

Completion Logic
(4 gate delays)

Ki

Ko

Completion Logic
(4 gate delays)

Ki

Ko

Completion Logic
(4 gate delays)

Ki

Ko1

Completion Logic
(4 gate delays)

Ki Ko

Completion Logic
(4 gate delays)

Ki

Ko

KiKo

Completion Logic
(5 gate delays)

Completion Logic
(4 gate delays)

Ko

Completion Logic
(4 gate delays)

Ko2

Ki

Stage 4:
Combinational Logic =

3 gate delays

Stage 5:
Combinational Logic =

ripple-carry adder

Stage 7:
Combinational Logic =

9 gate delays

Ki

Ain

 122

Stage 1 also contains the third level of the Wallace tree along with the multiply sign

generation. The second stage consists of four more levels of the Wallace tree. Stage 3

begins with the final level of the Wallace tree, followed by the shifting and

2s-complementing of the Wallace tree output, if necessary, to account for the type of

multiplication being performed and for subtraction from the accumulator. The third stage

also contains another carry-save adder, required because of the 2s-complement operation.

Stage 4 begins the feedback loop and contains the circuitry to zero Ain for the multiply

only function and the final carry-save adder to add Ain to the Wallace tree output. The

fourth stage also generates the accumulate sign. The fifth stage consists solely of a 71-bit

ripple-carry adder. Stage 6 contains the first part of the rounding logic, while Stage 7

contains the remaining rounding logic along with the saturation circuitry, control signal

completeness logic, and overflow detection circuitry, as explained in Section 6.3.1.1.

6.3.3.2 Throughput Maximization

An effective approach for pipelining a self-timed MAC begins with minimization

of the feedback loop. This is in part because the feed-forward portion of the MAC can be

pipelined to a fine granularity as long as completeness is ensured at each stage boundary.

This enables the throughput of the feed-forward path to be at least as great as that of the

feedback loop. To do this, it is preferable to postpone the addition of Ain with the partial

products until absolutely necessary. Moreover, the subtraction and multiply mode

selection method can be revised such that it reduces the number of operations required in

the feedback loop. To increase throughput in the non-pipelined design, Ain was

 123

complemented and shifted, or zeroed, and the result from the ripple-carry adder was

complemented and shifted. However, for the pipelined design, the two outputs of the

Wallace tree can be 2s-complemented and shifted, allowing the shifting and

complementing of Ain followed by the shifting and complementing of the result to be

removed from the feedback loop. This is replaced instead by the 2s-complementing and

shifting of the final two partial products, followed by an extra carry-save adder in the

feed-forward portion of the design. The zeroing of Ain for the multiply only function is

still required to be performed within the feedback loop. In the pipelined implementation,

this change eliminates five gate delays from the feedback path with no additional latency

in the pipeline. The corresponding logic is relocated to the feed-forward portion of the

design. Partitioning the feed-forward portion into three stages with a maximum of 8 gate

delays per stage allows the inclusion of the additional logic without decreasing overall

throughput.

 After the feedback logic of the MAC is minimized, it can be pipelined by

inserting asynchronous registers as described in Chapter 4. It was shown in [38] that a

feedback loop containing N tokens, where a token is defined as a DATA wavefront with

corresponding NULL wavefront, requires 2N bubbles for maximum throughput, where a

bubble is defined as either a DATA or NULL wavefront occupying more than one

neighboring stage. This allows for each DATA and NULL wavefront to move through

the feedback loop independently. Since the feedback loop in the MAC design only

contains one token, two bubbles are necessary to maximize throughput. A token requires

two stages, one stage for the DATA portion and one stage for the NULL portion, while

 124

each bubble requires one stage. Therefore, the feedback loop was partitioned into four

stages for maximum throughput.

The front end of the feedback loop was partitioned as shown in Figure 77.

Partitioning of the ripple-carry adder is not advisable since this would incur extra gate

delays on the critical path. Inserting a register in the middle of the ripple-carry addition

would tend to lessen the benefits of its asynchronous behavior by increasing the

O(log2 N) average time for an N-bit ripple-carry addition, since

log2 N1 + log2 N2 > log2 N; where N = N1 + N2, N ≥ 6, and N1, N2 ≥ 3. The last two

stages were divided to minimize the worst-case delay of each stage. The Upper Rounding

logic for the most significant 41 bits of the result can be partitioned into a 5 gate delay

circuit followed by a 1 gate delay circuit, without violating the input-completeness

criteria. Alternately, inserting a register between this partition would result in Stage 6

having 10 gate delays and Stage 7 having 4 gate delays. The 10 gate delays of Stage 6 in

this alternate design would exceed the 9 gate delays of Stage 7 in the current design.

Furthermore, simulation shows both finer and coarser partitionings decrease throughput.

 Throughput can be further increased using partial bitwise completion, described

in Chapter 4, where the feed-forward output joins the feedback input. Two separate

completion logic blocks are appropriate. The first, whose input is Ko1, only

acknowledges the inputs from the feed-forward circuit; the second, whose input is Ko2,

only acknowledges the feedback inputs. This optimization can decrease the inter-

dependencies between the feedback loop and the feed-forward path to boost throughput

an additional 2%.

 125

 Finally, the feed-forward portion is pipelined such that its throughput is at least as

great as that of the feedback loop. In other words, the output from the feed-forward

portion of the design must always be available when the feedback input is ready.

Therefore, the minimum forward path through the feedback loop must be determined.

Since the minimum delay through a ripple-carry adder is 3 gates and the delay for each

register is 1 gate, the minimum forward path through the feedback loop is

3 + 3 + 5 + 9 + (5 × 1) = 25 gate delays, as indicated on the right side of Figure 77. In

order to ensure that the feedback loop will never wait on input from the feed-forward

portion, the maximum cycle time of the feed-forward pipeline must not exceed 25 gate

delays. Decreasing the cycle time of the feed-forward portion to less than 25 gate delays

will not increase the throughput as a whole. Therefore, this MAC optimization problem is

transformed to ensuring a maximum cycle time of 25 gate delays for the feed-forward

portion of the design, while adding as few asynchronous registers as possible. Following

the method described in Chapter 4 for pipelining NCL circuits, it was determined that the

addition of two asynchronous registers, as shown in Figure 77, would result in a

maximum cycle time of 24 gate delays for the feed-forward circuitry. Furthermore,

simulation shows that finer partitioning does not increase throughput, while coarser

partitioning decreases throughput.

 126

6.3.4 Pipelined Modified Booth2 MAC

6.3.4.1 Operation

The structure of the pipelined Modified Booth2 MAC is shown in Figure 78. The

first stage begins by generating all of the partial products, which are then input to the first

of two levels of the Wallace tree. Stage 1 also contains the multiply sign generation and

the completeness generation for the multiplier and multiplicand, X and Y, respectively,

since they are not implicitly complete in the partial product generation circuitry. The

second stage consists of three more levels of the Wallace tree. Stage 3 begins with the

final level of the Wallace tree, followed by the shifting and 2s-complementing of the

Wallace tree output, if necessary, to account for the type of multiplication being

performed and for subtraction from the accumulator. The third stage also contains

another carry-save adder, required because of the 2s-complement operation. Stage 4

begins the feedback loop and contains the circuitry to zero Ain for the multiply only

function and the final carry-save adder to add Ain to the Wallace tree output. The fourth

stage also generates the accumulate sign. The fifth stage consists solely of a 71-bit ripple-

carry adder. Stage 6 contains the first part of the rounding logic, while Stage 7 contains

the remaining rounding logic along with the saturation circuitry, control signal

completeness logic, and overflow detection circuitry, as detailed in Section 6.3.1.1.

 127

Figure 78. Pipelined Modified Booth2 MAC.

Calculate
Multiply Sign

(2 gate delays)

Calculate
Accumulate

Sign
(1 gate delay)

Calculate:
LSB >= 1/2 and

LSB > 1/2
(3 gate delays)

Calculate:
RND31-33

(2 gate delays)

Calculate Rounded
Result - Upper
(6 gate delays)

Calculate Rounded
and Saturated
Result - Lower
(3 gate delays)

Calculate Saturated
Result - Upper
(3 gate delays)

Calculate Overflow
(3 gate delays)

71-bit Ripple-Carry Adder
(average delay = 8.46 gates)
(maximum delay = 72 gates)
(minimum delay = 3 gates)

73 Bit NCL Register

X Mac/MpyAdd/SubSignSaturateScaleRnd_TypeRoundY

73 Bit NCL Register

OV

223 Bit NCL Register

CSA - 3 words
(2 gate delays)

Aout

Zero Ain for
Multiply Only
(1 gate delay)

84 Bit NCL Register

Ensure
Completeness

of Control
Signals

(2 gate delays)

Stage 1:
Combinational Logic =

7 gate delays

Stage 6:
Combinational Logic =

5 gate delays

Stage 2:
Combinational Logic =

6 gate delays

Generate
Partial Products
(3 gate delays)

Wallace Tree
(4 gate delays)

CSA - 12 words
(2 gate delays)

CSA - 17 words
(2 gate delays)

326 Bit NCL Register

CSA - 6 words
(2 gate delays)

CSA - 9 words
(2 gate delays)

Stage 3:
Combinational Logic =

7 gate delays

CSA - 4 words
(2 gate delays)

CSA - 3 words
(2 gate delays)

Wallace Tree
(6 gate delays)

2s-Complement and
Shift Partial Products

if necessary
(3 gate delays)

CSA - 3 words
(2 gate delays)

162 Bit NCL Register

155 Bit NCL Register

87 Bit NCL Register

Completion Logic
(4 gate delays)

Ko

Ki

Ko

Completion Logic
(4 gate delays)

Ki

Ko

Completion Logic
(4 gate delays)

Ki

Ko

Completion Logic
(4 gate delays)

Ki

Ko1

Completion Logic
(4 gate delays)

Ki Ko

Completion Logic
(4 gate delays)

Ki

Ko

KiKo

Completion Logic
(5 gate delays)

Completion Logic
(4 gate delays)

Ko

Completion Logic
(4 gate delays)

Ko2

Ki

Stage 4:
Combinational Logic =

3 gate delays

Stage 5:
Combinational Logic =

ripple-carry adder

Stage 7:
Combinational Logic =

9 gate delays

Ki

Ain

Ensure
Completeness

of X and Y
(3 gate delays)

control signals

 128

6.3.4.2 Throughput Maximization

The throughput maximization procedure for the feedback loop follows that of the

pipelined Modified Baugh-Wooley design, explained in Section 6.3.3.2. The minimum

forward path through the feedback loop is also 25 gate delays, and is independent of the

selected multiplication algorithm. Addition of as few as two asynchronous registers, as

shown in Figure 78, results in a maximum cycle time of 24 gate delays for the feed-

forward portion. Since the feedback loop for the pipelined Modified Booth2 and Baugh-

Wooley designs are the same, and the feedback loop is the limiting factor of throughput

maximization for each, the two designs should have the same throughput.

6.3.5 Simulation Results

 Before the average cycle time was determined for the designs, each was

extensively tested with various data patterns and control inputs to verify correct

operation. Once correct operation is established, representative MAC operations need to

be selected to provide an adequate comparison of their throughputs. A candidate

operation is Aout =)(
0
∑
=

×
N

i
ii YX ; where Xi = X0 + (2-21 × i) and Yi = Y0 + (2-11 × i) with N

chosen to be 255. This allows a variety of computations to be performed such that any

unusually short or long operations will not significantly skew the average cycle time. For

instance, in my testbench X0 and Y0 were randomly selected such that

X0 = A61C039Dh = -0.702270077076 and Y0 = F0046718h = -0.124865639955. Also,

(signed × signed) multiplication was selected and rounding, scaling, and saturation were

disabled. The same operation was also performed in a C-language program and the result

 129

from this program agreed with the results from each of the simulated designs:

Aout = 05A0B13C0E04A37000h = 11.2554087704.

 Both the non-pipelined and pipelined Modified Baugh-Wooley and Booth2 MAC

designs were simulated using Synopsys in order to compare their throughputs to ensure

that the relative values were consistent with the predicted results. The Synopsys

technology library for the NCL gates is based on static 3.3V, 0.25 µm CMOS

implementations. The average cycle time, TDD, for the non-pipelined Modified Baugh-

Wooley MAC was determined to be 31.8 ns; while TDD for the non-pipelined Modified

Booth2 MAC was determined to be 31.2 ns. Therefore, the non-pipelined Modified

Booth2 MAC is faster than the non-pipelined Modified Baugh-Wooley MAC, as

anticipated in Section 6.3.2.3. As for the pipelined designs, the Modified Baugh-Wooley

and Booth2 MACs were anticipated to run at the same speed due to the fact that the

feedback path was the same in both designs. The simulations of the two pipelined designs

confirm this since they both have an average cycle time of 12.7 ns.

6.4 Carry-Propagate Adder Comparison

 In [45] it was shown that the worse-case throughput for an N-bit ripple-carry

adder was O(N), verses the O(log2 N) worse-case throughput for an N-bit carry

lookahead adder, when using 2-input gates. Since NCL uses gates with a maximum of 4

inputs, the worse case throughput for an NCL carry-lookahead adder is proportional to

log4 N. Consider the 4-bit carry-lookahead adder depicted in Figure 79. Each of the AND

and OR gates can be replaced with incomplete versions of the NCL AND and OR

 130

functions, respectively, described in Chapter 2, while the XOR gates can be replaced with

the NCL XOR function, developed in Chapter 3. The resulting design is complete with

respect to all inputs. Likewise, a 4-bit ripple-carry adder can be constructed by

connecting 4 full adders, shown in Figure 30, in series.

Figure 79. 4-bit carry-lookahead adder.

 Table XIV compares the 4-bit versions of the carry-lookahead adder and the

ripple-carry adder. It demonstrates that the two are comparable in terms of worse-case

gate delays, but that the carry-lookahead adder requires more than three times as many

gates. Comparing an N-bit addition using 4-bit carry-lookahead adders in series verses an

N-bit ripple-carry adder, shows that the two approaches will require the same number of

gate delays in the worst-case within a tolerance of ±1, depending on the size of N.

Cin X0 Y0 X1 Y1 X2 Y2 X3 Y3

P0

G3

P3

G2

P2

G1

P1

G0

C1

C3

C2

C4

S3

S2

S1

S0

 131

Furthermore, the 4-bit carry-lookahead adder described above is not fully observable due

to redundancies in the carry calculations. To make it fully observable would require

additional logic gates and logic levels, thus making it even less desirable.

Table XIV. Propagation delay and gate count for 4-bit adders.

Gate Delays Gate
S0 S1 S2 S3 C4 Count

Carry-Lookahead Adder 2 4 4 4 4 54
Ripple-Carry Adder 2 3 4 5 4 16

 Another option is to construct an N-bit carry-lookahead adder, such that all carries

are generated in parallel. Take for example the 71-bit addition required for the pipelined

MACs designed in this chapter. To generate S70 requires a 71-bit AND function and a

71-bit OR function. Both of these functions require O(log4 71), however portions can be

performed in parallel, such that the two functions together only require 7 gate delays.

Adding an additional gate delay for the generate and propagate calculation as well as for

the final XOR function, causes the worse-case delay to be 9 gates. This is much smaller

than the 72 gate worse-case delay of a 71-bit ripple-carry adder. However, since NCL is a

delay-insensitive paradigm, its throughput is determined by the average-case delay and

not the worse-case delay. Furthermore, the average-case delay for an N-bit ripple carry

adder is only O(log2 N) [45], which is 8.46 gate delays for a 71-bit ripple-carry addition,

as determined by the C-language program described in Section 6.3.1.3. The average-case

delay for the carry-lookahead adder would also be slightly reduced, but not by much

since many of the path lengths are synonymous with the worse-case delay. Therefore, the

 132

average-case delays for the 71-bit ripple-carry adder and carry-lookahead adder are

comparable.

 Above it was shown that the 4-bit carry-lookahead adder required more than three

times the number of gates required by the 4-bit ripple-carry adder; therefore the 71-bit

carry-lookahead adder will require at least three times the number of gates as the 71-bit

ripple-carry adder. This indicates that the 71-bit ripple-carry adder would be preferred

over the 71-bit carry-lookahead adder since they have comparable average-case delays

and the ripple-carry adder is much smaller. Moreover, the 71-bit carry-lookahead adder

described above is not fully observable. To make it fully observable would require

additional logic gates and logic levels, thus making it even less desirable. Extending the

above analysis to adders of arbitrary length, it can be stated that for any value of N, a

NCL ripple-carry adder should outperform the identically sized NCL carry-lookahead

adder.

6.5 Gate Requirements for Proposed Designs

 In Section 6.3.3.2 and Section 6.3.4.2 it was shown that the throughput of a

pipelined self-timed MAC design is limited by the feedback loop, independent of the

feed-forward portion. This is due to the fact that the feed-forward portion can be readily

pipelined to a fine granularity to match or exceed the throughput of the feedback loop.

Since the feedback loop performs accumulation independent of the selected

multiplication algorithm, the throughput of the MAC as a whole is independent of the

 133

multiplication algorithm. This is demonstrated by the pipelined versions of the Modified

Baugh-Wooley and Booth2 MACs operating with the same cycle time.

 The design objective stated in the abstract is to obtain the highest throughput

MAC using the fewest gates. Since the throughput of the pipelined MAC does not depend

on the multiplication algorithm, the MAC throughput optimization problem can be

transformed into the selection of the multiplication algorithm that requires the least

amount of area to implement. The following sections will compare various algorithms to

determine which requires the least gate count.

6.5.1 Modified Baugh-Wooley MAC

 Since both the non-pipelined and pipelined designs were implemented in VHDL,

the actual number of gates can be tabulated. The non-pipelined design requires 10,703

gates, while the pipelined design uses 13,613 gates, as shown in Figure 73. For both of

these designs approximately 2,048 gates were from partial product generation with 32

complete AND functions and 992 incomplete AND functions.

6.5.2 Modified Booth2 MAC

 Since both the non-pipelined and pipelined versions of this design were also

implemented in VHDL, the actual number of gates can again be tabulated. The non-

pipelined design used 14,101 gates, while the pipelined design used 17,015 gates, as

shown in Figure 73. For both of these designs approximately 7,854 gates were from the

partial product generation. Even though the Booth2 recoding eliminates two levels in the

 134

Wallace tree, the additional gates required in the partial product generation outpace the

savings. This causes the pipelined Modified Booth2 design to contain 3,402 more gates

than the pipelined Modified Baugh-Wooley design. The Modified Booth2 MAC requires

405 fewer adders, which is 1,620 fewer gates, since each adder contains four gates.

However, it requires approximately 5,806 additional gates for partial product generation.

Since both designs operate with the same cycle time, the preferred design is the pipelined

Modified Baugh-Wooley MAC, since it requires less area. This is even more evident

when the number of transistors for partial product generation is compared. Since the

number of transistors for the Modified Baugh-Wooley partial product generation can be

greatly reduced as explained in Section 6.3.1.2, even though the number of gates remain

the same, the transistor requirement for partial product generation of the two designs

magnifies this differential, as shown in Figure 73. The partial product generation for the

Modified Booth2 design requires 3.8-fold more gates than for the Modified Baugh-

Wooley design, but 6.8-fold more transistors, due to the more sophisticated gates

required in the recoding logic.

6.5.3 Array MAC

 Both the Array MAC and the Modified Baugh-Wooley MAC use the same logic

to generate the partial products and both require O(N) area for the partial product

summation, as explained in Section 6.2. However, the Modified Baugh-Wooley MAC

only requires O(log2 N) gate delays for the partial product summation, while the Array

MAC requires O(N) gate delays. Therefore, many more asynchronous registers would be

 135

required to partition the feed-forward circuitry of the Array MAC than the two required

for the Modified Baugh-Wooley MAC, in order to achieve the same throughput. Hence,

the Array MAC would require approximately the same number of adders as the Modified

Baugh-Wooley MAC, but would require many more asynchronous registers, causing it to

contain many more gates than the Modified Baugh-Wooley MAC. However, the structure

of the Array MAC is very regular compared to the irregular structure of the Modified

Baugh-Wooley MAC, which could make it more desirable when layout is taken into

consideration, despite its larger size.

6.5.4 Modified Booth3 MAC

 The Modified Booth3 multiplication algorithm partitions the multiplier into

overlapping groups of four bits, each of which selects a partial product from the

following list: +0, +M, +2M, +3M, +4M, -4M, -3M, -2M, -M, and �0, where M

represents the multiplicand. For the 32-bit × 32-bit multiplication, this decoding

theoretically reduces the number of partial products from 17 for the Modified Booth2

algorithm to only 11. However, the +3M and �3M partial products cannot be obtained by

simple shifting and/or complementing, like the others. These partial products are referred

to as hard multiples. Therefore, two actual partial products must be used to represent each

theoretical partial product to avoid the ripple-carry addition that would be required to

compute both the +3M and �3M partial products. Any +3M partial product is represented

by a +2M and a +M partial product, while any -3M partial product is represented by a

-2M and a -M partial product. Since each theoretical partial product must be represented

 136

by two partial products, the actual number of partial products for the Modified Booth3

MAC is 22, and the number of Wallace tree levels required to sum these partial products

is 7. This is more than the 17 partial products required for the Modified Booth2 design,

which can be summed using only 6 Wallace tree levels. Therefore, a Modified Booth3

MAC requires more adders to sum the partial products than would the Modified Booth2

MAC. Furthermore, the partial product generation requires scanning four multiplier bits

at a time for the Modified Booth3 algorithm, verses only three bits which are

simultaneously scanned in the Modified Booth2 algorithm. This requires more complex

recoding logic for the Modified Booth3 algorithm. Since the Modified Booth3 algorithm

requires more adders and more recoding logic than the Modified Booth2 algorithm, and

increases the depth of the Wallace tree, it requires more gates than the Modified Booth2

design.

6.5.5 Modified Booth4 MAC

 The Modified Booth4 multiplication algorithm also suffers from the problem of

hard multiples. It partitions the multiplier into overlapping groups of five bits, each of

which selects a partial product from the following list: +0, +M, +2M, +3M, +4M, +5M,

+6M, +7M, +8M, -8M, -7M, -6M, -5M, -4M, -3M, -2M, -M, and �0, where M represents

the multiplicand. The hard multiples are +3M, +5M, +6M, +7M, -7M, -6M, -5M, and

-3M. However, if the hard multiples were to be generated through ripple-carry addition,

the +6M and �6M multiples could be obtained simply by shifting the +3M and �3M

multiples, respectively. For the 32-bit × 32-bit multiplication, this decoding theoretically

 137

reduces the number of partial products from 17 for the Modified Booth2 algorithm to

only 9. However, since the hard multiples require two partial products to represent each

theoretical partial product, the actual number of partial products required is 17. The most

significant partial product cannot be a hard multiple and therefore only requires one

partial product for its representation. The actual number of partial products for the

Modified Booth4 MAC is the same as for the Modified Booth2 MAC. The only

difference is the partial product generation, which requires scanning five multiplier bits at

a time for the Modified Booth4 algorithm, verses only three bits which are

simultaneously scanned in the Modified Booth2 algorithm. This requires more complex

recoding logic for the Modified Booth4 algorithm. Therefore, the Modified Booth4 MAC

requires more gates than the Modified Booth2 MAC. Furthermore, higher radix Modified

Booth algorithms can be expected to exhibit similar characteristics.

6.5.6 Combinational 2-Bit × 2-Bit MAC

 The 2-Bit × 2-Bit partial product generation partitions both the multiplier and

multiplicand into 16 groups of two bits that do not overlap. Each 2-bit multiplier, 2-bit

multiplicand pair generates 4 bits of partial product. Every 2-bit multiplier group

generates two rows of partial products since each 2-bit multiplier, 2-bit multiplicand pair

generates 4 bits and each consecutive group of 4 bits is shifted two places due to the 2-bit

partitioning of the multiplicand. This results in consecutive groups of 4 bits generated

from one 2-bit multiplier group to be overlapped by two bits. Since there are sixteen 2-bit

multiplier groups and each group generates two partial products, there are a total of 32

 138

partial products. Since this number of partial products is the same as for the Modified

Baugh-Wooley design, both designs will require the same number of gates to sum the

partial products. Therefore, the only difference between the two designs is the partial

product generation. The 2-Bit × 2-Bit partial product generation requires approximately

2,816 gates, while the Modified Baugh-Wooley partial product generation only requires

approximately 2,048 gates, as shown in Figure 73. Hence, the 2-Bit × 2-Bit algorithm

requires approximately 768 more gates than does the Modified Baugh-Wooley algorithm,

making it less area efficient. This is even more evident when the transistor count for the

partial product generation is compared. The Modified Baugh-Wooley partial product

generation requires approximately 18,880 transistors, while the 2-Bit × 2-Bit partial

product generation requires approximately 38,400 transistors, more than twice as many.

6.5.7 Combinational 2-Bit × 3-Bit MAC

 The 2-Bit × 3-Bit partial product generation partitions the multiplier into 16

groups of two bits, and the multiplicand into 10 groups of three bits with 1 group of two

bits, such that no groups overlap. Each 2-bit multiplier, 3-bit multiplicand pair generates

5 bits of partial product. Every 2-bit multiplier group generates two rows of partial

products since each 2-bit multiplier, 3-bit multiplicand pair generates 5 bits and each

consecutive group of 5 bits is shifted three places due to the 3-bit partitioning of the

multiplicand. All two-row partial products generated from one 2-bit multiplier group

contain an unused slot every third bit position, such that every third bit position in a two-

row partial product only contains one bit rather than two bits, as in the other bit positions.

 139

Since there are sixteen 2-bit multiplier groups and each group generates two partial

products, 32 partial products are anticipated. However, because of the unused slots, there

are actually only 26 rows of partial products, which can be summed in 7 Wallace tree

levels. The multiplier could also be partitioned into 10 groups of three bits with 1 group

of two bits, with the multiplicand partitioned into 16 groups of two bits, such that no

groups overlap. This alternate partitioning also produces 26 rows of partial products.

Recall that the Booth2 design, which has 17 rows of partial products that can be summed

in 6 levels of Wallace tree, saved 405 adders or 1,620 gates in the partial product

summation, as discussed in Section 6.5.2. Since the 2-Bit × 3-Bit algorithm requires 26

rows of partial products, which can be summed in 7 Wallace tree levels, this algorithm

cannot utilize fewer adders than the Booth2 algorithm. Therefore, the number of gates

saved by the reduced Wallace tree of the 2-Bit × 3-Bit algorithm is no more than 1,620.

The number of gates required to generate the partial products for the 2-Bit × 3-Bit

algorithm is approximately 4,768, a difference of approximately 2,720 additional gates

than for the Modified Baugh-Wooley partial product generation. Therefore, the

2-Bit × 3-Bit algorithm would require at least 1,100 more gates than the Modified Baugh-

Wooley design since it can save no more than 1,620 gates in the Wallace tree and

requires an additional 2,720 gates for partial product generation.

6.5.8 Combinational 2-Bit × 4-Bit MAC

 The 2-Bit × 4-Bit partial product generation partitions the multiplier into 16

groups of two bits, and the multiplicand into 8 groups of four bits, such that no groups

 140

overlap. Each 2-bit multiplier, 4-bit multiplicand pair generates 6 bits of partial product.

Every 2-bit multiplier group generates two rows of partial products since each 2-bit

multiplier, 4-bit multiplicand pair generates 6 bits and each consecutive group of 6 bits is

shifted four places due to the 4-bit partitioning of the multiplicand. All two-row partial

products generated from one 2-bit multiplier group contain two unused slots every fourth

bit position, such that for every four bit positions in a two-row partial product only two

contain two bits while the other two contain only one bit. Since there are sixteen 2-bit

multiplier groups and each group generates 2 partial products, 32 partial products are

anticipated. However, because of the unused slots, there are actually only 23 rows of

partial products, which can be summed in 7 Wallace tree levels. The multiplier and

multiplicand could also be partitioned vise-versa, resulting in the same number of partial

product rows. Since this design also requires 7 Wallace tree levels, as did the

2-Bit × 3-Bit design, it could not possibly save more than 1,620 gates in the Wallace tree,

as explained in Section 6.5.7. The partial product generation is also more complicated

than for the 2-Bit × 3-Bit partial product generation since more inputs are required.

Therefore, partial product generation for this design requires at least as many gates as for

the 2-Bit × 3-Bit design. Hence, this design must require more gates than the Modified

Baugh-Wooley MAC, following the logic of Section 6.5.7.

6.5.9 Combinational 3-Bit × 3-Bit MAC

 The 3-Bit × 3-Bit partial product generation partitions both the multiplier and

multiplicand into 10 groups of three bits, with one group of two bits, such that no groups

 141

overlap. Each 3-bit multiplier, 3-bit multiplicand pair generates 6 bits of partial product.

Every 3-bit multiplier group generates two rows of partial products since each 3-bit

multiplier, 3-bit multiplicand pair generates 6 bits and each consecutive group of 6 bits is

shifted three places due to the 3-bit partitioning of the multiplicand, such that all

consecutive groups of 6 bits generated from one 3-bit multiplier group overlap by three

bits. The last multiplier group is only two bits, so for each 2-bit multiplier, 3-bit

multiplicand pair, 5 bits of partial product are generated. This 2-bit multiplier group

generates two rows of partial products since each 2-bit multiplier, 3-bit multiplicand pair

generates 5 bits and each consecutive group of 5 bits is shifted three places due to the

3-bit partitioning of the multiplicand. These last two rows of partial products contain an

unused slot every third bit position, such that every third bit position in the last two-row

partial product only contains one bit rather than two bits, as in the other bit positions.

Since there are ten 3-bit multiplier groups and one 2-bit multiplier group, each of which

generates 2 partial products, 22 partial products are anticipated. However, because of the

unused slots generated by the 2-bit multiplier group, there are actually only 21 rows of

partial products, which can be summed in 7 Wallace tree levels. Since this design also

requires 7 Wallace tree levels, as did the 2-Bit × 3-Bit design, it could not possibly save

more than 1,620 gates in the Wallace tree, as explained in Section 6.5.7. The partial

product generation is also more complicated than for the 2-Bit × 3-Bit partial product

generation since more inputs are required. Therefore, partial product generation for this

design requires at least as many gates as for the 2-Bit × 3-Bit design. Hence, this design

must require more gates than the Modified Baugh-Wooley MAC, following the logic of

 142

Section 6.5.7. Furthermore, any larger sized N-Bit × M-Bit algorithms would not be

likely to reduce the number of gates due to their increasing complexity.

6.5.10 Quad-Rail MACs

 To test the feasibility of quad-rail multiplication, a quad-rail 4-bit × 4-bit

unsigned multiplier was designed, implemented, and tested. The resulting design

operated with the same throughput as its dual-rail counterpart but required slightly more

than twice as many gates, showing that a quad-rail encoding is not as efficient for

realizing multiplication. Furthermore, quad-rail partial product generation circuitry was

designed for each of the algorithm types shown in Figure 73; and the resulting quad-rail

designs required at least 2% more gates and 10% more transistors than their dual-rail

counterparts.

6.6 Conclusion

 In Section 6.3 it was shown how to design and then pipeline both a self-timed

Modified Baugh-Wooley MAC and Modified Booth2 MAC in order to achieve

maximum throughput. Throughput maximization was accomplished by first minimizing

the feedback loop and then partitioning the feed-forward path such that its throughput

was at least as great as that of the feedback loop, since the feedback loop was determined

to be the limiting factor to increasing throughput. Section 6.3 also showed that the

feedback loop did not depend on the chosen multiplication algorithm, and therefore the

throughput also did not depend on the multiplication algorithm, although a faster

 143

multiplication algorithm would decrease latency of an isolated multiply. This was

substantiated through simulations of both the pipelined Modified Baugh-Wooley MAC

and the pipelined Modified Booth2 MAC, which both had the same throughput.

 Since it was shown that the throughput of the MAC did not depend on the

multiplication algorithm, the self-timed MAC throughput optimization problem was

transformed into selecting the multiplication algorithm requiring the fewest gates.

Section 6.5 compared the area of multiple MAC designs using various multiplication

algorithms. The best design is therefore the one that requires the fewest number of gates

to implement. It was also shown in Section 6.5 that the pipelined Modified Baugh-

Wooley design required the least amount of area, and was therefore the best design based

on the criteria of the highest throughput with the least area. The dual-rail pipelined

Modified Baugh-Wooley MAC yielded a speedup of 2.5 over its initial non-pipelined

version and required 20% fewer gates than the dual-rail pipelined Modified Booth2 MAC

that operated with the same throughput.

 Table XV compares this optimized NCL MAC to other delay-insensitive/self-

timed MACs in the literature, showing that the 3.3V, 0.25 µm CMOS NCL MAC

outperforms the other designs. [41] describes a serial-parallel MAC using the methods

and tools developed at Caltech [46] for design of delay-insensitive circuits. In [41] an

8+4×4 MAC was fabricated using 5V, 2 µm CMOS technology that operated at 37 ns;

and an extrapolation to larger word sizes was presented. Using this extrapolation it was

determined that a 64+32×32 MAC would operate at 901 ns, much slower than the NCL

MAC, as expected, since the implemented algorithm is not fully parallel. [42] describes a

 144

self-timed 16+8×8 MAC designed using SCCVSL (single-rail CMOS cascode voltage

switch logic) and fabricated in 0.6 µm technology. This MAC employs the parallel

Booth2 algorithm, and has an average cycle time of about 90 ns. A third self-timed MAC

described in [43] was designed in single-ended dynamic logic [47], utilizing conditional

evaluation along with the traditional Array multiplication algorithm. Conditional

evaluation allows for rows with a zero bit product to be multiplexed around, to reduce

energy and delay. In [43] a 16+8×8 MAC was simulated using 3.3V, 0.35 µm CMOS

technology, to determine the average cycle time of 7.8 ns. This delay information was

then used in [43] to estimate the average cycle time for a 32+16×16 MAC as

approximately 24 ns. These comparisons indicate that the NCL-based dual-rail pipelined

Modified Baugh-Wooley MAC developed herein outperforms the three above mentioned

methods, even after technology adjustments. Furthermore, the NCL MAC supports

rounding, scaling, and saturation, whereas the other MACs discussed herein do not.

Without the rounding, scaling, and saturation the NCL MAC performance could be more

than doubled.

Table XV. Algorithm, technology, and cycle time for various self-timed MACs.

MAC Type Algorithm Technology Avg. Cycle Time
72+32×32 Modified Baugh-Wooley 3.3V, 0.25 µm CMOS 12.7 ns

64+32×32 [41] Serial-Parallel 5V, 2 µm CMOS 901 ns
16+8×8 [42] Modified Booth2 0.6 µm CMOS 90 ns
16+8×8 [43] Conditional Evaluation 3.3V, 0.35 µm CMOS 7.8 ns

32+16×16 [43] Conditional Evaluation 3.3V, 0.35 µm CMOS 24 ns

 145

7.0 CONCLUSION

 While much remains to be learned in regard to the application of NCL, the

techniques developed herein provide a basis for the design and optimization of NCL

systems. A method for designing optimized NCL combinational circuits was developed,

as well as a method for pipelining these combinational circuits such that optimum

throughput is achieved. Furthermore, a technique to mitigate the impact of the NULL

cycle on throughput was presented.

7.1 Summary

 When full minterm generation is not required, TCR can produce delay-insensitive

circuits that require less area and fewer logic levels than alternative gate-level

approaches, as demonstrated in Chapter 3. TCR is applicable when composing logic

functions where each gate is a state-holding element. The TCR method combines

techniques such as incomplete functions, quad-rail encodings, reduced minterm

expressions, and factored minterm expressions for reducing gate count. It then employs a

mapping of the factored minterm equations to a set of 27 macros, which constitute the set

of all functions consisting of four or fewer variables. A number of case studies validate

the utility and potential for automation of the proposed method. Using TCR methods,

 146

design parameters including critical path delay, gate count, transistor count, and power

can be readily traded-off and optimized.

These results were further extended to a gate-level pipelining strategy for circuits

composed of state-holding elements to maximize throughput of combinational circuits

produced by TCR methods in Chapter 4. Since the GLP method successively partitions

an N-level NCL combinational logic design first into 2 stages, then further into as many

as N stages, it can produce an optimal pipelined NCL system with significantly increased

throughput over its original non-pipelined design. The GLP process may also be partially

applied to design maximum throughput systems under the constraints of latency and/or

area bounds. The GLP method combines both full-word completion as well as bit-wise

completion for designing the optimal system. A case study of a 4×4 multiplier

substantiates the utility and potential for automation of the proposed method, as the

throughput of the non-pipelined 4×4 multiplier was increased by 125%. GLP was applied

to a dual-rail NCL design in Chapter 4; but it can also be applied to a quad-rail NCL

design, by inserting quad-rail registers, rather than dual-rail registers.

 Although NCL requires both a DATA wavefront and a NULL wavefront, which

reduces the maximum attainable throughput by approximately half, a technique can be

used to reduce this inherent throughput loss. In Chapter 5, the NCR method of

partitioning delay-insensitive systems into two concurrent paths such that one circuit

processes a DATA wavefront, while its duplicate processes a NULL wavefront, thus

significantly increasing throughput, was developed. A 4-bit by 4-bit multiplier case study

indicates a speedup of 1.61 over the standalone design. Furthermore, this technique could

 147

also be applied to other delay-insensitive methods [4, 6, 7, 8, 9] as well. Moreover, it is

not necessary to duplicate the entire circuit when applying the NCR technique. Rather, its

benefits can be obtained without doubling area and power requirements by applying it to

selective portions of a circuit, which cannot be pipelined more finely due to the

completeness of input criterion. Thus, throughput of a pipelined design with a small

number of slow stages can be readily boosted with relatively little cost by using NCR.

 Finally, the methods presented herein were applied to design a 72+32×32 MAC

that outperformed other delay-insensitive/self-timed MACs in the literature, including a

32+16×16 design using single-ended dynamic logic, utilizing conditional evaluation

along with the traditional Array multiplication algorithm. This method of conditional

evaluation was analyzed in the context of NCL showing that it would require additional

gates, greater power dissipation, and a larger cycle time when compared to the normal

Array multiplication algorithm, making it undesirable for NCL implementation. This is

due to the proportionality differences between the NCL full adder and select logic verses

the same two components implemented in single-ended dynamic logic. Furthermore, the

NCL MAC supports rounding, scaling, and saturation, whereas the other MACs

discussed herein do not. Without the rounding, scaling, and saturation the NCL MAC

performance could be more than doubled.

7.2 Future Work

The utility of the TCR and GLP methods has been demonstrated in Chapter 3 and

Chapter 4, respectively. The next step is to incorporate both of these methods into the

 148

Synopsys design tools such that NCL circuits can be synthesized from high level,

algorithmic descriptions and can then be automatically pipelined to optimize throughput.

Moreover, the throughput of NCL systems can be further increased by applying

an early completion method described in [40] or by applying 2D-pipelining described in

[48]. Early completion performs the completion detection for registration stagei at the

input of the register, instead of at the output of the register as previously described. This

method requires that the single-rail completion signal from registration stagei+1, koi+1, be

used as an additional input to the completion detection circuitry for registration stagei, to

maintain delay-insensitivity. However, early completion necessitates an assumption of

equipotential regions [4], making the design potentially more delay-sensitive.

2D-pipelining not only partitions a circuit between functional component boundaries, but

also between bit slices, forming a complex 2-dimentional pipeline.

In Chapter 5, NCR was applied to a dual-rail NCL design utilizing full-word

completion. However, it can also be applied to a quad-rail NCL design, by modifying the

Demultiplexer and the Multiplexer to handle quad-rail signals, or to a design utilizing bit-

wise completion by modifying the Demultiplexer only. Finally, the current MAC design

utilizes combinational logic to determine if rounding, scaling, and saturation are required.

However, the datapath could be steered through the rounding, scaling, and saturation

logic, if required, through the use of a demultiplexer at the input and a multiplexer at the

output, similar to the NCR technique. This alternate approach would reduce the cycle

time for operations not requiring rounding, scaling, and saturation, at the expense of an

 149

increase in the cycle time for operations where rounding, scaling, or saturation is

required.

 150

LIST OF REFERENCES

[1] Karl M. Fant and Scott A. Brandt, NULL Convention Logic Systems, US patent
5,305,463 April 19, 1994.

[2] A. J. Martin, �Programming in VLSI,� in Development in Concurrency and

Communication, Addison-Wesley, pp. 1 � 64, 1990.

[3] K. Van Berkel, �Beware the Isochronic Fork,� Integration, The VLSI Journal,

Vol. 13, No. 2, pp. 103-128, 1992.

[4] C. L. Seitz, �System Timing,� in Introduction to VLSI Systems, Addison-Wesley,

pp. 218-262, 1980.

[5] D. E. Muller, �Asynchronous Logics and Application to Information Processing,�

in Switching Theory in Space Technology, Stanford University Press, pp. 289-297,
1963.

[6] Ilana David, Ran Ginosar, and Michael Yoeli, �An Efficient Implementation of

Boolean Functions as Self-Timed Circuits,� IEEE Transactions on Computers,
Vol. 41, No. 1, pp. 2-10,1992.

[7] T. S. Anantharaman, �A Delay Insensitive Regular Expression Recognizer,� IEEE

VLSI Technology Bulletin, Sept. 1986.

[8] N. P. Singh, A Design Methodology for Self-Timed Systems, Master�s Thesis,

MIT/LCS/TR-258, Laboratory for Computer Science, MIT, 1981.

[9] J. Sparso, J. Staunstrup, M. Dantzer-Sorensen, Design of Delay Insensitive

Circuits using Multi-Ring Structures. Proceedings of the European Design
Automation Conference, pp. 15-20, 1992.

[10] A. J. Martin, �Compiling Communicating Processes into Delay-Insensitive VLSI

Circuits,� Distributed Computing, Vol. 1, No. 4, pp. 226-234, 1986.

 151

[11] C. H. (Kees) van Berkel, Handshake Ciruits: An Intermediary Between
Communicating Processes and VLSI, Ph.D. Thesis, Eindhoven University of
Technology, 1992.

[12] A. J. Martin, A. Lines, R. Manohar, M. Nystrom, P. Penzes, R. Southworth,

U. Cummings, and Tak Kwan Lee, �The Design of an Asynchronous MIPS R3000
Microprocessor,� Proceedings of the 17th Conference on Advanced Research in
VLSI, pp. 164 � 181, 1997.

[13] A. J. Martin, S. M. Burns, T. K. Lee, D. Borkovic, and P. J. Hazewindus, �The

Design of an Asynchronous Microprocessor,� Advanced Research in VLSI:
Proceedings of the Decennial Caltech Conference on VLSI, pp. 351-373, 1989.

[14] W. Hardt and B. Kleinjohann, �FLYSIG: Dataflow Oriented Delay-Insensitive

Processor for Rapid Prototyping of Signal Processing,� Proceedings of the Ninth
International Workshop on Rapid System Prototyping, pp. 136-141, 1998.

[15] P. K. Tsang, C. C. Cheung, K. H. Leung, T. K. Lee, and P. H. W. Leong,

�MSL16A: An Asynchronous Forth Microprocessor,� Proceedings of the IEEE
Region 10 Conference, Vol. 2, pp. 1079 �1082, 1999.

[16] T. Nanya, Y. Ueno, H. Kagotani, M. Kuwako, and A. Takamura, �TITAC: Design

of a Quasi-Delay-Insensitive Microprocessor,� IEEE Design & Test of Computers,
Vol. 11, No. 2, pp. 50-63, 1994.

[17] S. H. Unger, Asynchronous Sequential Switching Circuits, Wiley, New York,

1969.

[18] S. M. Nowick and D. L. Dill, �Synthesis of Asynchronous State Machines Using a

Local Clock,� Proceedings of ICCAD, pp.192-197, 1991.

[19] Ivan E. Sutherland, �Micropipelines,� Communications of the ACM, Vol. 32,

No. 6, pp. 720-738, 1989.

[20] A. Martin, �The Limitations to Delay-lnsensitivity in Asynchronous Circuits,�

Advanced Research in VLSI: Proceedings of the Sixth MIT Conference:
pp. 263-278, 1990.

[21] Karl M. Fant and Scott A. Brandt, �NULL Convention Logic: A Complete and

Consistent Logic for Asynchronous Digital Circuit Synthesis,� International
Conference on Application Specific Systems, Architectures, and Processors,
pp. 261-273, 1996.

 152

[22] T. Verhoff, �Delay-Insensitive Codes � An Overview,� Distributed Computing,
Vol. 3, pp. 1-8, 1988.

[23] Gerald E. Sobelman and Karl M. Fant, �CMOS Circuit Design of Threshold Gates

with Hysteresis,� IEEE International Symposium on Circuits and Systems (II),
pp. 61-65, 1998.

[24] T. E. Williams, Self-Timed Rings and Their Application to Division, Ph.D. Thesis,

CSL-TR-91-482, Department of Electrical Engineering and Computer Science,
Stanford University, 1991.

[25] S. M. Burns, Performance Analysis and Optimization of Asynchronous Circuits,

Ph.D. Thesis, CS-TR-91-1, Caltech, 1991.

[26] S. M. Burns, �General Conditions for the Decomposition of State Holding

Elements,� Proceedings of the 2nd International Symposium on Advanced Research
in Asynchronous Circuits and Systems, pp. 48-57, 1996.

[27] M. L. Dertouzos, Threshold Logic: A Synthesis Approach, Cambridge, M. I. T.

Press, 1965.

[28] Lewis & Coates, Threshold Logic, New York: John Wiley & Sons, Inc., 1967.

[29] C. Sheng, Threshold Logic, New York: Ryerson Press, 1969.

[30] A. J. Martin, �Asynchronous Datapaths and the Design of an Asynchronous

Adder,� Formal Methods in System Design, Vol. 1, No. 1, pp. 117-137, 1992.

[31] Paul Day and J. Viv. Woods, �Investigation into Micropipeline Latch Design

Styles,� IEEE Transactions on VLSI Systems, Vol. 3, No. 2, pp. 264-272, 1995.

[32] K. Yun, P. Beerel, and J. Arceo, �High-Performance Asynchronous Pipeline

Circuits,� Advanced Research in Asynchronous Circuits and Systems, pp. 17-28,
1996.

[33] Stephen B. Furber and Paul Day, �Four-Phase Micropipeline Latch Control

Circuits,� IEEE Transactions on VLSI Systems, Vol. 4, No. 2, pp. 247-253, 1996.

[34] J. D. Garside, S. B. Furber, and S. H. Chung, �AMULET3 Revealed,� Proc.

Async �99, pp. 51 � 59, 1999.

 153

[35] N.C. Paver, P. Day, C. Farnsworth, D.L. Jackson, W.A. Lien, J. Liu, �A Low-
Power, Low Noise, Configurable Self-Timed DSP,� Proceedings of International
Symposium on Advanced Research in Asynchronous Circuits and Systems,
pp. 32-42, 1998.

[36] O. Hauck and S. A. Huss, �Asynchronous Wave Pipelines for High Throughput

Datapaths,� IEEE International Conference on Electronics, Circuits, and Systems,
Vol. 1, pp. 283 �286, 1998.

[37] Chansub Park and Duckjin Chung, �Modified Asynchronous Wave-Pipelining,�

Electronics Letters, Vol. 36, No. 4, pp. 295 �297, 2000.

[38] Jens Sparso and Jorgen Stanstrup, �Design and Performance Analysis of Delay

Insensitive Multi-Ring Structures,� Proceedings of the Twenty-Sixth Hawaii
International Conference on System Sciences, Vol.1, pp. 349 �358, 1993.

[39] S. Kim and P. A. Beerel, �Pipeline Optimization for Asynchronous Circuits:

Complexity Analysis and an Efficient Optimal Algorithm,� IEEE/ACM
International Conference on Computer Aided Design, pp. 296 �302, 2000.

[40] M. Singh and S. M. Nowick, �High-Throughput Asynchronous Pipelines for Fine-

Grain Dynamic Datapaths,� Proceeding of the Sixth International Symposium on
Advanced Research in Asynchronous Circuits and Systems, pp. 198 �209, 2000.

[41] C. D. Nielsen and A.J. Martin, �Design of a Delay-Insensitive Multiply and

Accumulate Unit,� Proceedings of the Twenty-Sixth Hawaii International
Conference on System Sciences, Vol. 1, pp. 379 �388, 1993.

[42] T. Tang, C. Choy, P. Siu, and C. Chan, �Design of Self-Timed Asynchronous

Booth�s Multiplier,� Proceedings of the ASP-DAC Design Automation Conference,
pp. 15-16, 2000.

[43] V. A. Bartlett and E. Grass, �A Low-Power Concurrent Multiplier-Accumulator

Using Conditional Evaluation,� The 6th IEEE International Conference on
Proceedings of ICECS, Vol. 2, pp. 629 - 633, 1999.

[44] Behrooz Parhami, Computer Arithmetic Algorithms and Hardware Designs,

Oxford University Press, New York, 2000.

[45] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms, McGraw-Hill

Book Company, New York, 1995.

[46] A. J. Martin, �Synthesis of Asynchronous VLSI Circuits,� Formal Methods for

VLSI Design, pp. 237-283, 1990.

 154

[47] G. E. Sobelman and D. Raatz, �Low-power Multiplier Design using Delayed
Evaluation,� Proceedings of the International Symposium on Circuits and Systems,
pp. 1564-1567, 1995.

[48] U. Cummings, A. Lines, and A. Martin, �An Asynchronous Pipelined Lattice

Structure Filter,� Proceedings of the International Symposium on Advanced
Research in Asynchronous Circuits and Systems, pp. 126-133, 1994.

