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ABSTRACT 

A sustainable Evolvable Hardware (EH) system is developed for SRAM-based 

reconfigurable Field Programmable Gate Arrays (FPGAs) using outlier detection and 

group testing-based assessment principles.  The fault diagnosis methods presented herein 

leverage throughput-driven, relative fitness assessment to maintain resource viability 

autonomously.  Group testing-based techniques are developed for adaptive input-driven 

fault isolation in FPGAs, without the need for exhaustive testing or coding-based 

evaluation.  The techniques maintain the device operational, and  when possible generate 

validated outputs throughout the repair process. 

Adaptive fault isolation methods based on discrepancy-enabled pair-wise comparisons 

are developed.  By observing the discrepancy characteristics of multiple Concurrent 

Error Detection (CED) configurations, a method for robust detection of faults is 

developed based on pairwise parallel evaluation using Discrepancy Mirror logic.  The 

results from the analytical FPGA model are demonstrated via a self-healing, self-

organizing evolvable hardware system.  Reconfigurability of the SRAM-based FPGA is 

leveraged to identify logic resource faults which are successively excluded by group 

testing using alternate device configurations.  This simplifies the system architect’s role 

to definition of functionality using a high-level Hardware Description Language (HDL) 

and system-level performance versus availability operating point.  System availability, 

throughput, and mean time to isolate faults are monitored and maintained using an 

Observer-Controller model.  Results are demonstrated using a Data Encryption Standard 
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(DES) core that occupies approximately 305 FPGA slices on a Xilinx Virtex-II Pro 

FPGA.  With a single simulated stuck-at-fault, the system identifies a completely 

validated replacement configuration within three to five positive tests.  The approach 

demonstrates a readily-implemented yet robust organic hardware application framework 

featuring a high degree of autonomous self-control. 
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CHAPTER 1: INTRODUCTION 

Reliable and efficient detection, isolation, and handling of failures within electronic 

circuits are fundamental issues in the design of dependable devices.  With production 

exceeding 100 million units per year, SRAM-based FPGA devices are frequently used in 

a wide range of embedded applications requiring high levels of reliability and 

availability. 

1.1. Need for Evolvable Hardware Regeneration Methods and Group Testing-
based Fault Diagnosis 

Reconfigurable devices, such as FPGAs, enable new fault handling techniques based on 

evolvable hardware regeneration.  Evolvable hardware regeneration techniques use the 

principle of biological evolution to handle faults.  Using evolutionary techniques such as 

genetic algorithms and cellular automata, the existing redundant hardware resources are 

reused or rewired to occlude the fault.  The repair process can take place online when the 

hardware is in active use, or offline when the regeneration occurs as part of a process 

outside the normal computation dataflow. 

Such techniques are highly relevant to many embedded device applications, including 

remote sensing, applications in hazardous environments, and space missions.  For 

instance, deep space satellites such as Stardust contain over 100 FPGA devices [1] while 

NASA terrestrial applications routinely employ FPGAs extensively for tasks ranging 

from launch control to signal processing.  SRAM-based FPGAs are of significant 
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importance due to their high density, unlimited reprogrammability, and growing use in 

mission-critical/safety-impacting applications. 

Depending on the application, these devices encounter harsh environments of 

mechanical/acoustical stress, high ionizing radiation, and thermal stress.  Simultaneously, 

they are required to operate reliably for long durations with limited or absent capabilities 

for diagnosis/replacement in the case of remote applications.  For example, in Aerospace 

Technology, Space Science, and Earth Science enterprises, the impact from increased 

safety and autonomy for FPGAs is highly relevant.  On-going research at Ames [2] and 

JPL [3] has focused specifically on employing the reconfigurability inherent in various 

field programmable devices to increase their reliability and autonomy using evolutionary 

mechanisms. 

Ground-based applications of FPGAs such as data acquisition devices and 

instrumentation systems seek to incorporate self-repair capabilities and provide extended 

calibration cycles.  One such application is Kennedy Space Center's Advanced Data 

Acquisition System (ADAS) [4].  ADAS is a signal acquisition and processing system for 

launch control measurements typical of real-time NASA applications that heavily utilize 

FPGAs and have high reliability, availability, and maintainability requirements.  Some 

target components that will benefit from evolvable hardware repair include Analog 

Signal Modules, Digital Signal/Control Modules, and Power Management Modules. 

There is the need to integrate multiple phases of the fault handling process in an 

integrated manner.  Further, this should ideally be done while maintaining the uptime, 
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and availability of the reconfigurable device.  Evolutionary mechanisms can actively 

restore mission-critical functionality in SRAM-based FPGA devices.  They provide an 

attractive alternative to device redundancy for resolving permanent degradation due to 

radiation-induced stuck-at-faults, thermal fatigue, oxide breakdown, electro-migration, 

and other failures.  Potential benefits include recovery without the increased weight and 

size normally associated with spares.  Without regeneration, spare capacity is finite.  

Therefore, an evolutionary fault handling strategy that relies upon resource recycling by 

means of leveraging the reconfigurability of FPGAs is required.  Regeneration also 

provides for graceful degradation of performance with time, where resources are 

constantly recycled with minimal impact on system availability.  The capability to 

recycle resources at a variable rate, as afforded by evolutionary mechanisms provides the 

capability to delay refurbishment to maintain required availability and throughput 

requirements.  Such a strategy would rely upon fault isolation to accelerate the 

evolutionary repair.  However, failures need not be precisely diagnosed due to automatic 

evaluation of FPGA residual functionality through intrinsic assessment using a specified 

fitness function. 

Evolutionary mechanisms rely upon efficient fault detection and isolation schemes.  Fault 

detection triggers the regeneration operation.  Robust fault detection techniques are 

required to detect fault and failures with a low latency.  Fault location methods provide 

inputs to the repair mechanism which accelerate the repair process, and reduce the search 

space of candidate solutions to the fault scenario.  The fault isolation technique identified 
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in this work is one such method for isolating faults with low latency and minimal 

overheads. 

1.2. Fault Handling in Reconfigurable Devices 

An operational failure occurs when the service delivered deviates from its as-built 

specification.  A resource fault is the cause of such failures.  Fault handling refers to the 

entire process by which potential or actual failures are dealt with.  Ideally, fault handling 

maintains failure-free functionality. 

The process of improving fault handling typically involves detection, isolation, 

diagnosis, and repair.  The detection phase consists of identifying the presence of a fault 

in the device.  A fault is said to be detected when the effects of a corresponding failure is 

observed.  Depending on whether the inputs applied manifest an observable failure, the 

fault is either be perpetually articulated or intermittently articulated.  The articulation of 

the fault, and hence its potential for detection, relies on the mapping of the functional 

design to the physical resources.  Once a failure has been detected, it may be possible to 

isolate the faulty resources.  Fault location or isolation determines the physical location 

of the faulty components.  The granularity of isolation may vary, depending on the 

architecture, the algorithm, and the isolation tools available.  Fault diagnosis thus deals 

with the determination of the symptoms and the reason behind the observed failure.  A 

symptom is an observable effect of a fault.  Failures are among the most easily observed 

symptoms of a fault and are the basis for the isolation methods developed in the proposed 

research.  The diagnosis phase may involve obtaining the response of the device to an 

 4



exhaustive set of inputs using a tool designed solely for performing diagnostic tests.  The 

last phase consist of fault repair, wherein the effects of the fault are ameliorated to reduce 

the occurrence or impact of future failures.   

The particular fault handling approach can be classified on the basis of when the faults 

are accounted for in the development cycle.  Design Time approaches place the emphasis 

on Fault Avoidance strategies through design strategies that avoid the occurrence of 

faults.  Execution Time or Run Time approaches tackle the problem by using Fault 

Tolerance and Fault Evasion methods.  A Fault-Tolerant system is characterized by its 

ability to provide uninterrupted service, conforming to the desired levels of reliability 

even in the presence of faults.  A dependable or reliable system is one which offers a 

level of service that is characterized by its availability or readiness for use when desired.   

Embedded fault-handling techniques can also be broadly categorized as diagnostic-based 

[5], coding-based [6], or redundancy-based [7], depending on the method used to 

implement fault-handling.  Diagnostic-based techniques execute a supplemental 

procedure that applies a test vector to a subset of the physical resources.  While 

diagnostics offer a compact approach, they can suffer from unavailability of throughput 

during testing, a large detection latency, and intractability of search as the number of 

physical resources and their piecewise interactions grow large [8].  Coding-based 

techniques map the input values to an alternate representation to enforce constraints on 

the validity of the outputs.  Such encodings based on parity, CRC, Berger, and other 

codes can be effective for data storage and transmission [9].  However, they preclude the 

occurrence of failures that might map one valid codeword onto another, and thus their 
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general applicability for FPGA logic resources is limited.  To avoid such limitations, 

embedded techniques frequently rely on component or system-level redundancy. 

Fault detection methods are central to fault handling strategies.  Fault detection can be 

carried out by a mechanism outside the domain of the system under observation.  In some 

cases it is not feasible to have a separate supervisory system in addition to the system 

under test.  For such a system to be fault tolerant, it is imperative that the fault detection 

tool or system used be fault-tolerant as well, since it will be a part of the system under 

observation.  To maintain acceptable availability levels, reduction of the fault detection 

latency is essential.  An evolutionary hardware repair strategy can use the information 

provided by the fault isolation strategy to speed up the repair process.  In CRR, accurate 

knowledge of the physical location of the fault can provide useful inputs to the repair 

algorithm.  The fault detection and isolation strategy used should ideally be capable of 

identifying and locating faults without requiring special test inputs, or an interruption in 

the normal data throughput.  The hardware resources used by the detector should be 

minimal, in order to reduce the number of points of failure, and to conserve floor space.  

The detector should be fault-secure meaning it does not propagate incorrect outputs in the 

presence of a fault.  Section 2.2 provides a detailed overview of selected fault detection 

strategies. 

1.3. Individual and Population-Centric Fault Assessment 

Traditional approaches to fault-detection typically rely on coding-based schemes or 

redundancy using a single voter, comparator, or error detector.  Those fault checkers 
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possess a single point-of-failure exposure involving the detector elements, or must rely 

upon special test-vectors or data encodings to isolate them.  Detector components in the 

reliability path have been referred to as golden elements [10] because the fault-handling 

strategy relies on them to be fault-free.  Also, significantly, previous methods test 

individual configurations or resource units to evaluate their fitness.  While such 

individual-fitness centric methods provide fault coverage on the device level, they do not 

lend to an adaptive, evolving system. 

In a redundant system, the problem of fault detection can be simplified by the fact that if 

there are no faults, then the outputs of the redundant elements should be identical.  An 

observed deviation from the this property would imply that the disagreement is a result of 

a failure in at least one of the redundant components.  Natural laws of competition, as 

seen in biological evolution can be applied to improve the performance of electronic 

circuits.  In fault-detection, a deviation from the normal behavior, as determined by 

comparison with another individual design, signifies a state of decreased  fitness, as a 

result of the manifestation of a hardware fault.  

The idea of competition can also be extended to the repair problem, using competitive 

pairing as a fitness evaluation technique.  Traditional GAs use an absolute measure of 

fitness for the individuals to search for improved solutions.  In this work, the  fitness of 

an individual design configuration depends on relative measures computed over a period 

of time.  The proposed fitness assessment process involves accumulation of discrepancies 

across multiple random pairings with other individuals from the population.  Such a 

population-based approach greatly simplifies the process of fault diagnosis, and uses the 
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fact that the circuit under test continues to operate for the duration of its useful lifetime to 

accrue information about the performance of competing individuals.  By keeping the 

method of fault isolation simple, the cost of repair is reduced and amortized over time, 

thus providing a fault-secure system without acceptable overhead. 

1.4. Group Testing Techniques and Applications to Fault Tolerance 

Group testing is a field of mathematics concerned with the development of efficient 

algorithms to identify defective members from a large population.  The origin of group 

testing is attributed to Robert Dorfman who proposed the first application during World 

War II.  He devised a scheme for testing blood samples from millions of United States 

army draftees for cases of syphilis [11].  He proposed that the blood samples be pooled 

for testing, in order to reduce the number of tests required and the associated cost and 

effort.  If a pool of samples tested positive for syphilis, then the samples that contributed 

to the pool would be subject to individual testing.  Though this idea of testing groups to 

identify faulty units was not practically implemented at the time, it gained currency and 

has been the subject of intensive research since.  The monograph [12] provides a detailed 

look into the current state of group testing applications.  The fundamental group testing 

problem is to identify a subset Q of defective items from a set P, by conducting the 

minimum number of tests on v – subsets of P.  A test seeks to identify whether a 

particular v – subset is defective, as shown by a positive outcome of the test [11].  Group 

testing algorithms are classified as shown in Figure 1.1. 
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Figure 1.1: Group Testing Algorithms 

Probabilistic group testing theory assumes a known probability p of an item being 

defective, and uses it to guide the isolation process.  In Combinatorial Group Testing 

(CGT), it is often assumed that D is the subset of defective items among S items whereby 

p = |D| = |S|.  In sequential group testing algorithms, tests are conducted in succession so 

that the results of previous tests are known to guide the current test.  In a non-adaptive 

test, the tests are pre-designed and executed in parallel, without cognition of the result of 

other tests.  In a multi-stage algorithm, successive stages of tests utilize informative from 

previous stages, and tests in a particular stage are executed in parallel.  Testing is 

conducted using a checker or a detector which tests subgroups comprising items from S.  

A group testing algorithm is reasonable if it contains no test whose outcome can be 

predicted from outcomes of other tests conducted either previously or simultaneously.  

To minimize the number of tests required to identify the defectives, it is sufficient to 

consider only reasonable algorithms as otherwise the algorithm would be sub-optimal 

with respect to this criteria.  However, it is not necessary to restrict use to only reasonable 

algorithms as there many be me practical advantageous to the fault handling process 

when more general techniques are used.  This is especially the case when FPGAs must be 
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supported on long missions without reducing availability due to the need to execute 

additional tests. 

CGT techniques have been applied to DNA library screening [13] and more recently to 

hardware fault detection [14].  Efficient algorithms designed for reconfigurable 

architectures that are capable of solving the fault isolation problem are particularly useful 

in NASA applications. 

1.5. Contributions of this Dissertation 

Improving the fault tolerance of reconfigurable devices is a fundamental issue to be 

considered while using such devices in failure-prone environments.  This dissertation 

develops a strategy for the integration of multiple phases of the fault handling process for 

reconfigurable devices.  While traditional approaches to these problems rely on unique 

instances of dedicated hardware elements, this dissertation investigates a new technique 

based on iterative pairwise comparison and functional regeneration.  Under the proposed 

approach, an initial population consisting of a set of functionally identical (same input-

output behavior), yet physically distinct (alternative design or place-and-route 

realizations) FPGA configurations are produced at design time.  The performance of 

these configurations is evaluated by comparing them in pairs.  The result of the pairwise 

comparisons are then utilized to realize a fault location strategy.  The fault location 

information obtained can then be used to guide the hardware regeneration process.  

Evolutionary repair techniques inspired by Genetic Algorithms (GAs) are used to realize 

the repair.  The methods presented here provide, for the first time, a fault isolation 
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strategy that works in conjunction with an evolutionary refurbishment mechanism.  

Significantly, the group testing-based isolation strategy presented here does not require 

the device to be taken completely offline, or for the resources to be tested exhaustively.  

This dissertation provides an example of how fault isolation can be achieved while 

maintaining the system’s availability as measured by its goodput.  

The competitive evolutionary method presented here leverages information contained in a 

population of alternatives to enable the refurbishment of faulty configurations.  In the 

context that functional elements are groupings of the underlying physical resources, this 

research proposes utilization of Combinatorial Group Testing (CGT) methods to analyze 

the expected performance.  A comprehensive toolkit for injecting stuck-at faults in FPGA 

logic for the purpose of evaluating group testing algorithms is developed.  This is used to 

demonstrate the efficiency of  CGT techniques in fault isolation.  CGT methods are used 

to develop algorithms for isolating faults using the minimal number of pairings to 

establish optimality bounds.  Further, analytical equation which describe the bounds of 

the system are derived.   
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CHAPTER 2: PREVIOUS WORK 

Fault tolerance techniques include both Fault Avoidance and Fault Handling approaches.  

Fault Avoidance strives to prevent malfunctions from occurring.  This approach increases 

the probability that the system is functioning correctly throughout its operational life, 

thereby increasing the system’s reliability.  Implementing Fault Avoidance tactics such as 

increasing radiation shielding can protect a system from Single Event Effects.  If those 

methods fail, however, Fault Handling methodologies can respond to or recover lost 

functionality.  Whereas some fault handling schemes maintain system operation, some 

fault handling schemes require removing the system offline to recover from a fault, 

thereby decreasing the system’s availability.  This limited decrease in availability, 

however, can increase overall reliability. 

Hardware failures in FPGA occur variously due to device degradation over age, or due to 

environmental factors.  Ionization, electromigration, hot carrier effects, and other device 

degenerative effects may cause device faults in the FPGAs used by such applications.  In 

all of the above scenarios, these devices are mandated to operate reliably for long mission 

durations with limited or absent capabilities for diagnosis/replacement and little onboard 

capacity for spares.  Specifically, when in a space environment, FPGAs are subject to the 

effects of high-energy particles or radiation.  Cosmic rays and high-energy protons can 

cause malfunctions to occur in systems located on FPGAs.  These malfunctions may be a 

result of Single-Event Latch-ups (SELs) or Single-Event Upsets (SEUs).  SEUs are 

transient in nature, inverting bits stored in memory cells or registers, whereas SELs may 
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be permanent by inducing high operating current into sensitive devices.  While all FPGAs 

containing memory cells or registers are vulnerable to SEUs, anti-fuse FPGAs are 

particularly resilient since they do not depend upon SRAM cells to store its configuration.  

Reconfigurable FPGAs, on the other hand, store its configuration in SRAM cells, which 

increases the risk to SEUs.  Over the years, designers have developed methods for SRAM 

FPGAs to allow reconfigurability in space applications while mitigated the risk of SEUs. 

Radiation-hard SRAM FPGAs have fulfilled the rising demand for FPGAs in space 

applications.  Before their availability, designers of satellites and rovers had no serious 

alternative to the one-time programmable anti-fuse FPGA.  If the inherent fault handling 

capability of anti-fuse FPGAs was not sufficient, designers were restricted to employing 

Design-time Redundancy methods.  Due to the reconfigurable nature of SRAM FPGAs, 

radiation-hard SRAM FPGAs have allowed designers to consider other fault handling 

methods- namely Run-time Fault Handling methods. 

2.1. Taxonomy and Nomenclature of FPGA Fault Tolerance Techniques 

Figure 1.1 primarily divides Fault Handling approaches into two categories based on its 

method of implementation [15].  Architecture-based fault recovery techniques [16] 

address faults at the level of the device, allowing manufacturers to increase the 

production yield of their FPGAs.  These techniques typically require modifications to the 

current FPGA architectures that end-users cannot perform.  Once the manufacturer 

modifies the architecture for the consumer, the device can tolerate faults from the 

manufacturing process or faults occurring during the life of the device.  Concealing the 
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fault through the underlying fabric of the FPGA is advantageous; users need not know of 

the occurring hardware faults.  Despite making faults transparent to the user, the ability of 

these methods to tolerate faults is limited in both type and number. 

 

Figure 2.1: Classification of FPGA Fault Handling Methods 

Configuration-based methods, however, depend upon the end-user for implementation.  

These higher-level approaches use the configuration bitstream of the FPGA to integrate 

redundancy with a user’s application.  By viewing the FPGA as an array of abstract 

resources, these techniques may select certain resources for implementation, such as 

those exhibiting fault-free behavior.  Whereas Architecture-based methods typically 

attempt to address all faults, Configuration-based techniques may consider the 

functionality of the circuit to discern between dormant faults and those manifested in the 

output.  This higher-level approach can determine whether Fault Recovery should occur 

immediately or at a more convenient time. 

 14



Figure 2.1 further separates Configuration-based Fault Handling methods into two 

categories based on whether an FPGA’s configuration will change at run-time.  Design-

time Redundancy methods embed processes into the user’s application that mask faults 

from the system output.  These methods are quick to respond and recover from faults due 

to the explicit redundancy inherent to the processes.  This speed, however, does come at 

the cost of increased resource usage and power.  Even when a system operates without 

any faults, the overhead for redundancy is continuously present.  

In addition to this constant overhead, these methods are not able to change the 

configuration of the FPGA.  A fixed configuration limits the reliability of a system 

throughout its operational life.  For example, a Design-time redundancy method may 

tolerate one fault and not return to its original redundancy index.  This reduced reliability 

increases the chance of a second fault causing a system malfunction. 

FPGA Run-time
Fault Handling

Static Methods Dynamic Methods

Offline
Recovery

Spare
Configs

Spare
Resources

Online
Recovery

 

Figure 2.2: Overview of Run-time Fault Handling Methods 

Run-time Fault Handling methods strive to increase reliability and Sustainability by 

modifying the configuration of the FPGA to adapt to faults.  This allows a system to 
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remove accumulated SEUs and avoid permanently faulty resources to reclaim its lost 

functionality.  In addition, Run-time schemes can transform faulty resources into 

constructive components by incorporating stuck-at faulty behavior into the circuit’s 

functionality.  External processors, which cost additional space, typically determine how 

to recover from the fault.  These methods also require additional time either to 

reconfigure the FPGA or to generate the new configuration. 

Within Run-time Fault Handling,  Figure 2.2 illustrates two classes: Static and Dynamic 

methods.  Of these, Dynamic fault handling methods are the primary focus of this work.  

Section 2.2 describes and compares the existing Static Run-time techniques and Section 

2.3 addresses the Dynamic Run-time approaches in relation to the concepts used in this 

work. 

2.2. Static Run-time Fault Handling Methods 

 Static methods may recover from a fault utilizing design-time compiled spare 

configurations or re-mapping and rerouting techniques utilizing spare resources.  The 

resource allocation and/or pre-designed configurations are independent of the location an 

nature of faults detected during run-time.  These methods take advantage of the regularity 

of the FPGA’s architecture to implement redundancy structures or for designing alternate 

configurations.  Spare configuration methods must provide sufficient configurations and 

require storage space overhead for these, whereas spare resource methods must allocate 

sufficient resources to facilitate a repair. 
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Spare Configuration-based approaches rely on a population of alternate configurations 

that each use a different set of logical resources to respond to faults.  These can be 

created either at design-time, or at runtime, after the fault has occurred.  The pre-

compiled configuration based technique [17] creates alternative configurations at design 

time that use different equivalent columns of FPGA resources.  In their non-overlapping 

scheme, which has the least resource overhead, a total of C(k+m, m) = (k+m)!  / (m!k!)  

configurations are required to tolerate faults in m columns, where k is the number of 

columns in the base configuration.  The required design-time effort for this approach is 

high, as it requires manual modification of the design to fit into column sets.  Also, the 

number of horizontal routes available to the designer is reduced by the resources 

consumed by the approach.  The fitness-based and population-based evolutionary 

hardware approaches for Field Programmable Transistor Arrays (FPTAs) proposed by 

Keymeulen et al. [18] creates alternative configurations for anticipated faults and at 

runtime for observed faults respectively.  This method provides good resource coverage 

and passive runtime operation, however system uptime is impacted severely by failure 

occurrence.  Also, additional external computational capacity is required to implement 

the genetic algorithm that creates the population-based solution at runtime. 

Spare Resource-based methods such as the one proposed by lach et al [19] rely on the 

availability of standby resources of varying granularity to address faults.  Lach’s 

deterministic approach provided redundant resources at design time.  This approach 

segments the FPGA into static tiles at design time with a known functionality, some 
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redundant resources, and a pre-designed alternate configuration.  Spare tiles can be 

selected when needed, but their functionality is predetermined and thus limited.  Dutt et 

al[20] provide an incremental re-routing method for increased flexibility to tolerate fault 

on-the-fly.  In this method, the FPGA is initially routed without any extra interconnects 

for reconfiguration.  The technique relies on node-covering in which reconfiguration is 

achieved by constructing replacement chains of cells from faulty cells to spare or unused 

cells.  Using a cost-directed depth-first search strategy, they minimize the overheads 

involved in rerouting interconnects when responding to faults.  Other innovative methods 

to tolerate faults using spare resources include Lakamraju and Tessier’s[21] intra-cluster 

repair.  The authors approach fault tolerance for cluster-based FPGA which group 

multiple LUT/FF pairs together in clusters.  Their method that takes advantage of logical 

redundancy in such clusters by replacing fault LUT inputs and logic resources unused in 

the original design mapping by defining methods for LUT Input Exchange and Basic 

Logic Element exchange.  All these re-routing strategies that involve spare resources 

require the device to be offline, and the support of an external system to complete the re-

routing procedure. 

2.3. Dynamic Run-time Fault Handling Methods 

Dynamic methods aim to allocate spare resources or otherwise modify the configuration 

during run-time after detecting the fault.  Whereas these approaches offer the flexibility 

of adapting to emergent fault scenarios, additional time is necessary to generate 

appropriate configurations to repair the specific faults.  Offline recovery methods require 
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the FPGA’s removal from operational status to complete the refurbishment.  Online 

recovery methods endeavor to maintain some degree of data throughput during the fault 

recovery operation, increasing the system’s availability.  

2.3.1. Offline Recovery Methods 

2.3.1.1. Genetic Algorithm Repair 

Genetic Algorithms (GA) are inspired by evolutionary behavior of biological systems to 

produce solutions to computational problems [Mitchell 1998].  Suitable for complex 

search spaces, GAs have proven valuable in a wide range of multimodal or discontinuous 

optimization problems.  Previous research has investigated the capability of GAs to 

design digital circuits [Miller et al. 1997] and repair them upon a fault [Keymuelen et al., 

2000].  Vigander [2001] proposes the use of GAs to repair faulty FPGA circuits.  As a 

proof of concept, Vigander implements extrinsic evolution, utilizing a simulated feed-

forward model of the FPGA device with genetic chromosomes representing logic and 

interconnect configurations. 

The evolution process begins with initializing a population of candidate solutions.  These 

initial solutions contain different physical implementations of the same functional circuit.  

In the midst of a fault, the performance of each configuration is evaluated, revealing 

which configurations are most affected by the fault.  If none of the available 

configurations provides the desired functionality, then genetic operators create a new 

population of diverse candidate solutions from the previous configurations.  Those 
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previous configurations having a higher performance rating are more likely to be selected 

and combine with other configurations by the Crossover genetic operator.  Additionally, 

the Mutation genetic operator injects random variations in the newly created candidate 

solutions.  Vigander also makes use of a Cell Swap operator that allows the functionality 

and connectivity of a faulty cell to swap with a spare cell.  The GA evaluates the newly 

created solutions and replaces poorer performers in the old population with better 

performers in the current population to create a new generation of candidate solutions.  

This evolutionary process repeats, stopping when an optimal solution is discovered or 

after a specific number of generations. 

Garvie et al.’s method [22] tolerates permanent faults using jiggling.  Jiggling involves 

repairing a faulty configuration by using an evolutionary algorithm that uses the other 

two healthy modules and fitness feedback from the TMR voting element.  Vigander’s, 

Garvie’s and other n-plex spatial voting approaches [23] deliver real-time fault 

resolution, but increase power consumption and area requirement n-fold during fault-free 

operation.  Previously, these evolutionary approaches have only been simulated using 

hypothetical device models.  They did not attempt application to Commercial Off The 

Shelf (COTS) FPGAs and development tools. 

2.3.1.2. Augmented Genetic Algorithm Repair 

To decrease the amount of time required to generate a repair, Oreifej et al. [24] augment 

Vigander’s Genetic Algorithm fault handling concept with a Combinatorial Group 

Testing (CGT) fault isolation technique.  Group Testing partitions suspect resources into 
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groups and coordinates those groups into a minimal number of tests to isolate the faulty 

resource.  If a group manifests a fault within one of these tests, then the group is known 

to contain the faulty resource and thus the resources within the group are classified as 

suspect.  In a deterministic manner, the suspect resources are partitioned into iteratively 

smaller groups and tested until the faulty resource is isolated. 

A population within a GA contains various configurations, each of which categorizes the 

FPGA resources into two groups: utilized and unutilized resources.  CGT evaluates each 

configuration for correct functionality.  If a configuration manifests a faulty output, then 

the resources used by that configuration are considered suspect.  Since the various 

configurations within the population form groups that overlap particular resources, CGT 

tests multiple configurations and accumulates the number of times each resource is 

considered suspect through a History Matrix.  Configurations are rotated through the 

FPGA and tested until one element becomes the maximum value within the matrix, 

isolating the fault to one resource.  The GA, in turn, uses the fault location information to 

avoid faulty resources while evolving a repaired configuration. 

 

2.3.1.3. Incremental Rerouting Algorithms 

The Node-Covering method discussed in Section 2.2 avoids a fault by rerouting a circuit 

into design-time allocated spares using design-time reserved wire segments.  Dutt et al. 

[1999] expand this method by dynamically allocating reserved wire segments during run-
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time instead of design-time.  Run-time reserved wire segments allow the method to 

utilize unused resources in addition to the spares allocated during design-time. 

Emmert and Bhatia [25] present a similar Incremental Rerouting approach that does not 

require design-time allocated spare resources.  The fault recovery method assumes an 

FPGA to contain resources not utilized by the application, thus exploiting unused fault-

free resources to replace faulty resources.  Upon detecting and diagnosing a logic or 

interconnection fault by some other detection method, Incremental Rerouting calculates 

the new logic netlist to avoid the faulty resource.  The method reads the configuration 

memory to determine the current netlist and implements the incremental changes through 

partial reconfiguration. 

Since faulty cells may not be adjacent to a spare resource, a string of cells is created 

logically, starting with the faulty cell and ending with the logic cell adjacent to the spare 

resource.  To avoid the fault, the string of cells shifts away from the faulty resource and 

towards the spare resource.  In the case of Node-covering, every row has a spare resource 

so the string of cells within the row simply shifts to the right, leaving the faulty resource 

unused.  Since this method does not allocate a spare resource for every row, the string of 

cells may extend into multiple rows to reach a spare cell. 

Re-placing cells requires the wire segments of the moving logic cells to be rerouted.  The 

configuration memory of the FPGA is read to determine which nets are affected by the 

re-placed logic cells.  All faulty nets and those that solely connect the moved logic cells 

are ripped-up [25] while those that connect other unmoved logic cells remain unchanged.  
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A greedy algorithm then incrementally reroutes each of the dual-terminal nets to 

reestablish the application’s original functionality.  Initially, the algorithm only uses 

spare interconnection resources within the direct routing path, but may expand its scope 

to encompass wider routing paths for unroutable nets. 

2.3.2. Online Recovery Methods 

2.3.2.1. TMR with Single-Module Repair 

Since Triple Modular Redundancy (TMR) performs the majority vote of three modules, 

the voted output remains correct even if a single module is defective.  Exploiting this 

concept allows a system to remain online with two viable modules while a defective 

module undergoes repair.  Methods presented by Ross and Hall [26], Shanthi et al. [27], 

and Garvie and Thompson [22] repair the defective module through genetic algorithms.   

At design-time, Ross and Hall [26] produce a population of diverse configurations for 

implementation.  At run-time, three of these configurations are implemented into the 

circuit and monitored for discrepancies.  Agreeing outputs indicate that the modules are 

functioning correctly whereas discrepancies indicate defective resources utilized by one 

of the configurations.  A mutation genetic operator is applied to defective modules and 

the fitness of the new individual is evaluated.  The process repeats until the fault is 

occluded. 
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In addition to the strategy above, Shanthi et al. [27] utilize a deterministic approach in 

identifying faulty resources.  By monitoring the resources within each configuration, 

resources utilized by viable modules gain confidence whereas resources utilized by faulty 

modules gain suspicion.  This information allows fault handling by implementing 

configurations not using defective resources.  Additionally, differing configurations can 

be rotated to reveal dormant faults in unused resources. 

Instead of selecting from a diverse population, Garvie and Thompson [22] implement 

three identical modules.  The commonality between configurations permits a Lazy 

Scrubbing technique, which considers the majority vote of the three configurations as the 

original configuration when scrubbing a faulty module.  Of course, Lazy Scrubbing only 

applies when a genetic algorithm has not modified the original configurations to tolerate 

a permanent fault. 

To address permanent faults, a (1+1) Evolutionary Strategy provides a minimal genetic 

algorithm, which produces one genetically modified offspring from one parent and 

chooses the most fit between the two.  To mitigate the possibility for a misevaluated 

offspring replacing a superior parent, a History Window of past mutations is retained to 

enable rollback to the superior individual.  Normal FPGA operational inputs provide the 

test vectors to evaluate the fitness of newly formed individuals.  To determine correct 

values, an individual’s output is compared to the output of the voter.  An individual’s 

fitness evaluation is complete when it has received all possible input combinations. 
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2.3.2.2.   Online Built-in Self Test 

Emmert et al. [28] present an approach that pseudo-exhaustively tests, diagnoses, and 

reconfigures resources of the FPGA to restore lost functionality due to permanent faults.  

The application logic handles transient faults through a concurrent error-detection 

technique and by periodically saving and restoring the system’s state through 

checkpointing.  As shown in [28], this method partitions the FPGA into an Operational 

Area and a Self-Testing ARea (STAR), consisting of a Horizontal STAR and a Vertical 

STAR.  Such an organization allows normal functionality to occur within the Operational 

Area while Built-In Self Tests (BISTs) and fault diagnosis occurs within the STARs.  

Whereas other BIST methods may utilize external testing resources assumed fault-free, 

the resources-under-test also implement the Test-Pattern Generator (TPG) and the Output 

Response Analyzer (ORA). 

To provide fault coverage of the entire FPGA, the STARs incrementally rove across the 

FPGA, each time exchanging its tested resources for the adjacent, untested resources in 

the Operational Area.  The H-STAR roves top to bottom then bottom to top while the V-

STAR roves left to right then right to left.  Whereas one STAR could test and diagnose 

programmable logic blocks (PLBs), two STARs are required to test and diagnose 

programmable interconnect, the H-STAR for horizontal routing resources and the V-

STAR for vertical routing resources.  Where they intersect, the two STARs may 

concurrently test both horizontal and vertical routing resources and the connections 

between them.  Since faults have equal probability to occur within used resources with 

unused resources, Roving STARs provides testing for all resources.  Uncovering dormant 
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faults in unused resources prevents them from being allocated as spares to replace faulty 

operational resources. 

In addition to facilitating testing, diagnosis, and reconfigurations, a Test and 

Reconfiguration Controller (TREC) is responsible for roving the STARs across the 

FPGA.  The TREC is implemented as an embedded or external microprocessor that 

communicates to the FPGA through the Boundary-Scan interface.  All possible 

configurations of the STARs are processed during design-time and stored by the TREC 

for partial reconfiguration during run-time.  Relocating the STARs through partial 

reconfiguration only affects the logic and routing resources within the STAR’s current 

and new locations.  When a STAR’s next location includes sequential logic, the TREC 

pauses the system clock until the logic is completely relocated.  In addition to pausing the 

system clock, the TREC implements an Adaptable System Clock where the clock speed 

is adjusted to account for timing delays arising from new configurations that adapt to 

faults. 

Roving STARs supports a three-level strategy to handling permanent faults.  In the first 

level, a STAR detects a fault and remains in the same position to cover the fault.  Since a 

STAR contains only offline logic and routing resources, testing and diagnosing time is 

not at a premium; the application continues to operate normally while the TREC tests and 

diagnoses the fault.  After diagnosing the fault, the TREC determines if the fault will 

affect the functionality that will soon occupy the faulty resources upon moving the 

STAR.  If the fault will not affect the new configuration’s functionality, such as only 

affecting resources that will be unused or spare, then the application’s output will not 
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articulate the fault and no action is required.  If the fault will affect the new 

configuration’s functionality, then the TREC generates a Fault-Bypassing Roving 

Configuration (FABRIC) to reroute incrementally the new configuration so that the fault 

will not affect its functionality.  Whereas some FABRICs may be compiled during 

design-time, most fault scenarios will dictate compiling them online while the STAR 

covers the fault.  While one STAR covers a fault for testing and diagnosis, the second 

STAR, however, may continue roving the FPGA searching for faults in its respective 

routing resources and PLBs.  The second level strategy then applies the FABRIC that 

either was compiled during design-time or was generated during the first-level strategy.  

Replacing a faulty resource with a spare one through a FABRIC thus releases the STAR 

covering the fault to continue roving the FPGA. 

If the fault affects functionality and no spare resources are available to bypass the fault, 

then the third strategy is invoked.  As a last resort, the TREC has an option to perform 

STAR Stealing, which reallocates resources from a STAR to the Operational Area to 

bypass the fault.  Removing resources from a STAR immobilizes it from roving the 

FPGA.  Whereas the second STAR can test all PLBs in an FPGA with an immobile 

STAR, only half of the routing resources can be tested.  In some situations however, a 

mobile STAR may intersect and forfeit its resources to an immobile STAR, which 

releases the other STAR to rove the FPGA and test the remaining routing resources. 

As previously stated, testing and diagnosis occurs within a STAR.  Utilizing the 

resources of the STAR through partial reconfiguration, the TREC configures a TPG, an 

ORA, and either two Blocks Under Test (BUT) for a PLB test or two Wires Under Test 
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(WUT) for an interconnect test.  Since no resource may be assumed to be fault-free, the 

TPG, BUTs/WUTs, and ORA are rotated through common resources of the STAR.  The 

TREC maintains the results for all test configurations so that the common faulty 

resources can be identified between the two parallel BUTs or WUTs and the rotation of 

resources. 

2.3.2.3. Consensus-based Evaluation of Competing Configurations 

Whereas previous Online Genetic Algorithm-based methods utilize an N-MR voting 

element, the Competitive Runtime Reconfiguration (CRR) approach presented here 

handles faults through a pairwise functional output comparison.  Similar to previous GA 

methods, each of the two individuals is a unique configuration on the target FPGA 

exhibiting the desired functionality.  CRR divides the FPGA into two mutually exclusive 

regions, allocating all Left-Half configurations to one region and Right-Half 

configurations to the other region.  Together, these configurations comprise the 

population of competing alternatives.  The detection method realizes a traditional 

Concurrent Error Detection (CED) arrangement that allocates mutually exclusive 

resources for each individual, which detects any single resource fault.  The comparison 

can result in either a discrepancy or a match between left-half and right-half 

configuration outputs, when resource faults are articulated by the configurations that 

utilize the faulty resources.  Such discrepancies indicate the presence of FPGA resource 

faults in either the resources used to constitute the combinational logic module or a 

pipeline stage consisting of combinational logic. 
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2.4. Fault Detection and Location using Exhaustive Testing Techniques 

Several approaches to GA-based fault handling in FPGAs utilize exhaustive testing for 

fault isolation and offline regeneration mechanisms.  In addition to TMR, Table 2.1 also 

lists characteristics of fault-handling schemes that consider reconfigurability.  TMR, 

Vigander’s, and other n-plex spatial voting approaches deliver real-time fault resolution, 

but increase power consumption n-fold during fault-free operation.  STARS [29] is an 

example of a resource-oriented diagnostic method that performs Built-in Self-Tests 

(BISTs) on sub-sections of the FPGA.  STARS extends the concept of using exhaustive 

testing by exploiting reconfigurability to occlude faults in the circuits.  Under this 

paradigm, the test area roves across all FPGA resources.  Portions of the FPGA are 

continually taken offline in succession for testing while the functionality is moved to a 

new location within the reprogrammable fabric.  The device, however, remains 

operational and hence online.  One limitation is that detection latency can be large since 

tests must sweep through all intervening resources before a fault is detected.  Potential 

throughput unavailability due to diagnostic reconfigurations when no faults have yet 

occurred is also a consideration.  However, STARS is a successful example of a method 

that uses exhaustive online testing to realize regeneration.  Methods proposed by Lohn 

[1]  and Lach [19] either rely on offline regeneration supported by exhaustive functional 

testing, or pre-determined spares defined at design-time. 



Table 2.1: Characteristics of Related FPGA Fault-Handling Schemes 

  Fault Detection Resource Coverage Fault Isolation   

Approach Fault Handling Method Latency Distinguish 
Transients Logic Inter- 

connect Comparator Granularity 

TMR Spatial voting Negligible No Yes Yes No Voting element 

Vigander [30] Spatial voting & offline 
evolutionary regeneration Negligible No Yes No No Voting element 

Lohn et al. [1] Offline evolutionary 
regeneration Negligible No Yes Yes No Unnecessary 

Lach et al. [19] Static-capability tile 
reconfiguration Relies on independent fault detection mechanism 

STARs [29] Online BIST Up to 8.5M 
erroneous outputs 

Test pattern 
transients Yes Yes No LUT function 

Keymeulen[18] Population-based fault 
insensitive design 

Design-time 
prevention emphasis No Yes Yes No Not addressed 

at runtime 

CRR
Competitive runtime input 

fitness evaluation and 
evolutionary regeneration 

Negligible 
Transients are 

attenuated 
automatically

Yes Yes Yes 

Unnecessary, but 
can isolate 
functional 

components 

 

 

Of the methods in Table I, only Keymeulen, Stoica, and Zebulum [18] investigate the 

possibility of using a population-based approach to desensitize circuits to faults.  They 

develop evolutionary techniques so that a circuit is initially designed to remain functional 

even in presence of various faults.  Their population-based fault tolerant design method 

evolves diverse circuits and then selects the most fault-insensitive individual.  In this 

paper we propose a system that achieves improved fault tolerance by using a runtime 

adaptive algorithm that emphasizes the utilization of responses observed during the actual 

operation of the device.  While their population-based fault tolerance approach provides 

passive runtime tolerance, CRR is dynamic and actively improves the fault tolerance of 

the system according to environmental demands. 
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2.5. Forming a Robust Consensus from Diversity 

An evolutionary process that uses absolute fitness measures and exhaustive tests may not 

be able to provide adaptive fault tolerance.  Layzell and Thompson [31] dealt with these 

aspects in terms of Populational Fault Tolerance (PFT) as an inherent quality of 

evolvable hardware.  Under PFT, the creation of the best-fit individual proceeds by 

incrementally incorporating additional elements into partially-correct prototypes to adapt 

to faults.  They speculate that PFT is less likely to occur for online evolution in dynamic 

environments.  Nonetheless, evaluation becomes focused on the precise regions of 

relevance within the search space during the execution of online processes.  This provides 

a powerful motivation to explore CBE. 

Yao and Liu [32] emphasize that in evolutionary systems the population contains more 

information than any one individual.  They demonstrate the utility of information 

contained within the population using case studies from the domains of artificial neural 

networks and rule based systems.  In both cases, the final collection of individuals 

outperforms any single individual.  The work in [33] further extends this concept by 

presenting four methods for combining the different individuals in the final population to 

generate system outputs.  They provide similar results for three data sets, namely the 

Australian credit card assessment problem, the heart disease problem, and the diabetes 

problem.  While the authors devise a method to utilize the information contained in the 

population to improve the final solution, they fail to use the information in the population 

to improve the learning and optimization process itself.  The proposed CBE approach 

indicates that refurbishment problems can benefit from population information.  

 31



More recently, in [34] the authors describe using fitness sharing and negative correlation 

to create a diverse population of solutions.  A combined solution is then obtained using a 

gating algorithm that ensures the best response to the observed stimuli.  In evolvable 

hardware, it may not always be possible to combine solutions without additional physical 

resources that may also be fault-prone.  In our approach, all individuals in the population 

are recognized as possible solutions, with the best emerging candidate being selected 

based on its runtime performance record.  The authors also claim that applying the 

described techniques to evolvable hardware applications should be straightforward, but 

do not provide examples.  They state the absence of an optimal way of predicting the 

future performance of evolved circuits in unforeseen environments as an impediment.  

Chapter 3 details how an adaptive system can keep track of the relative performances of 

individuals and implicitly build a consensus.  

2.6. Improving Reliability using Autonomous Group Testing 

In state-of-the-art Xilinx SRAM-based FPGAs, the device configuration can be modified 

without interrupting the normal operation of the device.  For space applications, it is 

typical to perform such configuration scrubbing periodically to repair any configuration 

errors due to Single Event Upsets (SEUs) [35].  The Xilinx TMR tool software [36] can 

be used to not only triplicate the user's design, but also insert logic to repair transient user 

memory errors and upsets due to SEUs.  TMR can be combined with the scrubbing 

method to have a reliable system while preventing soft errors.  However, configuration 

scrubbing only refreshes a single complete configuration and therefore cannot be used to 
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address permanent faults [37].  While an n-modular redundancy scheme such as TMR 

ensures validated correct output, the proposed AGT-based technique can minimize the 

risk of having two faulty modules.  The comparators of the Xilinx TMR tools can be used 

to detect the discrepancy among the redundant modules.  Discrepancies reported by the 

comparators can be used to target all resources used by a faulty module.  Once the faulty 

module is identified, the GT-based algorithm can localize the fault to a logic slice.  

Autonomous group testing aims to avoid system failure by providing methods to isolate 

permanent faults and maintain a healthy population of configurations for each redundant 

module. 
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CHAPTER 3: COMPETITIVE RUNTIME RECONFIGURATION 
FAULT HANDLING PARADIGM  

While the fault repair capability of Evolvable Hardware (EH) approaches have been 

previously demonstrated, further improvements to fault handling capability can be 

achieved by exploiting population diversity during all phases of the fault handling 

process.  In existing fault-handling methods for reconfigurable hardware, fault-tolerance 

is evolved at design time, or achieved at repair-time using evolution after taking a 

detected failed unit offline.  In both cases, GAs provided a population-based optimization 

algorithm with the objective of producing a single best-fit individual as the final product.  

They rely on a pre-determined static fitness function that does not consider an 

individual's utility relative to the rest of the population.  The evaluation mechanisms used 

in previous approaches depend on the application of exhaustive test vectors to determine 

the individual with the best response to all possible inputs.   

However, given that partially complete repairs are often the best attainable [1], [30], other 

individuals may outperform the best-fit individual over the range of inputs of interest.  In 

particular, there is no guarantee that the individual with the best absolute fitness measure 

for an exhaustive set of test inputs will correspond to the individual within the population 

that has the best performance among individuals under the subset of inputs actually 

applied.  Thus, exhaustive evaluation of regenerated alternatives is computationally 

expensive, yet not necessarily indicative of the optimal performing individual among a 
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population of partially correct repairs.  Hence, two innovations are developed herein for 

sustainable EH regeneration: 

1. Elimination of additional test vectors, and 

2. Temporal Assessment based on aging and outlier identification 

In CRR, an initial population of functionally identical (same input-output behavior), yet 

physically distinct (alternative design or place-and-route realization) FPGA 

configurations is produced at design time.  During runtime, these individuals compete for 

selection based on discrepancy favoring fault-free behavior.  Discrepant behavior, where 

the outputs of two competing individuals do not agree on a bit-by-bit basis, is used as the 

basis for the performance evaluation process.  Any operationally visible fault will 

decrease the fitness of just those configurations that use it.  Over a period of time, as the 

result of successive comparisons, a consensus emerges from the population regarding the 

relative fitness of all individuals.  This allows the classification of configurations into 

ranges of relative reliabilities based on their observed performance during online 

operation. 

3.1. Detecting Faults using a Population of Alternatives 

In order to provide fault coverage for the voting element, a distributed discrepancy 

detector circuit may be used, as described in Section 4.3.  Each individual in the 

population has an instance of one of the two complementary halves of the discrepancy 

detector circuit.  When two competing L and R half-configurations are loaded on the 
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FPGA, the discrepancy detector circuit is completed.  The design of the discrepancy 

detector accounts for the possibility of error in either, or both of the complementary 

halves of the detector.  Such an error would reflect on the performance of the half-

configurations that instantiated the detector hence degrading any preference for selection 

of those individuals as described below.  

`

 Reconfigurable FPGA Device

L 
Half-Configuration

Discrepancy Check L Discrepancy Check R

Function Logic L

            CONFIGURATION  BIT  STREAM

                                                INPUT DATA

Function Logic R

 DATA  OUTPUT

R 
Half-Configuration

 

Figure 3.1: Physical Arrangement with Two Competing Configurations 

3.2. Assessing Individual Fitness and Managing Fitness States 

Instead of using an absolute fitness function with exhaustive testing, outlier identification 

can be achieved using techniques such as the hat matrix [38], H, where the diagonal 

elements Hii are used to identify the threshold to isolate faulty individuals as outliers.  

The threshold value is determined by an analysis of the diagonal elements Hii of the hat 

matrix generated from population statistics accumulated over an evaluation window.  The 
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relative reliability of an individual is indicated by its instantaneous fitness state.  Through 

run-time competition, and the concomitant fitness state assignment, a fault becomes 

occluded from the visibility of subsequent FPGA operations. 

 Health state transitions are managed by the procedural flow for the CRR algorithm as 

depicted in Figure 3.2.  After Initialization, the Selection of the L and R half-

configurations occurs.  The selected individuals are then loaded onto the FPGA.  Next, 

the Detection process is conducted when the normal data processing inputs are applied to 

the FPGA.  The DVs of the competing half-configurations are updated based on whether 

or not their outputs are discrepant.  The central Primary Loop representing discrepancy-

free behavior can repeat without reselection as long as there is no discrepancy.  However, 

even in the absence of any observed discrepancies, one or more of the competing 

individuals may be replaced to hasten regeneration in the presence of Under Repair 

individuals.  As described later, the Replacement Rate, RX, determines the frequency with 

which such discrepancy-free individuals are replaced to allow rotation of other 

individuals from the Dormant pool.  The system availability can be increased by using a 

low value of RX.  
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Figure 3.2: Procedural Flow in the CRR Technique 
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The Fitness State Adjustment process will be used to validate and update the state of the 

individual after E evaluations.  Otherwise reselection will occur, without updating the 

fitness state of the individual being replaced.  For Under Repair individuals, if the value 

of the corresponding Hii element is greater than the threshold value then Genetic 

Operators are invoked only once without attempting to achieve complete refurbishment.  

The modified configuration is then immediately returned to the pool of competing 

configurations and the process resumes starting with the Selection phase. 

3.3. Strategic Prioritization of Individuals for Assessment and Refurbishment 

The Selection and Detection processes are shown in Figure 3.3.  During the selection 

process, Pristine, Suspect, and then Refurbished individuals are preferred in that order for 

one half-configuration.  The selection of individuals based on the relative fitness ensures 

the lowest possible probability of two half-configurations agreeing by producing the 

same incorrect outputs.  The other half-configuration is selected based on a stochastic 

process determined by the Re-introduction Rate (λR).  In particular, Under Repair 

individuals are selected as one of the competing half-configurations on average at a rate 

equal to λR.  Thus, a genetically-modified Under Repair configuration is re-introduced at 

a controlled rate into the operational throughput flow.  They act as a new competitor to 

potentially exhibit fault-free behavior against the larger pool of configurations.  An 

additional innovation is that λR can also be adapted to encourage Mean-Time-To-Repair 

(MTTR) << Mean-Time-Between-Failures (MTBF) to refurbish the population at a rate 
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not less than new failures are occurring.  Maintaining this inequality realizes sustainable 

fault-handling under fully autonomous operation. 

The Detection process is presented in the lower right corner of Figure 3.3.  If a 

discrepancy is observed as a result of output comparison, the FPGA is reconfigured with 

a different pair of competing configurations and the output of the device need not be 

propagated to allow recalculation.  The evaluation mechanisms used in previous 

approaches depend on exhaustive test vectors.  They also utilize a pre-determined fitness 

evaluation scheme to determine the individual with the best response to all possible 

inputs.  Other partially repaired individuals may outperform the best-fit individual for the 

runtime input vectors.  CRR overcomes these issues by using the runtime inputs as the 

test vector, and the output of the discrepancy detector to detect faults and provide 

information for the subsequent isolation of outliers as described in Section 4.2.  Also, the 

partially correct outputs generated by competing fault-affected individuals can improve 

availability as opposed to keeping a device completely offline while a perfect solution is 

being obtained.  

In order to isolate and detect faulty individuals in a timely manner, all the individuals in 

the population should have an equally likely probability of being selected as the Active 

individuals with a suitable interval between successive selections.  The Replacement 

Rate, RX, is used to monitor this rotation of individuals onboard the FPGA device, 

including the individuals not Under Repair.  
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Figure 3.3: Selection and Detection in the CRR Paradigm 
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3.4. Determination of Evaluation Window 

CRR uses runtime-inputs for individual performance evaluation rather than exhaustive 

testing with a predefined set of test vectors.  Nonetheless, pseudo-exhaustive testing on 

an individual basis provides adequate test coverage.  While the range and sequence of the 

online inputs may not be known at design-time, a probabilistic model is useful to estimate 

the expected number of evaluations required to encounter a sufficient range of values 

with high probability.  The Evaluation Window, E, is selected accordingly.  It regulates 

the update frequency of each individual’s relative fitness based on DVi values during the 

interval.     

The characteristics of the circuit under repair influence the determination of E as 

illustrated for an unsigned integer multiplier.  Let the circuit input width, W, denote the 

total number of operand bits to the multiplier.  In the case of a 3-bit×3-bit multiplier, W = 

6 and the total number of distinct input combinations is 2W = 64.  Thus in the case of the 

3-bit×3-bit multiplier, an exhaustive set of inputs would consist of all 64 possible 

combinations.  The problem of determining the number of random inputs needed to 

facilitate all possible inputs appearing at least once is similar to the coupon collector 

problem [39].  In the coupon collector problem, the expected number of coupons to be 

collected before at least one each of D total coupons are collected is given by the 

simplified expression, D × HD, where HD is the Dth harmonic sum.  However, for the 

exhaustive test modeling problem at hand, the number of random inputs required to 

facilitate the appearance of all possible inputs with varying confidence factors needs to be 
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derived.  This problem can be modeled as a game involving selection of balls from a set 

of 64 differently colored balls.  A single ball is selected in each drawing, with 

replacement.  In other words, what is the probability that, after D drawings, at least one 

ball of each of the 64 colors appeared at least once?  Clearly, for D < 64, the probability 

is zero, and for D = 64 is 2.54×10-116 which is highly improbable. 

To solve this problem, consider the case where all balls are of one color.  After D 

drawings, we have  where D1⎞⎛
x 1

1 1 =⎟⎟
⎠

⎜⎜
⎝

1x  is the number of feasible sample events, 

so .  Now, consider the case when D≥64.  In general, a K-color experiment can be 

described as a sum of experiments involving smaller numbers of colors for any constant 

value of D: 
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Since the numerical value of DK  in Equation (4.2)  can be excessively large, it may not 

be possible to represent it using an unsigned long variable, the widest variable in a 32-bit 

system, since for example .  Therefore, an alternate representation can 

consider as a sample event in which all K colored balls appear at least once with a 

1232 −

Kx

6464 >
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probability .  D is the number of drawings, and KP DK  is the total number of possible 

permutations, yielding: 

  D  (4.3) KK KxP /=

Now, by dividing Equation (4.1) and Equation (4.2) by KD, we obtain respectively, 
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Equation (4.9)  yields  recursively without the computational burden of calculating KP

DK  as < 1 for all K. ( KK /)1( − )
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Figure 3.4: Effect of Sample Size on Test Coverage 

As shown in Figure 3.4, when K=16 colors and D=100 drawings, the probability of all 

16 colors appearing is ≈ 100%.  Similarly, 250 trials for 32 colors are sufficient given 

equi-probable inputs.  

16P

Table 3.1 shows the result for the case when K=64, which applies 

to the 3-bit×3-bit multiplier.  In order to achieve comprehensive coverage with a certainty 

of 97.59%, approximately 500 evaluations are sufficient.  A certainty of 99.50% implies 

an evaluation window of width E=600 which was adopted for the fault isolation 

experiments in Section 3.6.  Thus, in the case of a 3-bit×3-bit multiplier design, if 1-out-

of-64 inputs articulate a fault in a single individual Ci, and all the input combinations are 

equally likely to appear, then the expected discrepancy value after E = 600 evaluations is: 

 375.9
64
1

=×⎟
⎠
⎞

⎜
⎝
⎛= EDVi  (4.10) 
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Table 3.1: Probability of all 64 Inputs Appearing At Least Once given D Evaluations 

 D=350 D=400 D=450 D=500 D=550 D=600 D=650 

P64 76.96% 88.84% 94.77% 97.59% 99.00% 99.50% 99.77%

3.5. Identifying Outliers using the Sliding Window Technique 

From a statistical perspective, the residuals, expressed as the difference between the 

expected fault-free behavior and the observed circuit response, of the faulty individuals 

are significantly larger than the fault-free individuals when using the Least Squares (LS) 

method [38].  However, the LS method is most effective when exactly one outlying 

element is expected.  In the case of multiple outliers being detected in one Sliding 

Window, the mean and the standard deviation alone may not aid in detecting the multiple 

outliers leading to a loss in isolation capacity.  Also, to increase the confidence with 

which outliers are isolated, we increase threshold from one standard deviation from the 

mean to a value of 2.5σ.  Under these circumstances, a simple method such as the LS 

method is not directly applicable.   

Another class of outlier diagnostics is based on the principle of detecting the outlier by 

the LS projection matrix H.  This matrix is well known under the name hat matrix, 

because it is denoted by a hat on the column vector y = (y1,…, yn)t such that ŷ=H*y and ŷ 

is the LS prediction for y.  The hat matrix H is defined as follows: consider there are p 

explanatory variables and one response variable which will have n observations.  The n-

by-1 vector of responses is denoted by y=(y1,…, yn)t.  The linear model states that 
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y=X×θ+e, where θ is the vector of unknown parameters, e is the error vector and X is the 

n-by-p matrix: 

  (4.11) 
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Then, the H matrix is composed from X as follows: 

  (4.12) t1t X)XX(XH −=

The diagonal elements of H have a direct interpretation as the effect exerted by the ith 

observation on the expectation of response variable because they equal .  The 

average value of the diagonal element Hii is p/n and it follows that 0 for all i.   

ii y/y ∂∂

1≤

∧

≤ iiH

In the CRR approach, the DV of each individual can be viewed as one observation or one 

explanatory variable, and the Observation Interval can be set as the size of the entire 

population.  Fortunately, since the X matrix consists of only one column in our 

application, the result of the XtX product is a single-element vector matrix, and its inverse 

can be computed using a straightforward one-step computation.  In general, the 

computation complexity of the H matrix approach is 2n2+1. 
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The recommended threshold for the identification of outliers is Hii > 2p/n and a stricter 

cut-off value 3p/n has been used in previous works [40] [41].  For an analysis of the CRR 

problem for fault isolation, setting p = 1 and n = 20 corresponds to one faulty individual 

among a population of 20.  For example, a cut-off value of 10×
n
p  = 

20
10  = 0.5 can be 

used in conjunction with a larger Sliding window width of 15 to ensure consistent outlier 

identification with 100% certainty. 

3.6. Outlier Detection and Fault Isolation Performance with Runtime Inputs 

Experimental results regarding the effect of the outlier detection parameters are 

illustrated in Figure 3.5 through Figure 13.  Each has been generated using a simulator 

written in the C++ programming language which utilizes an equi-probable selection of 

individuals.  In the data reported for experiments, the inputs causing the first discrepancy 

are applied once after each pair of faulty configurations is replaced to assess damage 

definitively under the single-fault model.   

To further illustrate how the DVs are mapped to the Hii values, Figure 3.5 through Figure 

13 are presented in pairs that show results from the same experiment.  The first Figure in 

each pair shows the observed DVs and the subsequent Figure shows the Hii values 

calculated using this data.  Figure 3.5 and Figure 3.6 depict the identification of outlying 

individuals in the population that has a 10-out-of-64 fault impact caused by a single fault.  

For example, Figure 3.5 shows the DVs observed over 50 individual evaluations, where 

each evaluation occurs after the particular individual has completed E=600 computations 
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as an Active configuration on the simulated FPGA.  This corresponds to one individual 

completing a number of computations equal to E.  From Figure 3.5, an outlier is 

identified when ten individuals have completed E iterations.  

A sliding window width of 15 was used in this experiment.  Based on analysis of the Hii 

values, and an outlier cut-off value of 0.5, the outlying individual is identified without 

statistically significant error.  As shown in Figure 3.5, outliers can be identified with a 

regular periodicity.  Figure 3.6 shows the plot of Hii values for a subset of evaluations 

corresponding to the identification of the first outlier in Figure 3.5.  Figure 3.6 also shows 

that the outlier in the population exhibits Hii ≈ 0.94 which is over an order of magnitude 

larger than Hii ≈ 0.02 of the other competitors.  Also, the Hii values of the non-outlying 

elements conform to a very narrow window of values, clearly demonstrating that the 

penalty for discrepant observations are amortized among the non-defective members of 

the population.  In Figure 3.5, it can be clearly seen that the first outlier is identified after 

11×E = 6600 computations.  This period, after which the outlier is detected can be 

lowered by reducing the sliding window.  By choosing a lower value for the sliding 

window, outlier identification will take place at an increased frequency as shown in 

subsequent experiments. 

In Figure 3.5 and Figure 3.6, individual performance was measured using a simple 

Winner-Takes-All scheme, where the only information available from the discrepancy 

detection is bit-wise output equality.  A different discrepancy detection mechanism could 

provide information such as the Hamming distance of the observed output of an 

individual from the desired output. 
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Figure 3.5: Discrepancy Values Observed  
when One Individual has a 10-out-of-64 Fault Impact 

 

Figure 3.6: Plot of Hii Showing Outlier Identification 
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The use of Hamming distance information leads to outliers having a higher discrepancy 

value, as shown in Figure 3.7, when compared to Figure 3.5.  As in the previous 

experiment, a 10-out-of-64 fault impact is considered, with a sliding window width of 15.  

The higher DV of approximately 140 can be accounted for by the fact that the observed 

Hamming distance between the observed discrepant output and the desired ideal can be 

greater than 1.  This is opposed to the previous case, where the presence of a discrepancy 

increases the DV of the corresponding individuals by one yielding DV≈70.  The outlier 

threshold remains the same, nonetheless, since the hat matrix operates on normalized 

information.  Figure 3.7 and Figure 3.8 show plots of the Discrepancy Value and the H 

values when the Hamming distance is used to quantify divergence.  
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Figure 3.7: Discrepancy Values Observed When Hamming Distance is Used 
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Figure 3.8: Plot of Hii Showing Outlier 
 Identification When Hamming Distance is Used 

In the case when a single faulty L individual with a less catastrophic 1-out-of-64 fault 

impact is analyzed, two outlier points are successfully isolated as shown in the Figure 

3.9.  Figure 3.10 shows the corresponding plot of the Hii for the same experiment.  The 

detection rate is 100% for this scenario.  When compared to the results in Figure 3.5 and 

Figure 3.6, it can be seen that the identification takes place more frequently with a 

periodicity of approximately 5×E.  This corresponds to the use of a narrower sliding 

window width as opposed to the 15×E used in the earlier experiment.  In Figure 3.9, the 

outlier cut-off value is 0.3 as compared to 0.5 in Figure 3.6.  Also, the first outlier in 

Figure 3.10 is closer to the cut-off value which can be expected with a narrow sliding 

window.  A wider sliding window width helps reinforce identification, yet too large a 

value can delay identification without improving the discrimination among faulty and 

viable competitors. 
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Figure 3.9: DV of a Single Faulty L Individual With a 1-out-of-64 Fault Impact 
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Figure 3.10: Isolation of a Single Faulty L Individual With a 1-out-of-64 Fault Impact 

For a greater fault impact, the isolation will be more challenging and time-consuming as 

shown in Figure 3.11 and Figure 3.12.  Both Figures depict the isolation characteristics 

for a single faulty L individual with a 32-out-of-64 fault impact.  A greater number of 

 53



observations are required than the 1-out-of-64 scenario and the divergence of the outlier 

is also greater.  Individuals that are eventually identified as outliers are replaced more 

often, since the computations involving these individuals produce discrepant outputs.  

Under the default replacement strategy for discrepancy-free behavior depicted in Figure 

3.3, fault-free individuals reside on the FPGA indefinitely.  However, in this experiment, 

they are replaced in accordance with the Replacement Rate RX=0.16, which corresponds 

to a guaranteed evaluation period of 100 contiguous iterations out of the E=600 window.  

Individuals that do not produce discrepant outputs are replaced with other individuals less 

frequently than ones that do.  Thus, individuals that are not fault-affected complete the 

required E number of iterations to complete evaluation much sooner than the fault-

affected individuals.  This is because discrepancies trigger immediate reconfiguration as a 

means of maintaining throughput and improving system availability. 

 

Figure 3.11: DVs Observed When a Single  
Faulty Individual has a 32-out-of-64 Fault Impact 
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Figure 3.12: Isolation of a Single Faulty L Individual with a 32-out-of-64 fault Impact 

3.7. Feed-Forward FPGA Circuit Representation Model 

The FPGA structure used in the following experiments is similar to that used by Miller 

and Thompson for GA-based arithmetic circuit design [42].  The feed-forward 

combinational logic circuit uses a rectangular array of nodes with two inputs and one 

output.  Each node represents a Look-up Table (LUT) in the FPGA device, and a 

Configurable Logic Block (CLB) is composed of four LUTs.  In the array, each CLB will 

be a row of the array and two LUTs are represented as four columns of the array.  There 

are five dyadic functions – OR, AND, XOR, NOR, NAND – and one unary-function 

NOT, each of which can be assigned to an LUT.  The LUTs in the CLB array are indexed 

linearly from 1 to n.  Array routing is defined by the internal connectivity and the 

inputs/outputs of the array.  Internal connectivity is specified by the connections between 

the array cells.  The inputs of the cells can only be the outputs of cells with lower row 
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numbers.  Thus, the linear labeling and connection restrictions impose a feed-forward 

structure on the combinational circuit. 

As an example of the circuit representation, the 3-bit×3-bit multiplier can be 

implemented using the above FPGA structure, as shown in Figure 3.13.  The entire 

configuration utilizes 21 CLBs.  XOR gates are excluded from the initial designs to force 

usage of a higher number of the gates than conventional multiplier designs to increase the 

design space.  XOR gates simplify the process of calculating partial binary sums, and 

thus reduce the number of gates required to build half-adders and full-adders. 
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Figure 3.13: Example of a 3-bit×3-bit Multiplier Design 

A library of user-defined modules can be defined to instantiate a population of diverse yet 

functionally-equivalent circuits.  In this case study, 20 distinct individuals are created at 

design-time using a set of 10 or more variations of three fundamental sub-circuits.  These 

consist of parallel-AND, half-adder, and full-adder primitives.  For example, 24 different 
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full-adder designs and 18 different half-adder designs were created for use in building the 

individual 3-bit×3-bit multiplier designs.  Thus, each multiplier is a distinct combination 

of building blocks, where each building block itself is chosen from among alternate 

designs in the library.  Figure 3.13 illustrates an individual with 3 parallel-AND, 3 full-

adder, and 6 half-adder modules.  

The population of competing alternatives is then divided into two groups, L and R, where 

each group uses an exclusive set of physical resources.  For crossover to occur such that 

offspring are guaranteed to utilize only mutually-exclusive physical resources with other 

resident half-configurations, a two-point crossover operation is carried out with another 

randomly selected Pristine, Suspect or Refurbished individual belonging to the same 

group.  By enforcing speciation, breeding occurs exclusively within L or R, and non-

interfering resource use is maintained.  The crossover points are chosen along the 

boundary of CLBs so that intra-CLB crossover is precluded.  The mutation operator 

randomly changes the LUT’s functionality or reconnects one input of the LUT to a new, 

randomly selected output inside the CLB. 

3.8. Refurbishment of a Unique Failed Configuration – 3-bit×3-bit Multiplier 
Case Study 

In this experiment, GA-based recovery operators are applied to regenerate the 

functionality in the affected individuals.  In order to simulate a hardware fault in the 

FPGA, a single stuck-at fault is inserted at a randomly-chosen LUT input pin.  This fault 

will affect the L individuals in the population.  Similar faults are later introduced into the 
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R individuals.  Upon observing the first discrepancy, the same inputs are applied once to 

the reloaded configurations as a definitive means of damage assessment under a single-

fault model.  Over 25 experimental runs, an average of 2,171 iterations were required to 

dependably demote the fitness state of the affected individual from Pristine to Under 

Repair.  During regeneration, the genetic algorithm performs inter-module crossover and 

intra-module mutation operator called the input permutation operator.  Unlike traditional 

mutation, the input permutation operator alters a specific LUT’s functionality, choosing 

from among AND, OR, XOR, NOR and NAND gates, as also changing the connections 

to the input pins.  Such mutation in conjunction with the crossover operator enables full 

exploration of a wide range of designs.   

Table 3.2 lists the evolutionary regeneration characteristics of CRR for stuck-at-0 and 

stuck-at-1 faults.  The faults were injected at randomly chosen locations in the designs.  

For the experiment, DVR DVO, the repair and operational thresholds, were 2.5σ and 1σ 

respectively.  The use of multiples of standard deviation as the threshold ensures that the 

system adapts in the case of catastrophic fault conditions, as well as the condition where 

very few discrepancies are observed.  The parameters which control the rate at which 

individuals are rotated on the FPGA, λR and RX were set at 0.2 and 0.16, respectively.  

The reintroduction rate of 0.2 implies that 20% of the computations were carried out 

using a pair of individuals, one of which was Under Repair.  In spite of this, the effective 

throughput remains high and above 97.5% on an average.  This shows that individuals 

undergoing repair produce useful output approximately 0.975-(1-λR)/λR×100%=87.5% of 

the time. 
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Table 3.2: Regeneration Characteristics for a Single Fault under CBE 

Exp. 
Number Fault Location Failure 

Type 

 
Correctness 

after 
Fault 

 

Total 
Iterations

 Discrepant 
Iterations 

Repair 
Iterations 

Final 
Correctness 

Throughput 
(%)   

1 CLB3,LUT0,Input1 Stuck-at-1 52 / 64 1.7 × 107 4.2 × 105 1194 64 / 64 97.7 

2 CLB6,LUT0,Input1 Stuck-at-0 33 / 64 8.0 × 105 1.7 × 104 47 64 / 64 97.9 

3 CLB5,LUT2,Input0 Stuck-at-1 22 / 64 3.1 × 106 6.8 × 104 193 64 / 64 97.8 

4 CLB7,LUT2,Input0 Stuck-at-0 38 / 64 8.1 × 106 1.8 × 105 513 64 / 64 97.7 

5 CLB9,LUT0,Input1 Stuck-at-0 40 / 64 2.3 × 106 7.1 × 104 219 64 / 64 96.9 

   Average 32.6 / 64 6.4 × 106 1.5 × 105 433 64 / 64 97.6 

Using a higher value for λR will lead to faster regeneration at an incremental cost to repair 

throughput.  This provides a great deal of adaptability and fine-grained control over 

system performance measured in terms of availability and regeneration latency.  Unlike 

other circuit design and regeneration approaches, CRR can be optimized to reduce 

downtime, increase availability, or to speed up the fault identification and regeneration 

process.  The results listed in Table 3.2 indicate that the evolutionary algorithm is capable 

of regeneration for the tested fault locations.  The correctness of the affected 

configurations is raised from as low as 22-out-of-64 correctness to complete operational 

suitability.  The effective throughput is maintained throughout at above 97.6%.  It can 

also be seen that CRR-based regeneration can be more computational tractable without 

exhaustive evaluation, as is listed in the Repair Iterations column. 

In Vigander’s experiment with using a voting system in conjunction with TMR [30], the 

target circuit is a 4-bit×4-bit multiplier.  With a population size of 50, and a crossover 

rate of 70%, most of the 44 runs developed a set of three modules which vote to provide 

 59



fully-fit output for the exhaustive set of 256 unique input combinations.  However, it is 

not always able to identify a single fully repaired individual.  Vigander’s experiment has 

a population size of 50, which is 500% greater than the population in the repair 

experiments attempted herein.  Most significantly, it relies on exhaustive serial testing 

against the set of all possible inputs.  CRR, however, achieves refurbishment with 

runtime inputs, continually providing some validated outputs that maintains useful 

throughput above 85%.  Compared to Jiggling [22], which is a similar evolutionary-

algorithm based approach to repairing permanent faults, CRR has lower latency by virtue 

of not relying on exhaustive tracking of the repair candidates.  Additionally, the (1+1) 

Evolutionary System described therein relies on rollbacks to preserve best-fit mutants.  

CRR, by virtue of depending on a population of higher-fit alternatives that are evaluated 

temporally over many iterations, precludes the need for rollback of configurations and 

ensures higher populational fault tolerance capability.  Significantly, as opposed to the 

work of Keymeulen in populational fault tolerance [18], CRR achieves device 

refurbishment at runtime, while ensuring sustainable levels of throughput with graceful 

degradation.  As compared to the Roving STARs approach [29], CRR minimizes 

detection latency, as faults are evident immediately upon a discrepancy at the outputs.  

Also, unlike STARs, by virtue of the runtime-input based performance evaluation, CRR 

leverages partially-fit configurations to provide some functional throughput.  This 

effectively improves the granularity of spare usage to include those affected by stuck-at 

faults, as the GA may evolve solutions that use fault-affected resources in generating 

repair configurations. 

 60



In Summary of the Repair experiments, evolutionary regeneration addresses a problem 

domain that is distinct from evolutionary design.  Namely, regeneration can benefit from 

a population of partially working designs which provide diverse, relevant alternates.  This 

also allows departure from conventional fitness evaluation with a rigid individual-centric 

fitness measure defined at design-time.  CRR uses instead, a self-adapting, population-

centric assessment method at runtime.  CRR relies on the consensus observed among a 

group of individuals to evolve and adapt fitness criteria for individual members, thus 

providing graceful degradation.  By utilizing outlier detection techniques that work 

temporally without the need for exhaustive testing, CRR provides a fault tolerance 

technique that maximizes device throughput during the fault detection process.   

  While the pre-existing methods focus on creating a single fully-fit configuration, CRR 

extends this to maintain a population of solutions that have a higher average fitness.  This 

ensures the adaptability of the population of viable alternatives to a variety of 

unanticipated faults.  An additional benefit of maintaining a population of diverse 

partially-fit individuals is that when the inputs to the system are localized to a subset of 

the set of all possible inputs, even partially-fit individuals can assist in generating 

expected outputs, thereby improving the rate of viable throughput during recovery.  

Population-centric assessment methods such as CRR can provide an additional degree of 

adaptability and autonomy to fault-handling in reconfigurable devices.  The demonstrated 

potential of such population-centric methods can be further enhanced as follows, and as 

further explored in the subsequent chapters.  After discrepancy detection, a CGT method 

which tracks utilization of resource sets among individuals in the population, is used to 
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identify the stage containing the faulty resource.  This is readily incorporated within the 

configuration selection step of CRR.  The genetic operators are then applied only to that 

isolated stage to attempt recovery, thus providing an approach to extend the CRR method 

to larger circuits while remaining computationally tractable. 

In order to accelerate the fault recovery process, a fault detection and isolation method 

that functions on the run-time inputs is required.  Further, the method has to operate on 

the basis of comparisons between two functional configurations’ performance.  In the 

next chapter, a discrepancy-enabled dueling scheme is presented that enable fast fault 

detection.   
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CHAPTER 4: FAULT ISOLATION USING GROUP TESTING 

A fault detection and isolation method for stuck-at logic faults in FPGAs is developed 

starting from a simple reconfigurable device model.  A discrepancy detector is realized 

and implemented in CMOS to demonstrate the viability of the approach.  Starting from a 

fully-articulating fault model, a general outline for discrepancy-enabled group testing is 

generated and expanded to the a partially-articulating fault model.  Finally, examples of 

adapting group testing techniques to improve the performance of GAs and also for 

exhaustive BIST-based techniques are presented. 

4.1. Motivating Example and Problem Definition 

In order to better understand the group testing problem at hand, consider an analogy 

termed the Treasurer's Problem which is related to the Counterfeit Coin Problem [43].  

The Counterfeit Coin Problem is extended here by analogy to support arbitrary groupings 

of logic cells within FPGAs.  In this Treasurer’s Problem, legitimate coins are made of 

gold, with the face value of the coins being proportional to their weight.  However, some 

counterfeit coins have other metals mixed in with the gold, and these counterfeit coins are 

to be identified and removed.  The weight of an impure coin is different from the weight 

of pure coins of the same denomination.  The treasurer must inspect large quantities of 

coins for authenticity.  Most significantly, since the number of counterfeit instances is 

small relative to the total number of coins present, the treasurer does not weigh the coins 

individually.  Instead the coins are in a vat, and the treasurer retreives coins from the vat 
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to fill bags containing exactly 100 monetary units worth of coins.  The number of coins in 

each bag may vary because of their multiple denominations, yet due to the property that 

their mass is proportional to their denomination then only two equally-valued legitimate 

bags will display equal weight.   

Using a pan balance, the treasurer compares the weight of two bags at a time to determine 

whether they are equal weight or not.  The coins from the bags may be returned to the vat 

after weighing, so that they can be filled in other bags later after shuffling.  Given these 

pre-conditions, a number of questions arise about how the treasurer will identify any 

faulty coinage such as: How many weighings will the treasurer need to identify bags 

containing the impure coins?  Can the impure coin be identified, if there was only one?  

These questions are analagous to the problems addressed in this paper for identification 

of a faulty physical resource used by a functional arrangement of FPGA configurations.   

FPGA devices are composed of an array of logic resources such as LUTs that are utilized 

by functional configurations just as the coins are grouped into a bag for weighing.  A 

digital design can be mapped onto the resources on an FPGA in several ways, just like a 

bag worth 100 monetary units can be filled with coins of different denominations in 

several different ways.  When one of the resources used by a configuration is faulty, the 

output of the configuration in response to an input may be faulty.  Identifying the faulty 

resource from among many fault free resources, without testing the resources individually 

is a challenging task.   Exhaustive testing of the individual resources is time consuming 

which takes the device offline and reduces its availability.  By analogy, if the coins were 

weighed and checked individually, the time required would be phenomenal to locate a 
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single faulty coin out of thousands of coins.  Instead, we re-cast the problem of 

identifying the faulty resource into one of making choices for group comparison from 

among the given FPGA configurations. 

4.2. Fault Isolation by Discrepancy-Enabled Repetitive pairing 

Robust fault detection is central to the problem of enhancing the fault-handling 

capabilities of digital circuits.  A common limitation facing many fault detection schemes 

is that the failure detector itself may fail.  A fault involving the checker may be 

undetectable or result in the corruption of otherwise valid outputs.  Traditional 

approaches to fault-detection typically rely on coding-based schemes or redundancy 

using a single voter, comparator, or error detector.  Those fault checkers possess a single 

point-of-failure exposure involving the detector elements, or must rely upon special test-

vectors or data encodings to isolate them.  Detector components in the reliability path 

have been referred to as golden elements [22] because the fault-handling strategy relies 

on them to be fault-free.  The following sections develop an alternative approach to self-

checking fault detection based on random pairings and temporal voting to reduce such 

exposures. 



Table 4.1: Comparison of Fault-Detection Techniques 

 

Table 4.1 lists characteristics of selected fault-handling strategies.  Specialized encoding 

schemes are often required by CED approaches as opposed to TMR and the Discrepancy 

Mirror methods which do not.  The number of functional logic elements required by 

TMR is greater than that of the other schemes.  Discrepancy Mirrors provide inherent 

transient fault coverage with minimal detection latency.  They also support fine-grained 

resolution of the fault location, without interruption to the data throughput flow when a 

fault occurs.  Thus, Discrepancy Mirrors offer improved detection of permanent and 

transient faults, with reduced time and space overheads.  Section 4.3 provides the design 

of the discrepancy mirror approach.  Results of simulations and fault location 

experiments conducted in the case study are given in Section 4.4. 
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4.3. Designing a Discrepancy Mirror – Case Study 

The Discrepancy Mirror approach is a duplex redundancy technique that utilizes alternate 

physical configurations from a population of candidate designs that are functionally 

equivalent.  As shown in Figure 4.1, the technique is composed of three phases, namely 

Selection, Detection, and Preference Adjustment.  The Selection phase selects two 

candidates, each of which utilize mutually exclusive subsets of the resources under test.  

The Detection process uses the Discrepancy Mirror logic shown in Figure 4.2 to check 

for bit-wise equivalence between outputs of the candidates as described below.  The 

Preference Adjustment phase utilizes the results of successive comparisons to update the 

pairing strategy during subsequent selections.  These steps will be explained below in the 

context of a FPGA-based realization whereby two configurations of the functional logic 

are loaded in tandem. 

 

Figure 4.1: Discrepancy Mirror-based Scheme 

 67



 

Figure 4.2: Discrepancy Detection Circuit 

4.3.1. Selection Phase 

Candidate designs are selected from a population developed at design time, either 

manually or via a CAD tool.  Random pairings or an adaptive scheme based on the 

results of Preference Adjustment can be employed.  This process is identified as Step 1 in 

Figure 4.1.  The selected designs are then loaded as the active configurations during Step 

2 and Step 3.  Identical input operands are applied in parallel to each configuration and 

the outputs are redundantly computed for comparison in the next phase. 

4.3.2. Detection Phase 

As shown in Step 4 in Figure 4.1, the discrepancy mirror circuit is used to identify 

whether the outputs of the two configurations under test agree.  A complete instance of 
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the discrepancy mirror is obtained whenever two configurations are loaded, since the 

discrepancy detector consists of two identical sections as shown in Figure 4.2.  Assertion 

of MATCH output from the discrepancy mirror indicates the absence of a single-fault in 

the configurations under test, as well as the logic in the discrepancy mirror.  The data 

output is enabled if and only if no faults are detected as shown in Step 5 in Figure 4.1. 

The inputs to the Discrepancy Mirror shown in Figure 4.2 as “Function Output A” and 

“Function Output B” are generated independently.  If there is a fault in a resource utilized 

by either of these configurations, then a discrepancy is observed at the output.  The truth 

table shown in Table 2 describes the operation of the circuit shown in Figure 4.2.  

Outputs from the function configurations A and B are applied as inputs to both the 

XNOR gates.  The output from each XNOR gate acts as the ENABLE signal for the tri-

state buffer in the same half, as well as the input to the tri-state buffer in the other half of 

the discrepancy mirror.  The tri-state buffer outputs are tied together to form a Wired-OR 

connection which provides the MATCH output signal.  The pull-down transistors hold 

the signal to a logic ‘0’ level when the tri-state buffer output is in a high-impedance state.  

In an active-high non-inverting tri-state buffer, the input is buffered at the output only 

when the ENABLE signal is high.  When the ENABLE signal is low, the output of the 

buffer is in a high-impedance state.  

A CMOS model of the discrepancy detector was created using PSpice.  The circuit was 

constructed using 44 p- and n-channel MOS transistors with a 1.5 micron minimum 

width, and a 600nm length.  The width of the p-mos transistors was set to thrice the width 

of the n-mos transistors.  Figure 4.3 below shows the PSpice schematic and Figure 4.4 
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shows the transient response of the circuit demonstrating that the circuit conforms to 

specifications enabling the correct identification of discrepancies.  Subsequently, the 

circuit was also simulated on the Xilinx Virtex-II Pro FPGA using the ModelSim-II 

simulator. 

 

Figure 4.3 Discrepancy Detector Circuit Schematic Layout 
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Figure 4.4  Transient Response of the CMOS Discrepancy Detector Circuit 

As listed in Table 4.2, the response of the circuit is robust to several possible fault 

scenarios.  If either of the XNOR gates fail, then one of the two tri-state buffers will be 

disabled and the other will have an input of zero, thus MATCH will be a ‘0’, signifying 

discrepancy.  If the tri-state buffers fail, producing a high impedance output, the pull 

down resistors in the circuit will hold the signal to ‘0’.  The wired-OR connection reduces 

single points of failure to a stuck-at fault exposure for the MATCH output. 
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Table 4.2: Discrepancy Mirror Truth Table 

 

4.3.3. The Preference Adjustment Process 

Step 6 and Step 7 comprise the Preference Adjustment process.  When the Discrepancy 

Mirror returns a MATCH output, alternate configurations can be loaded for testing or the 

resident fault-free configurations can be used.  The output from the discrepancy mirror 

over a period of time indicates the relative fitness of the different configurations.  This 

information can isolate the fault location and aid in regeneration of lost functionality 

through the identification of alternate resources.  The cumulative discrepancy information 

from diverse pairings over time can be used in Step 7 to modify the selection preferences 

for the configurations in the population. 

4.4. Analysis of Fault Isolation with a Simplified Articulation Model 

The operation of the discrepancy mirror circuit was verified on a Xilinx Virtex-II Pro 

FPGA platform using ModelSim-II.  The pull-down resistors were emulated using digital 

components as shown in the Xilinx data sheet [44].  The waveform for the MATCH 

output was asserted whenever the inputs to the discrepancy mirror were in agreement.  

The simulation waveform showed a LOW signal whenever the MATCH output was a ‘0’.  
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In the Xilinx Virtex-II Pro FPGA, when pull-down resistors are emulated, a LOW signal 

is the equivalent of a logic-0 output.  The circuit was also simulated using Cadence 

SPICE.  The entire circuit was also realized using a total of 44 p- and n-channel MOS 

transistors using a 1.5 micron minimum width technology with a length of 600 nm.  A 

total of 44 CMOS transistors were utilized to realize the circuit.  The widths of the pMOS 

transistors in the XNOR circuit were selected to be thrice the widths of the nMOS 

transistors to shape the waveform rise and fall times, to develop the required timing 

characteristics.  The simulation results and waveforms obtained indicated behavior 

conforming to Table 4.2 and Table 4.3. 

Table 4.3: Discrepancy Mirror Fault Coverage and Response 

 

Two sets of experiments were performed to analyze the fault isolation latency.  Both 

experiments sought identify the number of iterations required to identify the faulty 

resource in the case of single fault.  A simulator was constructed using a C-language 

program for simulating the Selection, Detection, and Preference Adjustment phases.  The 

inputs to the simulated mirror were obtained using random number generators.  Random 

input values were applied to two configurations chosen at random from the pool of 

competing configurations.  More formally, let U denote the set consisting of all the logic 

resources in the FPGA, S denote the pool of resources suspected of being faulty, and 
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Ci ⊂ U denote the set of resources used by the ith configuration.  Initially, |S| = |U|.  A 

process of m successive intersections among the subsets Cj ∩ Ck=j (i ≤  j, k ≤· m) are 

performed.  Each successive intersection reduces |S| until after the mth intersection at time 

t = m eventually |S| = 1, completing the fault-location process.  Each experiment was 

conducted with |U| = 1,000, 10,000, and 100,000.  The expected number of iterations to 

isolate the fault are reported for the mean values observed over 100 trials of the 

simulator.  An individual logic resource is the equivalent of a CLB in an FPGA so the 

range of resource pool sizes reflect a realistic device scenario. 

In the first set of experiments, the inputs applied consistently articulate any fault in the 

logic resources used by the configurations under test.  Thus, a match output indicates that 

the logic resources used by the configurations being compared are completely fault-free.  

A discrepancy between the configurations’ functional outputs indicates the presence of at 

least one resource fault.  Assertion of the MATCH output exonerates all logic resources 

currently being used, and a de-assertion of the MATCH output implicates the subset of 

logic resources currently being used as suspect.  The faulty resource is isolated after m 

pairings through a process of successive intersection.  Figure 4.3 shows the faulty 

resource can be identified using an expected value of 11.1 pairings when |U| = 1,000 and 

half of the resources are utilized by each configuration.  When |U| = 100,000, the mean 

number of pairings required to locate the fault increases by much less than a factor of ten 

to a value of 17.6.  Under more demanding parameters, when |U| =100,000, and when 

only 5% of the resources are being used by each configuration, a mean value of 63.7 

pairings are required to isolate the faulty resource. 
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Figure 4.5: Fault Isolation with Perpetually Articulating Inputs 

Depending on the inputs applied, the fault in the functional logic under test may remain 

dormant and thus some inputs would not articulate a visible discrepancy.  In this case, a 

match output from the discrepancy mirror cannot evaluate whether all the resources under 

test are fault-free.  A discrepant output is a definitive indicator of the existence of a 

single-fault.  With such Intermittently Articulating Inputs, the discrepancy mirror based 

scheme requires additional random pairings to isolate the single-fault.  As shown in 

Figure 4.4, when |U| = 1, 000, with resource utilization at 45%, an expected 42 random 

pairings are required to uniquely identify the faulty resource.  When |U| = 100, 000, the 

best performance is observed for a utilization of near 50%, where the expected value of 

random pairings is 64.1. 
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Figure 4.6: Fault Isolation with Intermittently Articulating Inputs 

The discrepancy mirror is capable of handling faults in either the functional logic or the 

detector.  If there is a failure in either, then the output of the mirror remains de-asserted 

indicating the presence of at least one resource fault.  It is able to isolate the faulty 

resources with a expected number of random pairings that is sub-linear in the number of 

resources under test.  It does not depend upon a specific coding scheme or a pre-defined 

set of inputs.  Random pairings of configurations perform successive intersection of the 

resources under test to isolate the faulty resource.  Figure 4.3 and Figure 4.4 show that 

more pairings are required to identify the faulty resource when the utilization of available 

resources is below 20% or above 80%.  In these situations, each successive pairing 

implicates (or exonerates) a smaller sub-set of resources than when half of the resources 

are utilized.  Finally, using a discrepancy mirror based approach, the number of pairings 

required for fault location increases sub-linearly with an increase in |U|.  For example, at 
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50% utilization, the expected number of pairings to locate a fault within pools of 1,000, 

10,000, and 100,000 resources are 11.1, 14.9, and 17.6, respectively, demonstrating the 

viability of the technique.  Though the model is abstract, and of minimal complexity, the 

case-study demonstrates the viability of the discrepancy detector, and provides the basis 

for investigating group testing-based approaches to FPGA fault isolation.  

There are certain cases where the simple fault isolation scheme described above may fail 

to converge on a single faulty resource.  A trivial case is when all the resources available 

on the FPGA are used by each configuration.  If the application demands that all the 

resources be used, then isolation cannot occur through the process of successive 

intersection.  Also, in cases where a very low number of resources are used by individual 

configurations, it is possible that none of the individuals utilize the faulty resource, 

leading to the state where no discrepancies will be observed.  The most challenging case 

is when multiple individuals utilize the faulty resource.  In this situation, the history 

matrix elements corresponding to the intersection of the subset of resources used by these 

individuals will have no relative differences, and will all have the highest value.  

Successive intersections between the resource subsets will not lead to any further fault 

isolation.  For example, with a resource utilization of 40% in a device with 40,000 unit 

resources, isolation proceeds as shown in Figure 4.5.  The isolation cannot be completed, 

and after about 23 iterations, the number of suspected faulty elements stays a constant at 

36.  Any further isolation cannot occur since there is none of the intersections that may 

follow provide any additional isolation information.  This necessitates an algorithm based 

on group testing. 
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Figure 4.7: Successive Isolation as Input Iterations Increase 

4.5. Fault Isolation using Halving and Column-Swapping 

To avoid the problem of not being able to proceed with isolation in certain cases where 

successive iterations do not provide isolation information, a dueling algorithm is 

proposed which tries to emulate halving.  Halving is the process of successively reducing 

the size of the subgroup under test by half until, finally a test of a single element is 

required to identify the faulty element.   

The algorithm works by swapping columns in the configurations of individual elements.  

When the fault isolation process approaches a state of stasis, some of the columns in the 

individuals are swapped.  The number of columns to be swapped is determined by 

considering the number of resources currently suspected of being faulty.  A number of 

columns equal to half of the remaining number of suspect elements are swapped with 

other columns in the same individual.  This will introduce new information, as some of 

the suspected faulty elements used by the individual earlier will no longer be used, for 
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example.  Swapping is restricted only to the columns to facilitate future implementation 

in FPGA hardware.  As shown in Figure 4.6, isolation proceeds till a single faulty 

element is isolated under the same conditions under which the results shown in Figure 

4.5, for dueling without swapping were obtained. 
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Figure 4.8: Isolation Progress when Halving is used 

In order to analyze the behavior of the dueling algorithm with modified halving, further 

experiments were conducted to see the implications of various factors on the isolation 

process.  In each of the following experiments, the population size specifies the number 

of competing individual configurations in the population.  Resource utilization, expressed 

as a percentage signifies the amount of available resources used by an application 

implemented on the FPGA.  The FPGA device is simulated by using a square matrix of 

order n where n denotes the number of rows and columns in the device.  Each of the 

experiments that follow list average values observed over 100 experimental trials. 
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The effect of the size of the isolation problem was evaluated by applying the proposed 

technique to simulated FPGAs of various array sizes.  As shown in Figure 4.7, for an 

isolation problem where there are 100 rows and columns, or 10000 elements, only an 

average of 14.3 iterations are required to isolate a single fault.  As the size of the array 

containing the fault increases, the increase in the required number of iterations is 

minimal.  For example, for the difficult case where there is a single fault in 1 million 

resources, the algorithm requires only an average of 27.4 iterations to isolate the fault, 

showing that the algorithm scales well with the size of problem.  
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Figure 4.9: Isolation Performance as a Function of the Total Number of Elements 

As the population size increases, fault isolation is expected to become faster, since more 

information will be available to the algorithm from the increased population size. 

However, a very high population size may lead to more individuals being affected by the 

same fault.  As shown in Figure 4.8, the number of iterations required for isolation, with 

40000 elements, and 50% resource utilization shows a tendency to decrease with an 

increase in the population size.  For a population of size 60, only an average of 17.2 
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iterations are required for isolation.  Practically, however, a very high population size will 

imply the need for a higher number of alternative individual configurations.  A 

population size of 30 seems to be an ideal tradeoff between ease of isolation, and the 

difficulty of generating increased number of individuals. 
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Figure 4.10: Isolation Performance as a Function of the Population Size 

4.6. Isolating Embedded Cores using Group Testing 

Although group testing-based methods are primarily presented as a tool to improve upon 

existing run-time fault isolation techniques, they are also amenable to post-manufacturing 

testing of FPGAs.  In this chapter a specific example of using group testing techniques to 

accelerate the isolation of faulty embedded cores in FPGAs is presented. 

The current generation of 65 nm FPGAs by Xilinx, such as the Virtex-5 platform FPGAs 

introduce space-efficient hard IP cores implemented using the column-based Application 

Specific Modular Block (ASMBL) architecture.  The Virtex-5 platform provides anywhere 

from 32 to 640 embedded DSP48E cores across a range of devices [45].  These cores are 

 81



designed, placed, and routed into the fabric of the FPGA, and have been characterized 

and verified to optimize performance.  Unlike soft IP cores, these enable designers to 

utilize the Configurable Logic Blocks (CLBs) as general-purpose logic resources and 

minimize the space and power required to implement DSP applications on FPGAs.  The 

embedded IP cores are characterized by their predictable timing and are optimized to 

work efficiently in a manner independent of the rest of the design.  These cores are highly 

customizable based on the designers requirements and provide a range of in-built 

structures for efficient arithmetic calculation and signal processing requirements.  All 

these characteristics lend to more efficient implementation of an entire system on an 

FPGA known commonly as a System On Programmable Chip (SOPC).  The development 

of FPGAs with an increasing number of embedded hard IP cores drives the need for 

faster testing methods for failures in the cores.  

The embedded cores are distributed throughout the FPGA fabric and as an integral part of 

the computational resources, these require extensive post-manufacturing testing and 

verification.  It is therefore important to develop testing methods to identify hardware 

faults with minimal latency and resource overheads. 

4.6.1. BIST-based Testing of Embedded FPGA Cores 

Advances in FPGA production technologies have improved capabilities to the point 

where FPGAs have dedicated embedded cores, in addition to multiplexers and Block 

RAMs.  The most widely accepted approach to detect faults at the chip level in VLSI is to 

apply BIST on the components [46-48].  The built-in nature of BIST also allows testing 
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the chip in a variety of working environments.  In BIST both the Test Pattern Generation 

(TPG) and Output Response Analyzer (ORA) are incorporated inside the chip.  Assuming 

that all levels of the hierarchy use BIST, each element can test itself and transmits the 

result to the succeeding level in the hierarchy.  BIST also increases controllability and 

observability by providing access to the internal nodes since tester logic is located on the 

chip.  BIST allows tests to be run at system speed and eliminates this gap.   

BIST has been the choice of convention for testing Embedded Memory [46, 47].  

Conventional ASIC BIST techniques typically accrue between 10% to 30% area 

overhead and delay penalties [48].  Therefore, it is essential that the FPGA core test 

method leverages the reprogrammability inherent in FPGAs.  An additional advantage of 

utilizing the programmable feature of an FPGA to test itself is that BIST logic can be 

removed when the circuit is reconfigured for another use and testability is achieved 

without permanent area overhead or performance degradation. 

There has been considerable research on developing and applying BIST techniques for 

programmable logic resources in an FPGA including CLBs [49, 50] and interconnect 

matrix of routing resource [16, 51].  Abramovici and Stroud [49] presented BIST 

architecture to test CLBs in an FPGA.  In their scheme, a column or (a row) of CLB is 

configured to generate pseudo-exhaustive test patterns to alternating columns of 

identically configured CLBs under test.  They use two identical TPGs to detect any fault 

in the CLBs used to construct TPGs.  Comparator-based ORAs monitor the output of the 

BUTs and latch mismatches due to faults.  The BUTs are tested and configured for 
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different modes of operation.  Each complete test (session) covers only half of the CLBs 

and another session is required to test the other half. 

 The diagnostic procedure called MULTICELLO (Multiple faulty Cell Locator) 

developed by Abramovici et al., identifies faulty BUTs based on the failing BIST results.  

Stroud and Garimella [52] targeted multiple regular structure cores including memories 

and multipliers and developed a diagnostic procedure based on the extension of the 

MULTICELLO algorithm.  The diagnostic procedure is performed in five steps.  They 

presented a BIST approach in which neighboring blocks are compared by a set of ORAs.  

Thus, each core is observed by two sets of ORAs and is compared to two different cores.  

Circular comparison of the first and last block covers the corner block.  Following and 

applying the MULTICELLO algorithm, Garimella and Stroud [53] presented 

development of an automated BIST generation for embedded Block RAMs in an FPGA, 

based on parameterized VHDL model.  The MULTICELLO algorithm provides a good 

diagnostic resolution and is able to locate the faulty blocks (unless all blocks have 

equivalent faults).  However, it is not applicable when testing a set of two blocks in 

cascade mode.  For example, in many applications and operations it is required that two 

DSP blocks cascaded together to produce the final outputs.  In this case, they produce 

different outputs and therefore it is not possible to compare the outputs of neighboring 

blocks.   

Renovell et al. [54] present a method to test the LUT/RAM modules of FPGAs using a 

minimal number of test configuration by proposing a model architecture with N inputs 

and 2N memory cells.  With a unique test configuration, they test a single module by 
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extending conventional algorithms for testing SRAM modules such as the March tests 

[55].  They also propose a unique test configuration called pseudo shift register.  In this 

method, the circuit operates as a shift register and the MATS++ algorithm is adapted to 

test the FPGA RAM modules.  However this method is limited to the SRAM modules on 

the FPGA, or the LUTS operating in the SRAM mode.  Current state-of-the-art FPGAs 

such as the Spartan-3a DSP FPGAs from Xilinx offer embedded SoPC DSP modules that 

include dedicated 18×18 multipliers along with 18-bit pre-adder and 48-bit post-

adder/accumulations and dedicated DSP circuitry consisting of DSP48A slices [56].  

Earlier Sarvi et al [57] developed a diagnostic method to detect and locate faulty 

embedded cores in FPGAs using BIST was developed.  However, the technique 

configures the device twice in order to complete fault isolation.  The method partitions 

the cores on an FPGA into two groups and conducts BIST on each of these groups.  Fault 

isolation is achieved by comparing the results of the two tests.  Under this scheme the 

two configurations are constructed to enable isolation by comparison.  In post-processing, 

defectives are identified by analyzing the results of comparisons among blocks enclosed 

within the same group.  However, this method fails to isolate faulty blocks when there is 

a defective block in each of the compared pairs.   

Improvement over previous approaches is attained using an automated diagnostic 

methodology that is applicable to different cores, including DSP cores, that takes into 

account the different modes of operation such as cascade and direct.  The group-testing 

enhanced method is scalable to different FPGA families including the Xilinx XtremeDSP 

products and the Virtex-5 family of FPGAs.  Further, these techniques can be easily 
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extended to provide testing coverage for new families of embedded cores on FPGAs 

since the method is core-independent.  A significant improvement is the one-shot testing 

of all embedded cores of a specified type using a single test pattern.  Group testing 

techniques are utilized to generate a non-adaptive testing regimen that involves a single 

group of tests executed concurrently.  The test provides complete coverage for all cores 

of a type on the chip by dividing the cores-under-test into subsets with a cardinality of 

four.  By generating, comparing and encoding the outputs produced by the cores in 

response to the test pattern, complete fault resolution is achieved in a single test. 

4.6.2. Enhancing Embedded Core BIST using Group Testing Techniques  

The embedded IP cores in the Xilinx Virtex-5 family of devices are distributed evenly 

throughout the fabric ensuring optimal timing.  The BIST technique proposed in this 

article utilizes the CLBs adjacent to the embedded cores to realize the TPG and the ORA.  

Each embedded core comprises a BUT.  The current generation Virtex-5 FPGAs from 

Xilinx include embedded cores in the form of 36-Kbit Block dual-port Block RAMs and 

Advanced DSP48E slices.  The DSP48E slices provide a range of functionality such as 

two’s complement, multiplication, and optional adder, subtracter, and accumulator.  

These also provide pipelining and dedicated cascade connections.  The number of 

DSP48E slices in the Virtex-5 FPGAs varies from 32 in the XC5VLX30 device to 640 in 

the XC5VSX95T device.  In the experiments described here, the DSP48E slices are the 

blocks under test. 
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Under the proposed group testing-based technique, the m embedded cores on the device 

are divided into m/4 = n groups of BUTs.  Tests are conducted on these groups to provide 

fault isolation in a single-stage, non-adaptive group testing regimen.  Comparators kn 

generate a PASS/FAIL result based on discrepancies between the outputs of two of the 

BUTs.  For a group of 4 BUTs, a total of six comparators are required to compare each 

BUT’s output with that of all the other BUTs in the same group.  For purposes of 

simplicity, Figure 4.10 shows the replicable BIST model in its smallest scale, considering 

one such group of 4 BUTs, numbered B0 through B3.  It is assumed that the CLBs and 

routing resources have been tested for correct functionality.  

 

Figure 4.11: BIST Structure for Testing a Group of Four Blocks Under Test 

The TPG is realized using an FSM  to realize the states required for testing the embedded 

cores.  In order to test the DSP48E cores, the FSM generates 400 states and 14-bit wide 

control signals for each state.  The control signal bits are comprised of a 7-bit opmode 

signal, a 3-bit carryin_sel signal, and a 4-bit wide alumode signal.  These serve as control 
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inputs to each of the DSP48E embedded cores.  For each of the 400 states, the FSM 

generates valid combinations of these 14 control signals which define the function 

implemented on the DSP48E at any given clock signal.  The FSM is optimized via XST 

into one 512x17 ROM and a 14-bit registered output.  This ROM is realized as one of the 

embedded BRAM cores which is pre-defined through initialization.  State-transitions are 

performed via a 9-bit adder, whose output is registered using a 9-bit register.  The three 

data operands for the DSP48E cores are generated using one 18-bit Linear Feedback Shift 

Register (LFSR), one 48-bit LFSR and one 30-bit LFSR. 

Each pair of BUTs requires a 48-bit comparator and 4 1-bit comparators for their outputs 

to be compared for discrepancies.  In addition to these, for each pair of BUTs, a 2×1 

multiplexer is used to serialize the results of the comparators.  Thus for every group of 

BUTs, a total of six 2×1 multiplexers are required.  This circuitry is further optimized as 

described in the following section.  Figure 2 shows these six comparators k1(i,j) for 

comparing the outputs of the 4 BUTs in group n = 1.  technique uses a test controller in 

addition to the TPG and the ORA, to activate the test routine by asserting the START 

signal.  Termination of the test is achieved when the DONE signal is asserted, followed 

by the propagation of the test results.  

4.6.3. Embedded Core Fault Isolation Experiments on Virtex-5 FPGAs 

As a particular example of the BIST technique, experiments were conducted on the 

Virtex-5 family of Xilinx FPGAs.  The testing of an XC5VLX30 device provides the 

following case study which further elaborates the procedure.  The XC5VLX30 device 
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consists of 36 DSP48E embedded cores, with 4800 slices that provide 19200 LUTs.  The 

m = 36 embedded cores on the  XC5VLX30 device are divided into n = 8 groups.  Since 

six 2-to-1 multiplexers are required for each group, a total of 48 such multiplexers are 

required.  However, the synthesized design optimally uses six 8-to-1 multiplexers. 

 

Figure 4.12: BIST Structure used for Testing the XC5VLX30 Device 

A block diagram of the scheme is shown in Figure 4.11.  As shown in the figure, a total 

of six multiplexers and flip flops, numbered muxo through mux5 and FFo  through FF5 

are utilized.  There are six columns of comparators, with each column consisting of eight 

comparators, k0 through k7.  Comparators kn(i,j), 0 ≤ i,j ≤ 3,∀ i ≠ j complete the test for a 

group of four BUTs as shown in Figure 2.  The results for comparisons among one group 

of BUTs, for example, the results from k0(0,1), k0(0,2), k0(0,3), k0(1,2), k0(1,3) and k0(2,3) 

are registered in the flip flops FF0  through FF5..  This is then repeated for the other 

groups, using the 3-bit counter to enable the succeeding inputs of each multiplexer.  

Thus, at the end of each test, when the inputs from the TPG have been applied, the 

counter goes through all the multiplexer inputs and sending the output of the six flip flops 
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simultaneously to 6 1-bit outputs.  The fault diagnosis script then processes the results of 

each set of 6 outputs to resolve the location of the defective BUTs.  This can lead to 

isolation of faults in any two of the four BUTs in each group, irrespective of the location 

of the faulty BUTs within each group.   

Table 4.4: Resource Utilization Results from Experiments Conducted on the Xilinx 
Virtex-5 Family of FPGAs 

 

Device DSP48E Available 
Slices 

Available 
LUTs 

Available 
FFs 

Resource Utilization under 
Test (Percentage) 

LUTs Flip flops 
XC5VLX30 32 4800 19200 19200 1,418 (7%) 384 (2%) 
XC5VLX50 48 7200 28800 28800 1862 (6%) 408 (1%) 
XC5VLX85 48 12960 51840 51840 1862 (6%) 408 (1%) 

XC5VLX110 64 17280 69120 69120 2300 (3%) 432 (1%) 
XC5VLX155 128 24320 97280 97280 4058 (4%) 528 (1%) 
XC5VLX220 128 34560 138240 138240 4058 (2%) 528 (1%) 
XC5VLX330 192 51840 207360 207360 5822 (2%) 624 (1%) 
XC5VSX35T 192 5440 21760 21760 5822 (26%) 624 (2%) 
XC5VSX50T 288 8160 32640 32640 8462 (25%) 768 (2%) 
XC5VSX95T 640 14720 58880 58880 18139 (30%) 1296 (2%) 

 

The solution was implemented on various devices of the Virtex-5 family.  Table 4.4 

summarizes the resource usage for each of these devices.  As listed in the Table, for the 

XC5VSX95T device, which contains 640 DSP48E embedded cores, the device utilization 

during testing is approximately 30%.  In Table 4.4, all Utilization Percentage figures less 

than 1% have been rounded up to 1%.  Also, each Slice in the Virtex-5 family of FPGAs 

contains four LUTs and four flip flops. 
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Embedded cores within FPGAs provide improved performance by optimizing area and 

power consumption.  With improvements in the process technology, the smaller 

geometries will drive the inclusion of an increasing number of diverse hard IP blocks in 

FPGAs.  As shown in this article, the XC5VSX95T device in the Virtex-5 family 

contains 640 DSP cores and 488 Block RAM cores.  This shows the need for efficient 

fault isolation techniques to diagnose these devices to improve yields and facilitate faster 

debugging.  The demonstrated technique achieves the goal of fast detection and isolation 

of faults by leveraging a group testing technique that isolates faulty embedded cores in a 

single-step procedure that precludes the need for device reconfiguration.  The approach is 

scalable at the cost of area overhead.  However, no permanent area cost or performance 

overheads are incurred as a result of testing.  This technique can be used in conjunction 

with other existing methods for isolating faults in interconnect and CLBs to provide 

complete post-manufacturing testing for FPGAs with embedded cores.  

4.7. Improving GA Performance Using CGT 

The fault isolation provided by Combinatorial Group Testing (CGT) can be utilized to 

accelerate the design and repair process in a genetic algorithm.  To demonstrate the 

benefit using an example, A CGT-pruned GA was developed [58] to evaluate the 

performance benefit obtained by using the halving testing scheme.  As shown in Figure 

4.13, the simulator for the CGT-Pruned GA optionally uses a seed configuration and uses 

the resource information provided by the CGT technique to effect refurbishment in faulty 

configurations using the GA.  The simulator is a C++ based console application that 
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consists of two main components: the CGT procedure and the GA.  The CGT algorithm 

uses the Gnu Scientific Library (GSL) and simulates the fault location method. The GA is 

implemented using an object oriented architecture that contains classes which model the 

FPGA resources with flexible geometries such as the Configurable Logic Block (CLB) 

and Look-Up Table (LUT) classes, and others that model the GA such as Individual and 

Generation classes.  When this simulator is run in the CGT-pruned GA mode, the CGT 

component simulates the desired FPGA chip and obtains resource performance 

information which is an input to the GA.  The GA then performs evolutionary design or 

reads the Seed Configuration file and performs evolutionary repair according to the active 

mode of operation.  In the Conventional GA mode, the CGT component is not invoked 

and no resource performance information is available to the GA. 

 

Figure 4.13:  CGT-Pruned GA Simulator 
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Table 4.5: CGT-Pruned GA - Repair Performance 

Experiment Type Conventional 
Repair 

CGT-pruned 
Repair 

Circuit 3-bit x 2-bit 
Multiplier 

3-bit x 2-bit 
Multiplier 

Number of 
Experiments 30 30 

Arithmetic Mean 
(Generations) 17150 10700  

Standard Deviation 15650 12550 
Standard Error of the 
Mean 2850 2300 

68% Confidence 
Interval [14300 → 20000] [8400 → 13000] 

In the experiments, a 3-bit × 2-bit multiplier is circuit evolved from seed configurations, 

and in the repair experiments, functional circuit representations with a simulated fault are 

repaired.  The optimized GA parameters used were a mutation rate of 0.05, a crossover 

rate of 0.4, and a population size of 25.  Further, elitism was imposed where the two best-

fit configurations from a generation were propagated to the next generation.  The 

simulated FPGA architecture consisted of 15 CLBs configured with a strict feed-forward 

topology.  As listed in Table 4.5, with a single stuck-at fault, the CGT-pruned GA 

outperformed a GA unassisted by the results of group testing in the experiment 

concerning the repair of individuals affected by the fault.  Over 30 trials, the CGT-pruned 

GA required an average of 10700 generations to realize a repair as opposed to 17150 

generations for the non CGT-pruned GA.  Further the result ranges do not overlap at the 

68% confidence interval, which makes the result more statistically significant.  
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CHAPTER 5: LOGIC ELEMENT ISOLATION USING 
AUTONOMOUS GROUP TESTING 

The logic resources on a Xilinx FPGA device are organized as a two-dimensional array 

of CLBs [59].  Each CLB consists of 4 slices, which in turn contain two 4-input LUTs.  

In the AGT-based fault isolation method described, a logic resource refers to a slice in 

the FPGA.  As shown in Figure 5.1, the FPGA is seen as a two-dimensional array of 

resources, each resource being a slice.  The fault model accounts for stuck-at faults at the 

inputs of one of the two LUTs in a slice specified by its (x,y) coordinate pair.   

Processor
Core

SLICE

LUTs

FPGA

 

Figure 5.1: FPGA Resources as Seen by the Group Testing Algorithm 

5.1. Terminology and Nomenclature for Analysis of Autonomous Group Testing 
Techniques 

Let R denote the set of all resources ri(x,y) ∈ R under test as specified by their (x,y) 

coordinates.  A set of functionally-equivalent logic configurations, C, consisting of 
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subsets ci, 0 ≤ i ≤ p, where p quantifies the size of a population of design configurations.  

Each configuration realizes the combinatorial logic required for the application.   

The population preset value ppreset determines the maximum number of individuals in a 

generation so that pstage ≤ ppreset as testing progresses.  At each stage of the adaptive 

testing algorithm, the configurations in the population are replaced by new designs, 

creating a new generation of individuals. 

T denotes the set of binary input vectors applied and ti ∈ T are the individual input 

vectors.  These inputs to the implemented combinatorial logic are also the test vectors for 

the isolation procedure.  Let the function implemented on the FPGA be denoted by 

F(T, ci).  If any of the resources in ci used to realize F(T, ci) are faulty, then the response 

will deviate from the correct realization, for some subset  T’ ⊂ T which articulate the 

fault as follows: 

Definition 5.1.  The syndrome T’ of a configuration ci is the set of positive tests for the 

configuration.  

Definition 5.2.  The discrepancy function D(T’, cj) yields a set of all outputs that are not 

equal to the correct output, as realized when tests comprising the syndrome, T’ are 

applied to configuration cj.  Tests T’ ⊂ T on a subset cj are positive if and only if 

D(T’, cj) ≠ {}, and negative otherwise. 
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Definition 5.3.  The articulation rate a(ci) for a configuration ci is the ratio of the number 

of incorrect outputs to the cardinality of the entire output space: 

 Articulation rate, a(ci) = 
||
|'|

T
T . (5.1) 

Since the articulation rate cannot controlled by the designer, it introduces randomness 

into the rate of progress of fault isolation as discussed in section 6.2.  Fault isolation 

proceeds by reducing the cardinality of the set of suspects, S. S is defined as the 

intersection of resources ri(x,y) ∈ ci used by all ci ∀ D(T’, ci) ≠ {}.  The set of all viable 

resources tenable to creating fault-free configurations is denoted by S , such that 

S ∪  = R.   S

Definition 5.4.  Forward Progress is made, if, as fault isolation proceeds, |S| decreases 

and | | decreases, until finally |S| = d,  the number of known defectives.  S

As fault isolation progresses |S| decreases and | S | increases, until finally |S| = d, the 

number of known defectives. 

Definition 5.5.  The defect scouring ratio, d(stage) defines the ratio of number of known 

suspects |S| to | |, given the number of test stages that have been completed: S

 |S|
|S|

=d(stage)  (5.2) 
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5.2. Autonomous Group Testing Algorithm Overview 

As shown in Figure 5.2, the AGT algorithm comprises of three phases of fault isolation 

which occur after the fault has been detected.  First, in the initialization phase, all 

elements of the History Matrix, H, described in Section 5.3, are initialized to zero.  In 

addition, since the isolation procedure is yet to begin, the set of suspect resources, S is 

equal to the set of resources under test, R.  After initialization, the pstage configurations 

that comprise the first testing stage are created, which forms the second phase of the 

algorithm.  The third phase consists of performing tests on the configuration thus created.  

Phases 2 and 3 are repeated until the defective resource is isolated. 

Before the configurations for a stage are created in phase 2, the equal share factor, nshare, 

and the population size, pstage, are determined as described in Sections 5.4 and 5.5, 

respectively.  Once nshare is known, the pstage individuals that comprise the first test stage 

are created using the Fault Injection and Analysis Toolkit (FIAT) described in Section 

5.9.  During the fault isolation phase shown in Figure 5.2, isolation proceeds by applying 

random test vectors which emulate the input data stream to randomly selected 

configurations that comprise the first test stage.  This process continues until stasis is 

attained, as described in Section 5.6.  After the system attains stasis, a new testing stage is 

created, and fault isolation is pursued until the defective resource is identified. 
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Figure 5.2: AGT Process Flow 

5.3. Tracking Defectives Using the History Matrix 

The history matrix, H, keeps track of the discrepancy counts of the resources.  As shown 

in Figure 5.2, all elements in the H matrix are initialized to zero.  As a stage of tests 
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proceeds, for each test ti for which D(ti, cj) ≠ {}, all H matrix entries H(x,y) are 

incremented by one where (x,y) are the coordinates of all ri(x,y) ∈ cj.  Over time, the 

maximal elements in H identify suspect resources by their coordinates.  Under a single-

fault assumption, fault isolation is complete when a unique maximum can be identified in 

H.  The defective resource will be identified by the coordinates of the maximal element in 

H. 

5.4. The Equal Sharing Test Group Formation Strategy 

Initially, S = R, since no information is available regarding the fitness of any of the 

resources.  The algorithm proceeds in stages, with a new generation of individuals being 

created in each stage.  In each stage, the members of S are equally shared among the 

configurations ci, 0 < i < pstage-1 in the generation. 

The remaining nreqd resources required to realize the design are randomly selected from 

the set S  which has a cardinality |R| - |S|.  Thus each individual ci will be allocated |R| - 

|S| + |S|/pstage resources.  Hence if the number of suspects |S| is small enough such 

that |R| - |S| + |S|/ pstage > nreqd , then the configurations in that group will have mutually 

exclusive shares of the suspect resources, with each individual configuration ci being 

allocated exclusive resources rj(x,y) ∈ ci , rj(x,y) ∉ ck, where 0 < k < pstage-1.  Otherwise, 

some suspect resources need to be shared among the configurations to meet the 

application resource demand nreqd.  The maximum cardinality of |S| such that mutually 

exclusive shares of suspect resources are possible, denoted by |Smax| can be obtained by 

evaluating the following expression: 
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preset

n
p
SSR =+−

|||||| max
max , (5.3) 

which yields: 

 |)|(
)1(

|| max Rn
p

p
S reqd

preset

preset −×
−

=  (5.4) 

If |S| > |Smax| then the equal share factor, nshare, is derived by rearranging Equation(5.5) to 

yield Equation(6.6): 

 sharereqd nSRn +−= ||||  (5.5) 

 |||| SRnn reqdshare +−=  (5.6) 

Figure 5.3 shows an example of how |S| = 30 suspect resources from among |R| = 100 

resources are shared among pstage = 2 configurations.  In case 1, nreqd = 85, yielding |Smax| 

= 30 using Equation(6.4).  Since |S| = |Smax| in this scenario, configurations c0 and c1 use 

mutually exclusive subsets of S, and they both use all ri(x,y) ∈ S  to satisfy the 

application resource demand.  In scenario 2, however, nreqd = 91, and thus, |Smax| = 18.  

Since |S| > |Smax|, the equal share factor is evaluated using Equation(6.6) to be nshare = 21.  

As shown for case 2 in Figure 5.3, c0 and c1 share |S| - 2 × nshare = 12 suspect resources. 
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 101

Alternative resource allocation strategies can be adopted to replace the equal share 

strategy.  For instance, in [60], an Interleaved Allocation strategy is proposed that ensures 

that each LUT in the Suspect pool is used by more than one individual in every new 

stage.  This will reduce the probability that a faulty LUT does not articulate the fault for 

the observed test vectors.  The strategy uses a Coverage Factor to determine the number 

of different individuals that utilize any suspect resource.  The interleaved allocation 

scheme adopts a low-risk approach by covering each suspected resource with two or 

more configurations, making it less probable that a group of testing yields no 

improvement. 
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configuration ci
Region 4 : Suspect resources shared

by c0 and c1

Configuration c0 Configuration c1  

Figure 5.3: Sharing the Suspect Resources Equally – Two Different Scenarios
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5.5. Adapting the Population Size for Optimal Resource Coverage 

In order to reduce the number of individuals under test, the population size is adapted.  

For example, if in the final stage of testing, |S| = 3 even though the ppreset may be greater 

than 3, only 3 individuals, each using one of the suspect resources is required for 

isolation to complete.  Such a situation occurs frequently in the beginning of the isolation 

process.  For example, with a resource redundancy ratio, rr = 0.5, in the first stage, only 

two individuals are required to cover the entire resource space.  Additional individuals 

will only form tests for resources that are already covered by these two, and will thus be 

redundant.  The number of individuals required in any stage of testing is given by: 

 ⎥
⎥

⎤
⎢
⎢

⎡
=

share

||
n

Spstage  (5.7) 

Reducing the number of individuals in a test stage provides two benefits.  First, it 

significantly reduces the time required for the fault isolation process.  Secondly, it 

reduces the number of redundant test groups – making the algorithm more reasonable.  In 

particular, a reasonable group testing procedure is one that contains no test whose 

outcome can be predicted from outcomes of other tests conducted previously [12]. 

Once nshare and pstage are known, the individuals for a given generation are created, and 

then tested.  As shown in Figure 5.2, testing comprises the third phase of the isolation 

process.  The tests are conducted by randomly selecting an individual ci for instantiation 

on the FPGA.  A test vector tj is then applied to the individual.  If  D(ti, cj) ≠ {}, all H 
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matrix entries H(x,y) are incremented by one where (x, y) are the coordinates of all ri(x,y) 

∈ cj.  Regardless of whether there is a discrepancy, this configuration is then replaced by 

another, and the testing continues.  When a configuration containing the defective 

resource is tested, the probability of the fault being expressed as a discrepant output is 

governed by the articulation rate, a(ci), of that configuration.  Once a fault is articulated, 

the set of suspects will be reduced to the intersection of the resources utilized by cj and 

the resources H(x,y) = Hmax.  Thus: 

 Snew =  cj ∩ H (5.8) 

where hmax  is the maximal element in the history matrix H(x,y) 

5.6. Overcoming Stasis During Isolation 

A state of Stasis is encountered in a stage of the isolation procedure if further tests on 

configurations comprising the stage are expected to lead to no significant reduction in the 

number of suspect resources.  By Definition 6.4, stasis occurs when forward progress 

stalls.  Defining a method to overcome stasis is essential to ensure fast fault isolation.   

Since the suspect resources were equally shared among the individuals in the population, 

the maximum possible reduction in |S| is given by: 

 share
new

n
S
S

=
||

||
 (5.9) 
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Once |Snew| is obtained, the system is defined to have entered a state of stasis, when 

further improvements to the defect scouring ratio, d(stage), have stalled.  Further 

reduction in |S|, beyond those described in Equation(6.9) is only possible if there exists 

another individual in the same generation that also utilizes the defective resource.  Since 

such an individual is not guaranteed to exist and to articulate the fault, stasis is declared 

after the suspect pool is reduced by the factor shown in Equation(6.9).  Stasis can also 

occur when the individual utilizing the defective resource does not articulate the fault, or 

does so with a very low articulation rate.  Thus, stasis occurs when no discrepant outputs 

are observed after a fixed number of inputs are applied. 

5.7. Walkthrough of Isolation Process 

As an example of the isolation process, consider a situation where there is one defective 

resource with the coordinates (1,8) in a set of R = 100 resources, where ri(x,y) ∈ R, 

0 < x,y < 9.  For simplicity, let us assume that a configuration that utilizes the defective 

resource always articulates the fault at the output.  The number of resources required to 

implement the application is nreqd = 35.  Thus, for the first stage, by Equation(6.6): 

 nshare = 35 – 100 +100 = 35 (5.10) 

For nshare = 35, and population preset, ppreset = 5, by Equation(6.7), we have: 

 Population size for the first stage , 3
35

100
1 =⎥⎥

⎤
⎢⎢
⎡=p  (5.11) 
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Thus, in the first stage, there are three configurations, the first, c0 uses resources ri(x,y) 

where 0 < x < 4, 0 < y < 5,  i.e., 35 resources with coordinates (0,0) through (3,4) 

inclusive; c1 uses resources with coordinates (3,5) through (6,9) and c2 uses resources 

(7,0) through (9,9) and (0,0) through (0,4) inclusive.  Over a period, each of these three 

configurations are chosen at random and inputs are applied, until a discrepancy is 

observed.  Since the defective resource (1,8) is used by c0, this configuration will 

articulate the fault.  When this occurs, the H matrix entries corresponding to the resources 

with coordinates (0,0) through (3,4) used by c0 will be incremented by one.  The set of 

suspect resources S now has a cardinality of 35, and contains the resources used by c0.  

After this first discrepant output, the cardinality of S  exceeds the critical cardinality of 

35.  Also, the prime realization for this experiment is 1, since c1 is known fault-free after 

c0 is identified as the discrepant configuration. 

As the set of suspects has diminished by a factor equal to nshare, the next stage of 

configurations is formed.  The number of suspects can be divided equally among the 

members of this new stage, thus, each new configuration will contain 35/5 = 7 suspect 

resources.  The rest of the resources to create the 5 configurations are chosen at random 

from the 100-35 = 65 members of S .  Thus, in the second stage of testing, c0 will use the 

suspect resources with coordinates (0,0) through (0,6) and the other configurations will 

use 7 suspect resources each, in order.  The defective resource with coordinates (1,8) will 

be utilized by configuration c2.  In the tests performed in the second stage, c2 will 

articulate a fault, and H matrix entries corresponding to resources with coordinates (1,4) 

through (2,0) inclusive will be incremented by one. 
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In the next stage, only four configurations need be created, with the first three 

configurations utilizing two of the seven suspect resources.  This stage will further reduce 

S to two suspect resources.  Finally in the last stage of testing, only two configurations 

will be created, with the first using the resource with coordinates (1,8) and the second 

utilizing the resource with coordinates (1,9).  Tests on these two configurations will 

finally yield (1,8) as the defective resource.  Thus, in four stages, the defective resource 

will be uniquely identified. 

5.8. The Fault Isolation and Analysis Toolkit for Xilinx FPGAs 

The UCF Fault Injection and Analysis Toolkit (FIAT) is a set of Python APIs that aid the 

analysis of fault-testing algorithms for Xilinx FPGAs.  Faults are injected in the 

implemented designs by editing the design file.  This precludes the need to edit the 

configuration bitstream directly.  The Xilinx ISE design tools are used in the process flow 

to place and route the edited designs.  FIAT can be used to model and evaluate various 

testing regimens that seek to identify and isolate faults in FPGAs.  The toolkit enables 

easy injection of faults without directly modifying the bitstream.  The principle of 

interfering minimally with the functions of the Xilinx ISE is adopted to reduce accidental 

bitstream errors that may invalidate the design or even damage the FPGA.  The 

generation of post-place-and-route simulation executables offers a fast and reliable way 

of analyzing test routines without the additional expense of downloading the designs and 

reconfiguring FPGAs.  
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FIAT provides the following functions to enable the modeling and evaluation of group 

testing regimen: 

get_list_slices_used(proj_path, xdl_fn):  This method takes the project path(proj_path) 

and the xdl filename(xdl_fn) as inputs and returns a list of slices used by the design 

specified by the xdl file. 

get_slice_count(proj_path, xdl_fn): Returns an integer representing the number of slices 

used by the specified xdl file.  Inputs are the xdl filename(xdl_fn) and the project 

path(proj_path). 

is_slice_used(proj_path, xdl_fn, x, y):  Returns a Boolean value corresponding to whether 

or not a slice specified by its x and y coordinates is utilized by the design specified by the 

xdl filename(xdl_fn). 

disclists(list1, list2): This function returns an integer representing the number of 

discrepancies observed in comparing the two lists list1 and list2. 

modify_xdl(proj_path, xdl_fn, slice_coords, g_or_f, faulty_pin): The modify_xdl 

function inserts stuck-at faults in a specified design.  The slice where the stuck-at-fault is 

to be inserted is specified by a coordinate pair(slice_coords).  The G or F LUT in the 

slice can be chosen using the g_or_f parameter.  faulty_pin specifies the pin in the LUT 

where the stuck-at-fault needs to be injected. 
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create_ucf(proj_path, ucf_fn, occ_area_xy, f_max_x, f_max_y, occ_area, req_resources, 

pop): This method creates UCF files and placed-and-routed designs according to the 

specified parameters to aid the physical placement of the design on the FPGA.  The 

proj_path and ucf_fn parameters define the project path and the UCF filename.  

occ_area_xy specifies the area that the design has to be placed in as a coordinate pair.  

All resources outside the square area defined by occ_area_xy are prohibited from being 

used in the design. f_max_x and f_max_y specify the maximum value of the x and y 

coordinates for resources that can be utilized by the design.  occ_area defines the number 

of resources available for use by the design and req_resources defines the number of 

resources that are essential for instantiating the design.  This figure can be ascertained by 

assessing the minimum number of slices required by the design.  The pop parameter 

defines the population size, or the number of unique designs that need to be produced.  

The create_ucf function creates pop number of unique ucf files where the resources used 

are chosen at random.  The amount of slices available for implementing the design can be 

varied from (occ_area – req_resources) to occ_area depending on the needs of the test 

routine by using custom functions to determine the selection of resources.  After creating 

the UCF files, the create_ucf function proceeds to create the NCD files for the designs 

and converts the NCD files to XDL files which can then be modified according to need 

using the modify_xdl function. 

simulate_ppr(proj_path, sim_fn): The simulate_ppr function accepts the project path 

and the name of the simulation executable as inputs.  It invokes the Xilinx commands to 

compile the HDL design, testbench files, and simulation libraries to create the simulation 
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executables.  Finally it runs the simulation.  This is useful in conjunction with testbench 

files that save the output of the simulation in the form of text files. 

5.9. Creating and Modifying Alternatives with FIAT 

FIAT provides a high level of control over the physical location of the logical units used 

in the design.  In particular FIAT provides methods for modifying and parsing the User 

Constraint File (UCF) and the Xilinx Design Language (XDL) file.  The XDL file is a 

plain text file that can be created from the NCD file using the xdl command line tool 

provided by Xilinx.  Throughout the design flow, the Xilinx ISE tools are used all 

processes except for those that edit and parse the UCF and XDL files.  The tools provided 

by FIAT can be used for determining the physical placement of the logical units by 

editing the UCF file.  Stuck-at faults are injected into the design by converting the NCD 

file to the XDL format and then using the FIAT APIs to insert the fault at the chosen 

LUT.  The presence of a stuck-at fault ties the signal at the input of the chosen LUT in a 

slice to zero or one.  After fault injection, the XDL file is converted back to an NCD file.  

Placement and routing is completed automatically using the Xilinx ISE.  The post-place-

and-route simulation executable is created using the provide testbench and the simulation 

libraries. 

Figure 5.4 shows the processes that constitute the FIAT design flow.  The input files for 

the process are the HDL files specifying the combinatorial design to be instantiated on 

the FPGA.  These files are synthesized to build a netlist, which FIAT then builds, maps, 

places and routes using commands provided by the Xilinx ISE 9.1i tools.  In the last step 
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a post-place-and-route simulation executable is created using the user-provided testbench 

and the simulation libraries.  The same Native Circuit Description (NCD) file used to 

create the simulation executable can also yield the configuration bitstream for a hardware 

implementation of the design.  The generation of post-place-and-route simulation 

executables offers a flexible and accurate way of analyzing test routines.  In addition to 

providing methods to implement designs using the Xilinx commands, FIAT provides 

automated methods to edit physical constraints and to inject faults into configuration 

bitstreams. 

FIAT provides a high-level of control over the physical location of the slices used to 

create a configuration by providing APIs to modify the User Constraint File (UCF).  

This enables editing configurations before they are placed and routed.  Given a set of 

suspect resources to be used by each configuration, FIAT creates the UCF files to ensure 

the use of the suspect resources.  It then invokes the Xilinx place-and-route tool provided 

in the ISE 9.1i platform to realize the designs required by the AGT. 
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Figure 5.4: Fault Isolation Using FIAT – An Overview 
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Since it is not viable to destructively modify the FPGA hardware resources, stuck-at 

faults need to be simulated in the configurations to enable analysis of the AGT algorithm.  

Stuck-at faults are simulated in the experiments by editing all configurations to exhibit 

behavior consistent with the presence of a stuck-at fault at one of the input pins of a 

specified LUT.  To inject the fault, FIAT converts the NCD file, which describes the 

placed-and-routed design, to the Xilinx Description Language (XDL) format using the xdl 

command line tool provided by Xilinx.  This text file is then edited to modify the logic 

function instantiated on the target fault-affected LUT.  The presence of a stuck-at fault 

ties the signal at the input of the fault-affected LUT to zero or one.  After fault injection, 

the XDL file is converted back to an NCD file.  Placement and routing is then completed 

automatically using the Xilinx tools included in the ISE 9.1i suite. 

FIAT precludes the need to edit the configuration bitstream directly.  Throughout the 

design flow, the Xilinx 9.1i ISE tools are used for all processes except for those that parse 

and edit the UCF and XDL files.  The Xilinx design tools, such as netgen, par, ngdbuild, 

and fuse are invoked by FIAT in the design flow to place and route the edited designs.  

This principle of interfering minimally with the functions of the Xilinx ISE reduces 

accidental bitstream errors that may invalidate the design or irrecoverably damage the 

FPGA. 
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CHAPTER 6: CHARACTERISTICS, CAPABILITIES, AND 
METRICS FOR SUSTAINABILITY 

Experiments on the AGT algorithms were conducted using post-place-and-route designs 

created for the Xilinx Virtex-II Pro FPGA.  A 56-bit Data Encryption Standard (DES-56) 

encryption/decryption implementation was used in generating the data.  Sections 6.1, 6.2, 

and 6.3 present results from these experiments with regards to the efficacy and the impact 

of system parameters on the algorithm. 

6.1. Experimental Configuration for the Xilinx Virtex II Pro FPGA 

The AGT, together with FIAT, implements the controller for autonomous fault handling.  

As shown is Figure 5.4, this controller receives observed feedback and updates the design 

population across stages.  FIAT has been constructed as part of the work presented using 

the Python programming language to provide APIs to edit resource constraints, introduce 

stuck-at-faults, and generate post-place-and-route designs, as described previously in 

Section 5.9. 

Experiments were conducted on a Virtex-II Pro FPGA xc2vp4-7ff672 model using the 

Xilinx ISE 9.1i design platform.  The 7ff672 package provides 3008 slices and 348 Input-

Output Blocks (IOBs). 

To analyze performance of the algorithm, the following characteristics are defined by the 

functionality of the application implemented on the FPGA: 
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Definition 6.1.  The application resource demand, nreqd is the minimal cardinality of any 

design configuration |ci|, required to implement the application on the FPGA.   

Definition 6.2.  The resource redundancy ratio, rr is defined as the ratio of the 

application resource demand to the cardinality of the set of all resources |R| 

 || R
n

rr reqd=  (6.1) 

Definition 6.3.  The critical cardinality is the cardinality of |SC| such that |SC| = nreqd. 

Definition 6.4.  The prime realization is the index i, of the first identified subset ci, which 

satisfies the two conditions: ci ⊂  and |ci| ≥  nreqd. S

Let: 

p be the population size 

R  be the total number of resources 

T  be the total number of tests to exhaustively test the configurations 

A be the mean articulation rate of the population,  

and  
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ρ be the fault articulation rate for a configuration, defined as follows: 

 rr=ρ .A (6.2) 

Additionally, the probability that a given configuration is affected by a single random 

fault in any of the R resources is given by the resource redundancy ratio ρ. 

Since the tests are independent of each other, and the results of the random tests follow a 

binomial distribution, the probability that exactly n faults are observed in S tests is given 

by: 

 P(n) =  (6.3) nSn

n
S −−⎟⎟
⎠

⎞
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⎝

⎛
)1( ρρ

Let the outcome x be defined as the number of the successes identified in S tests.  A 

success is when a fault is observed.  The cumulative distribution function (cdf) denoted as 

F(X) describes the probability that the outcome x ≤ X.   

The cdf for x successes in S tests, where the probability of success is ρ, is given by: 

 ∑
≤

=≤=
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i
i

xPxXPSxF )()(),;( ρ  (6.4) 

Various methods to approximate bounds for the cdf exist, notably when x < Sρ, the 

Hoeffding’s inequality yields the upper bound: 
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Then, from Equation (7.2), the probability that a certain configuration is observed as 

being faulty at least once over S tests on the population is given by the complementary 

cumulative distribution function (ccdf), given by  

 P(X ≥ x) =  ),;(1 ρSxF−  (6.6) 

Of particular interest is the probability that a particular configuration is observed as being 

faulty at least once after S  tests.  This probability can be calculated by noting that the 

probability that a certain configuration is selected for testing is (1/p).  This modifies the 

probability for success to (ρ/p) as compared to ρ earlier.  

The probability that a particular configuration is observed as being faulty at least once 

after S tests is therefore given by: 

 P(X ≥ 1) = 1- F(1;S,(ρ/p)) (6.7) 

and the upper bound is approximated as: 
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Let μ n be the mean number of tests for n different configurations to be identified as 

faulty.   

The mean number of tests before one configuration is identified as faulty is the mean of 

the binomial distribution, defined as: 

 μ 1= Sρ (6.9) 

The mean of the number of tests required to identify another configuration as being faulty 

is the sum of the mean time taken for one configuration to be identified as faulty, and the 

mean of the number of tests where another configuration is paired with the faulty 

configuration, or, itself articulates the fault, therefore: 

 μ 2 = μ 1 + S
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Further, since comparing a configuration to a faulty configuration will result in the 

configuration being marked as Suspect,  the probability that all the configurations are 

marked as faulty is given by the probability that a faulty configuration is chosen, and all 

the other configurations are chosen in turn to be paired with the faulty configuration.  

The DES-56 implementation utilizes 304 slices and 191 bonded IOBs.  Thus, for the fault 

isolation experiments, the application resource demand, nreqd = 304.  The total gate-

equivalent count for the design is 5266.  The area under test on the FPGA can be varied 
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by controlling the total resources, R, available for placing and routing the design.  This 

enables varying rr for the experiments.  Initially, the DES-56 core was synthesized, 

mapped, placed, and routed on the FPGA.  This model was later modified using FIAT 

according to the requirements of the AGT to form configurations and test stages.  For 

each of these configurations, a simulation executable was created using a testbench.  The 

inputs for the DES-56 circuits were obtained from the National Bureau of Standards 

publication 500-20 [61].  These inputs comprehensively test the functionality of hardware 

implementations of DES-56.  Sixty of these inputs, representing a cross-section of the 

NBS test suite were used to create the test bench. 

6.2. Isolation Progress Across Test Stages in AGT 

Figure 6.1 shows the progress of defect isolation across various stages for ppreset= 5 for 

three different experimental runs.  The best performance is seen in experiment 1, where 

fault isolation is completed using 5 stages of tests.  A total of 21 different configurations 

were created to identify the single defective resource.  In the first test stage, three 

individuals were created, one of which utilized the fault-affected resource and articulated 

the fault.  Thus, at the end of stage 1, the number of suspect resources drops from 625 to 

304.  The two individuals in stage 1 that do not utilize the defective slice are the prime 

realizations of the circuit which can provide fault-free implementations on demand.  

Also, by the end of stage 1, | S | = 625–304 = 314 > nreqd, and thus, critical cardinality is 

met.  In stages 2, 3, and 4, five configurations each are created, as pstage = ppreset = 5.  

Since the equal sharing method is used to create the configurations in each group, the 
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number of suspect resources decreases by a factor of 
⎥
⎥
⎥⎢

⎢
⎢ stagep

⎤⎡ S ||  in each stage.  In the final 

stage, since |S| = 3, only three configurations are created.  The number of discrepant 

outputs in all the tests is equal to the number of  test stages since at the occurrence of the 

first discrepant output, the creation of a new group of configurations is initiated. 
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Figure 6.1: Fault Isolation Progress Across Stages for ppreset = 5 

As shown in Figure 6.1, in the Experiment 2, no progress is made in the third stage of 

testing, where the number of suspect resources remains at 61.  This is due to the fact that 

the individual utilizing the fault-affected resource does not articulate the fault, leading to 

a stasis in the system.  In stage 4, five new individuals replace the configurations in the 
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population.  In this stage, the configuration with the faulty resource articulates the fault, 

leading to a decrease in the number of suspects.  Similarly, in the third experiment, stasis 

occurs in the fifth stage.  This increases the number of stages to isolate the fault and the 

total number of configurations created. 

In the best performing experiment, five stages were required, and five tests with 

discrepant outputs are observed before the defect is isolated.  Even in the worst case, with 

a test stage containing configurations that do not articulate the fault, only five 

discrepancies are observed.  Non-articulating individuals that use the faulty resource 

increase the time taken to scour the defects, but do not affect the observed goodput.  In 

addition, in all these case, since rr < 0.5, the prime realization, as well as a non-suspect 

set of resources with a cardinality greater than the critical cardinality are obtained after 

the first discrepant test output. 

6.3. Effect of Population Preset on Defect Scouring Rate 

The scouring rate is directly proportional to the population preset, ppreset.  Table 6.1 lists 

the observed defect scouring performance for varying values of ppreset.  A total of 15 

experiments were conducted for each value of ppreset.  The physical logical resource 

overhead for the AGT-based technique can be varied by adjusting the resource 

redundancy ratio, rr.  In all these experiments, initially, |R| = 625.  This value was chosen 

as 252 = 625 yields a redundancy ratio rr = 304/625 = 0.49 ≈ 0.5.  As the column labeled 

M2 in Table II indicates, throughout the experiments, a subset of non-suspect resources, 

with cardinality > nreqd, is identified after the first stage of testing.  Similarly, from the S
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results for metric M3 in Table 6.1, it is shown that the prime realization, which provides a 

fault-free replacement configuration, is consistently identified from within the first group 

of configurations.  The number of discrepant outputs, or positive tests required to isolate 

the fault is the same as the number of stages, since the articulation of a fault will 

immediately improve the scouring rate and trigger formation of the next stage of tests. 

Table 6.1: Results from Experiments With Varying Population Preset Values 

ppreset 
Fault Resolution Metrics* Number of Stages Number of Configurations 
M1 M2 M3 Best Worst Mean Best Worst Mean 

5 5 1 1 5 7 5.53 21 31 23.67 
10 4 1 1 4 5 4.27 27 37 29.67 
15 3 1 1 3 4 3.20 35 38 35.47 
20 3 1 1 3 4 3.13 39 59 42.73 
25 3 1 1 3 4 3.13 41 66 44.27 

* Fault Resolution Metrics: 
M1: Number of observed discrepant outputs before the defective resource is isolated. 
M2: Number of stages required to surpass critical cardinality for S . 
M3: Number of stages required to identify the prime realization. 

 122



304

61

13

3

11

625

13

1

10

100

1000

1 2 3 4 5
Test Stage

Su
sp

ec
t R

es
ou

rc
es

 

6

Population Preset = 5

Population Preset = 10

Population Preset = 15

Population Preset = 20

Population Preset = 25

 

Figure 6.2: Effect of Population Preset on the Scouring Rate 

Figure 6.2 shows the best defect scouring performance of AGT for increasing values of 

ppreset.  Each curve depicts the size of the suspect pool, |S|, at the beginning of the test 

stage depicted on the x-axis.  For all values of ppreset , population size, pstage = 3 in the first 

stage of testing, by Equation(6.7).  In all other stages except the last stage, pstage = ppreset.  

In the last stage, pstage is equal to the number of remaining suspect resources.  The slope 

of the curve is proportional to the defect scouring ratio, and it increases proportionately 

with ppreset.  Except in the initial and last stages, defect scouring proceeds at a logarithmic 

rate, when the articulation rate for the configuration utilizing the defective resource is 

non-zero.  Most significantly, across all values of  ppreset  the defective is isolated with 5 

or fewer positive tests.  Assuming that the time taken to reconfigure the device is 

insignificant when compared to the mean time between defects, the AGT-based method 
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can tolerate faults with minimal loss of goodput, with ppreset = 5, which will require the 

minimal number of reconfigurations. 

The total number of configurations created in each of the five best performing 

experiments are shown in Figure 6.3.  As ppreset increases, the total number of 

configurations increases.  However, there is only two extra configurations are required 

for ppreset = 25 as opposed to ppreset = 20.  Figure 6.3 also shows the number of test stages 

as a function of ppreset.  With increasing ppreset , each stage reduces the number of suspects 

by a factor proportional to the population size.  Thus, with increasing ppreset, though a 

decreased number of stages are required, the total number of configurations required is 

increased. 
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Figure 6.3: Total Test Stages and Configurations Created for Varying Population Presets 
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6.4. Maintaining System Throughput During Fault Isolation 

System goodput, defined as the percentage of useful outputs, can be maintained at a 

pre-defined level throughout the fault isolation process using a feedback mechanism and 

an observer-controller model.  The system goodput decreases each time there is a 

discrepant output – fault isolation will proceed faster with more frequent discrepancies.  

Thus, the tradeoff involved in maintaining goodput is that fault isolation will proceed at a 

slower rate. 

Figure 6.4 shows the observed goodput as a function of the number of tests completed for 

three different values of required goodput throughout the fault isolation process.  In all 

three experiments, the value used for the population present,  ppreset = 5.  In the first  

experiment, the system-level goal is to maintain a goodput of 0.99.  A discrepant output 

is observed in the first ten tests, leading to a goodput of 0.90.  Since this is lower than the 

performance goal, the system responds by utilizing the fault-free configuration until the 

goodput is restored to 0.99 by the hundredth test.  Afterwards, the next stage of testing 

proceeds.  When the fault-affected configuration in the second stage articulates the fault, 

the goodput drops to 0.982 by the 110th test.  Again, the system waits for the goodput to 

return to 0.99 before proceeding with conducting the third stage of tests.  After 500 tests, 

after five positive tests, fault isolation is complete.  The observed goodput will then 

continue to rise past 99%.  In the second and third experiments, the goodput requirement 

is 0.95, and 0.90 respectively.  As seen in Figure 6.4, for experiment 3, the system 

goodput never falls below 90% throughout the isolation process.  After 10 tests, the 

goodput falls to 0.90 and rises subsequently until the fault is isolated in 320 tests. 
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Figure 6.4: System Goodput Vs. Total Number of Tests 

The time taken to create the configurations and reconfigure the FPGA is not reflected in 

the system goodput measurement.  The goodput measured here is that of only the AGT-

controlled system.  Since AGT verifies correct functional behavior using output response 

analysis, it is essential to have an identical fault-free implementation of the same 

functionality, which would provide the correct outputs to which the outputs of the AGT-

monitored configurations can be compared.  Under a single-fault assumption, when the 

portion of the FPGA monitored by the observer is being reconfigured, the system outputs 

are provided by the other fault-free configuration. 

Overall, the AGT-based autonomous method can isolate the single defective with a 

minimal number of positive tests, as low as 3, as listed in Table 6.1.  This result is made 
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even more significant by the fact that this method avoids the use of exhaustive serial test 

procedures.  Of all the previous approaches in Table 2.1, the roving STARS approach is 

the only comprehensive fault tolerance solution that isolates defects at a granularity lower 

than 1% of the total resources on an FPGA.  Compared to this approach, the AGT-based 

technique has a minimal fault detection latency, and thus a higher expected goodput.  In 

addition, as shown by the experiments where the goodput is maintained at a pre-defined 

value, the AGT algorithm can be used to build an autonomous fault tolerant solution that 

accomplishes system-level goals. 
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CHAPTER 7: CONCLUSION 

This dissertation demonstrated the feasibility of an integrated approach to fault handling 

in FPGAs.  A population of alternatives, when combined with a competitive evolutionary 

strategy, provides a framework that refurbishes fault-affected configurations.  Group 

testing-based fault isolation methods are presented.  Based on a straightforward FPGA 

model, an autonomous group-testing algorithm for runtime fault isolation that removes 

the need for exhaustive test inputs and the need for the system to be taken offline is 

developed.  To this end, a discrepancy detector is designed for fault detection.  In order to 

demonstrate the flexibility of group testing techniques, a group testing-based technique 

for identifying faulty FPGA embedded cores is also presented that highlights the utility of 

group testing for exhaustive functional testing.  FIAT, a fault analysis toolkit, is 

developed to enable fault isolation experiments on FPGAs.  Finally, an autonomous 

group testing technique is demonstrated that maintains the system goodput at pre-defined 

levels throughout the fault isolation process.   

7.1. Graceful Degradation of Performance 

In applications where the FPGA on which the application is deployed cannot be retrieved 

for repair or replacement, graceful degradation of service is a highly desirable quality.  

Deep-space deployment of FPGAs provides an example of such a scenario.  In 

deep-space, the probability of failures also increases due to the absence of a protective 

atmosphere.  In this high-ionizing radiation environment, multiple hardware faults 
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induced by high-energy particles demand a fault tolerance implementation that can 

ensure that the system remains available even in the presence of faults.  While fast 

recovery from faults is essential, certain applications might demand that the FPGA 

continue to provide service, at reduced availability, as opposed to not providing any 

service at all during the recovery process.  A system that degrades gracefully as faults 

appear should be able to handle faults while continuing to provide acceptable levels of 

service.  Through the elimination of additional test vectors and by using a temporal 

assessment process based on aging and outlier identification, CRR provides a self-

regulating repair mechanism with reduced downtime which is also capable of such 

graceful degradation. 

With a limited pool of resources on an FPGA, sustainable fault handling is achieved only 

when the available resources are recycled.  Such resource recycling needs to leverage 

residual functionality provided by defective resources.  A LUT which has a stuck-at fault 

at one of the input pins might still provide residual functionality.  Section 3.8 shows that 

such functionality can be leveraged by a system that measures performance by evaluating 

the outputs to actual runtime inputs – as opposed to a system where the resources are 

exhaustively tested using additional test vectors.  As an example, an evolutionary 

algorithm that relies on a fitness function-based evaluation of a configuration’s 

performance might tolerate a LUT with a stuck-at fault at one input pin, if the faulty input 

pin is not used by the configuration.  A design in which the faulty four-input LUT is only 

required to receive three-bit inputs will be identified as being fully-fit by an FPGA, but 

will be precluded from use if the resources were to be tested exhaustively.   
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7.2. Improving Evolutionary Repair using a Population of Alternatives 

Two major improvements over a more conventional GA-based repair scheme are 

observed.  First, this dissertation provides evidence for a significant improvement in fault 

handling capability by exploiting population diversity during all phases of the fault 

handling process.  By relying on the inherent information contained in a population of 

alternatives, the approach improves on previous techniques for evolutionary fault 

handling that have the objective of creating a single best-fit individual.  In CRR, the 

population of alternatives is classified into separate pools of relative operability, and all 

individuals are refurbished over time with no one individual being preferred over others.  

As opposed to previous approaches, the goal of CRR is to maintain a healthy population, 

as opposed to creating one single individual that acts as the responder in the case of 

faults.  Secondly, GAs asymptotically approach the perfect configuration.  With CRR, 

these partially fit configurations provide an increased benefit.  CRR’s competitive focus 

automatically chooses the best performing configurations for a given input space.   

A significant observation made during fault refurbishment experiments is that a system 

that functions in a fully-fit manner can be realized using configurations that are not 

themselves fully-fit.  Individuals that perform best for the subset of inputs that are 

observed provide high goodput even when they may not demonstrate ideal behavior for 

the entire input space.  As the subset of observed inputs change over time, alternate 

partially-fit configurations may be identified that provide high quality service for the new 

inputs.  Such redundancy can occur at minimal physical resource overhead and is limited 

by the storage space requirement and reconfiguration time.  Interestingly, the dual-
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competition system presented in CRR can easily be extended to three competing modules 

to provide a more traditional TMR system that can provide even higher quality of service 

at the cost of the physical resources needed to implement an extra module. 

7.3. Fast Fault Response using Group Testing 

While the evolutionary algorithm excels at recycling resources and finding solutions that 

may seem counter-intuitive, this comes at the cost of the time required to identify the 

solution.  This is where group testing-based isolation provides a direct benefit by fast 

identification of the fault-affected resource.  More importantly, by tracking the resource 

allocation across configurations, this also provides alternative configurations to respond 

to faults with minimal latency.  The group testing-based fault isolation method presented 

in this work demonstrates the capability for the fast isolation of logic faults, and, more 

importantly, the ability to maintain the system’s availability and goodput throughout the 

fault isolation process.  For example, Section 6.6 shows how the AGT system maintains 

the system goodput at 90%.  This does not have to delay the speed with which a 

functioning configuration is identified to respond to the fault.  The experiments in Section 

6.3 show that with as few as three discrepant outputs, the system identifies the faulty 

resources for a DES implementation.  Due to the use of multiple alternative 

configurations that are designed in a way that minimizes the probability for all 

configurations to be affected by the same hardware resource fault, a handy replacement 

for guaranteed service is immediately available in case of a single fault.   
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The versatility of group testing-based isolation is clearly demonstrated by the case study 

where fault embedded cores in FPGAs were identified using BIST techniques.  Group 

testing techniques are also shown to suitable for exhaustive offline testing, and can 

provide a significant improvement in fault isolation time over a more conventional BIST 

approach as demonstrated.  A 640 DSP core FPGA device is tested exhaustively with a 

30% testing resource overhead in a single stage of tests that are designed using group 

testing principles.  An adaptive multi-stage group testing algorithm can provide fault 

isolation for online FPGAs.  This dissertation demonstrates viability, and the methods 

presented here can be further enhanced and improved based on the specific system in 

which they are implemented.  For example, a group testing regimen can be developed for 

TMR systems, and improvements to many other exhaustive testing are possible using 

various group testing techniques that have already been analyzed and researched.  

7.4. Future Work 

While CRR is show to be capable of achieving refurbishment in combinational logic 

circuits in Section 3.8, it remains to be seen if it can be extended to sequential logic 

circuits.  The challenge in extending the approach to sequential logic circuits is primarily 

one of being able to formulate a strategy for evaluating the fitness of alternative designs.  

For any sequential circuit of substantial size, the number of states of the circuit, and 

transitions between the states make fitness evaluation challenging.  A general strategy  to 

enable evolutionary repair of sequential circuits remains to be addressed.  Also, CRR 

provides coverage for only the logic resources.  Though there are several approaches for 
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tolerating faults in the interconnect resources, the choices are severely limited when it 

comes to online isolation of such faults.  Thus, the integration of interconnect-fault and 

logic-fault handling strategies for online fault-handling remains a major challenge. 

Partial reconfiguration in COTS FPGAs is currently hindered by severe limitations, and 

support for partial reconfiguration is subjective at best.  Currently, the time taken for 

partial reconfiguration is a significant bottleneck in effecting repairs.  The lack of well-

tested and supported APIs to reconfigure only a portion of the FPGA while keeping the 

rest of the FPGA operational is also a major roadblock [62].  To realize fast online fault 

handling, there is a need for more open standards and improved support for partial 

reconfiguration.  In commercial SRAM FPGAs  there is a very high level of dependency 

on the design tools provided by the manufacturer.  With an open bitstream structure, and 

more portable design tools, it may be possible in the future to instantiate evolutionary 

algorithms within the design loop.  Currently, due to the closed nature of the 

configuration bitstream’s structure, one has to rely on the Xilinx tools to produce the 

configuration bitstream, and it is almost impossible to produce and modify the bitstream 

in a guaranteed fashion to achieve desired functional changes. 

Finally, further enhancements can be made to FIAT, and FIAT can be used to analyze the 

performance of alternative group testing strategies.  Since it provides a set of tools for the 

injection of faults, and to manage and track resource allocation across configurations, it 

should serve as a useful tool for further experiments in FPGA fault tolerance.  While this 

dissertation provides a new paradigm for a hardware-in-the-loop online fault tolerance 

 133



strategy, several alternative target technologies, such as software reliability tools, or 

future nano-scale mechanisms can benefit from the same principles.   
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