
SUSTAINABLE FAULT-HANDLING OF RECONFIGURABLE LOGIC
USING THROUGHPUT-DRIVEN ASSESSMENT

by

CARTHIK ANAND SHARMA
B.Tech. Kakatiya University, 2001

M.S. University of Central Florida, 2004

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in Computer Engineering

in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Summer Term
2008

Major Professor: Ronald F. DeMara

© 2008 Carthik Anand Sharma

 ii

ABSTRACT

A sustainable Evolvable Hardware (EH) system is developed for SRAM-based

reconfigurable Field Programmable Gate Arrays (FPGAs) using outlier detection and

group testing-based assessment principles. The fault diagnosis methods presented herein

leverage throughput-driven, relative fitness assessment to maintain resource viability

autonomously. Group testing-based techniques are developed for adaptive input-driven

fault isolation in FPGAs, without the need for exhaustive testing or coding-based

evaluation. The techniques maintain the device operational, and when possible generate

validated outputs throughout the repair process.

Adaptive fault isolation methods based on discrepancy-enabled pair-wise comparisons

are developed. By observing the discrepancy characteristics of multiple Concurrent

Error Detection (CED) configurations, a method for robust detection of faults is

developed based on pairwise parallel evaluation using Discrepancy Mirror logic. The

results from the analytical FPGA model are demonstrated via a self-healing, self-

organizing evolvable hardware system. Reconfigurability of the SRAM-based FPGA is

leveraged to identify logic resource faults which are successively excluded by group

testing using alternate device configurations. This simplifies the system architect’s role

to definition of functionality using a high-level Hardware Description Language (HDL)

and system-level performance versus availability operating point. System availability,

throughput, and mean time to isolate faults are monitored and maintained using an

Observer-Controller model. Results are demonstrated using a Data Encryption Standard

 iii

 iv

(DES) core that occupies approximately 305 FPGA slices on a Xilinx Virtex-II Pro

FPGA. With a single simulated stuck-at-fault, the system identifies a completely

validated replacement configuration within three to five positive tests. The approach

demonstrates a readily-implemented yet robust organic hardware application framework

featuring a high degree of autonomous self-control.

I dedicate this to all those who believed in me, listened to me, and helped me. I wish to

thank my grand mother Mrs. G. Bhageerathi Ammal, father Mr. V. Narayan, and sister

Mrs. Gina Kartik for their phenomenal support in the 25 years I have spent in school. I

also wish to thank Dr. DeMara for his patient guidance and technically-sound advice,

Prerona Chakravarty for the mental and moral support, Kening Zhang for being the best

colleague possible, and all my roommates past and present for their kindness.

 v

ACKNOWLEDGMENTS

The research presented in this dissertation was supported in part by NASA Intelligent

Systems NRA Contract NNA04CL07A.

 vi

TABLE OF CONTENTS

LIST OF FIGURES .. x

LIST OF TABLES ... xiii

LIST OF ACRONYMS/ABBREVIATIONS .. xiv

CHAPTER 1: INTRODUCTION .. 1

1.1. Need for Evolvable Hardware Regeneration Methods and Group Testing-based
Fault Diagnosis ... 1

1.2. Fault Handling in Reconfigurable Devices ... 4

1.3. Individual and Population-Centric Fault Assessment ... 6

1.4. Group Testing Techniques and Applications to Fault Tolerance 8

1.5. Contributions of this Dissertation ... 10

CHAPTER 2: PREVIOUS WORK .. 12

2.1. Taxonomy and Nomenclature of FPGA Fault Tolerance Techniques 13

2.2. Static Run-time Fault Handling Methods ... 16

2.3. Dynamic Run-time Fault Handling Methods .. 18

2.3.1. Offline Recovery Methods .. 19

2.3.2. Online Recovery Methods .. 23

2.4. Fault Detection and Location using Exhaustive Testing Techniques 29

2.5. Forming a Robust Consensus from Diversity ... 31

2.6. Improving Reliability using Autonomous Group Testing 32

CHAPTER 3: COMPETITIVE RUNTIME RECONFIGURATION FAULT
HANDLING PARADIGM ... 34

3.1. Detecting Faults using a Population of Alternatives... 35

3.2. Assessing Individual Fitness and Managing Fitness States 36

 vii

3.3. Strategic Prioritization of Individuals for Assessment and Refurbishment 39

3.4. Determination of Evaluation Window .. 42

3.5. Identifying Outliers using the Sliding Window Technique 46

3.6. Outlier Detection and Fault Isolation Performance with Runtime Inputs 48

3.7. Feed-Forward FPGA Circuit Representation Model .. 55

3.8. Refurbishment of a Unique Failed Configuration – 3-bit×3-bit Multiplier Case
Study ... 57

CHAPTER 4: FAULT ISOLATION USING GROUP TESTING 63

4.1. Motivating Example and Problem Definition ... 63

4.2. Fault Isolation by Discrepancy-Enabled Repetitive pairing 65

4.3. Designing a Discrepancy Mirror – Case Study ... 67

4.3.1. Selection Phase ... 68

4.3.2. Detection Phase ... 68

4.3.3. The Preference Adjustment Process ... 72

4.4. Analysis of Fault Isolation with a Simplified Articulation Model 72

4.5. Fault Isolation using Halving and Column-Swapping 78

4.6. Isolating Embedded Cores using Group Testing .. 81

4.6.1. BIST-based Testing of Embedded FPGA Cores 82

4.6.2. Enhancing Embedded Core BIST using Group Testing Techniques 86

4.6.3. Embedded Core Fault Isolation Experiments on Virtex-5 FPGAs 88

4.7. Improving GA Performance Using CGT .. 91

CHAPTER 5: LOGIC ELEMENT ISOLATION USING AUTONOMOUS GROUP
TESTING 94

5.1. Terminology and Nomenclature for Analysis of Autonomous Group Testing
Techniques .. 94

5.2. Autonomous Group Testing Algorithm Overview ... 97

 viii

5.3. Tracking Defectives Using the History Matrix ... 98

5.4. The Equal Sharing Test Group Formation Strategy ... 99

5.5. Adapting the Population Size for Optimal Resource Coverage 103

5.6. Overcoming Stasis During Isolation ... 104

5.7. Walkthrough of Isolation Process ... 105

5.8. The Fault Isolation and Analysis Toolkit for Xilinx FPGAs 107

5.9. Creating and Modifying Alternatives with FIAT ... 110

CHAPTER 6: CHARACTERISTICS, CAPABILITIES, AND METRICS FOR
SUSTAINABILITY .. 114

6.1. Experimental Configuration for the Xilinx Virtex II Pro FPGA 114

6.2. Isolation Progress Across Test Stages in AGT ... 119

6.3. Effect of Population Preset on Defect Scouring Rate 121

6.4. Maintaining System Throughput During Fault Isolation 125

CHAPTER 7: CONCLUSION ... 128

7.1. Graceful Degradation of Performance .. 128

7.2. Improving Evolutionary Repair using a Population of Alternatives 130

7.3. Fast Fault Response using Group Testing .. 131

7.4. Future Work .. 132

REFERENCES ... 135

 ix

LIST OF FIGURES

Figure 1.1: Group Testing Algorithms.. 9

Figure 2.1: Classification of FPGA Fault Handling Methods .. 14

Figure 2.2: Overview of Run-time Fault Handling Methods .. 15

Figure 3.1: Physical Arrangement with Two Competing Configurations 36

Figure 3.2: Procedural Flow in the CRR Technique ... 38

Figure 3.3: Selection and Detection in the CRR Paradigm .. 41

Figure 3.4: Effect of Sample Size on Test Coverage .. 45

Figure 3.5: Discrepancy Values Observed when One Individual has a 10-out-of-64 Fault
Impact ... 50

Figure 3.6: Plot of Hii Showing Outlier Identification ... 50

Figure 3.7: Discrepancy Values Observed When Hamming Distance is Used 51

Figure 3.8: Plot of Hii Showing Outlier Identification When Hamming Distance is Used
... 52

Figure 3.9: DV of a Single Faulty L Individual With a 1-out-of-64 Fault Impact 53

Figure 3.10: Isolation of a Single Faulty L Individual With a 1-out-of-64 Fault Impact . 53

Figure 3.11: DVs Observed When a Single Faulty Individual has a 32-out-of-64 Fault
Impact ... 54

Figure 3.12: Isolation of a Single Faulty L Individual with a 32-out-of-64 fault Impact . 55

Figure 3.13: Example of a 3-bit×3-bit Multiplier Design ... 56

Figure 4.1: Discrepancy Mirror-based Scheme .. 67

 x

Figure 4.2: Discrepancy Detection Circuit ... 68

Figure 4.3 Discrepancy Detector Circuit Schematic Layout .. 70

Figure 4.4 Transient Response of the CMOS Discrepancy Detector Circuit 71

Figure 4.5: Fault Isolation with Perpetually Articulating Inputs 75

Figure 4.6: Fault Isolation with Intermittently Articulating Inputs 76

Figure 4.7: Successive Isolation as Input Iterations Increase ... 78

Figure 4.8: Isolation Progress when Halving is used .. 79

Figure 4.9: Isolation Performance as a Function of the Total Number of Elements 80

Figure 4.10: Isolation Performance as a Function of the Population Size 81

Figure 4.11: BIST Structure for Testing a Group of Four Blocks Under Test 87

Figure 4.12: BIST Structure used for Testing the XC5VLX30 Device 89

Figure 4.13: CGT-Pruned GA Simulator ... 92

Figure 5.1: FPGA Resources as Seen by the Group Testing Algorithm 94

Figure 5.2: AGT Process Flow ... 98

Figure 5.3: Sharing the Suspect Resources Equally – Two Different Scenarios 102

Figure 5.4: Fault Isolation Using FIAT – An Overview ... 112

Figure 6.1: Fault Isolation Progress Across Stages for ppreset = 5 120

Figure 6.2: Effect of Population Preset on the Scouring Rate .. 123

Figure 6.3: Total Test Stages and Configurations Created for Varying Population Presets
... 124

 xi

Figure 6.4: System Goodput Vs. Total Number of Tests ... 126

 xii

LIST OF TABLES

Table 2.1: Characteristics of Related FPGA Fault-Handling Schemes 30

Table 3.1: Probability of all 64 Inputs Appearing At Least Once given D Evaluations ... 46

Table 3.2: Regeneration Characteristics for a Single Fault under CBE 59

Table 4.1: Comparison of Fault-Detection Techniques .. 66

Table 4.2: Discrepancy Mirror Truth Table .. 72

Table 4.3: Discrepancy Mirror Fault Coverage and Response ... 73

Table 4.4: Resource Utilization Results from Experiments Conducted on the Xilinx
Virtex-5 Family of FPGAs.. 90

Table 4.5: CGT-Pruned GA - Repair Performance .. 93

Table 6.1: Results from Experiments With Varying Population Preset Values 122

 xiii

 xiv

LIST OF ACRONYMS/ABBREVIATIONS

ADAS Advanced Data Acquisition System

AGT Autonomous Group Testing

BIST Built-In Self Test

CBE Consensus Based Evaluation

CED Concurrent Error Detection

CGT Combinatorial Group Testing

CLB Configurable Logic Block

CRC Cyclic Redundancy Check

CRR Competitive Runtime Reconfiguration

DES Data Encryption Standard

DV Discrepancy Value

EH Evolvable Hardware

FIAT Fault Insertion and Analysis Tool

FPGA Field Programmable Gate Array

GA Genetic Algorithm

HDL Hardware Description Language

LUT Look-Up Table

MTBF Mean Time Between Failures

MTTR Mean Time To Recover

TMR Triple Modular Redundancy

VLSI Very Large Scale Integrated

CHAPTER 1: INTRODUCTION

Reliable and efficient detection, isolation, and handling of failures within electronic

circuits are fundamental issues in the design of dependable devices. With production

exceeding 100 million units per year, SRAM-based FPGA devices are frequently used in

a wide range of embedded applications requiring high levels of reliability and

availability.

1.1. Need for Evolvable Hardware Regeneration Methods and Group Testing-
based Fault Diagnosis

Reconfigurable devices, such as FPGAs, enable new fault handling techniques based on

evolvable hardware regeneration. Evolvable hardware regeneration techniques use the

principle of biological evolution to handle faults. Using evolutionary techniques such as

genetic algorithms and cellular automata, the existing redundant hardware resources are

reused or rewired to occlude the fault. The repair process can take place online when the

hardware is in active use, or offline when the regeneration occurs as part of a process

outside the normal computation dataflow.

Such techniques are highly relevant to many embedded device applications, including

remote sensing, applications in hazardous environments, and space missions. For

instance, deep space satellites such as Stardust contain over 100 FPGA devices [1] while

NASA terrestrial applications routinely employ FPGAs extensively for tasks ranging

from launch control to signal processing. SRAM-based FPGAs are of significant

 1

importance due to their high density, unlimited reprogrammability, and growing use in

mission-critical/safety-impacting applications.

Depending on the application, these devices encounter harsh environments of

mechanical/acoustical stress, high ionizing radiation, and thermal stress. Simultaneously,

they are required to operate reliably for long durations with limited or absent capabilities

for diagnosis/replacement in the case of remote applications. For example, in Aerospace

Technology, Space Science, and Earth Science enterprises, the impact from increased

safety and autonomy for FPGAs is highly relevant. On-going research at Ames [2] and

JPL [3] has focused specifically on employing the reconfigurability inherent in various

field programmable devices to increase their reliability and autonomy using evolutionary

mechanisms.

Ground-based applications of FPGAs such as data acquisition devices and

instrumentation systems seek to incorporate self-repair capabilities and provide extended

calibration cycles. One such application is Kennedy Space Center's Advanced Data

Acquisition System (ADAS) [4]. ADAS is a signal acquisition and processing system for

launch control measurements typical of real-time NASA applications that heavily utilize

FPGAs and have high reliability, availability, and maintainability requirements. Some

target components that will benefit from evolvable hardware repair include Analog

Signal Modules, Digital Signal/Control Modules, and Power Management Modules.

There is the need to integrate multiple phases of the fault handling process in an

integrated manner. Further, this should ideally be done while maintaining the uptime,

 2

and availability of the reconfigurable device. Evolutionary mechanisms can actively

restore mission-critical functionality in SRAM-based FPGA devices. They provide an

attractive alternative to device redundancy for resolving permanent degradation due to

radiation-induced stuck-at-faults, thermal fatigue, oxide breakdown, electro-migration,

and other failures. Potential benefits include recovery without the increased weight and

size normally associated with spares. Without regeneration, spare capacity is finite.

Therefore, an evolutionary fault handling strategy that relies upon resource recycling by

means of leveraging the reconfigurability of FPGAs is required. Regeneration also

provides for graceful degradation of performance with time, where resources are

constantly recycled with minimal impact on system availability. The capability to

recycle resources at a variable rate, as afforded by evolutionary mechanisms provides the

capability to delay refurbishment to maintain required availability and throughput

requirements. Such a strategy would rely upon fault isolation to accelerate the

evolutionary repair. However, failures need not be precisely diagnosed due to automatic

evaluation of FPGA residual functionality through intrinsic assessment using a specified

fitness function.

Evolutionary mechanisms rely upon efficient fault detection and isolation schemes. Fault

detection triggers the regeneration operation. Robust fault detection techniques are

required to detect fault and failures with a low latency. Fault location methods provide

inputs to the repair mechanism which accelerate the repair process, and reduce the search

space of candidate solutions to the fault scenario. The fault isolation technique identified

 3

in this work is one such method for isolating faults with low latency and minimal

overheads.

1.2. Fault Handling in Reconfigurable Devices

An operational failure occurs when the service delivered deviates from its as-built

specification. A resource fault is the cause of such failures. Fault handling refers to the

entire process by which potential or actual failures are dealt with. Ideally, fault handling

maintains failure-free functionality.

The process of improving fault handling typically involves detection, isolation,

diagnosis, and repair. The detection phase consists of identifying the presence of a fault

in the device. A fault is said to be detected when the effects of a corresponding failure is

observed. Depending on whether the inputs applied manifest an observable failure, the

fault is either be perpetually articulated or intermittently articulated. The articulation of

the fault, and hence its potential for detection, relies on the mapping of the functional

design to the physical resources. Once a failure has been detected, it may be possible to

isolate the faulty resources. Fault location or isolation determines the physical location

of the faulty components. The granularity of isolation may vary, depending on the

architecture, the algorithm, and the isolation tools available. Fault diagnosis thus deals

with the determination of the symptoms and the reason behind the observed failure. A

symptom is an observable effect of a fault. Failures are among the most easily observed

symptoms of a fault and are the basis for the isolation methods developed in the proposed

research. The diagnosis phase may involve obtaining the response of the device to an

 4

exhaustive set of inputs using a tool designed solely for performing diagnostic tests. The

last phase consist of fault repair, wherein the effects of the fault are ameliorated to reduce

the occurrence or impact of future failures.

The particular fault handling approach can be classified on the basis of when the faults

are accounted for in the development cycle. Design Time approaches place the emphasis

on Fault Avoidance strategies through design strategies that avoid the occurrence of

faults. Execution Time or Run Time approaches tackle the problem by using Fault

Tolerance and Fault Evasion methods. A Fault-Tolerant system is characterized by its

ability to provide uninterrupted service, conforming to the desired levels of reliability

even in the presence of faults. A dependable or reliable system is one which offers a

level of service that is characterized by its availability or readiness for use when desired.

Embedded fault-handling techniques can also be broadly categorized as diagnostic-based

[5], coding-based [6], or redundancy-based [7], depending on the method used to

implement fault-handling. Diagnostic-based techniques execute a supplemental

procedure that applies a test vector to a subset of the physical resources. While

diagnostics offer a compact approach, they can suffer from unavailability of throughput

during testing, a large detection latency, and intractability of search as the number of

physical resources and their piecewise interactions grow large [8]. Coding-based

techniques map the input values to an alternate representation to enforce constraints on

the validity of the outputs. Such encodings based on parity, CRC, Berger, and other

codes can be effective for data storage and transmission [9]. However, they preclude the

occurrence of failures that might map one valid codeword onto another, and thus their

 5

general applicability for FPGA logic resources is limited. To avoid such limitations,

embedded techniques frequently rely on component or system-level redundancy.

Fault detection methods are central to fault handling strategies. Fault detection can be

carried out by a mechanism outside the domain of the system under observation. In some

cases it is not feasible to have a separate supervisory system in addition to the system

under test. For such a system to be fault tolerant, it is imperative that the fault detection

tool or system used be fault-tolerant as well, since it will be a part of the system under

observation. To maintain acceptable availability levels, reduction of the fault detection

latency is essential. An evolutionary hardware repair strategy can use the information

provided by the fault isolation strategy to speed up the repair process. In CRR, accurate

knowledge of the physical location of the fault can provide useful inputs to the repair

algorithm. The fault detection and isolation strategy used should ideally be capable of

identifying and locating faults without requiring special test inputs, or an interruption in

the normal data throughput. The hardware resources used by the detector should be

minimal, in order to reduce the number of points of failure, and to conserve floor space.

The detector should be fault-secure meaning it does not propagate incorrect outputs in the

presence of a fault. Section 2.2 provides a detailed overview of selected fault detection

strategies.

1.3. Individual and Population-Centric Fault Assessment

Traditional approaches to fault-detection typically rely on coding-based schemes or

redundancy using a single voter, comparator, or error detector. Those fault checkers

 6

possess a single point-of-failure exposure involving the detector elements, or must rely

upon special test-vectors or data encodings to isolate them. Detector components in the

reliability path have been referred to as golden elements [10] because the fault-handling

strategy relies on them to be fault-free. Also, significantly, previous methods test

individual configurations or resource units to evaluate their fitness. While such

individual-fitness centric methods provide fault coverage on the device level, they do not

lend to an adaptive, evolving system.

In a redundant system, the problem of fault detection can be simplified by the fact that if

there are no faults, then the outputs of the redundant elements should be identical. An

observed deviation from the this property would imply that the disagreement is a result of

a failure in at least one of the redundant components. Natural laws of competition, as

seen in biological evolution can be applied to improve the performance of electronic

circuits. In fault-detection, a deviation from the normal behavior, as determined by

comparison with another individual design, signifies a state of decreased fitness, as a

result of the manifestation of a hardware fault.

The idea of competition can also be extended to the repair problem, using competitive

pairing as a fitness evaluation technique. Traditional GAs use an absolute measure of

fitness for the individuals to search for improved solutions. In this work, the fitness of

an individual design configuration depends on relative measures computed over a period

of time. The proposed fitness assessment process involves accumulation of discrepancies

across multiple random pairings with other individuals from the population. Such a

population-based approach greatly simplifies the process of fault diagnosis, and uses the

 7

fact that the circuit under test continues to operate for the duration of its useful lifetime to

accrue information about the performance of competing individuals. By keeping the

method of fault isolation simple, the cost of repair is reduced and amortized over time,

thus providing a fault-secure system without acceptable overhead.

1.4. Group Testing Techniques and Applications to Fault Tolerance

Group testing is a field of mathematics concerned with the development of efficient

algorithms to identify defective members from a large population. The origin of group

testing is attributed to Robert Dorfman who proposed the first application during World

War II. He devised a scheme for testing blood samples from millions of United States

army draftees for cases of syphilis [11]. He proposed that the blood samples be pooled

for testing, in order to reduce the number of tests required and the associated cost and

effort. If a pool of samples tested positive for syphilis, then the samples that contributed

to the pool would be subject to individual testing. Though this idea of testing groups to

identify faulty units was not practically implemented at the time, it gained currency and

has been the subject of intensive research since. The monograph [12] provides a detailed

look into the current state of group testing applications. The fundamental group testing

problem is to identify a subset Q of defective items from a set P, by conducting the

minimum number of tests on v – subsets of P. A test seeks to identify whether a

particular v – subset is defective, as shown by a positive outcome of the test [11]. Group

testing algorithms are classified as shown in Figure 1.1.

 8

Figure 1.1: Group Testing Algorithms

Probabilistic group testing theory assumes a known probability p of an item being

defective, and uses it to guide the isolation process. In Combinatorial Group Testing

(CGT), it is often assumed that D is the subset of defective items among S items whereby

p = |D| = |S|. In sequential group testing algorithms, tests are conducted in succession so

that the results of previous tests are known to guide the current test. In a non-adaptive

test, the tests are pre-designed and executed in parallel, without cognition of the result of

other tests. In a multi-stage algorithm, successive stages of tests utilize informative from

previous stages, and tests in a particular stage are executed in parallel. Testing is

conducted using a checker or a detector which tests subgroups comprising items from S.

A group testing algorithm is reasonable if it contains no test whose outcome can be

predicted from outcomes of other tests conducted either previously or simultaneously.

To minimize the number of tests required to identify the defectives, it is sufficient to

consider only reasonable algorithms as otherwise the algorithm would be sub-optimal

with respect to this criteria. However, it is not necessary to restrict use to only reasonable

algorithms as there many be me practical advantageous to the fault handling process

when more general techniques are used. This is especially the case when FPGAs must be

 9

supported on long missions without reducing availability due to the need to execute

additional tests.

CGT techniques have been applied to DNA library screening [13] and more recently to

hardware fault detection [14]. Efficient algorithms designed for reconfigurable

architectures that are capable of solving the fault isolation problem are particularly useful

in NASA applications.

1.5. Contributions of this Dissertation

Improving the fault tolerance of reconfigurable devices is a fundamental issue to be

considered while using such devices in failure-prone environments. This dissertation

develops a strategy for the integration of multiple phases of the fault handling process for

reconfigurable devices. While traditional approaches to these problems rely on unique

instances of dedicated hardware elements, this dissertation investigates a new technique

based on iterative pairwise comparison and functional regeneration. Under the proposed

approach, an initial population consisting of a set of functionally identical (same input-

output behavior), yet physically distinct (alternative design or place-and-route

realizations) FPGA configurations are produced at design time. The performance of

these configurations is evaluated by comparing them in pairs. The result of the pairwise

comparisons are then utilized to realize a fault location strategy. The fault location

information obtained can then be used to guide the hardware regeneration process.

Evolutionary repair techniques inspired by Genetic Algorithms (GAs) are used to realize

the repair. The methods presented here provide, for the first time, a fault isolation

 10

strategy that works in conjunction with an evolutionary refurbishment mechanism.

Significantly, the group testing-based isolation strategy presented here does not require

the device to be taken completely offline, or for the resources to be tested exhaustively.

This dissertation provides an example of how fault isolation can be achieved while

maintaining the system’s availability as measured by its goodput.

The competitive evolutionary method presented here leverages information contained in a

population of alternatives to enable the refurbishment of faulty configurations. In the

context that functional elements are groupings of the underlying physical resources, this

research proposes utilization of Combinatorial Group Testing (CGT) methods to analyze

the expected performance. A comprehensive toolkit for injecting stuck-at faults in FPGA

logic for the purpose of evaluating group testing algorithms is developed. This is used to

demonstrate the efficiency of CGT techniques in fault isolation. CGT methods are used

to develop algorithms for isolating faults using the minimal number of pairings to

establish optimality bounds. Further, analytical equation which describe the bounds of

the system are derived.

 11

CHAPTER 2: PREVIOUS WORK

Fault tolerance techniques include both Fault Avoidance and Fault Handling approaches.

Fault Avoidance strives to prevent malfunctions from occurring. This approach increases

the probability that the system is functioning correctly throughout its operational life,

thereby increasing the system’s reliability. Implementing Fault Avoidance tactics such as

increasing radiation shielding can protect a system from Single Event Effects. If those

methods fail, however, Fault Handling methodologies can respond to or recover lost

functionality. Whereas some fault handling schemes maintain system operation, some

fault handling schemes require removing the system offline to recover from a fault,

thereby decreasing the system’s availability. This limited decrease in availability,

however, can increase overall reliability.

Hardware failures in FPGA occur variously due to device degradation over age, or due to

environmental factors. Ionization, electromigration, hot carrier effects, and other device

degenerative effects may cause device faults in the FPGAs used by such applications. In

all of the above scenarios, these devices are mandated to operate reliably for long mission

durations with limited or absent capabilities for diagnosis/replacement and little onboard

capacity for spares. Specifically, when in a space environment, FPGAs are subject to the

effects of high-energy particles or radiation. Cosmic rays and high-energy protons can

cause malfunctions to occur in systems located on FPGAs. These malfunctions may be a

result of Single-Event Latch-ups (SELs) or Single-Event Upsets (SEUs). SEUs are

transient in nature, inverting bits stored in memory cells or registers, whereas SELs may

 12

be permanent by inducing high operating current into sensitive devices. While all FPGAs

containing memory cells or registers are vulnerable to SEUs, anti-fuse FPGAs are

particularly resilient since they do not depend upon SRAM cells to store its configuration.

Reconfigurable FPGAs, on the other hand, store its configuration in SRAM cells, which

increases the risk to SEUs. Over the years, designers have developed methods for SRAM

FPGAs to allow reconfigurability in space applications while mitigated the risk of SEUs.

Radiation-hard SRAM FPGAs have fulfilled the rising demand for FPGAs in space

applications. Before their availability, designers of satellites and rovers had no serious

alternative to the one-time programmable anti-fuse FPGA. If the inherent fault handling

capability of anti-fuse FPGAs was not sufficient, designers were restricted to employing

Design-time Redundancy methods. Due to the reconfigurable nature of SRAM FPGAs,

radiation-hard SRAM FPGAs have allowed designers to consider other fault handling

methods- namely Run-time Fault Handling methods.

2.1. Taxonomy and Nomenclature of FPGA Fault Tolerance Techniques

Figure 1.1 primarily divides Fault Handling approaches into two categories based on its

method of implementation [15]. Architecture-based fault recovery techniques [16]

address faults at the level of the device, allowing manufacturers to increase the

production yield of their FPGAs. These techniques typically require modifications to the

current FPGA architectures that end-users cannot perform. Once the manufacturer

modifies the architecture for the consumer, the device can tolerate faults from the

manufacturing process or faults occurring during the life of the device. Concealing the

 13

fault through the underlying fabric of the FPGA is advantageous; users need not know of

the occurring hardware faults. Despite making faults transparent to the user, the ability of

these methods to tolerate faults is limited in both type and number.

Figure 2.1: Classification of FPGA Fault Handling Methods

Configuration-based methods, however, depend upon the end-user for implementation.

These higher-level approaches use the configuration bitstream of the FPGA to integrate

redundancy with a user’s application. By viewing the FPGA as an array of abstract

resources, these techniques may select certain resources for implementation, such as

those exhibiting fault-free behavior. Whereas Architecture-based methods typically

attempt to address all faults, Configuration-based techniques may consider the

functionality of the circuit to discern between dormant faults and those manifested in the

output. This higher-level approach can determine whether Fault Recovery should occur

immediately or at a more convenient time.

 14

Figure 2.1 further separates Configuration-based Fault Handling methods into two

categories based on whether an FPGA’s configuration will change at run-time. Design-

time Redundancy methods embed processes into the user’s application that mask faults

from the system output. These methods are quick to respond and recover from faults due

to the explicit redundancy inherent to the processes. This speed, however, does come at

the cost of increased resource usage and power. Even when a system operates without

any faults, the overhead for redundancy is continuously present.

In addition to this constant overhead, these methods are not able to change the

configuration of the FPGA. A fixed configuration limits the reliability of a system

throughout its operational life. For example, a Design-time redundancy method may

tolerate one fault and not return to its original redundancy index. This reduced reliability

increases the chance of a second fault causing a system malfunction.

FPGA Run-time
Fault Handling

Static Methods Dynamic Methods

Offline
Recovery

Spare
Configs

Spare
Resources

Online
Recovery

Figure 2.2: Overview of Run-time Fault Handling Methods

Run-time Fault Handling methods strive to increase reliability and Sustainability by

modifying the configuration of the FPGA to adapt to faults. This allows a system to

 15

remove accumulated SEUs and avoid permanently faulty resources to reclaim its lost

functionality. In addition, Run-time schemes can transform faulty resources into

constructive components by incorporating stuck-at faulty behavior into the circuit’s

functionality. External processors, which cost additional space, typically determine how

to recover from the fault. These methods also require additional time either to

reconfigure the FPGA or to generate the new configuration.

Within Run-time Fault Handling, Figure 2.2 illustrates two classes: Static and Dynamic

methods. Of these, Dynamic fault handling methods are the primary focus of this work.

Section 2.2 describes and compares the existing Static Run-time techniques and Section

2.3 addresses the Dynamic Run-time approaches in relation to the concepts used in this

work.

2.2. Static Run-time Fault Handling Methods

 Static methods may recover from a fault utilizing design-time compiled spare

configurations or re-mapping and rerouting techniques utilizing spare resources. The

resource allocation and/or pre-designed configurations are independent of the location an

nature of faults detected during run-time. These methods take advantage of the regularity

of the FPGA’s architecture to implement redundancy structures or for designing alternate

configurations. Spare configuration methods must provide sufficient configurations and

require storage space overhead for these, whereas spare resource methods must allocate

sufficient resources to facilitate a repair.

 16

Spare Configuration-based approaches rely on a population of alternate configurations

that each use a different set of logical resources to respond to faults. These can be

created either at design-time, or at runtime, after the fault has occurred. The pre-

compiled configuration based technique [17] creates alternative configurations at design

time that use different equivalent columns of FPGA resources. In their non-overlapping

scheme, which has the least resource overhead, a total of C(k+m, m) = (k+m)! / (m!k!)

configurations are required to tolerate faults in m columns, where k is the number of

columns in the base configuration. The required design-time effort for this approach is

high, as it requires manual modification of the design to fit into column sets. Also, the

number of horizontal routes available to the designer is reduced by the resources

consumed by the approach. The fitness-based and population-based evolutionary

hardware approaches for Field Programmable Transistor Arrays (FPTAs) proposed by

Keymeulen et al. [18] creates alternative configurations for anticipated faults and at

runtime for observed faults respectively. This method provides good resource coverage

and passive runtime operation, however system uptime is impacted severely by failure

occurrence. Also, additional external computational capacity is required to implement

the genetic algorithm that creates the population-based solution at runtime.

Spare Resource-based methods such as the one proposed by lach et al [19] rely on the

availability of standby resources of varying granularity to address faults. Lach’s

deterministic approach provided redundant resources at design time. This approach

segments the FPGA into static tiles at design time with a known functionality, some

 17

redundant resources, and a pre-designed alternate configuration. Spare tiles can be

selected when needed, but their functionality is predetermined and thus limited. Dutt et

al[20] provide an incremental re-routing method for increased flexibility to tolerate fault

on-the-fly. In this method, the FPGA is initially routed without any extra interconnects

for reconfiguration. The technique relies on node-covering in which reconfiguration is

achieved by constructing replacement chains of cells from faulty cells to spare or unused

cells. Using a cost-directed depth-first search strategy, they minimize the overheads

involved in rerouting interconnects when responding to faults. Other innovative methods

to tolerate faults using spare resources include Lakamraju and Tessier’s[21] intra-cluster

repair. The authors approach fault tolerance for cluster-based FPGA which group

multiple LUT/FF pairs together in clusters. Their method that takes advantage of logical

redundancy in such clusters by replacing fault LUT inputs and logic resources unused in

the original design mapping by defining methods for LUT Input Exchange and Basic

Logic Element exchange. All these re-routing strategies that involve spare resources

require the device to be offline, and the support of an external system to complete the re-

routing procedure.

2.3. Dynamic Run-time Fault Handling Methods

Dynamic methods aim to allocate spare resources or otherwise modify the configuration

during run-time after detecting the fault. Whereas these approaches offer the flexibility

of adapting to emergent fault scenarios, additional time is necessary to generate

appropriate configurations to repair the specific faults. Offline recovery methods require

 18

the FPGA’s removal from operational status to complete the refurbishment. Online

recovery methods endeavor to maintain some degree of data throughput during the fault

recovery operation, increasing the system’s availability.

2.3.1. Offline Recovery Methods

2.3.1.1. Genetic Algorithm Repair

Genetic Algorithms (GA) are inspired by evolutionary behavior of biological systems to

produce solutions to computational problems [Mitchell 1998]. Suitable for complex

search spaces, GAs have proven valuable in a wide range of multimodal or discontinuous

optimization problems. Previous research has investigated the capability of GAs to

design digital circuits [Miller et al. 1997] and repair them upon a fault [Keymuelen et al.,

2000]. Vigander [2001] proposes the use of GAs to repair faulty FPGA circuits. As a

proof of concept, Vigander implements extrinsic evolution, utilizing a simulated feed-

forward model of the FPGA device with genetic chromosomes representing logic and

interconnect configurations.

The evolution process begins with initializing a population of candidate solutions. These

initial solutions contain different physical implementations of the same functional circuit.

In the midst of a fault, the performance of each configuration is evaluated, revealing

which configurations are most affected by the fault. If none of the available

configurations provides the desired functionality, then genetic operators create a new

population of diverse candidate solutions from the previous configurations. Those

 19

previous configurations having a higher performance rating are more likely to be selected

and combine with other configurations by the Crossover genetic operator. Additionally,

the Mutation genetic operator injects random variations in the newly created candidate

solutions. Vigander also makes use of a Cell Swap operator that allows the functionality

and connectivity of a faulty cell to swap with a spare cell. The GA evaluates the newly

created solutions and replaces poorer performers in the old population with better

performers in the current population to create a new generation of candidate solutions.

This evolutionary process repeats, stopping when an optimal solution is discovered or

after a specific number of generations.

Garvie et al.’s method [22] tolerates permanent faults using jiggling. Jiggling involves

repairing a faulty configuration by using an evolutionary algorithm that uses the other

two healthy modules and fitness feedback from the TMR voting element. Vigander’s,

Garvie’s and other n-plex spatial voting approaches [23] deliver real-time fault

resolution, but increase power consumption and area requirement n-fold during fault-free

operation. Previously, these evolutionary approaches have only been simulated using

hypothetical device models. They did not attempt application to Commercial Off The

Shelf (COTS) FPGAs and development tools.

2.3.1.2. Augmented Genetic Algorithm Repair

To decrease the amount of time required to generate a repair, Oreifej et al. [24] augment

Vigander’s Genetic Algorithm fault handling concept with a Combinatorial Group

Testing (CGT) fault isolation technique. Group Testing partitions suspect resources into

 20

groups and coordinates those groups into a minimal number of tests to isolate the faulty

resource. If a group manifests a fault within one of these tests, then the group is known

to contain the faulty resource and thus the resources within the group are classified as

suspect. In a deterministic manner, the suspect resources are partitioned into iteratively

smaller groups and tested until the faulty resource is isolated.

A population within a GA contains various configurations, each of which categorizes the

FPGA resources into two groups: utilized and unutilized resources. CGT evaluates each

configuration for correct functionality. If a configuration manifests a faulty output, then

the resources used by that configuration are considered suspect. Since the various

configurations within the population form groups that overlap particular resources, CGT

tests multiple configurations and accumulates the number of times each resource is

considered suspect through a History Matrix. Configurations are rotated through the

FPGA and tested until one element becomes the maximum value within the matrix,

isolating the fault to one resource. The GA, in turn, uses the fault location information to

avoid faulty resources while evolving a repaired configuration.

2.3.1.3. Incremental Rerouting Algorithms

The Node-Covering method discussed in Section 2.2 avoids a fault by rerouting a circuit

into design-time allocated spares using design-time reserved wire segments. Dutt et al.

[1999] expand this method by dynamically allocating reserved wire segments during run-

 21

time instead of design-time. Run-time reserved wire segments allow the method to

utilize unused resources in addition to the spares allocated during design-time.

Emmert and Bhatia [25] present a similar Incremental Rerouting approach that does not

require design-time allocated spare resources. The fault recovery method assumes an

FPGA to contain resources not utilized by the application, thus exploiting unused fault-

free resources to replace faulty resources. Upon detecting and diagnosing a logic or

interconnection fault by some other detection method, Incremental Rerouting calculates

the new logic netlist to avoid the faulty resource. The method reads the configuration

memory to determine the current netlist and implements the incremental changes through

partial reconfiguration.

Since faulty cells may not be adjacent to a spare resource, a string of cells is created

logically, starting with the faulty cell and ending with the logic cell adjacent to the spare

resource. To avoid the fault, the string of cells shifts away from the faulty resource and

towards the spare resource. In the case of Node-covering, every row has a spare resource

so the string of cells within the row simply shifts to the right, leaving the faulty resource

unused. Since this method does not allocate a spare resource for every row, the string of

cells may extend into multiple rows to reach a spare cell.

Re-placing cells requires the wire segments of the moving logic cells to be rerouted. The

configuration memory of the FPGA is read to determine which nets are affected by the

re-placed logic cells. All faulty nets and those that solely connect the moved logic cells

are ripped-up [25] while those that connect other unmoved logic cells remain unchanged.

 22

A greedy algorithm then incrementally reroutes each of the dual-terminal nets to

reestablish the application’s original functionality. Initially, the algorithm only uses

spare interconnection resources within the direct routing path, but may expand its scope

to encompass wider routing paths for unroutable nets.

2.3.2. Online Recovery Methods

2.3.2.1. TMR with Single-Module Repair

Since Triple Modular Redundancy (TMR) performs the majority vote of three modules,

the voted output remains correct even if a single module is defective. Exploiting this

concept allows a system to remain online with two viable modules while a defective

module undergoes repair. Methods presented by Ross and Hall [26], Shanthi et al. [27],

and Garvie and Thompson [22] repair the defective module through genetic algorithms.

At design-time, Ross and Hall [26] produce a population of diverse configurations for

implementation. At run-time, three of these configurations are implemented into the

circuit and monitored for discrepancies. Agreeing outputs indicate that the modules are

functioning correctly whereas discrepancies indicate defective resources utilized by one

of the configurations. A mutation genetic operator is applied to defective modules and

the fitness of the new individual is evaluated. The process repeats until the fault is

occluded.

 23

In addition to the strategy above, Shanthi et al. [27] utilize a deterministic approach in

identifying faulty resources. By monitoring the resources within each configuration,

resources utilized by viable modules gain confidence whereas resources utilized by faulty

modules gain suspicion. This information allows fault handling by implementing

configurations not using defective resources. Additionally, differing configurations can

be rotated to reveal dormant faults in unused resources.

Instead of selecting from a diverse population, Garvie and Thompson [22] implement

three identical modules. The commonality between configurations permits a Lazy

Scrubbing technique, which considers the majority vote of the three configurations as the

original configuration when scrubbing a faulty module. Of course, Lazy Scrubbing only

applies when a genetic algorithm has not modified the original configurations to tolerate

a permanent fault.

To address permanent faults, a (1+1) Evolutionary Strategy provides a minimal genetic

algorithm, which produces one genetically modified offspring from one parent and

chooses the most fit between the two. To mitigate the possibility for a misevaluated

offspring replacing a superior parent, a History Window of past mutations is retained to

enable rollback to the superior individual. Normal FPGA operational inputs provide the

test vectors to evaluate the fitness of newly formed individuals. To determine correct

values, an individual’s output is compared to the output of the voter. An individual’s

fitness evaluation is complete when it has received all possible input combinations.

 24

2.3.2.2. Online Built-in Self Test

Emmert et al. [28] present an approach that pseudo-exhaustively tests, diagnoses, and

reconfigures resources of the FPGA to restore lost functionality due to permanent faults.

The application logic handles transient faults through a concurrent error-detection

technique and by periodically saving and restoring the system’s state through

checkpointing. As shown in [28], this method partitions the FPGA into an Operational

Area and a Self-Testing ARea (STAR), consisting of a Horizontal STAR and a Vertical

STAR. Such an organization allows normal functionality to occur within the Operational

Area while Built-In Self Tests (BISTs) and fault diagnosis occurs within the STARs.

Whereas other BIST methods may utilize external testing resources assumed fault-free,

the resources-under-test also implement the Test-Pattern Generator (TPG) and the Output

Response Analyzer (ORA).

To provide fault coverage of the entire FPGA, the STARs incrementally rove across the

FPGA, each time exchanging its tested resources for the adjacent, untested resources in

the Operational Area. The H-STAR roves top to bottom then bottom to top while the V-

STAR roves left to right then right to left. Whereas one STAR could test and diagnose

programmable logic blocks (PLBs), two STARs are required to test and diagnose

programmable interconnect, the H-STAR for horizontal routing resources and the V-

STAR for vertical routing resources. Where they intersect, the two STARs may

concurrently test both horizontal and vertical routing resources and the connections

between them. Since faults have equal probability to occur within used resources with

unused resources, Roving STARs provides testing for all resources. Uncovering dormant

 25

faults in unused resources prevents them from being allocated as spares to replace faulty

operational resources.

In addition to facilitating testing, diagnosis, and reconfigurations, a Test and

Reconfiguration Controller (TREC) is responsible for roving the STARs across the

FPGA. The TREC is implemented as an embedded or external microprocessor that

communicates to the FPGA through the Boundary-Scan interface. All possible

configurations of the STARs are processed during design-time and stored by the TREC

for partial reconfiguration during run-time. Relocating the STARs through partial

reconfiguration only affects the logic and routing resources within the STAR’s current

and new locations. When a STAR’s next location includes sequential logic, the TREC

pauses the system clock until the logic is completely relocated. In addition to pausing the

system clock, the TREC implements an Adaptable System Clock where the clock speed

is adjusted to account for timing delays arising from new configurations that adapt to

faults.

Roving STARs supports a three-level strategy to handling permanent faults. In the first

level, a STAR detects a fault and remains in the same position to cover the fault. Since a

STAR contains only offline logic and routing resources, testing and diagnosing time is

not at a premium; the application continues to operate normally while the TREC tests and

diagnoses the fault. After diagnosing the fault, the TREC determines if the fault will

affect the functionality that will soon occupy the faulty resources upon moving the

STAR. If the fault will not affect the new configuration’s functionality, such as only

affecting resources that will be unused or spare, then the application’s output will not

 26

articulate the fault and no action is required. If the fault will affect the new

configuration’s functionality, then the TREC generates a Fault-Bypassing Roving

Configuration (FABRIC) to reroute incrementally the new configuration so that the fault

will not affect its functionality. Whereas some FABRICs may be compiled during

design-time, most fault scenarios will dictate compiling them online while the STAR

covers the fault. While one STAR covers a fault for testing and diagnosis, the second

STAR, however, may continue roving the FPGA searching for faults in its respective

routing resources and PLBs. The second level strategy then applies the FABRIC that

either was compiled during design-time or was generated during the first-level strategy.

Replacing a faulty resource with a spare one through a FABRIC thus releases the STAR

covering the fault to continue roving the FPGA.

If the fault affects functionality and no spare resources are available to bypass the fault,

then the third strategy is invoked. As a last resort, the TREC has an option to perform

STAR Stealing, which reallocates resources from a STAR to the Operational Area to

bypass the fault. Removing resources from a STAR immobilizes it from roving the

FPGA. Whereas the second STAR can test all PLBs in an FPGA with an immobile

STAR, only half of the routing resources can be tested. In some situations however, a

mobile STAR may intersect and forfeit its resources to an immobile STAR, which

releases the other STAR to rove the FPGA and test the remaining routing resources.

As previously stated, testing and diagnosis occurs within a STAR. Utilizing the

resources of the STAR through partial reconfiguration, the TREC configures a TPG, an

ORA, and either two Blocks Under Test (BUT) for a PLB test or two Wires Under Test

 27

(WUT) for an interconnect test. Since no resource may be assumed to be fault-free, the

TPG, BUTs/WUTs, and ORA are rotated through common resources of the STAR. The

TREC maintains the results for all test configurations so that the common faulty

resources can be identified between the two parallel BUTs or WUTs and the rotation of

resources.

2.3.2.3. Consensus-based Evaluation of Competing Configurations

Whereas previous Online Genetic Algorithm-based methods utilize an N-MR voting

element, the Competitive Runtime Reconfiguration (CRR) approach presented here

handles faults through a pairwise functional output comparison. Similar to previous GA

methods, each of the two individuals is a unique configuration on the target FPGA

exhibiting the desired functionality. CRR divides the FPGA into two mutually exclusive

regions, allocating all Left-Half configurations to one region and Right-Half

configurations to the other region. Together, these configurations comprise the

population of competing alternatives. The detection method realizes a traditional

Concurrent Error Detection (CED) arrangement that allocates mutually exclusive

resources for each individual, which detects any single resource fault. The comparison

can result in either a discrepancy or a match between left-half and right-half

configuration outputs, when resource faults are articulated by the configurations that

utilize the faulty resources. Such discrepancies indicate the presence of FPGA resource

faults in either the resources used to constitute the combinational logic module or a

pipeline stage consisting of combinational logic.

 28

 29

2.4. Fault Detection and Location using Exhaustive Testing Techniques

Several approaches to GA-based fault handling in FPGAs utilize exhaustive testing for

fault isolation and offline regeneration mechanisms. In addition to TMR, Table 2.1 also

lists characteristics of fault-handling schemes that consider reconfigurability. TMR,

Vigander’s, and other n-plex spatial voting approaches deliver real-time fault resolution,

but increase power consumption n-fold during fault-free operation. STARS [29] is an

example of a resource-oriented diagnostic method that performs Built-in Self-Tests

(BISTs) on sub-sections of the FPGA. STARS extends the concept of using exhaustive

testing by exploiting reconfigurability to occlude faults in the circuits. Under this

paradigm, the test area roves across all FPGA resources. Portions of the FPGA are

continually taken offline in succession for testing while the functionality is moved to a

new location within the reprogrammable fabric. The device, however, remains

operational and hence online. One limitation is that detection latency can be large since

tests must sweep through all intervening resources before a fault is detected. Potential

throughput unavailability due to diagnostic reconfigurations when no faults have yet

occurred is also a consideration. However, STARS is a successful example of a method

that uses exhaustive online testing to realize regeneration. Methods proposed by Lohn

[1] and Lach [19] either rely on offline regeneration supported by exhaustive functional

testing, or pre-determined spares defined at design-time.

Table 2.1: Characteristics of Related FPGA Fault-Handling Schemes

 Fault Detection Resource Coverage Fault Isolation

Approach Fault Handling Method Latency Distinguish
Transients Logic Inter-

connect Comparator Granularity

TMR Spatial voting Negligible No Yes Yes No Voting element

Vigander [30] Spatial voting & offline
evolutionary regeneration Negligible No Yes No No Voting element

Lohn et al. [1] Offline evolutionary
regeneration Negligible No Yes Yes No Unnecessary

Lach et al. [19] Static-capability tile
reconfiguration Relies on independent fault detection mechanism

STARs [29] Online BIST Up to 8.5M
erroneous outputs

Test pattern
transients Yes Yes No LUT function

Keymeulen[18] Population-based fault
insensitive design

Design-time
prevention emphasis No Yes Yes No Not addressed

at runtime

CRR
Competitive runtime input

fitness evaluation and
evolutionary regeneration

Negligible
Transients are

attenuated
automatically

Yes Yes Yes

Unnecessary, but
can isolate
functional

components

Of the methods in Table I, only Keymeulen, Stoica, and Zebulum [18] investigate the

possibility of using a population-based approach to desensitize circuits to faults. They

develop evolutionary techniques so that a circuit is initially designed to remain functional

even in presence of various faults. Their population-based fault tolerant design method

evolves diverse circuits and then selects the most fault-insensitive individual. In this

paper we propose a system that achieves improved fault tolerance by using a runtime

adaptive algorithm that emphasizes the utilization of responses observed during the actual

operation of the device. While their population-based fault tolerance approach provides

passive runtime tolerance, CRR is dynamic and actively improves the fault tolerance of

the system according to environmental demands.

 30

2.5. Forming a Robust Consensus from Diversity

An evolutionary process that uses absolute fitness measures and exhaustive tests may not

be able to provide adaptive fault tolerance. Layzell and Thompson [31] dealt with these

aspects in terms of Populational Fault Tolerance (PFT) as an inherent quality of

evolvable hardware. Under PFT, the creation of the best-fit individual proceeds by

incrementally incorporating additional elements into partially-correct prototypes to adapt

to faults. They speculate that PFT is less likely to occur for online evolution in dynamic

environments. Nonetheless, evaluation becomes focused on the precise regions of

relevance within the search space during the execution of online processes. This provides

a powerful motivation to explore CBE.

Yao and Liu [32] emphasize that in evolutionary systems the population contains more

information than any one individual. They demonstrate the utility of information

contained within the population using case studies from the domains of artificial neural

networks and rule based systems. In both cases, the final collection of individuals

outperforms any single individual. The work in [33] further extends this concept by

presenting four methods for combining the different individuals in the final population to

generate system outputs. They provide similar results for three data sets, namely the

Australian credit card assessment problem, the heart disease problem, and the diabetes

problem. While the authors devise a method to utilize the information contained in the

population to improve the final solution, they fail to use the information in the population

to improve the learning and optimization process itself. The proposed CBE approach

indicates that refurbishment problems can benefit from population information.

 31

More recently, in [34] the authors describe using fitness sharing and negative correlation

to create a diverse population of solutions. A combined solution is then obtained using a

gating algorithm that ensures the best response to the observed stimuli. In evolvable

hardware, it may not always be possible to combine solutions without additional physical

resources that may also be fault-prone. In our approach, all individuals in the population

are recognized as possible solutions, with the best emerging candidate being selected

based on its runtime performance record. The authors also claim that applying the

described techniques to evolvable hardware applications should be straightforward, but

do not provide examples. They state the absence of an optimal way of predicting the

future performance of evolved circuits in unforeseen environments as an impediment.

Chapter 3 details how an adaptive system can keep track of the relative performances of

individuals and implicitly build a consensus.

2.6. Improving Reliability using Autonomous Group Testing

In state-of-the-art Xilinx SRAM-based FPGAs, the device configuration can be modified

without interrupting the normal operation of the device. For space applications, it is

typical to perform such configuration scrubbing periodically to repair any configuration

errors due to Single Event Upsets (SEUs) [35]. The Xilinx TMR tool software [36] can

be used to not only triplicate the user's design, but also insert logic to repair transient user

memory errors and upsets due to SEUs. TMR can be combined with the scrubbing

method to have a reliable system while preventing soft errors. However, configuration

scrubbing only refreshes a single complete configuration and therefore cannot be used to

 32

address permanent faults [37]. While an n-modular redundancy scheme such as TMR

ensures validated correct output, the proposed AGT-based technique can minimize the

risk of having two faulty modules. The comparators of the Xilinx TMR tools can be used

to detect the discrepancy among the redundant modules. Discrepancies reported by the

comparators can be used to target all resources used by a faulty module. Once the faulty

module is identified, the GT-based algorithm can localize the fault to a logic slice.

Autonomous group testing aims to avoid system failure by providing methods to isolate

permanent faults and maintain a healthy population of configurations for each redundant

module.

 33

CHAPTER 3: COMPETITIVE RUNTIME RECONFIGURATION
FAULT HANDLING PARADIGM

While the fault repair capability of Evolvable Hardware (EH) approaches have been

previously demonstrated, further improvements to fault handling capability can be

achieved by exploiting population diversity during all phases of the fault handling

process. In existing fault-handling methods for reconfigurable hardware, fault-tolerance

is evolved at design time, or achieved at repair-time using evolution after taking a

detected failed unit offline. In both cases, GAs provided a population-based optimization

algorithm with the objective of producing a single best-fit individual as the final product.

They rely on a pre-determined static fitness function that does not consider an

individual's utility relative to the rest of the population. The evaluation mechanisms used

in previous approaches depend on the application of exhaustive test vectors to determine

the individual with the best response to all possible inputs.

However, given that partially complete repairs are often the best attainable [1], [30], other

individuals may outperform the best-fit individual over the range of inputs of interest. In

particular, there is no guarantee that the individual with the best absolute fitness measure

for an exhaustive set of test inputs will correspond to the individual within the population

that has the best performance among individuals under the subset of inputs actually

applied. Thus, exhaustive evaluation of regenerated alternatives is computationally

expensive, yet not necessarily indicative of the optimal performing individual among a

 34

population of partially correct repairs. Hence, two innovations are developed herein for

sustainable EH regeneration:

1. Elimination of additional test vectors, and

2. Temporal Assessment based on aging and outlier identification

In CRR, an initial population of functionally identical (same input-output behavior), yet

physically distinct (alternative design or place-and-route realization) FPGA

configurations is produced at design time. During runtime, these individuals compete for

selection based on discrepancy favoring fault-free behavior. Discrepant behavior, where

the outputs of two competing individuals do not agree on a bit-by-bit basis, is used as the

basis for the performance evaluation process. Any operationally visible fault will

decrease the fitness of just those configurations that use it. Over a period of time, as the

result of successive comparisons, a consensus emerges from the population regarding the

relative fitness of all individuals. This allows the classification of configurations into

ranges of relative reliabilities based on their observed performance during online

operation.

3.1. Detecting Faults using a Population of Alternatives

In order to provide fault coverage for the voting element, a distributed discrepancy

detector circuit may be used, as described in Section 4.3. Each individual in the

population has an instance of one of the two complementary halves of the discrepancy

detector circuit. When two competing L and R half-configurations are loaded on the

 35

FPGA, the discrepancy detector circuit is completed. The design of the discrepancy

detector accounts for the possibility of error in either, or both of the complementary

halves of the detector. Such an error would reflect on the performance of the half-

configurations that instantiated the detector hence degrading any preference for selection

of those individuals as described below.

`

 Reconfigurable FPGA Device

L
Half-Configuration

Discrepancy Check L Discrepancy Check R

Function Logic L

 CONFIGURATION BIT STREAM

 INPUT DATA

Function Logic R

 DATA OUTPUT

R
Half-Configuration

Figure 3.1: Physical Arrangement with Two Competing Configurations

3.2. Assessing Individual Fitness and Managing Fitness States

Instead of using an absolute fitness function with exhaustive testing, outlier identification

can be achieved using techniques such as the hat matrix [38], H, where the diagonal

elements Hii are used to identify the threshold to isolate faulty individuals as outliers.

The threshold value is determined by an analysis of the diagonal elements Hii of the hat

matrix generated from population statistics accumulated over an evaluation window. The

 36

 37

relative reliability of an individual is indicated by its instantaneous fitness state. Through

run-time competition, and the concomitant fitness state assignment, a fault becomes

occluded from the visibility of subsequent FPGA operations.

 Health state transitions are managed by the procedural flow for the CRR algorithm as

depicted in Figure 3.2. After Initialization, the Selection of the L and R half-

configurations occurs. The selected individuals are then loaded onto the FPGA. Next,

the Detection process is conducted when the normal data processing inputs are applied to

the FPGA. The DVs of the competing half-configurations are updated based on whether

or not their outputs are discrepant. The central Primary Loop representing discrepancy-

free behavior can repeat without reselection as long as there is no discrepancy. However,

even in the absence of any observed discrepancies, one or more of the competing

individuals may be replaced to hasten regeneration in the presence of Under Repair

individuals. As described later, the Replacement Rate, RX, determines the frequency with

which such discrepancy-free individuals are replaced to allow rotation of other

individuals from the Dormant pool. The system availability can be increased by using a

low value of RX.

Initialization
 Population partitioned into

functionally-identical yet
physically-distinct
half-configurations

Fitness State
 Adjustment

 update correctness value of only
L and R based on detection

results

 Calculate the Hii
in the H matrix and

detect outlier

Selection

choose FPGA
configuration(s)
labeled L and R

Detection

apply functional inputs to
compute FPGA outputs

using L, R

Adjust Controls
detection mode, overlap interval, ...

invoke
 Genetic Operators

 only once
and only on L or R

L=R

L<>R

PRIMARY
LOOP

discrepancy
free

L, R outputs

NO

YES

Has L or R been
evaluated > ?E

YES

NO

Stored in the H matrix

Figure 3.2: Procedural Flow in the CRR Technique

 38

The Fitness State Adjustment process will be used to validate and update the state of the

individual after E evaluations. Otherwise reselection will occur, without updating the

fitness state of the individual being replaced. For Under Repair individuals, if the value

of the corresponding Hii element is greater than the threshold value then Genetic

Operators are invoked only once without attempting to achieve complete refurbishment.

The modified configuration is then immediately returned to the pool of competing

configurations and the process resumes starting with the Selection phase.

3.3. Strategic Prioritization of Individuals for Assessment and Refurbishment

The Selection and Detection processes are shown in Figure 3.3. During the selection

process, Pristine, Suspect, and then Refurbished individuals are preferred in that order for

one half-configuration. The selection of individuals based on the relative fitness ensures

the lowest possible probability of two half-configurations agreeing by producing the

same incorrect outputs. The other half-configuration is selected based on a stochastic

process determined by the Re-introduction Rate (λR). In particular, Under Repair

individuals are selected as one of the competing half-configurations on average at a rate

equal to λR. Thus, a genetically-modified Under Repair configuration is re-introduced at

a controlled rate into the operational throughput flow. They act as a new competitor to

potentially exhibit fault-free behavior against the larger pool of configurations. An

additional innovation is that λR can also be adapted to encourage Mean-Time-To-Repair

(MTTR) << Mean-Time-Between-Failures (MTBF) to refurbish the population at a rate

 39

 40

not less than new failures are occurring. Maintaining this inequality realizes sustainable

fault-handling under fully autonomous operation.

The Detection process is presented in the lower right corner of Figure 3.3. If a

discrepancy is observed as a result of output comparison, the FPGA is reconfigured with

a different pair of competing configurations and the output of the device need not be

propagated to allow recalculation. The evaluation mechanisms used in previous

approaches depend on exhaustive test vectors. They also utilize a pre-determined fitness

evaluation scheme to determine the individual with the best response to all possible

inputs. Other partially repaired individuals may outperform the best-fit individual for the

runtime input vectors. CRR overcomes these issues by using the runtime inputs as the

test vector, and the output of the discrepancy detector to detect faults and provide

information for the subsequent isolation of outliers as described in Section 4.2. Also, the

partially correct outputs generated by competing fault-affected individuals can improve

availability as opposed to keeping a device completely offline while a perfect solution is

being obtained.

In order to isolate and detect faulty individuals in a timely manner, all the individuals in

the population should have an equally likely probability of being selected as the Active

individuals with a suitable interval between successive selections. The Replacement

Rate, RX, is used to monitor this rotation of individuals onboard the FPGA device,

including the individuals not Under Repair.

Any Pristine
individuals?

Any Suspect
individuals?

Select one Pristine individual
as L half-configuration

Choose random number X on [0..1]

X >
Re-introduction

rate?

YES

YES

YES

NO

NO

NO

Select one Suspect individual
as L half-configuration

Select one Refurbished individual
as L half-configuration

Select one Under Repair
individual as R half-configuration

Select one Operational (Pristine Suspect, or
Refurbished) individual as R half-configuration Discrepancy?

load both L half-configuration and
R half-configuration;

FPGA computes jth data output concurrently
using L and R half-configurations

NO
goto

Fitness State
Adjustment

process

announce jth
computation j++

Figure 3.3: Selection and Detection in the CRR Paradigm

 41

3.4. Determination of Evaluation Window

CRR uses runtime-inputs for individual performance evaluation rather than exhaustive

testing with a predefined set of test vectors. Nonetheless, pseudo-exhaustive testing on

an individual basis provides adequate test coverage. While the range and sequence of the

online inputs may not be known at design-time, a probabilistic model is useful to estimate

the expected number of evaluations required to encounter a sufficient range of values

with high probability. The Evaluation Window, E, is selected accordingly. It regulates

the update frequency of each individual’s relative fitness based on DVi values during the

interval.

The characteristics of the circuit under repair influence the determination of E as

illustrated for an unsigned integer multiplier. Let the circuit input width, W, denote the

total number of operand bits to the multiplier. In the case of a 3-bit×3-bit multiplier, W =

6 and the total number of distinct input combinations is 2W = 64. Thus in the case of the

3-bit×3-bit multiplier, an exhaustive set of inputs would consist of all 64 possible

combinations. The problem of determining the number of random inputs needed to

facilitate all possible inputs appearing at least once is similar to the coupon collector

problem [39]. In the coupon collector problem, the expected number of coupons to be

collected before at least one each of D total coupons are collected is given by the

simplified expression, D × HD, where HD is the Dth harmonic sum. However, for the

exhaustive test modeling problem at hand, the number of random inputs required to

facilitate the appearance of all possible inputs with varying confidence factors needs to be

 42

derived. This problem can be modeled as a game involving selection of balls from a set

of 64 differently colored balls. A single ball is selected in each drawing, with

replacement. In other words, what is the probability that, after D drawings, at least one

ball of each of the 64 colors appeared at least once? Clearly, for D < 64, the probability

is zero, and for D = 64 is 2.54×10-116 which is highly improbable.

To solve this problem, consider the case where all balls are of one color. After D

drawings, we have where D1⎞⎛
x 1

1 1 =⎟⎟
⎠

⎜⎜
⎝

1x is the number of feasible sample events,

so . Now, consider the case when D≥64. In general, a K-color experiment can be

described as a sum of experiments involving smaller numbers of colors for any constant

value of D:

Dx 11 =

 D
KK Kx

K
x

K
x

k
K

x
K
K

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− 121 12

.........
1

 (4.1)

or, D
m

K

m
Kx

m
K

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑
=1

 (4.2)

Since the numerical value of DK in Equation (4.2) can be excessively large, it may not

be possible to represent it using an unsigned long variable, the widest variable in a 32-bit

system, since for example . Therefore, an alternate representation can

consider as a sample event in which all K colored balls appear at least once with a

1232 −

Kx

6464 >

 43

probability . D is the number of drawings, and KP DK is the total number of possible

permutations, yielding:

 D (4.3) KK KxP /=

Now, by dividing Equation (4.1) and Equation (4.2) by KD, we obtain respectively,

 1
12 2⎟⎟

⎠

⎞
P

K
.........

1 11 =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎜⎜

⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
− P

K
P

k
K

P
K
K

KK (4.4)

and, 1
1

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛∑
=

m

k

m
P

m
k

 (4.5)

So when K=1, (4.6) DD PxP 111/
1
1

111 ==⇒==⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
x1 1；

P2⇒When K=2, (4.7) ()DDD PPPPP 2/1
1
2

11)2/1(
1
2

1
2

2
2

11212 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−==⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

Therefore, in general:

 1)1(
1 1⎜⎜

⎝

⎛
⎟⎟
⎠

⎞
P

K

......−

.....)1(
1 1 =⎟⎟

⎠

⎞−
⎜⎜
⎝

⎛
++⎟⎟

⎠

⎞
⎜⎜
⎝

⎛ −
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+ − D

D

D

D

KK K
K

K
KP

K
K

P

)

 (4.8)

 (4.9) (DD
KK KKP

K
KKP

K
K

P /)1(
1

)/)1((
1

1 11 −⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

−= −⇒

 44

Equation (4.9) yields recursively without the computational burden of calculating KP

DK as < 1 for all K. (KK /)1(−)

0 200 400 600 800 1000 1200 1400
0.0

0.2

0.4

0.6

0.8

1.0

1.2

P
ro

ba
bi

lit
y

of
 K

 it
em

s
A

pp
ea

rin
g

A
t L

ea
st

 O
nc

e

Number of Trials

 K=16
 K=32
 K=64
 K=128

Figure 3.4: Effect of Sample Size on Test Coverage

As shown in Figure 3.4, when K=16 colors and D=100 drawings, the probability of all

16 colors appearing is ≈ 100%. Similarly, 250 trials for 32 colors are sufficient given

equi-probable inputs.

16P

Table 3.1 shows the result for the case when K=64, which applies

to the 3-bit×3-bit multiplier. In order to achieve comprehensive coverage with a certainty

of 97.59%, approximately 500 evaluations are sufficient. A certainty of 99.50% implies

an evaluation window of width E=600 which was adopted for the fault isolation

experiments in Section 3.6. Thus, in the case of a 3-bit×3-bit multiplier design, if 1-out-

of-64 inputs articulate a fault in a single individual Ci, and all the input combinations are

equally likely to appear, then the expected discrepancy value after E = 600 evaluations is:

 375.9
64
1

=×⎟
⎠
⎞

⎜
⎝
⎛= EDVi (4.10)

 45

Table 3.1: Probability of all 64 Inputs Appearing At Least Once given D Evaluations

 D=350 D=400 D=450 D=500 D=550 D=600 D=650

P64 76.96% 88.84% 94.77% 97.59% 99.00% 99.50% 99.77%

3.5. Identifying Outliers using the Sliding Window Technique

From a statistical perspective, the residuals, expressed as the difference between the

expected fault-free behavior and the observed circuit response, of the faulty individuals

are significantly larger than the fault-free individuals when using the Least Squares (LS)

method [38]. However, the LS method is most effective when exactly one outlying

element is expected. In the case of multiple outliers being detected in one Sliding

Window, the mean and the standard deviation alone may not aid in detecting the multiple

outliers leading to a loss in isolation capacity. Also, to increase the confidence with

which outliers are isolated, we increase threshold from one standard deviation from the

mean to a value of 2.5σ. Under these circumstances, a simple method such as the LS

method is not directly applicable.

Another class of outlier diagnostics is based on the principle of detecting the outlier by

the LS projection matrix H. This matrix is well known under the name hat matrix,

because it is denoted by a hat on the column vector y = (y1,…, yn)t such that ŷ=H*y and ŷ

is the LS prediction for y. The hat matrix H is defined as follows: consider there are p

explanatory variables and one response variable which will have n observations. The n-

by-1 vector of responses is denoted by y=(y1,…, yn)t. The linear model states that

 46

y=X×θ+e, where θ is the vector of unknown parameters, e is the error vector and X is the

n-by-p matrix:

 (4.11)

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

np2n1n

p22221

p11211

x....xx

x....xx
x....xx

X
MMM

MMM

Then, the H matrix is composed from X as follows:

 (4.12) t1t X)XX(XH −=

The diagonal elements of H have a direct interpretation as the effect exerted by the ith

observation on the expectation of response variable because they equal . The

average value of the diagonal element Hii is p/n and it follows that 0 for all i.

ii y/y ∂∂

1≤

∧

≤ iiH

In the CRR approach, the DV of each individual can be viewed as one observation or one

explanatory variable, and the Observation Interval can be set as the size of the entire

population. Fortunately, since the X matrix consists of only one column in our

application, the result of the XtX product is a single-element vector matrix, and its inverse

can be computed using a straightforward one-step computation. In general, the

computation complexity of the H matrix approach is 2n2+1.

 47

The recommended threshold for the identification of outliers is Hii > 2p/n and a stricter

cut-off value 3p/n has been used in previous works [40] [41]. For an analysis of the CRR

problem for fault isolation, setting p = 1 and n = 20 corresponds to one faulty individual

among a population of 20. For example, a cut-off value of 10×
n
p =

20
10 = 0.5 can be

used in conjunction with a larger Sliding window width of 15 to ensure consistent outlier

identification with 100% certainty.

3.6. Outlier Detection and Fault Isolation Performance with Runtime Inputs

Experimental results regarding the effect of the outlier detection parameters are

illustrated in Figure 3.5 through Figure 13. Each has been generated using a simulator

written in the C++ programming language which utilizes an equi-probable selection of

individuals. In the data reported for experiments, the inputs causing the first discrepancy

are applied once after each pair of faulty configurations is replaced to assess damage

definitively under the single-fault model.

To further illustrate how the DVs are mapped to the Hii values, Figure 3.5 through Figure

13 are presented in pairs that show results from the same experiment. The first Figure in

each pair shows the observed DVs and the subsequent Figure shows the Hii values

calculated using this data. Figure 3.5 and Figure 3.6 depict the identification of outlying

individuals in the population that has a 10-out-of-64 fault impact caused by a single fault.

For example, Figure 3.5 shows the DVs observed over 50 individual evaluations, where

each evaluation occurs after the particular individual has completed E=600 computations

 48

as an Active configuration on the simulated FPGA. This corresponds to one individual

completing a number of computations equal to E. From Figure 3.5, an outlier is

identified when ten individuals have completed E iterations.

A sliding window width of 15 was used in this experiment. Based on analysis of the Hii

values, and an outlier cut-off value of 0.5, the outlying individual is identified without

statistically significant error. As shown in Figure 3.5, outliers can be identified with a

regular periodicity. Figure 3.6 shows the plot of Hii values for a subset of evaluations

corresponding to the identification of the first outlier in Figure 3.5. Figure 3.6 also shows

that the outlier in the population exhibits Hii ≈ 0.94 which is over an order of magnitude

larger than Hii ≈ 0.02 of the other competitors. Also, the Hii values of the non-outlying

elements conform to a very narrow window of values, clearly demonstrating that the

penalty for discrepant observations are amortized among the non-defective members of

the population. In Figure 3.5, it can be clearly seen that the first outlier is identified after

11×E = 6600 computations. This period, after which the outlier is detected can be

lowered by reducing the sliding window. By choosing a lower value for the sliding

window, outlier identification will take place at an increased frequency as shown in

subsequent experiments.

In Figure 3.5 and Figure 3.6, individual performance was measured using a simple

Winner-Takes-All scheme, where the only information available from the discrepancy

detection is bit-wise output equality. A different discrepancy detection mechanism could

provide information such as the Hamming distance of the observed output of an

individual from the desired output.

 49

Figure 3.5: Discrepancy Values Observed
when One Individual has a 10-out-of-64 Fault Impact

Figure 3.6: Plot of Hii Showing Outlier Identification

 50

The use of Hamming distance information leads to outliers having a higher discrepancy

value, as shown in Figure 3.7, when compared to Figure 3.5. As in the previous

experiment, a 10-out-of-64 fault impact is considered, with a sliding window width of 15.

The higher DV of approximately 140 can be accounted for by the fact that the observed

Hamming distance between the observed discrepant output and the desired ideal can be

greater than 1. This is opposed to the previous case, where the presence of a discrepancy

increases the DV of the corresponding individuals by one yielding DV≈70. The outlier

threshold remains the same, nonetheless, since the hat matrix operates on normalized

information. Figure 3.7 and Figure 3.8 show plots of the Discrepancy Value and the H

values when the Hamming distance is used to quantify divergence.

0 10 20 30 40 50

0

20

40

60

80

100

120

140

160

D
is

cr
ep

an
cy

 V
al

ue

Number of individual evaluations

 Non-Outlier
 Outlier

Sliding Window=15
Fault Impact =10/64

Figure 3.7: Discrepancy Values Observed When Hamming Distance is Used

 51

0 2 4 6 8 10 12 14 16

0.0

0.2

0.4

0.6

0.8

1.0

H
 v

al
ue

Number of individual evaluations

 Non-Outlier
 Outlier

The outlier cut-off value = 0.5

Figure 3.8: Plot of Hii Showing Outlier
 Identification When Hamming Distance is Used

In the case when a single faulty L individual with a less catastrophic 1-out-of-64 fault

impact is analyzed, two outlier points are successfully isolated as shown in the Figure

3.9. Figure 3.10 shows the corresponding plot of the Hii for the same experiment. The

detection rate is 100% for this scenario. When compared to the results in Figure 3.5 and

Figure 3.6, it can be seen that the identification takes place more frequently with a

periodicity of approximately 5×E. This corresponds to the use of a narrower sliding

window width as opposed to the 15×E used in the earlier experiment. In Figure 3.9, the

outlier cut-off value is 0.3 as compared to 0.5 in Figure 3.6. Also, the first outlier in

Figure 3.10 is closer to the cut-off value which can be expected with a narrow sliding

window. A wider sliding window width helps reinforce identification, yet too large a

value can delay identification without improving the discrimination among faulty and

viable competitors.

 52

0 5 10 15 20
0

2

4

6

8

10

D
is

cr
ep

an
cy

 V
al

ue

Number of individual evaluations

 Non-Outlier
 Outlier

Figure 3.9: DV of a Single Faulty L Individual With a 1-out-of-64 Fault Impact

0 5 10 15 20
0.0

0.1

0.2

0.3

0.4

0.5

H
ii V

al
ue

Number of individual evaluations

 Non-Outlier
 Outlier

The outlier cut-off value 6n/p=6/20=0.3

Figure 3.10: Isolation of a Single Faulty L Individual With a 1-out-of-64 Fault Impact

For a greater fault impact, the isolation will be more challenging and time-consuming as

shown in Figure 3.11 and Figure 3.12. Both Figures depict the isolation characteristics

for a single faulty L individual with a 32-out-of-64 fault impact. A greater number of

 53

observations are required than the 1-out-of-64 scenario and the divergence of the outlier

is also greater. Individuals that are eventually identified as outliers are replaced more

often, since the computations involving these individuals produce discrepant outputs.

Under the default replacement strategy for discrepancy-free behavior depicted in Figure

3.3, fault-free individuals reside on the FPGA indefinitely. However, in this experiment,

they are replaced in accordance with the Replacement Rate RX=0.16, which corresponds

to a guaranteed evaluation period of 100 contiguous iterations out of the E=600 window.

Individuals that do not produce discrepant outputs are replaced with other individuals less

frequently than ones that do. Thus, individuals that are not fault-affected complete the

required E number of iterations to complete evaluation much sooner than the fault-

affected individuals. This is because discrepancies trigger immediate reconfiguration as a

means of maintaining throughput and improving system availability.

Figure 3.11: DVs Observed When a Single
Faulty Individual has a 32-out-of-64 Fault Impact

 54

Figure 3.12: Isolation of a Single Faulty L Individual with a 32-out-of-64 fault Impact

3.7. Feed-Forward FPGA Circuit Representation Model

The FPGA structure used in the following experiments is similar to that used by Miller

and Thompson for GA-based arithmetic circuit design [42]. The feed-forward

combinational logic circuit uses a rectangular array of nodes with two inputs and one

output. Each node represents a Look-up Table (LUT) in the FPGA device, and a

Configurable Logic Block (CLB) is composed of four LUTs. In the array, each CLB will

be a row of the array and two LUTs are represented as four columns of the array. There

are five dyadic functions – OR, AND, XOR, NOR, NAND – and one unary-function

NOT, each of which can be assigned to an LUT. The LUTs in the CLB array are indexed

linearly from 1 to n. Array routing is defined by the internal connectivity and the

inputs/outputs of the array. Internal connectivity is specified by the connections between

the array cells. The inputs of the cells can only be the outputs of cells with lower row

 55

numbers. Thus, the linear labeling and connection restrictions impose a feed-forward

structure on the combinational circuit.

As an example of the circuit representation, the 3-bit×3-bit multiplier can be

implemented using the above FPGA structure, as shown in Figure 3.13. The entire

configuration utilizes 21 CLBs. XOR gates are excluded from the initial designs to force

usage of a higher number of the gates than conventional multiplier designs to increase the

design space. XOR gates simplify the process of calculating partial binary sums, and

thus reduce the number of gates required to build half-adders and full-adders.

Output1

Output2

Pa
ra

lle
-A

nd
M

od
ul

e

H
al

f-A
dd

er
M

od
ul

e

Input B2

Input A1

Fu
ll-

A
dd

er
M

od
ul

e

Input A2

Pa
ra

lle
-A

nd
M

od
ul

e

Input A0

Output3

Output4

Fu
ll-

A
dd

er
M

od
ul

e

Output0

H
al

f-A
dd

er
M

od
ul

e

H
al

f-A
dd

er
M

od
ul

e

H
al

f-A
dd

er
M

od
ul

e

Pa
ra

lle
-A

nd
M

od
ul

e

Output5

Input B0

H
al

f-A
dd

er
M

od
ul

e

Fu
ll-

A
dd

er
M

od
ul

e

H
al

f-A
dd

er
M

od
ul

e

Input B1

Figure 3.13: Example of a 3-bit×3-bit Multiplier Design

A library of user-defined modules can be defined to instantiate a population of diverse yet

functionally-equivalent circuits. In this case study, 20 distinct individuals are created at

design-time using a set of 10 or more variations of three fundamental sub-circuits. These

consist of parallel-AND, half-adder, and full-adder primitives. For example, 24 different

 56

full-adder designs and 18 different half-adder designs were created for use in building the

individual 3-bit×3-bit multiplier designs. Thus, each multiplier is a distinct combination

of building blocks, where each building block itself is chosen from among alternate

designs in the library. Figure 3.13 illustrates an individual with 3 parallel-AND, 3 full-

adder, and 6 half-adder modules.

The population of competing alternatives is then divided into two groups, L and R, where

each group uses an exclusive set of physical resources. For crossover to occur such that

offspring are guaranteed to utilize only mutually-exclusive physical resources with other

resident half-configurations, a two-point crossover operation is carried out with another

randomly selected Pristine, Suspect or Refurbished individual belonging to the same

group. By enforcing speciation, breeding occurs exclusively within L or R, and non-

interfering resource use is maintained. The crossover points are chosen along the

boundary of CLBs so that intra-CLB crossover is precluded. The mutation operator

randomly changes the LUT’s functionality or reconnects one input of the LUT to a new,

randomly selected output inside the CLB.

3.8. Refurbishment of a Unique Failed Configuration – 3-bit×3-bit Multiplier
Case Study

In this experiment, GA-based recovery operators are applied to regenerate the

functionality in the affected individuals. In order to simulate a hardware fault in the

FPGA, a single stuck-at fault is inserted at a randomly-chosen LUT input pin. This fault

will affect the L individuals in the population. Similar faults are later introduced into the

 57

R individuals. Upon observing the first discrepancy, the same inputs are applied once to

the reloaded configurations as a definitive means of damage assessment under a single-

fault model. Over 25 experimental runs, an average of 2,171 iterations were required to

dependably demote the fitness state of the affected individual from Pristine to Under

Repair. During regeneration, the genetic algorithm performs inter-module crossover and

intra-module mutation operator called the input permutation operator. Unlike traditional

mutation, the input permutation operator alters a specific LUT’s functionality, choosing

from among AND, OR, XOR, NOR and NAND gates, as also changing the connections

to the input pins. Such mutation in conjunction with the crossover operator enables full

exploration of a wide range of designs.

Table 3.2 lists the evolutionary regeneration characteristics of CRR for stuck-at-0 and

stuck-at-1 faults. The faults were injected at randomly chosen locations in the designs.

For the experiment, DVR DVO, the repair and operational thresholds, were 2.5σ and 1σ

respectively. The use of multiples of standard deviation as the threshold ensures that the

system adapts in the case of catastrophic fault conditions, as well as the condition where

very few discrepancies are observed. The parameters which control the rate at which

individuals are rotated on the FPGA, λR and RX were set at 0.2 and 0.16, respectively.

The reintroduction rate of 0.2 implies that 20% of the computations were carried out

using a pair of individuals, one of which was Under Repair. In spite of this, the effective

throughput remains high and above 97.5% on an average. This shows that individuals

undergoing repair produce useful output approximately 0.975-(1-λR)/λR×100%=87.5% of

the time.

 58

Table 3.2: Regeneration Characteristics for a Single Fault under CBE

Exp.
Number Fault Location Failure

Type

Correctness

after
Fault

Total
Iterations

 Discrepant
Iterations

Repair
Iterations

Final
Correctness

Throughput
(%)

1 CLB3,LUT0,Input1 Stuck-at-1 52 / 64 1.7 × 107 4.2 × 105 1194 64 / 64 97.7

2 CLB6,LUT0,Input1 Stuck-at-0 33 / 64 8.0 × 105 1.7 × 104 47 64 / 64 97.9

3 CLB5,LUT2,Input0 Stuck-at-1 22 / 64 3.1 × 106 6.8 × 104 193 64 / 64 97.8

4 CLB7,LUT2,Input0 Stuck-at-0 38 / 64 8.1 × 106 1.8 × 105 513 64 / 64 97.7

5 CLB9,LUT0,Input1 Stuck-at-0 40 / 64 2.3 × 106 7.1 × 104 219 64 / 64 96.9

 Average 32.6 / 64 6.4 × 106 1.5 × 105 433 64 / 64 97.6

Using a higher value for λR will lead to faster regeneration at an incremental cost to repair

throughput. This provides a great deal of adaptability and fine-grained control over

system performance measured in terms of availability and regeneration latency. Unlike

other circuit design and regeneration approaches, CRR can be optimized to reduce

downtime, increase availability, or to speed up the fault identification and regeneration

process. The results listed in Table 3.2 indicate that the evolutionary algorithm is capable

of regeneration for the tested fault locations. The correctness of the affected

configurations is raised from as low as 22-out-of-64 correctness to complete operational

suitability. The effective throughput is maintained throughout at above 97.6%. It can

also be seen that CRR-based regeneration can be more computational tractable without

exhaustive evaluation, as is listed in the Repair Iterations column.

In Vigander’s experiment with using a voting system in conjunction with TMR [30], the

target circuit is a 4-bit×4-bit multiplier. With a population size of 50, and a crossover

rate of 70%, most of the 44 runs developed a set of three modules which vote to provide

 59

fully-fit output for the exhaustive set of 256 unique input combinations. However, it is

not always able to identify a single fully repaired individual. Vigander’s experiment has

a population size of 50, which is 500% greater than the population in the repair

experiments attempted herein. Most significantly, it relies on exhaustive serial testing

against the set of all possible inputs. CRR, however, achieves refurbishment with

runtime inputs, continually providing some validated outputs that maintains useful

throughput above 85%. Compared to Jiggling [22], which is a similar evolutionary-

algorithm based approach to repairing permanent faults, CRR has lower latency by virtue

of not relying on exhaustive tracking of the repair candidates. Additionally, the (1+1)

Evolutionary System described therein relies on rollbacks to preserve best-fit mutants.

CRR, by virtue of depending on a population of higher-fit alternatives that are evaluated

temporally over many iterations, precludes the need for rollback of configurations and

ensures higher populational fault tolerance capability. Significantly, as opposed to the

work of Keymeulen in populational fault tolerance [18], CRR achieves device

refurbishment at runtime, while ensuring sustainable levels of throughput with graceful

degradation. As compared to the Roving STARs approach [29], CRR minimizes

detection latency, as faults are evident immediately upon a discrepancy at the outputs.

Also, unlike STARs, by virtue of the runtime-input based performance evaluation, CRR

leverages partially-fit configurations to provide some functional throughput. This

effectively improves the granularity of spare usage to include those affected by stuck-at

faults, as the GA may evolve solutions that use fault-affected resources in generating

repair configurations.

 60

In Summary of the Repair experiments, evolutionary regeneration addresses a problem

domain that is distinct from evolutionary design. Namely, regeneration can benefit from

a population of partially working designs which provide diverse, relevant alternates. This

also allows departure from conventional fitness evaluation with a rigid individual-centric

fitness measure defined at design-time. CRR uses instead, a self-adapting, population-

centric assessment method at runtime. CRR relies on the consensus observed among a

group of individuals to evolve and adapt fitness criteria for individual members, thus

providing graceful degradation. By utilizing outlier detection techniques that work

temporally without the need for exhaustive testing, CRR provides a fault tolerance

technique that maximizes device throughput during the fault detection process.

 While the pre-existing methods focus on creating a single fully-fit configuration, CRR

extends this to maintain a population of solutions that have a higher average fitness. This

ensures the adaptability of the population of viable alternatives to a variety of

unanticipated faults. An additional benefit of maintaining a population of diverse

partially-fit individuals is that when the inputs to the system are localized to a subset of

the set of all possible inputs, even partially-fit individuals can assist in generating

expected outputs, thereby improving the rate of viable throughput during recovery.

Population-centric assessment methods such as CRR can provide an additional degree of

adaptability and autonomy to fault-handling in reconfigurable devices. The demonstrated

potential of such population-centric methods can be further enhanced as follows, and as

further explored in the subsequent chapters. After discrepancy detection, a CGT method

which tracks utilization of resource sets among individuals in the population, is used to

 61

identify the stage containing the faulty resource. This is readily incorporated within the

configuration selection step of CRR. The genetic operators are then applied only to that

isolated stage to attempt recovery, thus providing an approach to extend the CRR method

to larger circuits while remaining computationally tractable.

In order to accelerate the fault recovery process, a fault detection and isolation method

that functions on the run-time inputs is required. Further, the method has to operate on

the basis of comparisons between two functional configurations’ performance. In the

next chapter, a discrepancy-enabled dueling scheme is presented that enable fast fault

detection.

 62

CHAPTER 4: FAULT ISOLATION USING GROUP TESTING

A fault detection and isolation method for stuck-at logic faults in FPGAs is developed

starting from a simple reconfigurable device model. A discrepancy detector is realized

and implemented in CMOS to demonstrate the viability of the approach. Starting from a

fully-articulating fault model, a general outline for discrepancy-enabled group testing is

generated and expanded to the a partially-articulating fault model. Finally, examples of

adapting group testing techniques to improve the performance of GAs and also for

exhaustive BIST-based techniques are presented.

4.1. Motivating Example and Problem Definition

In order to better understand the group testing problem at hand, consider an analogy

termed the Treasurer's Problem which is related to the Counterfeit Coin Problem [43].

The Counterfeit Coin Problem is extended here by analogy to support arbitrary groupings

of logic cells within FPGAs. In this Treasurer’s Problem, legitimate coins are made of

gold, with the face value of the coins being proportional to their weight. However, some

counterfeit coins have other metals mixed in with the gold, and these counterfeit coins are

to be identified and removed. The weight of an impure coin is different from the weight

of pure coins of the same denomination. The treasurer must inspect large quantities of

coins for authenticity. Most significantly, since the number of counterfeit instances is

small relative to the total number of coins present, the treasurer does not weigh the coins

individually. Instead the coins are in a vat, and the treasurer retreives coins from the vat

 63

to fill bags containing exactly 100 monetary units worth of coins. The number of coins in

each bag may vary because of their multiple denominations, yet due to the property that

their mass is proportional to their denomination then only two equally-valued legitimate

bags will display equal weight.

Using a pan balance, the treasurer compares the weight of two bags at a time to determine

whether they are equal weight or not. The coins from the bags may be returned to the vat

after weighing, so that they can be filled in other bags later after shuffling. Given these

pre-conditions, a number of questions arise about how the treasurer will identify any

faulty coinage such as: How many weighings will the treasurer need to identify bags

containing the impure coins? Can the impure coin be identified, if there was only one?

These questions are analagous to the problems addressed in this paper for identification

of a faulty physical resource used by a functional arrangement of FPGA configurations.

FPGA devices are composed of an array of logic resources such as LUTs that are utilized

by functional configurations just as the coins are grouped into a bag for weighing. A

digital design can be mapped onto the resources on an FPGA in several ways, just like a

bag worth 100 monetary units can be filled with coins of different denominations in

several different ways. When one of the resources used by a configuration is faulty, the

output of the configuration in response to an input may be faulty. Identifying the faulty

resource from among many fault free resources, without testing the resources individually

is a challenging task. Exhaustive testing of the individual resources is time consuming

which takes the device offline and reduces its availability. By analogy, if the coins were

weighed and checked individually, the time required would be phenomenal to locate a

 64

 65

single faulty coin out of thousands of coins. Instead, we re-cast the problem of

identifying the faulty resource into one of making choices for group comparison from

among the given FPGA configurations.

4.2. Fault Isolation by Discrepancy-Enabled Repetitive pairing

Robust fault detection is central to the problem of enhancing the fault-handling

capabilities of digital circuits. A common limitation facing many fault detection schemes

is that the failure detector itself may fail. A fault involving the checker may be

undetectable or result in the corruption of otherwise valid outputs. Traditional

approaches to fault-detection typically rely on coding-based schemes or redundancy

using a single voter, comparator, or error detector. Those fault checkers possess a single

point-of-failure exposure involving the detector elements, or must rely upon special test-

vectors or data encodings to isolate them. Detector components in the reliability path

have been referred to as golden elements [22] because the fault-handling strategy relies

on them to be fault-free. The following sections develop an alternative approach to self-

checking fault detection based on random pairings and temporal voting to reduce such

exposures.

Table 4.1: Comparison of Fault-Detection Techniques

Table 4.1 lists characteristics of selected fault-handling strategies. Specialized encoding

schemes are often required by CED approaches as opposed to TMR and the Discrepancy

Mirror methods which do not. The number of functional logic elements required by

TMR is greater than that of the other schemes. Discrepancy Mirrors provide inherent

transient fault coverage with minimal detection latency. They also support fine-grained

resolution of the fault location, without interruption to the data throughput flow when a

fault occurs. Thus, Discrepancy Mirrors offer improved detection of permanent and

transient faults, with reduced time and space overheads. Section 4.3 provides the design

of the discrepancy mirror approach. Results of simulations and fault location

experiments conducted in the case study are given in Section 4.4.

 66

4.3. Designing a Discrepancy Mirror – Case Study

The Discrepancy Mirror approach is a duplex redundancy technique that utilizes alternate

physical configurations from a population of candidate designs that are functionally

equivalent. As shown in Figure 4.1, the technique is composed of three phases, namely

Selection, Detection, and Preference Adjustment. The Selection phase selects two

candidates, each of which utilize mutually exclusive subsets of the resources under test.

The Detection process uses the Discrepancy Mirror logic shown in Figure 4.2 to check

for bit-wise equivalence between outputs of the candidates as described below. The

Preference Adjustment phase utilizes the results of successive comparisons to update the

pairing strategy during subsequent selections. These steps will be explained below in the

context of a FPGA-based realization whereby two configurations of the functional logic

are loaded in tandem.

Figure 4.1: Discrepancy Mirror-based Scheme

 67

Figure 4.2: Discrepancy Detection Circuit

4.3.1. Selection Phase

Candidate designs are selected from a population developed at design time, either

manually or via a CAD tool. Random pairings or an adaptive scheme based on the

results of Preference Adjustment can be employed. This process is identified as Step 1 in

Figure 4.1. The selected designs are then loaded as the active configurations during Step

2 and Step 3. Identical input operands are applied in parallel to each configuration and

the outputs are redundantly computed for comparison in the next phase.

4.3.2. Detection Phase

As shown in Step 4 in Figure 4.1, the discrepancy mirror circuit is used to identify

whether the outputs of the two configurations under test agree. A complete instance of

 68

the discrepancy mirror is obtained whenever two configurations are loaded, since the

discrepancy detector consists of two identical sections as shown in Figure 4.2. Assertion

of MATCH output from the discrepancy mirror indicates the absence of a single-fault in

the configurations under test, as well as the logic in the discrepancy mirror. The data

output is enabled if and only if no faults are detected as shown in Step 5 in Figure 4.1.

The inputs to the Discrepancy Mirror shown in Figure 4.2 as “Function Output A” and

“Function Output B” are generated independently. If there is a fault in a resource utilized

by either of these configurations, then a discrepancy is observed at the output. The truth

table shown in Table 2 describes the operation of the circuit shown in Figure 4.2.

Outputs from the function configurations A and B are applied as inputs to both the

XNOR gates. The output from each XNOR gate acts as the ENABLE signal for the tri-

state buffer in the same half, as well as the input to the tri-state buffer in the other half of

the discrepancy mirror. The tri-state buffer outputs are tied together to form a Wired-OR

connection which provides the MATCH output signal. The pull-down transistors hold

the signal to a logic ‘0’ level when the tri-state buffer output is in a high-impedance state.

In an active-high non-inverting tri-state buffer, the input is buffered at the output only

when the ENABLE signal is high. When the ENABLE signal is low, the output of the

buffer is in a high-impedance state.

A CMOS model of the discrepancy detector was created using PSpice. The circuit was

constructed using 44 p- and n-channel MOS transistors with a 1.5 micron minimum

width, and a 600nm length. The width of the p-mos transistors was set to thrice the width

of the n-mos transistors. Figure 4.3 below shows the PSpice schematic and Figure 4.4

 69

shows the transient response of the circuit demonstrating that the circuit conforms to

specifications enabling the correct identification of discrepancies. Subsequently, the

circuit was also simulated on the Xilinx Virtex-II Pro FPGA using the ModelSim-II

simulator.

Figure 4.3 Discrepancy Detector Circuit Schematic Layout

 70

Figure 4.4 Transient Response of the CMOS Discrepancy Detector Circuit

As listed in Table 4.2, the response of the circuit is robust to several possible fault

scenarios. If either of the XNOR gates fail, then one of the two tri-state buffers will be

disabled and the other will have an input of zero, thus MATCH will be a ‘0’, signifying

discrepancy. If the tri-state buffers fail, producing a high impedance output, the pull

down resistors in the circuit will hold the signal to ‘0’. The wired-OR connection reduces

single points of failure to a stuck-at fault exposure for the MATCH output.

 71

Table 4.2: Discrepancy Mirror Truth Table

4.3.3. The Preference Adjustment Process

Step 6 and Step 7 comprise the Preference Adjustment process. When the Discrepancy

Mirror returns a MATCH output, alternate configurations can be loaded for testing or the

resident fault-free configurations can be used. The output from the discrepancy mirror

over a period of time indicates the relative fitness of the different configurations. This

information can isolate the fault location and aid in regeneration of lost functionality

through the identification of alternate resources. The cumulative discrepancy information

from diverse pairings over time can be used in Step 7 to modify the selection preferences

for the configurations in the population.

4.4. Analysis of Fault Isolation with a Simplified Articulation Model

The operation of the discrepancy mirror circuit was verified on a Xilinx Virtex-II Pro

FPGA platform using ModelSim-II. The pull-down resistors were emulated using digital

components as shown in the Xilinx data sheet [44]. The waveform for the MATCH

output was asserted whenever the inputs to the discrepancy mirror were in agreement.

The simulation waveform showed a LOW signal whenever the MATCH output was a ‘0’.

 72

In the Xilinx Virtex-II Pro FPGA, when pull-down resistors are emulated, a LOW signal

is the equivalent of a logic-0 output. The circuit was also simulated using Cadence

SPICE. The entire circuit was also realized using a total of 44 p- and n-channel MOS

transistors using a 1.5 micron minimum width technology with a length of 600 nm. A

total of 44 CMOS transistors were utilized to realize the circuit. The widths of the pMOS

transistors in the XNOR circuit were selected to be thrice the widths of the nMOS

transistors to shape the waveform rise and fall times, to develop the required timing

characteristics. The simulation results and waveforms obtained indicated behavior

conforming to Table 4.2 and Table 4.3.

Table 4.3: Discrepancy Mirror Fault Coverage and Response

Two sets of experiments were performed to analyze the fault isolation latency. Both

experiments sought identify the number of iterations required to identify the faulty

resource in the case of single fault. A simulator was constructed using a C-language

program for simulating the Selection, Detection, and Preference Adjustment phases. The

inputs to the simulated mirror were obtained using random number generators. Random

input values were applied to two configurations chosen at random from the pool of

competing configurations. More formally, let U denote the set consisting of all the logic

resources in the FPGA, S denote the pool of resources suspected of being faulty, and

 73

Ci ⊂ U denote the set of resources used by the ith configuration. Initially, |S| = |U|. A

process of m successive intersections among the subsets Cj ∩ Ck=j (i ≤ j, k ≤· m) are

performed. Each successive intersection reduces |S| until after the mth intersection at time

t = m eventually |S| = 1, completing the fault-location process. Each experiment was

conducted with |U| = 1,000, 10,000, and 100,000. The expected number of iterations to

isolate the fault are reported for the mean values observed over 100 trials of the

simulator. An individual logic resource is the equivalent of a CLB in an FPGA so the

range of resource pool sizes reflect a realistic device scenario.

In the first set of experiments, the inputs applied consistently articulate any fault in the

logic resources used by the configurations under test. Thus, a match output indicates that

the logic resources used by the configurations being compared are completely fault-free.

A discrepancy between the configurations’ functional outputs indicates the presence of at

least one resource fault. Assertion of the MATCH output exonerates all logic resources

currently being used, and a de-assertion of the MATCH output implicates the subset of

logic resources currently being used as suspect. The faulty resource is isolated after m

pairings through a process of successive intersection. Figure 4.3 shows the faulty

resource can be identified using an expected value of 11.1 pairings when |U| = 1,000 and

half of the resources are utilized by each configuration. When |U| = 100,000, the mean

number of pairings required to locate the fault increases by much less than a factor of ten

to a value of 17.6. Under more demanding parameters, when |U| =100,000, and when

only 5% of the resources are being used by each configuration, a mean value of 63.7

pairings are required to isolate the faulty resource.

 74

Figure 4.5: Fault Isolation with Perpetually Articulating Inputs

Depending on the inputs applied, the fault in the functional logic under test may remain

dormant and thus some inputs would not articulate a visible discrepancy. In this case, a

match output from the discrepancy mirror cannot evaluate whether all the resources under

test are fault-free. A discrepant output is a definitive indicator of the existence of a

single-fault. With such Intermittently Articulating Inputs, the discrepancy mirror based

scheme requires additional random pairings to isolate the single-fault. As shown in

Figure 4.4, when |U| = 1, 000, with resource utilization at 45%, an expected 42 random

pairings are required to uniquely identify the faulty resource. When |U| = 100, 000, the

best performance is observed for a utilization of near 50%, where the expected value of

random pairings is 64.1.

 75

Figure 4.6: Fault Isolation with Intermittently Articulating Inputs

The discrepancy mirror is capable of handling faults in either the functional logic or the

detector. If there is a failure in either, then the output of the mirror remains de-asserted

indicating the presence of at least one resource fault. It is able to isolate the faulty

resources with a expected number of random pairings that is sub-linear in the number of

resources under test. It does not depend upon a specific coding scheme or a pre-defined

set of inputs. Random pairings of configurations perform successive intersection of the

resources under test to isolate the faulty resource. Figure 4.3 and Figure 4.4 show that

more pairings are required to identify the faulty resource when the utilization of available

resources is below 20% or above 80%. In these situations, each successive pairing

implicates (or exonerates) a smaller sub-set of resources than when half of the resources

are utilized. Finally, using a discrepancy mirror based approach, the number of pairings

required for fault location increases sub-linearly with an increase in |U|. For example, at

 76

50% utilization, the expected number of pairings to locate a fault within pools of 1,000,

10,000, and 100,000 resources are 11.1, 14.9, and 17.6, respectively, demonstrating the

viability of the technique. Though the model is abstract, and of minimal complexity, the

case-study demonstrates the viability of the discrepancy detector, and provides the basis

for investigating group testing-based approaches to FPGA fault isolation.

There are certain cases where the simple fault isolation scheme described above may fail

to converge on a single faulty resource. A trivial case is when all the resources available

on the FPGA are used by each configuration. If the application demands that all the

resources be used, then isolation cannot occur through the process of successive

intersection. Also, in cases where a very low number of resources are used by individual

configurations, it is possible that none of the individuals utilize the faulty resource,

leading to the state where no discrepancies will be observed. The most challenging case

is when multiple individuals utilize the faulty resource. In this situation, the history

matrix elements corresponding to the intersection of the subset of resources used by these

individuals will have no relative differences, and will all have the highest value.

Successive intersections between the resource subsets will not lead to any further fault

isolation. For example, with a resource utilization of 40% in a device with 40,000 unit

resources, isolation proceeds as shown in Figure 4.5. The isolation cannot be completed,

and after about 23 iterations, the number of suspected faulty elements stays a constant at

36. Any further isolation cannot occur since there is none of the intersections that may

follow provide any additional isolation information. This necessitates an algorithm based

on group testing.

 77

0 5 10 15 20 25 30

100

1000

10000

100

1000

10000

N
um

be
r o

f S
us

pe
ct

ed
 F

au
lty

 E
le

m
en

ts
 (l

og
)

Number of Iterations

Figure 4.7: Successive Isolation as Input Iterations Increase

4.5. Fault Isolation using Halving and Column-Swapping

To avoid the problem of not being able to proceed with isolation in certain cases where

successive iterations do not provide isolation information, a dueling algorithm is

proposed which tries to emulate halving. Halving is the process of successively reducing

the size of the subgroup under test by half until, finally a test of a single element is

required to identify the faulty element.

The algorithm works by swapping columns in the configurations of individual elements.

When the fault isolation process approaches a state of stasis, some of the columns in the

individuals are swapped. The number of columns to be swapped is determined by

considering the number of resources currently suspected of being faulty. A number of

columns equal to half of the remaining number of suspect elements are swapped with

other columns in the same individual. This will introduce new information, as some of

the suspected faulty elements used by the individual earlier will no longer be used, for

 78

example. Swapping is restricted only to the columns to facilitate future implementation

in FPGA hardware. As shown in Figure 4.6, isolation proceeds till a single faulty

element is isolated under the same conditions under which the results shown in Figure

4.5, for dueling without swapping were obtained.

0 5 10 15 20 25

100

1000

10000

N
um

be
r o

f S
us

pe
ct

ed
 F

au
lty

 E
le

m
en

ts
 (l

og
)

Number of Iterations

Figure 4.8: Isolation Progress when Halving is used

In order to analyze the behavior of the dueling algorithm with modified halving, further

experiments were conducted to see the implications of various factors on the isolation

process. In each of the following experiments, the population size specifies the number

of competing individual configurations in the population. Resource utilization, expressed

as a percentage signifies the amount of available resources used by an application

implemented on the FPGA. The FPGA device is simulated by using a square matrix of

order n where n denotes the number of rows and columns in the device. Each of the

experiments that follow list average values observed over 100 experimental trials.

 79

The effect of the size of the isolation problem was evaluated by applying the proposed

technique to simulated FPGAs of various array sizes. As shown in Figure 4.7, for an

isolation problem where there are 100 rows and columns, or 10000 elements, only an

average of 14.3 iterations are required to isolate a single fault. As the size of the array

containing the fault increases, the increase in the required number of iterations is

minimal. For example, for the difficult case where there is a single fault in 1 million

resources, the algorithm requires only an average of 27.4 iterations to isolate the fault,

showing that the algorithm scales well with the size of problem.

0 100 200 300 400 500 600 700 800 900 1000 1100
0

5

10

15

20

25

30

 A
ve

ra
ge

 N
um

be
r o

f I
te

ra
tio

ns
 F

or
 F

au
lt

Is
ol

at
io

n

Number of Rows and Columns in Device

Population Size = 40
Resource Utilization = 50%

Figure 4.9: Isolation Performance as a Function of the Total Number of Elements

As the population size increases, fault isolation is expected to become faster, since more

information will be available to the algorithm from the increased population size.

However, a very high population size may lead to more individuals being affected by the

same fault. As shown in Figure 4.8, the number of iterations required for isolation, with

40000 elements, and 50% resource utilization shows a tendency to decrease with an

increase in the population size. For a population of size 60, only an average of 17.2

 80

iterations are required for isolation. Practically, however, a very high population size will

imply the need for a higher number of alternative individual configurations. A

population size of 30 seems to be an ideal tradeoff between ease of isolation, and the

difficulty of generating increased number of individuals.

0 20 40 60 80 100
10

12

14

16

18

20

22

24

26

28
Av

er
ag

e
N

um
be

r o
f I

te
ra

tio
ns

 fo
r F

au
lt

Is
ol

at
io

n

Population Size

Resource Utilization (%) = 50
Number of Resources = 40000

Figure 4.10: Isolation Performance as a Function of the Population Size

4.6. Isolating Embedded Cores using Group Testing

Although group testing-based methods are primarily presented as a tool to improve upon

existing run-time fault isolation techniques, they are also amenable to post-manufacturing

testing of FPGAs. In this chapter a specific example of using group testing techniques to

accelerate the isolation of faulty embedded cores in FPGAs is presented.

The current generation of 65 nm FPGAs by Xilinx, such as the Virtex-5 platform FPGAs

introduce space-efficient hard IP cores implemented using the column-based Application

Specific Modular Block (ASMBL) architecture. The Virtex-5 platform provides anywhere

from 32 to 640 embedded DSP48E cores across a range of devices [45]. These cores are

 81

designed, placed, and routed into the fabric of the FPGA, and have been characterized

and verified to optimize performance. Unlike soft IP cores, these enable designers to

utilize the Configurable Logic Blocks (CLBs) as general-purpose logic resources and

minimize the space and power required to implement DSP applications on FPGAs. The

embedded IP cores are characterized by their predictable timing and are optimized to

work efficiently in a manner independent of the rest of the design. These cores are highly

customizable based on the designers requirements and provide a range of in-built

structures for efficient arithmetic calculation and signal processing requirements. All

these characteristics lend to more efficient implementation of an entire system on an

FPGA known commonly as a System On Programmable Chip (SOPC). The development

of FPGAs with an increasing number of embedded hard IP cores drives the need for

faster testing methods for failures in the cores.

The embedded cores are distributed throughout the FPGA fabric and as an integral part of

the computational resources, these require extensive post-manufacturing testing and

verification. It is therefore important to develop testing methods to identify hardware

faults with minimal latency and resource overheads.

4.6.1. BIST-based Testing of Embedded FPGA Cores

Advances in FPGA production technologies have improved capabilities to the point

where FPGAs have dedicated embedded cores, in addition to multiplexers and Block

RAMs. The most widely accepted approach to detect faults at the chip level in VLSI is to

apply BIST on the components [46-48]. The built-in nature of BIST also allows testing

 82

the chip in a variety of working environments. In BIST both the Test Pattern Generation

(TPG) and Output Response Analyzer (ORA) are incorporated inside the chip. Assuming

that all levels of the hierarchy use BIST, each element can test itself and transmits the

result to the succeeding level in the hierarchy. BIST also increases controllability and

observability by providing access to the internal nodes since tester logic is located on the

chip. BIST allows tests to be run at system speed and eliminates this gap.

BIST has been the choice of convention for testing Embedded Memory [46, 47].

Conventional ASIC BIST techniques typically accrue between 10% to 30% area

overhead and delay penalties [48]. Therefore, it is essential that the FPGA core test

method leverages the reprogrammability inherent in FPGAs. An additional advantage of

utilizing the programmable feature of an FPGA to test itself is that BIST logic can be

removed when the circuit is reconfigured for another use and testability is achieved

without permanent area overhead or performance degradation.

There has been considerable research on developing and applying BIST techniques for

programmable logic resources in an FPGA including CLBs [49, 50] and interconnect

matrix of routing resource [16, 51]. Abramovici and Stroud [49] presented BIST

architecture to test CLBs in an FPGA. In their scheme, a column or (a row) of CLB is

configured to generate pseudo-exhaustive test patterns to alternating columns of

identically configured CLBs under test. They use two identical TPGs to detect any fault

in the CLBs used to construct TPGs. Comparator-based ORAs monitor the output of the

BUTs and latch mismatches due to faults. The BUTs are tested and configured for

 83

different modes of operation. Each complete test (session) covers only half of the CLBs

and another session is required to test the other half.

 The diagnostic procedure called MULTICELLO (Multiple faulty Cell Locator)

developed by Abramovici et al., identifies faulty BUTs based on the failing BIST results.

Stroud and Garimella [52] targeted multiple regular structure cores including memories

and multipliers and developed a diagnostic procedure based on the extension of the

MULTICELLO algorithm. The diagnostic procedure is performed in five steps. They

presented a BIST approach in which neighboring blocks are compared by a set of ORAs.

Thus, each core is observed by two sets of ORAs and is compared to two different cores.

Circular comparison of the first and last block covers the corner block. Following and

applying the MULTICELLO algorithm, Garimella and Stroud [53] presented

development of an automated BIST generation for embedded Block RAMs in an FPGA,

based on parameterized VHDL model. The MULTICELLO algorithm provides a good

diagnostic resolution and is able to locate the faulty blocks (unless all blocks have

equivalent faults). However, it is not applicable when testing a set of two blocks in

cascade mode. For example, in many applications and operations it is required that two

DSP blocks cascaded together to produce the final outputs. In this case, they produce

different outputs and therefore it is not possible to compare the outputs of neighboring

blocks.

Renovell et al. [54] present a method to test the LUT/RAM modules of FPGAs using a

minimal number of test configuration by proposing a model architecture with N inputs

and 2N memory cells. With a unique test configuration, they test a single module by

 84

extending conventional algorithms for testing SRAM modules such as the March tests

[55]. They also propose a unique test configuration called pseudo shift register. In this

method, the circuit operates as a shift register and the MATS++ algorithm is adapted to

test the FPGA RAM modules. However this method is limited to the SRAM modules on

the FPGA, or the LUTS operating in the SRAM mode. Current state-of-the-art FPGAs

such as the Spartan-3a DSP FPGAs from Xilinx offer embedded SoPC DSP modules that

include dedicated 18×18 multipliers along with 18-bit pre-adder and 48-bit post-

adder/accumulations and dedicated DSP circuitry consisting of DSP48A slices [56].

Earlier Sarvi et al [57] developed a diagnostic method to detect and locate faulty

embedded cores in FPGAs using BIST was developed. However, the technique

configures the device twice in order to complete fault isolation. The method partitions

the cores on an FPGA into two groups and conducts BIST on each of these groups. Fault

isolation is achieved by comparing the results of the two tests. Under this scheme the

two configurations are constructed to enable isolation by comparison. In post-processing,

defectives are identified by analyzing the results of comparisons among blocks enclosed

within the same group. However, this method fails to isolate faulty blocks when there is

a defective block in each of the compared pairs.

Improvement over previous approaches is attained using an automated diagnostic

methodology that is applicable to different cores, including DSP cores, that takes into

account the different modes of operation such as cascade and direct. The group-testing

enhanced method is scalable to different FPGA families including the Xilinx XtremeDSP

products and the Virtex-5 family of FPGAs. Further, these techniques can be easily

 85

extended to provide testing coverage for new families of embedded cores on FPGAs

since the method is core-independent. A significant improvement is the one-shot testing

of all embedded cores of a specified type using a single test pattern. Group testing

techniques are utilized to generate a non-adaptive testing regimen that involves a single

group of tests executed concurrently. The test provides complete coverage for all cores

of a type on the chip by dividing the cores-under-test into subsets with a cardinality of

four. By generating, comparing and encoding the outputs produced by the cores in

response to the test pattern, complete fault resolution is achieved in a single test.

4.6.2. Enhancing Embedded Core BIST using Group Testing Techniques

The embedded IP cores in the Xilinx Virtex-5 family of devices are distributed evenly

throughout the fabric ensuring optimal timing. The BIST technique proposed in this

article utilizes the CLBs adjacent to the embedded cores to realize the TPG and the ORA.

Each embedded core comprises a BUT. The current generation Virtex-5 FPGAs from

Xilinx include embedded cores in the form of 36-Kbit Block dual-port Block RAMs and

Advanced DSP48E slices. The DSP48E slices provide a range of functionality such as

two’s complement, multiplication, and optional adder, subtracter, and accumulator.

These also provide pipelining and dedicated cascade connections. The number of

DSP48E slices in the Virtex-5 FPGAs varies from 32 in the XC5VLX30 device to 640 in

the XC5VSX95T device. In the experiments described here, the DSP48E slices are the

blocks under test.

 86

Under the proposed group testing-based technique, the m embedded cores on the device

are divided into m/4 = n groups of BUTs. Tests are conducted on these groups to provide

fault isolation in a single-stage, non-adaptive group testing regimen. Comparators kn

generate a PASS/FAIL result based on discrepancies between the outputs of two of the

BUTs. For a group of 4 BUTs, a total of six comparators are required to compare each

BUT’s output with that of all the other BUTs in the same group. For purposes of

simplicity, Figure 4.10 shows the replicable BIST model in its smallest scale, considering

one such group of 4 BUTs, numbered B0 through B3. It is assumed that the CLBs and

routing resources have been tested for correct functionality.

Figure 4.11: BIST Structure for Testing a Group of Four Blocks Under Test

The TPG is realized using an FSM to realize the states required for testing the embedded

cores. In order to test the DSP48E cores, the FSM generates 400 states and 14-bit wide

control signals for each state. The control signal bits are comprised of a 7-bit opmode

signal, a 3-bit carryin_sel signal, and a 4-bit wide alumode signal. These serve as control

 87

inputs to each of the DSP48E embedded cores. For each of the 400 states, the FSM

generates valid combinations of these 14 control signals which define the function

implemented on the DSP48E at any given clock signal. The FSM is optimized via XST

into one 512x17 ROM and a 14-bit registered output. This ROM is realized as one of the

embedded BRAM cores which is pre-defined through initialization. State-transitions are

performed via a 9-bit adder, whose output is registered using a 9-bit register. The three

data operands for the DSP48E cores are generated using one 18-bit Linear Feedback Shift

Register (LFSR), one 48-bit LFSR and one 30-bit LFSR.

Each pair of BUTs requires a 48-bit comparator and 4 1-bit comparators for their outputs

to be compared for discrepancies. In addition to these, for each pair of BUTs, a 2×1

multiplexer is used to serialize the results of the comparators. Thus for every group of

BUTs, a total of six 2×1 multiplexers are required. This circuitry is further optimized as

described in the following section. Figure 2 shows these six comparators k1(i,j) for

comparing the outputs of the 4 BUTs in group n = 1. technique uses a test controller in

addition to the TPG and the ORA, to activate the test routine by asserting the START

signal. Termination of the test is achieved when the DONE signal is asserted, followed

by the propagation of the test results.

4.6.3. Embedded Core Fault Isolation Experiments on Virtex-5 FPGAs

As a particular example of the BIST technique, experiments were conducted on the

Virtex-5 family of Xilinx FPGAs. The testing of an XC5VLX30 device provides the

following case study which further elaborates the procedure. The XC5VLX30 device

 88

consists of 36 DSP48E embedded cores, with 4800 slices that provide 19200 LUTs. The

m = 36 embedded cores on the XC5VLX30 device are divided into n = 8 groups. Since

six 2-to-1 multiplexers are required for each group, a total of 48 such multiplexers are

required. However, the synthesized design optimally uses six 8-to-1 multiplexers.

Figure 4.12: BIST Structure used for Testing the XC5VLX30 Device

A block diagram of the scheme is shown in Figure 4.11. As shown in the figure, a total

of six multiplexers and flip flops, numbered muxo through mux5 and FFo through FF5

are utilized. There are six columns of comparators, with each column consisting of eight

comparators, k0 through k7. Comparators kn(i,j), 0 ≤ i,j ≤ 3,∀ i ≠ j complete the test for a

group of four BUTs as shown in Figure 2. The results for comparisons among one group

of BUTs, for example, the results from k0(0,1), k0(0,2), k0(0,3), k0(1,2), k0(1,3) and k0(2,3)

are registered in the flip flops FF0 through FF5.. This is then repeated for the other

groups, using the 3-bit counter to enable the succeeding inputs of each multiplexer.

Thus, at the end of each test, when the inputs from the TPG have been applied, the

counter goes through all the multiplexer inputs and sending the output of the six flip flops

 89

simultaneously to 6 1-bit outputs. The fault diagnosis script then processes the results of

each set of 6 outputs to resolve the location of the defective BUTs. This can lead to

isolation of faults in any two of the four BUTs in each group, irrespective of the location

of the faulty BUTs within each group.

Table 4.4: Resource Utilization Results from Experiments Conducted on the Xilinx
Virtex-5 Family of FPGAs

Device DSP48E Available
Slices

Available
LUTs

Available
FFs

Resource Utilization under
Test (Percentage)

LUTs Flip flops
XC5VLX30 32 4800 19200 19200 1,418 (7%) 384 (2%)
XC5VLX50 48 7200 28800 28800 1862 (6%) 408 (1%)
XC5VLX85 48 12960 51840 51840 1862 (6%) 408 (1%)

XC5VLX110 64 17280 69120 69120 2300 (3%) 432 (1%)
XC5VLX155 128 24320 97280 97280 4058 (4%) 528 (1%)
XC5VLX220 128 34560 138240 138240 4058 (2%) 528 (1%)
XC5VLX330 192 51840 207360 207360 5822 (2%) 624 (1%)
XC5VSX35T 192 5440 21760 21760 5822 (26%) 624 (2%)
XC5VSX50T 288 8160 32640 32640 8462 (25%) 768 (2%)
XC5VSX95T 640 14720 58880 58880 18139 (30%) 1296 (2%)

The solution was implemented on various devices of the Virtex-5 family. Table 4.4

summarizes the resource usage for each of these devices. As listed in the Table, for the

XC5VSX95T device, which contains 640 DSP48E embedded cores, the device utilization

during testing is approximately 30%. In Table 4.4, all Utilization Percentage figures less

than 1% have been rounded up to 1%. Also, each Slice in the Virtex-5 family of FPGAs

contains four LUTs and four flip flops.

 90

Embedded cores within FPGAs provide improved performance by optimizing area and

power consumption. With improvements in the process technology, the smaller

geometries will drive the inclusion of an increasing number of diverse hard IP blocks in

FPGAs. As shown in this article, the XC5VSX95T device in the Virtex-5 family

contains 640 DSP cores and 488 Block RAM cores. This shows the need for efficient

fault isolation techniques to diagnose these devices to improve yields and facilitate faster

debugging. The demonstrated technique achieves the goal of fast detection and isolation

of faults by leveraging a group testing technique that isolates faulty embedded cores in a

single-step procedure that precludes the need for device reconfiguration. The approach is

scalable at the cost of area overhead. However, no permanent area cost or performance

overheads are incurred as a result of testing. This technique can be used in conjunction

with other existing methods for isolating faults in interconnect and CLBs to provide

complete post-manufacturing testing for FPGAs with embedded cores.

4.7. Improving GA Performance Using CGT

The fault isolation provided by Combinatorial Group Testing (CGT) can be utilized to

accelerate the design and repair process in a genetic algorithm. To demonstrate the

benefit using an example, A CGT-pruned GA was developed [58] to evaluate the

performance benefit obtained by using the halving testing scheme. As shown in Figure

4.13, the simulator for the CGT-Pruned GA optionally uses a seed configuration and uses

the resource information provided by the CGT technique to effect refurbishment in faulty

configurations using the GA. The simulator is a C++ based console application that

 91

consists of two main components: the CGT procedure and the GA. The CGT algorithm

uses the Gnu Scientific Library (GSL) and simulates the fault location method. The GA is

implemented using an object oriented architecture that contains classes which model the

FPGA resources with flexible geometries such as the Configurable Logic Block (CLB)

and Look-Up Table (LUT) classes, and others that model the GA such as Individual and

Generation classes. When this simulator is run in the CGT-pruned GA mode, the CGT

component simulates the desired FPGA chip and obtains resource performance

information which is an input to the GA. The GA then performs evolutionary design or

reads the Seed Configuration file and performs evolutionary repair according to the active

mode of operation. In the Conventional GA mode, the CGT component is not invoked

and no resource performance information is available to the GA.

Figure 4.13: CGT-Pruned GA Simulator

 92

Table 4.5: CGT-Pruned GA - Repair Performance

Experiment Type Conventional
Repair

CGT-pruned
Repair

Circuit 3-bit x 2-bit
Multiplier

3-bit x 2-bit
Multiplier

Number of
Experiments 30 30

Arithmetic Mean
(Generations) 17150 10700

Standard Deviation 15650 12550
Standard Error of the
Mean 2850 2300

68% Confidence
Interval [14300 → 20000] [8400 → 13000]

In the experiments, a 3-bit × 2-bit multiplier is circuit evolved from seed configurations,

and in the repair experiments, functional circuit representations with a simulated fault are

repaired. The optimized GA parameters used were a mutation rate of 0.05, a crossover

rate of 0.4, and a population size of 25. Further, elitism was imposed where the two best-

fit configurations from a generation were propagated to the next generation. The

simulated FPGA architecture consisted of 15 CLBs configured with a strict feed-forward

topology. As listed in Table 4.5, with a single stuck-at fault, the CGT-pruned GA

outperformed a GA unassisted by the results of group testing in the experiment

concerning the repair of individuals affected by the fault. Over 30 trials, the CGT-pruned

GA required an average of 10700 generations to realize a repair as opposed to 17150

generations for the non CGT-pruned GA. Further the result ranges do not overlap at the

68% confidence interval, which makes the result more statistically significant.

 93

CHAPTER 5: LOGIC ELEMENT ISOLATION USING
AUTONOMOUS GROUP TESTING

The logic resources on a Xilinx FPGA device are organized as a two-dimensional array

of CLBs [59]. Each CLB consists of 4 slices, which in turn contain two 4-input LUTs.

In the AGT-based fault isolation method described, a logic resource refers to a slice in

the FPGA. As shown in Figure 5.1, the FPGA is seen as a two-dimensional array of

resources, each resource being a slice. The fault model accounts for stuck-at faults at the

inputs of one of the two LUTs in a slice specified by its (x,y) coordinate pair.

Processor
Core

SLICE

LUTs

FPGA

Figure 5.1: FPGA Resources as Seen by the Group Testing Algorithm

5.1. Terminology and Nomenclature for Analysis of Autonomous Group Testing
Techniques

Let R denote the set of all resources ri(x,y) ∈ R under test as specified by their (x,y)

coordinates. A set of functionally-equivalent logic configurations, C, consisting of

 94

subsets ci, 0 ≤ i ≤ p, where p quantifies the size of a population of design configurations.

Each configuration realizes the combinatorial logic required for the application.

The population preset value ppreset determines the maximum number of individuals in a

generation so that pstage ≤ ppreset as testing progresses. At each stage of the adaptive

testing algorithm, the configurations in the population are replaced by new designs,

creating a new generation of individuals.

T denotes the set of binary input vectors applied and ti ∈ T are the individual input

vectors. These inputs to the implemented combinatorial logic are also the test vectors for

the isolation procedure. Let the function implemented on the FPGA be denoted by

F(T, ci). If any of the resources in ci used to realize F(T, ci) are faulty, then the response

will deviate from the correct realization, for some subset T’ ⊂ T which articulate the

fault as follows:

Definition 5.1. The syndrome T’ of a configuration ci is the set of positive tests for the

configuration.

Definition 5.2. The discrepancy function D(T’, cj) yields a set of all outputs that are not

equal to the correct output, as realized when tests comprising the syndrome, T’ are

applied to configuration cj. Tests T’ ⊂ T on a subset cj are positive if and only if

D(T’, cj) ≠ {}, and negative otherwise.

 95

Definition 5.3. The articulation rate a(ci) for a configuration ci is the ratio of the number

of incorrect outputs to the cardinality of the entire output space:

 Articulation rate, a(ci) =
||
|'|

T
T . (5.1)

Since the articulation rate cannot controlled by the designer, it introduces randomness

into the rate of progress of fault isolation as discussed in section 6.2. Fault isolation

proceeds by reducing the cardinality of the set of suspects, S. S is defined as the

intersection of resources ri(x,y) ∈ ci used by all ci ∀ D(T’, ci) ≠ {}. The set of all viable

resources tenable to creating fault-free configurations is denoted by S , such that

S ∪ = R. S

Definition 5.4. Forward Progress is made, if, as fault isolation proceeds, |S| decreases

and | | decreases, until finally |S| = d, the number of known defectives. S

As fault isolation progresses |S| decreases and | S | increases, until finally |S| = d, the

number of known defectives.

Definition 5.5. The defect scouring ratio, d(stage) defines the ratio of number of known

suspects |S| to | |, given the number of test stages that have been completed: S

 |S|
|S|

=d(stage) (5.2)

 96

5.2. Autonomous Group Testing Algorithm Overview

As shown in Figure 5.2, the AGT algorithm comprises of three phases of fault isolation

which occur after the fault has been detected. First, in the initialization phase, all

elements of the History Matrix, H, described in Section 5.3, are initialized to zero. In

addition, since the isolation procedure is yet to begin, the set of suspect resources, S is

equal to the set of resources under test, R. After initialization, the pstage configurations

that comprise the first testing stage are created, which forms the second phase of the

algorithm. The third phase consists of performing tests on the configuration thus created.

Phases 2 and 3 are repeated until the defective resource is isolated.

Before the configurations for a stage are created in phase 2, the equal share factor, nshare,

and the population size, pstage, are determined as described in Sections 5.4 and 5.5,

respectively. Once nshare is known, the pstage individuals that comprise the first test stage

are created using the Fault Injection and Analysis Toolkit (FIAT) described in Section

5.9. During the fault isolation phase shown in Figure 5.2, isolation proceeds by applying

random test vectors which emulate the input data stream to randomly selected

configurations that comprise the first test stage. This process continues until stasis is

attained, as described in Section 5.6. After the system attains stasis, a new testing stage is

created, and fault isolation is pursued until the defective resource is identified.

 97

Initialize H(x,y) = 0

Initialize S = R

Determine nshare

Determine p

Create p configurations

Apply randomly selected
input, tj to ci

Select configuration
ci at random

Discrepancy ?

Stasis Reached ?

Update H Matrix

Defective Isolated ?

END

Create New
Testing Stage

Yes

Yes

Yes

No

No

No

Initialize

Conduct One
Stage of Tests

test++

stage++

Figure 5.2: AGT Process Flow

5.3. Tracking Defectives Using the History Matrix

The history matrix, H, keeps track of the discrepancy counts of the resources. As shown

in Figure 5.2, all elements in the H matrix are initialized to zero. As a stage of tests

 98

proceeds, for each test ti for which D(ti, cj) ≠ {}, all H matrix entries H(x,y) are

incremented by one where (x,y) are the coordinates of all ri(x,y) ∈ cj. Over time, the

maximal elements in H identify suspect resources by their coordinates. Under a single-

fault assumption, fault isolation is complete when a unique maximum can be identified in

H. The defective resource will be identified by the coordinates of the maximal element in

H.

5.4. The Equal Sharing Test Group Formation Strategy

Initially, S = R, since no information is available regarding the fitness of any of the

resources. The algorithm proceeds in stages, with a new generation of individuals being

created in each stage. In each stage, the members of S are equally shared among the

configurations ci, 0 < i < pstage-1 in the generation.

The remaining nreqd resources required to realize the design are randomly selected from

the set S which has a cardinality |R| - |S|. Thus each individual ci will be allocated |R| -

|S| + |S|/pstage resources. Hence if the number of suspects |S| is small enough such

that |R| - |S| + |S|/ pstage > nreqd , then the configurations in that group will have mutually

exclusive shares of the suspect resources, with each individual configuration ci being

allocated exclusive resources rj(x,y) ∈ ci , rj(x,y) ∉ ck, where 0 < k < pstage-1. Otherwise,

some suspect resources need to be shared among the configurations to meet the

application resource demand nreqd. The maximum cardinality of |S| such that mutually

exclusive shares of suspect resources are possible, denoted by |Smax| can be obtained by

evaluating the following expression:

 99

 reqd
preset

n
p
SSR =+−

|||||| max
max , (5.3)

which yields:

 |)|(
)1(

|| max Rn
p

p
S reqd

preset

preset −×
−

= (5.4)

If |S| > |Smax| then the equal share factor, nshare, is derived by rearranging Equation(5.5) to

yield Equation(6.6):

 sharereqd nSRn +−= |||| (5.5)

 |||| SRnn reqdshare +−= (5.6)

Figure 5.3 shows an example of how |S| = 30 suspect resources from among |R| = 100

resources are shared among pstage = 2 configurations. In case 1, nreqd = 85, yielding |Smax|

= 30 using Equation(6.4). Since |S| = |Smax| in this scenario, configurations c0 and c1 use

mutually exclusive subsets of S, and they both use all ri(x,y) ∈ S to satisfy the

application resource demand. In scenario 2, however, nreqd = 91, and thus, |Smax| = 18.

Since |S| > |Smax|, the equal share factor is evaluated using Equation(6.6) to be nshare = 21.

As shown for case 2 in Figure 5.3, c0 and c1 share |S| - 2 × nshare = 12 suspect resources.

 100

 101

Alternative resource allocation strategies can be adopted to replace the equal share

strategy. For instance, in [60], an Interleaved Allocation strategy is proposed that ensures

that each LUT in the Suspect pool is used by more than one individual in every new

stage. This will reduce the probability that a faulty LUT does not articulate the fault for

the observed test vectors. The strategy uses a Coverage Factor to determine the number

of different individuals that utilize any suspect resource. The interleaved allocation

scheme adopts a low-risk approach by covering each suspected resource with two or

more configurations, making it less probable that a group of testing yields no

improvement.

x

y

S SC

Configuration c0 Configuration c1

|R| = 100, |S| = 30, pstage = 2

Scenario 1: nreqd = 85

Scenario 2: nreqd = 91

1
2

2

2

2

3

33

3

4 4

Region 1 : All suspect resources, S
Region 2 : Suspect resources unused

by configuration ci
Region 3 : Resources used by

configuration ci
Region 4 : Suspect resources shared

by c0 and c1

Configuration c0 Configuration c1

Figure 5.3: Sharing the Suspect Resources Equally – Two Different Scenarios

 102

5.5. Adapting the Population Size for Optimal Resource Coverage

In order to reduce the number of individuals under test, the population size is adapted.

For example, if in the final stage of testing, |S| = 3 even though the ppreset may be greater

than 3, only 3 individuals, each using one of the suspect resources is required for

isolation to complete. Such a situation occurs frequently in the beginning of the isolation

process. For example, with a resource redundancy ratio, rr = 0.5, in the first stage, only

two individuals are required to cover the entire resource space. Additional individuals

will only form tests for resources that are already covered by these two, and will thus be

redundant. The number of individuals required in any stage of testing is given by:

 ⎥
⎥

⎤
⎢
⎢

⎡
=

share

||
n

Spstage (5.7)

Reducing the number of individuals in a test stage provides two benefits. First, it

significantly reduces the time required for the fault isolation process. Secondly, it

reduces the number of redundant test groups – making the algorithm more reasonable. In

particular, a reasonable group testing procedure is one that contains no test whose

outcome can be predicted from outcomes of other tests conducted previously [12].

Once nshare and pstage are known, the individuals for a given generation are created, and

then tested. As shown in Figure 5.2, testing comprises the third phase of the isolation

process. The tests are conducted by randomly selecting an individual ci for instantiation

on the FPGA. A test vector tj is then applied to the individual. If D(ti, cj) ≠ {}, all H

 103

matrix entries H(x,y) are incremented by one where (x, y) are the coordinates of all ri(x,y)

∈ cj. Regardless of whether there is a discrepancy, this configuration is then replaced by

another, and the testing continues. When a configuration containing the defective

resource is tested, the probability of the fault being expressed as a discrepant output is

governed by the articulation rate, a(ci), of that configuration. Once a fault is articulated,

the set of suspects will be reduced to the intersection of the resources utilized by cj and

the resources H(x,y) = Hmax. Thus:

 Snew = cj ∩ H (5.8)

where hmax is the maximal element in the history matrix H(x,y)

5.6. Overcoming Stasis During Isolation

A state of Stasis is encountered in a stage of the isolation procedure if further tests on

configurations comprising the stage are expected to lead to no significant reduction in the

number of suspect resources. By Definition 6.4, stasis occurs when forward progress

stalls. Defining a method to overcome stasis is essential to ensure fast fault isolation.

Since the suspect resources were equally shared among the individuals in the population,

the maximum possible reduction in |S| is given by:

 share
new

n
S
S

=
||

||
 (5.9)

 104

Once |Snew| is obtained, the system is defined to have entered a state of stasis, when

further improvements to the defect scouring ratio, d(stage), have stalled. Further

reduction in |S|, beyond those described in Equation(6.9) is only possible if there exists

another individual in the same generation that also utilizes the defective resource. Since

such an individual is not guaranteed to exist and to articulate the fault, stasis is declared

after the suspect pool is reduced by the factor shown in Equation(6.9). Stasis can also

occur when the individual utilizing the defective resource does not articulate the fault, or

does so with a very low articulation rate. Thus, stasis occurs when no discrepant outputs

are observed after a fixed number of inputs are applied.

5.7. Walkthrough of Isolation Process

As an example of the isolation process, consider a situation where there is one defective

resource with the coordinates (1,8) in a set of R = 100 resources, where ri(x,y) ∈ R,

0 < x,y < 9. For simplicity, let us assume that a configuration that utilizes the defective

resource always articulates the fault at the output. The number of resources required to

implement the application is nreqd = 35. Thus, for the first stage, by Equation(6.6):

 nshare = 35 – 100 +100 = 35 (5.10)

For nshare = 35, and population preset, ppreset = 5, by Equation(6.7), we have:

 Population size for the first stage , 3
35

100
1 =⎥⎥

⎤
⎢⎢
⎡=p (5.11)

 105

Thus, in the first stage, there are three configurations, the first, c0 uses resources ri(x,y)

where 0 < x < 4, 0 < y < 5, i.e., 35 resources with coordinates (0,0) through (3,4)

inclusive; c1 uses resources with coordinates (3,5) through (6,9) and c2 uses resources

(7,0) through (9,9) and (0,0) through (0,4) inclusive. Over a period, each of these three

configurations are chosen at random and inputs are applied, until a discrepancy is

observed. Since the defective resource (1,8) is used by c0, this configuration will

articulate the fault. When this occurs, the H matrix entries corresponding to the resources

with coordinates (0,0) through (3,4) used by c0 will be incremented by one. The set of

suspect resources S now has a cardinality of 35, and contains the resources used by c0.

After this first discrepant output, the cardinality of S exceeds the critical cardinality of

35. Also, the prime realization for this experiment is 1, since c1 is known fault-free after

c0 is identified as the discrepant configuration.

As the set of suspects has diminished by a factor equal to nshare, the next stage of

configurations is formed. The number of suspects can be divided equally among the

members of this new stage, thus, each new configuration will contain 35/5 = 7 suspect

resources. The rest of the resources to create the 5 configurations are chosen at random

from the 100-35 = 65 members of S . Thus, in the second stage of testing, c0 will use the

suspect resources with coordinates (0,0) through (0,6) and the other configurations will

use 7 suspect resources each, in order. The defective resource with coordinates (1,8) will

be utilized by configuration c2. In the tests performed in the second stage, c2 will

articulate a fault, and H matrix entries corresponding to resources with coordinates (1,4)

through (2,0) inclusive will be incremented by one.

 106

In the next stage, only four configurations need be created, with the first three

configurations utilizing two of the seven suspect resources. This stage will further reduce

S to two suspect resources. Finally in the last stage of testing, only two configurations

will be created, with the first using the resource with coordinates (1,8) and the second

utilizing the resource with coordinates (1,9). Tests on these two configurations will

finally yield (1,8) as the defective resource. Thus, in four stages, the defective resource

will be uniquely identified.

5.8. The Fault Isolation and Analysis Toolkit for Xilinx FPGAs

The UCF Fault Injection and Analysis Toolkit (FIAT) is a set of Python APIs that aid the

analysis of fault-testing algorithms for Xilinx FPGAs. Faults are injected in the

implemented designs by editing the design file. This precludes the need to edit the

configuration bitstream directly. The Xilinx ISE design tools are used in the process flow

to place and route the edited designs. FIAT can be used to model and evaluate various

testing regimens that seek to identify and isolate faults in FPGAs. The toolkit enables

easy injection of faults without directly modifying the bitstream. The principle of

interfering minimally with the functions of the Xilinx ISE is adopted to reduce accidental

bitstream errors that may invalidate the design or even damage the FPGA. The

generation of post-place-and-route simulation executables offers a fast and reliable way

of analyzing test routines without the additional expense of downloading the designs and

reconfiguring FPGAs.

 107

FIAT provides the following functions to enable the modeling and evaluation of group

testing regimen:

get_list_slices_used(proj_path, xdl_fn): This method takes the project path(proj_path)

and the xdl filename(xdl_fn) as inputs and returns a list of slices used by the design

specified by the xdl file.

get_slice_count(proj_path, xdl_fn): Returns an integer representing the number of slices

used by the specified xdl file. Inputs are the xdl filename(xdl_fn) and the project

path(proj_path).

is_slice_used(proj_path, xdl_fn, x, y): Returns a Boolean value corresponding to whether

or not a slice specified by its x and y coordinates is utilized by the design specified by the

xdl filename(xdl_fn).

disclists(list1, list2): This function returns an integer representing the number of

discrepancies observed in comparing the two lists list1 and list2.

modify_xdl(proj_path, xdl_fn, slice_coords, g_or_f, faulty_pin): The modify_xdl

function inserts stuck-at faults in a specified design. The slice where the stuck-at-fault is

to be inserted is specified by a coordinate pair(slice_coords). The G or F LUT in the

slice can be chosen using the g_or_f parameter. faulty_pin specifies the pin in the LUT

where the stuck-at-fault needs to be injected.

 108

create_ucf(proj_path, ucf_fn, occ_area_xy, f_max_x, f_max_y, occ_area, req_resources,

pop): This method creates UCF files and placed-and-routed designs according to the

specified parameters to aid the physical placement of the design on the FPGA. The

proj_path and ucf_fn parameters define the project path and the UCF filename.

occ_area_xy specifies the area that the design has to be placed in as a coordinate pair.

All resources outside the square area defined by occ_area_xy are prohibited from being

used in the design. f_max_x and f_max_y specify the maximum value of the x and y

coordinates for resources that can be utilized by the design. occ_area defines the number

of resources available for use by the design and req_resources defines the number of

resources that are essential for instantiating the design. This figure can be ascertained by

assessing the minimum number of slices required by the design. The pop parameter

defines the population size, or the number of unique designs that need to be produced.

The create_ucf function creates pop number of unique ucf files where the resources used

are chosen at random. The amount of slices available for implementing the design can be

varied from (occ_area – req_resources) to occ_area depending on the needs of the test

routine by using custom functions to determine the selection of resources. After creating

the UCF files, the create_ucf function proceeds to create the NCD files for the designs

and converts the NCD files to XDL files which can then be modified according to need

using the modify_xdl function.

simulate_ppr(proj_path, sim_fn): The simulate_ppr function accepts the project path

and the name of the simulation executable as inputs. It invokes the Xilinx commands to

compile the HDL design, testbench files, and simulation libraries to create the simulation

 109

executables. Finally it runs the simulation. This is useful in conjunction with testbench

files that save the output of the simulation in the form of text files.

5.9. Creating and Modifying Alternatives with FIAT

FIAT provides a high level of control over the physical location of the logical units used

in the design. In particular FIAT provides methods for modifying and parsing the User

Constraint File (UCF) and the Xilinx Design Language (XDL) file. The XDL file is a

plain text file that can be created from the NCD file using the xdl command line tool

provided by Xilinx. Throughout the design flow, the Xilinx ISE tools are used all

processes except for those that edit and parse the UCF and XDL files. The tools provided

by FIAT can be used for determining the physical placement of the logical units by

editing the UCF file. Stuck-at faults are injected into the design by converting the NCD

file to the XDL format and then using the FIAT APIs to insert the fault at the chosen

LUT. The presence of a stuck-at fault ties the signal at the input of the chosen LUT in a

slice to zero or one. After fault injection, the XDL file is converted back to an NCD file.

Placement and routing is completed automatically using the Xilinx ISE. The post-place-

and-route simulation executable is created using the provide testbench and the simulation

libraries.

Figure 5.4 shows the processes that constitute the FIAT design flow. The input files for

the process are the HDL files specifying the combinatorial design to be instantiated on

the FPGA. These files are synthesized to build a netlist, which FIAT then builds, maps,

places and routes using commands provided by the Xilinx ISE 9.1i tools. In the last step

 110

 111

a post-place-and-route simulation executable is created using the user-provided testbench

and the simulation libraries. The same Native Circuit Description (NCD) file used to

create the simulation executable can also yield the configuration bitstream for a hardware

implementation of the design. The generation of post-place-and-route simulation

executables offers a flexible and accurate way of analyzing test routines. In addition to

providing methods to implement designs using the Xilinx commands, FIAT provides

automated methods to edit physical constraints and to inject faults into configuration

bitstreams.

FIAT provides a high-level of control over the physical location of the slices used to

create a configuration by providing APIs to modify the User Constraint File (UCF).

This enables editing configurations before they are placed and routed. Given a set of

suspect resources to be used by each configuration, FIAT creates the UCF files to ensure

the use of the suspect resources. It then invokes the Xilinx place-and-route tool provided

in the ISE 9.1i platform to realize the designs required by the AGT.

DATA INPUT HDL DESIGN

FIAT

AGT

CONTROLLERFPGA

D
ES

IG
N

PO

PU
LA

TI
O

N

OBSERVER

VERIFIED OUTPUT

Figure 5.4: Fault Isolation Using FIAT – An Overview

 112

Since it is not viable to destructively modify the FPGA hardware resources, stuck-at

faults need to be simulated in the configurations to enable analysis of the AGT algorithm.

Stuck-at faults are simulated in the experiments by editing all configurations to exhibit

behavior consistent with the presence of a stuck-at fault at one of the input pins of a

specified LUT. To inject the fault, FIAT converts the NCD file, which describes the

placed-and-routed design, to the Xilinx Description Language (XDL) format using the xdl

command line tool provided by Xilinx. This text file is then edited to modify the logic

function instantiated on the target fault-affected LUT. The presence of a stuck-at fault

ties the signal at the input of the fault-affected LUT to zero or one. After fault injection,

the XDL file is converted back to an NCD file. Placement and routing is then completed

automatically using the Xilinx tools included in the ISE 9.1i suite.

FIAT precludes the need to edit the configuration bitstream directly. Throughout the

design flow, the Xilinx 9.1i ISE tools are used for all processes except for those that parse

and edit the UCF and XDL files. The Xilinx design tools, such as netgen, par, ngdbuild,

and fuse are invoked by FIAT in the design flow to place and route the edited designs.

This principle of interfering minimally with the functions of the Xilinx ISE reduces

accidental bitstream errors that may invalidate the design or irrecoverably damage the

FPGA.

 113

CHAPTER 6: CHARACTERISTICS, CAPABILITIES, AND
METRICS FOR SUSTAINABILITY

Experiments on the AGT algorithms were conducted using post-place-and-route designs

created for the Xilinx Virtex-II Pro FPGA. A 56-bit Data Encryption Standard (DES-56)

encryption/decryption implementation was used in generating the data. Sections 6.1, 6.2,

and 6.3 present results from these experiments with regards to the efficacy and the impact

of system parameters on the algorithm.

6.1. Experimental Configuration for the Xilinx Virtex II Pro FPGA

The AGT, together with FIAT, implements the controller for autonomous fault handling.

As shown is Figure 5.4, this controller receives observed feedback and updates the design

population across stages. FIAT has been constructed as part of the work presented using

the Python programming language to provide APIs to edit resource constraints, introduce

stuck-at-faults, and generate post-place-and-route designs, as described previously in

Section 5.9.

Experiments were conducted on a Virtex-II Pro FPGA xc2vp4-7ff672 model using the

Xilinx ISE 9.1i design platform. The 7ff672 package provides 3008 slices and 348 Input-

Output Blocks (IOBs).

To analyze performance of the algorithm, the following characteristics are defined by the

functionality of the application implemented on the FPGA:

 114

Definition 6.1. The application resource demand, nreqd is the minimal cardinality of any

design configuration |ci|, required to implement the application on the FPGA.

Definition 6.2. The resource redundancy ratio, rr is defined as the ratio of the

application resource demand to the cardinality of the set of all resources |R|

 || R
n

rr reqd= (6.1)

Definition 6.3. The critical cardinality is the cardinality of |SC| such that |SC| = nreqd.

Definition 6.4. The prime realization is the index i, of the first identified subset ci, which

satisfies the two conditions: ci ⊂ and |ci| ≥ nreqd. S

Let:

p be the population size

R be the total number of resources

T be the total number of tests to exhaustively test the configurations

A be the mean articulation rate of the population,

and

 115

ρ be the fault articulation rate for a configuration, defined as follows:

 rr=ρ .A (6.2)

Additionally, the probability that a given configuration is affected by a single random

fault in any of the R resources is given by the resource redundancy ratio ρ.

Since the tests are independent of each other, and the results of the random tests follow a

binomial distribution, the probability that exactly n faults are observed in S tests is given

by:

 P(n) = (6.3) nSn

n
S −−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
)1(ρρ

Let the outcome x be defined as the number of the successes identified in S tests. A

success is when a fault is observed. The cumulative distribution function (cdf) denoted as

F(X) describes the probability that the outcome x ≤ X.

The cdf for x successes in S tests, where the probability of success is ρ, is given by:

 ∑
≤

=≤=
xx

i
i

xPxXPSxF)()(),;(ρ (6.4)

Various methods to approximate bounds for the cdf exist, notably when x < Sρ, the

Hoeffding’s inequality yields the upper bound:

 116

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
−≤

S
xSSxF

2)(
2
1exp),;(ρ
ρ

ρ (6.5)

Then, from Equation (7.2), the probability that a certain configuration is observed as

being faulty at least once over S tests on the population is given by the complementary

cumulative distribution function (ccdf), given by

 P(X ≥ x) =),;(1 ρSxF− (6.6)

Of particular interest is the probability that a particular configuration is observed as being

faulty at least once after S tests. This probability can be calculated by noting that the

probability that a certain configuration is selected for testing is (1/p). This modifies the

probability for success to (ρ/p) as compared to ρ earlier.

The probability that a particular configuration is observed as being faulty at least once

after S tests is therefore given by:

 P(X ≥ 1) = 1- F(1;S,(ρ/p)) (6.7)

and the upper bound is approximated as:

 =
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛ −
−≤

S
p

S

p
p

SF

2)1(

2

1exp),;1(

ρ

ρ
ρ (6.8)

 117

Let μ n be the mean number of tests for n different configurations to be identified as

faulty.

The mean number of tests before one configuration is identified as faulty is the mean of

the binomial distribution, defined as:

 μ 1= Sρ (6.9)

The mean of the number of tests required to identify another configuration as being faulty

is the sum of the mean time taken for one configuration to be identified as faulty, and the

mean of the number of tests where another configuration is paired with the faulty

configuration, or, itself articulates the fault, therefore:

 μ 2 = μ 1 + S

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

+

2

)1(
p

pρρ (6.10)

Further, since comparing a configuration to a faulty configuration will result in the

configuration being marked as Suspect, the probability that all the configurations are

marked as faulty is given by the probability that a faulty configuration is chosen, and all

the other configurations are chosen in turn to be paired with the faulty configuration.

The DES-56 implementation utilizes 304 slices and 191 bonded IOBs. Thus, for the fault

isolation experiments, the application resource demand, nreqd = 304. The total gate-

equivalent count for the design is 5266. The area under test on the FPGA can be varied

 118

by controlling the total resources, R, available for placing and routing the design. This

enables varying rr for the experiments. Initially, the DES-56 core was synthesized,

mapped, placed, and routed on the FPGA. This model was later modified using FIAT

according to the requirements of the AGT to form configurations and test stages. For

each of these configurations, a simulation executable was created using a testbench. The

inputs for the DES-56 circuits were obtained from the National Bureau of Standards

publication 500-20 [61]. These inputs comprehensively test the functionality of hardware

implementations of DES-56. Sixty of these inputs, representing a cross-section of the

NBS test suite were used to create the test bench.

6.2. Isolation Progress Across Test Stages in AGT

Figure 6.1 shows the progress of defect isolation across various stages for ppreset= 5 for

three different experimental runs. The best performance is seen in experiment 1, where

fault isolation is completed using 5 stages of tests. A total of 21 different configurations

were created to identify the single defective resource. In the first test stage, three

individuals were created, one of which utilized the fault-affected resource and articulated

the fault. Thus, at the end of stage 1, the number of suspect resources drops from 625 to

304. The two individuals in stage 1 that do not utilize the defective slice are the prime

realizations of the circuit which can provide fault-free implementations on demand.

Also, by the end of stage 1, | S | = 625–304 = 314 > nreqd, and thus, critical cardinality is

met. In stages 2, 3, and 4, five configurations each are created, as pstage = ppreset = 5.

Since the equal sharing method is used to create the configurations in each group, the

 119

number of suspect resources decreases by a factor of
⎥
⎥
⎥⎢

⎢
⎢ stagep

⎤⎡ S || in each stage. In the final

stage, since |S| = 3, only three configurations are created. The number of discrepant

outputs in all the tests is equal to the number of test stages since at the occurrence of the

first discrepant output, the creation of a new group of configurations is initiated.

625

61

13

1

304

3

1

10

100

1000

1 2 3 4 5 6 7 8
Test Stage

Su
sp

ec
t R

es
ou

rc
es

Experiment 1
Experiment 2
Experiment 3

Population Preset = 5

Figure 6.1: Fault Isolation Progress Across Stages for ppreset = 5

As shown in Figure 6.1, in the Experiment 2, no progress is made in the third stage of

testing, where the number of suspect resources remains at 61. This is due to the fact that

the individual utilizing the fault-affected resource does not articulate the fault, leading to

a stasis in the system. In stage 4, five new individuals replace the configurations in the

 120

population. In this stage, the configuration with the faulty resource articulates the fault,

leading to a decrease in the number of suspects. Similarly, in the third experiment, stasis

occurs in the fifth stage. This increases the number of stages to isolate the fault and the

total number of configurations created.

In the best performing experiment, five stages were required, and five tests with

discrepant outputs are observed before the defect is isolated. Even in the worst case, with

a test stage containing configurations that do not articulate the fault, only five

discrepancies are observed. Non-articulating individuals that use the faulty resource

increase the time taken to scour the defects, but do not affect the observed goodput. In

addition, in all these case, since rr < 0.5, the prime realization, as well as a non-suspect

set of resources with a cardinality greater than the critical cardinality are obtained after

the first discrepant test output.

6.3. Effect of Population Preset on Defect Scouring Rate

The scouring rate is directly proportional to the population preset, ppreset. Table 6.1 lists

the observed defect scouring performance for varying values of ppreset. A total of 15

experiments were conducted for each value of ppreset. The physical logical resource

overhead for the AGT-based technique can be varied by adjusting the resource

redundancy ratio, rr. In all these experiments, initially, |R| = 625. This value was chosen

as 252 = 625 yields a redundancy ratio rr = 304/625 = 0.49 ≈ 0.5. As the column labeled

M2 in Table II indicates, throughout the experiments, a subset of non-suspect resources,

with cardinality > nreqd, is identified after the first stage of testing. Similarly, from the S

 121

results for metric M3 in Table 6.1, it is shown that the prime realization, which provides a

fault-free replacement configuration, is consistently identified from within the first group

of configurations. The number of discrepant outputs, or positive tests required to isolate

the fault is the same as the number of stages, since the articulation of a fault will

immediately improve the scouring rate and trigger formation of the next stage of tests.

Table 6.1: Results from Experiments With Varying Population Preset Values

ppreset
Fault Resolution Metrics* Number of Stages Number of Configurations
M1 M2 M3 Best Worst Mean Best Worst Mean

5 5 1 1 5 7 5.53 21 31 23.67
10 4 1 1 4 5 4.27 27 37 29.67
15 3 1 1 3 4 3.20 35 38 35.47
20 3 1 1 3 4 3.13 39 59 42.73
25 3 1 1 3 4 3.13 41 66 44.27

* Fault Resolution Metrics:
M1: Number of observed discrepant outputs before the defective resource is isolated.
M2: Number of stages required to surpass critical cardinality for S .
M3: Number of stages required to identify the prime realization.

 122

304

61

13

3

11

625

13

1

10

100

1000

1 2 3 4 5
Test Stage

Su
sp

ec
t R

es
ou

rc
es

6

Population Preset = 5

Population Preset = 10

Population Preset = 15

Population Preset = 20

Population Preset = 25

Figure 6.2: Effect of Population Preset on the Scouring Rate

Figure 6.2 shows the best defect scouring performance of AGT for increasing values of

ppreset. Each curve depicts the size of the suspect pool, |S|, at the beginning of the test

stage depicted on the x-axis. For all values of ppreset , population size, pstage = 3 in the first

stage of testing, by Equation(6.7). In all other stages except the last stage, pstage = ppreset.

In the last stage, pstage is equal to the number of remaining suspect resources. The slope

of the curve is proportional to the defect scouring ratio, and it increases proportionately

with ppreset. Except in the initial and last stages, defect scouring proceeds at a logarithmic

rate, when the articulation rate for the configuration utilizing the defective resource is

non-zero. Most significantly, across all values of ppreset the defective is isolated with 5

or fewer positive tests. Assuming that the time taken to reconfigure the device is

insignificant when compared to the mean time between defects, the AGT-based method

 123

can tolerate faults with minimal loss of goodput, with ppreset = 5, which will require the

minimal number of reconfigurations.

The total number of configurations created in each of the five best performing

experiments are shown in Figure 6.3. As ppreset increases, the total number of

configurations increases. However, there is only two extra configurations are required

for ppreset = 25 as opposed to ppreset = 20. Figure 6.3 also shows the number of test stages

as a function of ppreset. With increasing ppreset , each stage reduces the number of suspects

by a factor proportional to the population size. Thus, with increasing ppreset, though a

decreased number of stages are required, the total number of configurations required is

increased.

21

27

35

39
41

5 4 4 3 3

0

5

10

15

20

25

30

35

40

45

5 10 15 20 25
Population Preset

N
um

be
r o

f C
on

fig
ur

at
io

ns
/S

ta
ge

s

Total Configurations Created
Total Test Stages

Figure 6.3: Total Test Stages and Configurations Created for Varying Population Presets

 124

6.4. Maintaining System Throughput During Fault Isolation

System goodput, defined as the percentage of useful outputs, can be maintained at a

pre-defined level throughout the fault isolation process using a feedback mechanism and

an observer-controller model. The system goodput decreases each time there is a

discrepant output – fault isolation will proceed faster with more frequent discrepancies.

Thus, the tradeoff involved in maintaining goodput is that fault isolation will proceed at a

slower rate.

Figure 6.4 shows the observed goodput as a function of the number of tests completed for

three different values of required goodput throughout the fault isolation process. In all

three experiments, the value used for the population present, ppreset = 5. In the first

experiment, the system-level goal is to maintain a goodput of 0.99. A discrepant output

is observed in the first ten tests, leading to a goodput of 0.90. Since this is lower than the

performance goal, the system responds by utilizing the fault-free configuration until the

goodput is restored to 0.99 by the hundredth test. Afterwards, the next stage of testing

proceeds. When the fault-affected configuration in the second stage articulates the fault,

the goodput drops to 0.982 by the 110th test. Again, the system waits for the goodput to

return to 0.99 before proceeding with conducting the third stage of tests. After 500 tests,

after five positive tests, fault isolation is complete. The observed goodput will then

continue to rise past 99%. In the second and third experiments, the goodput requirement

is 0.95, and 0.90 respectively. As seen in Figure 6.4, for experiment 3, the system

goodput never falls below 90% throughout the isolation process. After 10 tests, the

goodput falls to 0.90 and rises subsequently until the fault is isolated in 320 tests.

 125

0.88

0.9

0.92

0.94

0.96

0.98

1

0 50 100 150 200 250 300 350 400 450 500

Number of Tests

O
bs

er
ve

d
G

oo
dp

ut

Desired Goodput = 0.99
Desired Goodput = 0.95
Desired Goodput = 0.90

fault identified

Figure 6.4: System Goodput Vs. Total Number of Tests

The time taken to create the configurations and reconfigure the FPGA is not reflected in

the system goodput measurement. The goodput measured here is that of only the AGT-

controlled system. Since AGT verifies correct functional behavior using output response

analysis, it is essential to have an identical fault-free implementation of the same

functionality, which would provide the correct outputs to which the outputs of the AGT-

monitored configurations can be compared. Under a single-fault assumption, when the

portion of the FPGA monitored by the observer is being reconfigured, the system outputs

are provided by the other fault-free configuration.

Overall, the AGT-based autonomous method can isolate the single defective with a

minimal number of positive tests, as low as 3, as listed in Table 6.1. This result is made

 126

even more significant by the fact that this method avoids the use of exhaustive serial test

procedures. Of all the previous approaches in Table 2.1, the roving STARS approach is

the only comprehensive fault tolerance solution that isolates defects at a granularity lower

than 1% of the total resources on an FPGA. Compared to this approach, the AGT-based

technique has a minimal fault detection latency, and thus a higher expected goodput. In

addition, as shown by the experiments where the goodput is maintained at a pre-defined

value, the AGT algorithm can be used to build an autonomous fault tolerant solution that

accomplishes system-level goals.

 127

CHAPTER 7: CONCLUSION

This dissertation demonstrated the feasibility of an integrated approach to fault handling

in FPGAs. A population of alternatives, when combined with a competitive evolutionary

strategy, provides a framework that refurbishes fault-affected configurations. Group

testing-based fault isolation methods are presented. Based on a straightforward FPGA

model, an autonomous group-testing algorithm for runtime fault isolation that removes

the need for exhaustive test inputs and the need for the system to be taken offline is

developed. To this end, a discrepancy detector is designed for fault detection. In order to

demonstrate the flexibility of group testing techniques, a group testing-based technique

for identifying faulty FPGA embedded cores is also presented that highlights the utility of

group testing for exhaustive functional testing. FIAT, a fault analysis toolkit, is

developed to enable fault isolation experiments on FPGAs. Finally, an autonomous

group testing technique is demonstrated that maintains the system goodput at pre-defined

levels throughout the fault isolation process.

7.1. Graceful Degradation of Performance

In applications where the FPGA on which the application is deployed cannot be retrieved

for repair or replacement, graceful degradation of service is a highly desirable quality.

Deep-space deployment of FPGAs provides an example of such a scenario. In

deep-space, the probability of failures also increases due to the absence of a protective

atmosphere. In this high-ionizing radiation environment, multiple hardware faults

 128

induced by high-energy particles demand a fault tolerance implementation that can

ensure that the system remains available even in the presence of faults. While fast

recovery from faults is essential, certain applications might demand that the FPGA

continue to provide service, at reduced availability, as opposed to not providing any

service at all during the recovery process. A system that degrades gracefully as faults

appear should be able to handle faults while continuing to provide acceptable levels of

service. Through the elimination of additional test vectors and by using a temporal

assessment process based on aging and outlier identification, CRR provides a self-

regulating repair mechanism with reduced downtime which is also capable of such

graceful degradation.

With a limited pool of resources on an FPGA, sustainable fault handling is achieved only

when the available resources are recycled. Such resource recycling needs to leverage

residual functionality provided by defective resources. A LUT which has a stuck-at fault

at one of the input pins might still provide residual functionality. Section 3.8 shows that

such functionality can be leveraged by a system that measures performance by evaluating

the outputs to actual runtime inputs – as opposed to a system where the resources are

exhaustively tested using additional test vectors. As an example, an evolutionary

algorithm that relies on a fitness function-based evaluation of a configuration’s

performance might tolerate a LUT with a stuck-at fault at one input pin, if the faulty input

pin is not used by the configuration. A design in which the faulty four-input LUT is only

required to receive three-bit inputs will be identified as being fully-fit by an FPGA, but

will be precluded from use if the resources were to be tested exhaustively.

 129

7.2. Improving Evolutionary Repair using a Population of Alternatives

Two major improvements over a more conventional GA-based repair scheme are

observed. First, this dissertation provides evidence for a significant improvement in fault

handling capability by exploiting population diversity during all phases of the fault

handling process. By relying on the inherent information contained in a population of

alternatives, the approach improves on previous techniques for evolutionary fault

handling that have the objective of creating a single best-fit individual. In CRR, the

population of alternatives is classified into separate pools of relative operability, and all

individuals are refurbished over time with no one individual being preferred over others.

As opposed to previous approaches, the goal of CRR is to maintain a healthy population,

as opposed to creating one single individual that acts as the responder in the case of

faults. Secondly, GAs asymptotically approach the perfect configuration. With CRR,

these partially fit configurations provide an increased benefit. CRR’s competitive focus

automatically chooses the best performing configurations for a given input space.

A significant observation made during fault refurbishment experiments is that a system

that functions in a fully-fit manner can be realized using configurations that are not

themselves fully-fit. Individuals that perform best for the subset of inputs that are

observed provide high goodput even when they may not demonstrate ideal behavior for

the entire input space. As the subset of observed inputs change over time, alternate

partially-fit configurations may be identified that provide high quality service for the new

inputs. Such redundancy can occur at minimal physical resource overhead and is limited

by the storage space requirement and reconfiguration time. Interestingly, the dual-

 130

competition system presented in CRR can easily be extended to three competing modules

to provide a more traditional TMR system that can provide even higher quality of service

at the cost of the physical resources needed to implement an extra module.

7.3. Fast Fault Response using Group Testing

While the evolutionary algorithm excels at recycling resources and finding solutions that

may seem counter-intuitive, this comes at the cost of the time required to identify the

solution. This is where group testing-based isolation provides a direct benefit by fast

identification of the fault-affected resource. More importantly, by tracking the resource

allocation across configurations, this also provides alternative configurations to respond

to faults with minimal latency. The group testing-based fault isolation method presented

in this work demonstrates the capability for the fast isolation of logic faults, and, more

importantly, the ability to maintain the system’s availability and goodput throughout the

fault isolation process. For example, Section 6.6 shows how the AGT system maintains

the system goodput at 90%. This does not have to delay the speed with which a

functioning configuration is identified to respond to the fault. The experiments in Section

6.3 show that with as few as three discrepant outputs, the system identifies the faulty

resources for a DES implementation. Due to the use of multiple alternative

configurations that are designed in a way that minimizes the probability for all

configurations to be affected by the same hardware resource fault, a handy replacement

for guaranteed service is immediately available in case of a single fault.

 131

The versatility of group testing-based isolation is clearly demonstrated by the case study

where fault embedded cores in FPGAs were identified using BIST techniques. Group

testing techniques are also shown to suitable for exhaustive offline testing, and can

provide a significant improvement in fault isolation time over a more conventional BIST

approach as demonstrated. A 640 DSP core FPGA device is tested exhaustively with a

30% testing resource overhead in a single stage of tests that are designed using group

testing principles. An adaptive multi-stage group testing algorithm can provide fault

isolation for online FPGAs. This dissertation demonstrates viability, and the methods

presented here can be further enhanced and improved based on the specific system in

which they are implemented. For example, a group testing regimen can be developed for

TMR systems, and improvements to many other exhaustive testing are possible using

various group testing techniques that have already been analyzed and researched.

7.4. Future Work

While CRR is show to be capable of achieving refurbishment in combinational logic

circuits in Section 3.8, it remains to be seen if it can be extended to sequential logic

circuits. The challenge in extending the approach to sequential logic circuits is primarily

one of being able to formulate a strategy for evaluating the fitness of alternative designs.

For any sequential circuit of substantial size, the number of states of the circuit, and

transitions between the states make fitness evaluation challenging. A general strategy to

enable evolutionary repair of sequential circuits remains to be addressed. Also, CRR

provides coverage for only the logic resources. Though there are several approaches for

 132

tolerating faults in the interconnect resources, the choices are severely limited when it

comes to online isolation of such faults. Thus, the integration of interconnect-fault and

logic-fault handling strategies for online fault-handling remains a major challenge.

Partial reconfiguration in COTS FPGAs is currently hindered by severe limitations, and

support for partial reconfiguration is subjective at best. Currently, the time taken for

partial reconfiguration is a significant bottleneck in effecting repairs. The lack of well-

tested and supported APIs to reconfigure only a portion of the FPGA while keeping the

rest of the FPGA operational is also a major roadblock [62]. To realize fast online fault

handling, there is a need for more open standards and improved support for partial

reconfiguration. In commercial SRAM FPGAs there is a very high level of dependency

on the design tools provided by the manufacturer. With an open bitstream structure, and

more portable design tools, it may be possible in the future to instantiate evolutionary

algorithms within the design loop. Currently, due to the closed nature of the

configuration bitstream’s structure, one has to rely on the Xilinx tools to produce the

configuration bitstream, and it is almost impossible to produce and modify the bitstream

in a guaranteed fashion to achieve desired functional changes.

Finally, further enhancements can be made to FIAT, and FIAT can be used to analyze the

performance of alternative group testing strategies. Since it provides a set of tools for the

injection of faults, and to manage and track resource allocation across configurations, it

should serve as a useful tool for further experiments in FPGA fault tolerance. While this

dissertation provides a new paradigm for a hardware-in-the-loop online fault tolerance

 133

strategy, several alternative target technologies, such as software reliability tools, or

future nano-scale mechanisms can benefit from the same principles.

 134

REFERENCES

[1] J. Lohn, G. Larchev, and R. DeMara, "Evolutionary fault recovery in a Virtex
FPGA using a representation that incorporates routing," in Parallel and
Distributed Processing Symposium, 22-26 April 2003.

[2] J. Lohn, G. Larchev, and R. DeMara, "A Genetic Representation for Evolutionary
Fault Recovery in Virtex FPGAs," Evolvable Systems: From Biology to
Hardware, 5th Intl. Conf.(ICES 2003), pp. 47–56, 2003.

[3] D. Keymeulen, R. S. Zebulum, Y. Jin, and A. Stoica, "Fault-tolerant evolvable
hardware using field-programmable transistor arrays," Reliability, IEEE
Transactions on, vol. 49, pp. 305-316, 2000.

[4] J. M. Perotti, A. R. Lucena, P. J. Medelius, C. T. Mata, B. M. Burns, and A. J.
Eckhoff, "Advanced Data Acquisition Systems " KSC Research & Technology
2002 Annual Report, 2002.

[5] D. P. Siewiorek and R. S. Swarz, The theory and practice of reliable system
design: Digital Press, 1982.

[6] A. Matrosova, V. Ostrovsky, I. Levin, and K. Nikitin, "Designing FPGA based
self-testing checkers for m-out-of-n codes," On-Line Testing Symposium, 2003.
IOLTS 2003. 9th IEEE, pp. 49-53, 2003.

[7] E. J. McCluskey, "Design Techniques for Testable Embedded Error Checkers,"
Computer, vol. 23, pp. 84-88, 1990.

[8] J. C. Laprie, "Dependable Computing: Concepts, Limits, Challenges," Special
Issue of the 25th International Symposium On Fault-Tolerant Computing, pp. 42-
54.

[9] F. MacWilliams and N. Sloan, "The Theory of Error Correcting Codes." vol. 16:
North-Holland, New York, 1977.

 135

[10] M. Garvie and A. Thompson, "Scrubbing away transients and jiggling around the
permanent: long survival of FPGA systems through evolutionary self-repair," On-
Line Testing Symposium, 2004. IOLTS 2004. Proceedings. 10th IEEE
International, pp. 155-160, 2004.

[11] R. Dorfman, "The Detection of Defective Members of Large Populations," The
Annals of Mathematical Statistics, vol. 14, pp. 436-440, 1943.

[12] D. Du and F. Hwang, Combinatorial group testing and its applications: World
Scientific River Edge, NJ, 1993.

[13] H. Q. Ngo and D. Z. Du, "A survey on combinatorial group testing algorithms
with applications to DNA library screening," Discrete Mathematical Problems
with Medical Applications, pp. 171–182, 2000.

[14] A. B. Kahng and S. Reda, "Combinatorial Group Testing Methods for the BIST
Diagnosis Problem," Proceedings of Asia and South Pacific Design Automation
Conference, January 2004.

[15] J. A. Cheatham, J. M. Emmert, and S. Baumgart, "A survey of fault tolerant
methodologies for FPGAs," ACM Transactions on Design Automation of
Electronic Systems (TODAES), vol. 11, pp. 501-533, 2006.

[16] A. Doumar and H. Ito, "Detecting, diagnosing, and tolerating faults in SRAM-
based field programmable gate arrays: a survey," IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 11, pp. 386 - 405, June 2003.

[17] W.-J. Huang and E. J. McCluskey, "Column-Based Precompiled Configuration
Techniques for FPGA," in The 9th Annual IEEE Symposium on Field-
Programmable Custom Computing Machines (FCCM'01), 2001, pp. 137-146.

[18] D. Keymeulen, R. S. Zebulum, Y. Jin, and A. Stoica, "Fault-Tolerant Evolvable
Hardware Using Field-Programmable Transistor Arrays," IEEE Transactions On
Reliability, vol. 49, September 2000.

[19] J. Lach, W. H. Mangione-Smith, and M. Potkonjak, "Low overhead fault-tolerant
FPGA systems," Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 6, pp. 212-221, 1998.

 136

[20] S. Dutt, V. Shanmugavel, and S. Trimberger, "Efficient incremental rerouting for
fault reconfiguration in field programmable gate arrays," International
Conference on Computer Aided Design: Proceedings of the 1999 IEEE/ACM
international conference on Computer-aided design, vol. 7, pp. 173-177, 1999.

[21] V. Lakamraju and R. Tessier, "Tolerating operational faults in cluster-based
FPGAs," Proceedings of the 2000 ACM/SIGDA eighth international symposium
on Field programmable gate arrays, pp. 187-194, 2000.

[22] M. Garvie and A. Thompson, "Scrubbing away transients and Jiggling around the
permanent: Long survival of FPGA Systems through evolutionary self-repair," in
10th IEEE International On-Line Testing Symposium, Funchal, Madeira Island,
Portugal, July 12-14, 2004.

[23] C. J. Milliord, C. A. Sharma, and R. F. DeMara, "Dynamic Voting Schemes to
Enhance Evolutionary Repair in Reconfigurable Logic Devices," Proceedings of
the 2005 International Conference on Reconfigurable Computing and FPGAs
(ReConFig'05) on Reconfigurable Computing and FPGAs, 2005.

[24] R. S. Oreifej, C. A. Sharma, and R. F. DeMara, "Expediting GA-Based Evolution
Using Group Testing Techniques for Reconfigurable Hardware," proc.
International Conference on Reconfigurable Computing and FPGAs
(Reconfig'06), San Luis Potosi, Mexico, pp. 106-113, 2006.

[25] J. M. Emmert and D. K. Bhatia, "A Fault Tolerant Technique for FPGAs,"
Journal of Electronic Testing, vol. 16, pp. 591-606, 2000.

[26] R. Ross and R. Hall, "A FPGA Simulation Using Asexual Genetic Algorithms for
Integrated Self-Repair," Proceedings of the first NASA/ESA conference on
Adaptive Hardware and Systems, pp. 301-304, 2006.

[27] A. P. Shanthi and R. Parthasarathi, "Exploring FPGA structures for evolving fault
tolerant hardware," in 2003 NASA/DoD Conference on Evolvable Hardware,
Chicago, Illinois, 9-11 July 2003, pp. 174 - 181.

[28] J. M. Emmert, C. E. Stroud, and M. Abramovici, "Online Fault Tolerance for
FPGA Logic Blocks," Very Large Scale Integration (VLSI) Systems, IEEE
Transactions on, vol. 15, pp. 216-226, 2007.

 137

[29] M. Abramovici, J. M. Emmert, and C. E. Stroud, "Roving STARs: An Integrated
Approach to On-Line Testing, Diagnosis, and Fault Tolerance for FPGAs in
Adaptive Computing Systems," Proc. Third NASA/DoD Workshop on Evolvable
Hardware, pp. 73-92, 2001.

[30] S. Vigander, "Evolutionary Fault Repair in Space Applications," in Dep. of
Computer & Information Science. vol. Masters Thesis Trondheim: Norwegian
University of Science and Technology (NTNU), 2001.

[31] P. Layzell and A. Thompson, "Understanding Inherent Qualities of Evolved
Circuits: Evolutionary History as a Predictor of Fault Tolerance," Proceedings of
Third Int. Conf. on Evolvable System (ICES2000, vol. 1801, pp. 133-142.

[32] X. Yao, Y. Liu, and P. Darwen, "How to make best use of evolutionary learning,"
Complex Systems: From Local Interactions to Global Phenomena, pp. 229–242,
1996.

[33] X. Yao and Y. Liu, "Making use of population information in evolutionary
artificialneural networks," Systems, Man and Cybernetics, Part B, IEEE
Transactions on, vol. 28, pp. 417-425, 1998.

[34] X. Yao and Y. Liu, "Getting most out of evolutionary approaches," Evolvable
Hardware, 2002. Proceedings. NASA/DoD Conference on, pp. 8-14, 2002.

[35] B. Bridgford, C. Carmichael, and C. W. Tseng, "Correcting Single-Event Upsets
in Virtex-II Platform FPGA Configuration Memory," Xilinx Application Note
XAPP197, 2007.

[36] C. H. Carmichael and P. E. Brinkley Jr, "Techniques for mitigating, detecting, and
correcting single event upset effects in systems using SRAM-based field
programmable gate arrays," Google Patents, 2007.

[37] C. Carmichael, M. Caffrey, and A. Salazar, "Correcting Single-Event Upsets
Through Virtex Partial Configuration," Xilinx Application Notes, vol. 216, 2000.

[38] P. J. Rousseuw and A. M. Leroy, "Robust Regression and Outlier Detection,"
New York: Jon Wiley & Sons Inc, 1987.

 138

[39] P. Flajolet, D. Gardy, and L. Thimonier, "Birthday paradox, coupon collectors,
caching algorithms and self-organizing search," Discrete Applied Mathematics,
vol. 39, pp. 207-229, 1992.

[40] D. C. Hoaglin and R. E. Welsch, "The Hat Matrix in Regression and ANOVA,"
The American Statistician, vol. 32, pp. 17-22, 1978.

[41] H. V. Henderson and P. F. Velleman, "Building Multiple Regression Models
Interactively," Biometrics, vol. 37, pp. 391-411, 1981.

[42] J. F. Miller, P. Thomson, and T. Fogarty., "Designing Electronic Circuits Using
Evolutionary Algorithms. Arithmetic Circuits: A Case Study," in Algorithms and
Evolution Strategy in Engineering and Computer Science, D. Quagliarella, J.
Periaux, C. Poloni, and G. Winter, Eds. Chichester, England, 1998, pp. 105-131.

[43] D. Du and F. Hwang, Combinatorial Group Testing and Its Applications: World
Scientific, 2000.

[44] Xilinx, "Virtex-II Platform FPGAs: Complete Data Sheet," DS031, v3, vol. 4.

[45] S. Douglass, "Introducing the Virtex-5 FPGA Family," Xcell Journal, Xilinx, pp.
8-11, 2006.

[46] S. K. Jain and C. E. Stroud, "Built-in Self Testing of Embedded Memories," IEEE
Design & Test of Computers, vol. 3, pp. 27-37, 1986.

[47] P. Camurati, P. Prinetto, M. S. Reorda, S. Barbagallo, A. Burri, and D. Medina,
"Industrial BIST of embedded RAMs," Design & Test of Computers, IEEE, vol.
12, 1995.

[48] C. Stroud, S. Konala, P. Chen, and M. Abramovici, "Built-In Self-Test of Logic
Blocks in FPGAs," in VLSI Test Symposium Princeton, NJ, pp. 387-392.

[49] M. Abramovici and C. E. Stroud, "BIST-based test and diagnosis of FPGA logic
blocks," Very Large Scale Integration (VLSI) Systems, IEEE Transactions on, vol.
9, pp. 159-172, 2001.

 139

[50] E. Atoofian and Z. Navabi, "A BIST Architecture for FPGA Look-Up Table
Testing Reduces Reconfigurations," Proceedings of the 12th Asian Test
Symposium, pp. 84-89, 2003.

[51] J. Liu and S. Simmons, "BIST-diagnosis of interconnect fault locations in
FPGA's," Electrical and Computer Engineering, 2003. IEEE CCECE 2003.
Canadian Conference on, vol. 1, 2003.

[52] C. Stroud and S. Garimella, "Built-In Self-Test AND Diagnosis OF Multiple
Embedded Cores IN So Cs," Proceedings of The 2005 International Conference
on Embedded Systems and Applications, pp. 130-136.

[53] S. Garimella and C. Stroud, "A system for automated built-in self-test of
embedded memory cores in system-on-chip," System Theory, 2005. SSST'05.
Proceedings of the Thirty-Seventh Southeastern Symposium on, pp. 50-54, 2005.

[54] M. Renovell, J. M. Portal, J. Figueras, and Y. Zorian, "SRAM-Based FPGAs:
Testing the Embedded RAM Modules," Journal of Electronic Testing, vol. 14, pp.
159-167, 1999.

[55] A. J. Van De Goor, "Using march tests to test SRAMs," IEEE Design & Test of
Computers, vol. 10, pp. 8-14, 1993.

[56] Xilinx, "Spartan-3A DSP FPGA Family: Complete Data Sheet," DS610,
http://www. datasheetcatalog. com, 2007.

[57] A. Sarvi and J. Fan, "Automated BIST-based diagnostic solution for SOPC,"
Design and Test of Integrated Systems in Nanoscale Technology, 2006. DTIS
2006. International Conference on, pp. 263-267, 2006.

[58] R. S. Oreifej, C. A. Sharma, and R. F. DeMara, "Expediting GA-Based Evolution
Using Group Testing Techniques for Reconfigurable Hardware," Proceedings of
the International Conference on Reconfigurable Computing and FPGAs
(Reconfig'06), San Luis Potosi, Mexico, pp. 106-113, 2006.

[59] Xilinx, "Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data Sheet,
Version 4.6," Publication Number DS083, 2006.

 140

 141

[60] R. N. Al-Haddad, C. A. Sharma, and R. F. DeMara, "Performance Evaluation of
Two Allocation Schemes for Combinatorial Group Testing Fault Isolation
Method," in IEEE International Conference on Reconfigurable Computing and
FPGAs (ReConfig '06) San Luis Potosi, Mexico, pp. 106-113.

[61] J. Gait, "Validating the Correctness of Hardware Implementations of the NBS
Data Encryption Standard," NBS Special Publication 500-20, November 1977.

[62] H. Tan and R. F. DeMara, "A Multi-layer Framework Supporting Autonomous
Runtime Partial Reconfiguration."

	CHAPTER 1: INTRODUCTION
	1.1. Need for Evolvable Hardware Regeneration Methods and Group Testing-based Fault Diagnosis
	1.2. Fault Handling in Reconfigurable Devices
	1.3. Individual and Population-Centric Fault Assessment
	1.4. Group Testing Techniques and Applications to Fault Tolerance
	1.5. Contributions of this Dissertation

	CHAPTER 2: PREVIOUS WORK
	2.1. Taxonomy and Nomenclature of FPGA Fault Tolerance Techniques
	2.2. Static Run-time Fault Handling Methods
	2.3. Dynamic Run-time Fault Handling Methods
	2.3.1. Offline Recovery Methods
	2.3.1.1. Genetic Algorithm Repair
	2.3.1.2. Augmented Genetic Algorithm Repair
	2.3.1.3. Incremental Rerouting Algorithms

	2.3.2. Online Recovery Methods
	2.3.2.1. TMR with Single-Module Repair
	2.3.2.2. Online Built-in Self Test
	2.3.2.3. Consensus-based Evaluation of Competing Configurations

	2.4. Fault Detection and Location using Exhaustive Testing Techniques
	2.5. Forming a Robust Consensus from Diversity
	2.6. Improving Reliability using Autonomous Group Testing

	CHAPTER 3: COMPETITIVE RUNTIME RECONFIGURATION FAULT HANDLING PARADIGM
	3.1. Detecting Faults using a Population of Alternatives
	3.2. Assessing Individual Fitness and Managing Fitness States
	3.3. Strategic Prioritization of Individuals for Assessment and Refurbishment
	3.4. Determination of Evaluation Window
	3.5. Identifying Outliers using the Sliding Window Technique
	3.6. Outlier Detection and Fault Isolation Performance with Runtime Inputs
	3.7. Feed-Forward FPGA Circuit Representation Model
	3.8. Refurbishment of a Unique Failed Configuration – 3-bit×3-bit Multiplier Case Study

	CHAPTER 4: FAULT ISOLATION USING GROUP TESTING
	4.1. Motivating Example and Problem Definition
	4.2. Fault Isolation by Discrepancy-Enabled Repetitive pairing
	4.3. Designing a Discrepancy Mirror – Case Study
	4.3.1. Selection Phase
	4.3.2. Detection Phase
	4.3.3. The Preference Adjustment Process

	4.4. Analysis of Fault Isolation with a Simplified Articulation Model
	4.5. Fault Isolation using Halving and Column-Swapping
	4.6. Isolating Embedded Cores using Group Testing
	4.6.1. BIST-based Testing of Embedded FPGA Cores
	4.6.2. Enhancing Embedded Core BIST using Group Testing Techniques
	4.6.3. Embedded Core Fault Isolation Experiments on Virtex-5 FPGAs

	4.7. Improving GA Performance Using CGT

	CHAPTER 5: LOGIC ELEMENT ISOLATION USING AUTONOMOUS GROUP TESTING
	5.1. Terminology and Nomenclature for Analysis of Autonomous Group Testing Techniques
	5.2. Autonomous Group Testing Algorithm Overview
	5.3. Tracking Defectives Using the History Matrix
	5.4. The Equal Sharing Test Group Formation Strategy
	5.5. Adapting the Population Size for Optimal Resource Coverage
	5.6. Overcoming Stasis During Isolation
	5.7. Walkthrough of Isolation Process
	5.8. The Fault Isolation and Analysis Toolkit for Xilinx FPGAs
	5.9. Creating and Modifying Alternatives with FIAT

	CHAPTER 6: CHARACTERISTICS, CAPABILITIES, AND METRICS FOR SUSTAINABILITY
	6.1. Experimental Configuration for the Xilinx Virtex II Pro FPGA
	6.2. Isolation Progress Across Test Stages in AGT
	6.3. Effect of Population Preset on Defect Scouring Rate
	6.4. Maintaining System Throughput During Fault Isolation

	CHAPTER 7: CONCLUSION
	7.1. Graceful Degradation of Performance
	7.2. Improving Evolutionary Repair using a Population of Alternatives
	7.3. Fast Fault Response using Group Testing
	7.4. Future Work

