
ENERGY-EFFICIENT SIGNAL CONVERSION AND IN-MEMORY COMPUTING USING
EMERGING SPIN-BASED DEVICES

by

SOHEIL SALEHI MOBARAKEH
M.S. University of Central Florida, 2016

B.S. Isfahan University of Technology, 2014

A dissertation submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Spring Term
2020

Major Professor: Ronald F. DeMara



© 2020 SOHEIL SALEHI MOBARAKEH

ii



ABSTRACT

New approaches are sought to maximize the signal sensing and reconstruction performance of

Internet-of-Things (IoT) devices while reducing their dynamic and leakage energy consumption.

Recently, Compressive Sensing (CS) has been proposed as a technique aimed at reducing the num-

ber of samples taken per frame to decrease energy, storage, and data transmission overheads. CS

can be used to sample spectrally-sparse wide-band signals close to the information rate rather than

the Nyquist rate, which can alleviate the high cost of hardware performing sampling in low-duty

IoT applications. In my dissertation, I am focusing mainly on the adaptive signal acquisition and

conversion circuits utilizing spin-based devices to achieve a highly-favorable range of accuracy,

bandwidth, miniaturization, and energy trade-offs while co-designing the CS algorithms. The use

of such approaches specifically targets new classes of Analog to Digital Converter (ADC) designs

providing Sampling Rate (SR) and Quantization Resolution (QR) adapted during the acquisition

by a cross-layer strategy considering both signal and hardware-specific constraints. Extending

CS and Non-uniform CS (NCS) methods using emerging devices is highly desirable. Among

promising devices, the 2014 ITRS Magnetism Roadmap identifies nanomagnetic devices as ca-

pable post-CMOS candidates, of which Magnetic Tunnel Junctions (MTJs) are reaching broader

commercialization. Thus, my doctoral research topic is well-motivated by the established aims

of academia and industry. Furthermore, the benefits of alternatives to von-Neumann architectures

are sought for emerging applications such as IoT and hardware-aware intelligent edge devices, as

well as the application of spintronics for neuromorphic processing. Thus, in my doctoral research,

I have also focused on realizing post-fabrication adaptation, which is ubiquitous in post-Moore

approaches, as well as mission-critical, IoT, and neuromorphic applications.
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CHAPTER 1: INTRODUCTION AND MOTIVATION1

Internet of Things (IoT) utilizes autonomous and trustworthy ambient-powered devices with small

area footprints, which provide intermittent operations and low-power data acquisition and process-

ing capabilities while maintaining a low maintenance cost. In particular, achieving low-power,

high-reliability, and high-performance data acquisition and processing is of utmost importance

within IoT applications due to the limited energy budget and challenges caused by the device scal-

ing [8, 23, 24].

Furthremore, Compressive Sensing (CS) methods aim to maximize signal sensing and reconstruc-

tion performance while reducing energy consumption for IoT applications. The goal of CS meth-

ods are to reduce the number of samples per frame in order to decrease energy consumption,

storage requirements, and data transmission overheads. However, CS techniques are mostly de-

signed and implemented oblivious to specifics and limitations of hardware platform that performs

the sampling operation. Moreover, in the rate and resolution trade-off within CS approaches, both

signal dependent constraints, such as sparsity rate and noise levels, and hardware dependent con-

straints, such as energy budget, bandwidth, and battery capacity, play an important role. Moreover,

in any practical scenario, sensing operations are required to maximize the sensing performance

by satisfying energy and bandwidth constraints. Additionally, in real-world applications, signals

may contain a Region of Interest (RoI) and uniform sampling will not be efficient given the fact

that signal’s sparsity may be non-uniform. Thus, cornerstone to achieving high-accuracy and ef-

ficient CS is utilization of an adaptive measurement matrix that changes according to the signal

characteristics that are extracted from the observations of the signal components in the previous

time frames.

1©IEEE. Part of this chapter is reprinted, with permission, from [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 22]
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On the hardware side, Von-Neumann architectures have been facing challenges such as increased

static energy consumption, large access latencies, and, limited scalability. Recently, researchers

have focused on in-memory computing paradigms by utilizing non-volatile spin-based devices to

realize non-Von-Neumann architectures. Additionally, there is an increasing demand for energy-

and area-efficient Analog to Digital Converters (ADCs) in IoT applications, especially for applica-

tions such as image processing where each pixel sensor requires a compact ADC. However, inte-

grating CMOS ADCs in sensor nodes is challenging due to the large area of analog CMOS-based

circuits. Additionally, increased static energy consumption and increased reliability challenges due

to high process variations in scaled technology nodes, exacerbates these challenges.

Thus, there is a need for low-complexity, ultra-low-power circuits for signal conversion for IoT

applications. Furthermore, there is a demand for CS solutions that consider hardware constraints

and signal constraints for IoT intelligent sampling and edge processing. As shown in Figure 1.1,

the primary motivation of my research is to find an answer to the question of “How can spin-based

devices assist Compressive Sensing within IoT Applications?”

Figure 1.1: Research Motivation.
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Figure 1.2: Research Objectives (ROs) context diagram.

Herein, the aforementioned challenges have been studies and the following Research Questions

(RQs) are designed to address them. Furthermore, for each of the RQs, Research Objectives (ROs)

are defined to provide answers to the RQs. Figure 1.2 illustrates the context diagram of the research

objectives that are addressed within this document.

• RQ#1: How can spin-based devices advance compressive sensing?

– RO#1: Integrate adaptive Compressive Sensing techniques with beyond-CMOS hard-

ware to minimize overall cost of data acquisition and processing

• RQ#2: How can spin-based devices advance beyond Von-Neumann architectures with intel-

ligent signal conversion and processing?

– RO#2: Devise a framework for signal acquisition, conversion, and edge processing in

IoT where energy and area are significantly constrained
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1.1 Need for Reliable and Energy-Efficient Nanoscale Computing Architectures

As technology scales down along with increased demands of greater on-chip integration for larger

memory capacities, researchers and designers have responded to the resulting fabrication and op-

erational challenges by embracing new device technologies along with new memory cell designs

which leverage their unique advantages. A collection of innovative methods has been developed to

increase their reliability and performance.

In addition to addressing scalability to technologies beyond 10nm where traditional memory ele-

ments such as Static Random Access Memory (SRAM) and Dynamic Random Access Memory

(DRAM) face significant scaling challenges [25, 26], innovations to mitigate the power wall and

reduce leakage power consumption occupy the forefront of on-chip memory design considerations

[24, 27]. Power consumed by memory elements can become a significant portion of total power in

active modes whereby the processing cores [28, 29] rely on these memory arrays that are signifi-

cant contributors to standby mode power consumption. These concerns motivate the research into

balancing energy and reliability effectively.

To attain these goals and deliver the necessary operational characteristics, emerging memory

devices such as Resistive RAM (RRAM), Phase Change Memory (PCM), and Magnetic RAM

(MRAM) offer several potential advantages. Among promising devices, the 2014 ITRS Magnetism

Roadmap identifies nanomagnetic devices such as Spin-Transfer Torque Magnetic Random Ac-

cess Memory (STT-MRAM), as capable post-CMOS candidates, of which Nano Magnetic Logic

(NML), Domain Wall Motion (DWM), Spin-Transfer Torque (STT)-MTJ/Spin Hall Effect (SHE)-

MTJ [30, 31, 32] whose attributes are depicted in Figure 1.3. Additionally, emerging devices such

as Quantum Cellular Automata (QCA) [33, 34, 35] logic designs have demonstrated performance

improvements. However, herein, we focus on the MTJ devices due to their commercial availabil-

ity. STT-MRAM can offer low read access time, near-zero standby power consumption, and small
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area requirement. STT-MRAM also offers integration with backend CMOS processes. To em-

brace their adoption in anticipated applications, a palette of cooperating reliability techniques is

identified and compared at the bit-cell level.

Figure 1.3: Advantages and reliability challenges of STT-MRAM. [1]

1.1.1 Need for Reliable and Energy-Efficient Sense Amplifiers

High reliability and energy efficient switching of STT-based devices is highly sought and active

area of emerging device research. Thus, we examine improvements to the Sense Amplifier (SA)

design which can achieve both of these objectives on a continuum of energy versus reliability trade-

offs. Due to increase in process variation as technology shrinks, STT memory cell reliability has

become a significant concern in high density memory arrays and cache designs. While a collection

of innovative methods have been previously proposed to increase reliability and performance, each

incurs costs and challenges which may lead to a sub-optimal performance profile. Of particular

urgency is the need to reduce the effects of device mismatch and variation due to scaling of the

devices, especially with respect to the use of different SAs.
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1.1.2 Reliable and High-Performance Last Level Cache Design

Complimentary Metal Oxide Semiconductor (CMOS) device scaling continues to increase the need

to identify viable approaches for reducing leakage power. An alternative to CMOS-based mem-

ory devices is offered by emerging technology memory devices that contribute inherent features

of Non-Volatile Memory (NVM) capabilities. With attributes of non-volatility, near-zero standby

energy, and high density, Spin Transfer Torque Magnetic RAM (STT-MRAM) has emerged as

a promising alternative post-CMOS technology for embedded memory applications. In order to

practically implement these NVMs, various techniques to mitigate the specific reliability chal-

lenges associated with STT-MRAM elements are surveyed, classified, and assessed in [1]. In [1],

we identified various solutions to the reliability issues within a taxonomy of current and future

approaches to reliable STT-MRAM designs.

Despite the range of approaches available to mitigate Process Variation (PV), it remains as one of

the most negatively influential factors impacting STT-MRAM technology performance from the

perspectives of delay and energy consumption [1]. Furthermore, the Sense Margin (SM), which is

an important parameter of the tolerance in sensing the resistive state of emerging NVM devices,

varies considerably in the presence of PV of the devices which comprise the bit-cell and their

associated sensing circuits [1]. SM is also known as the difference between bit-line voltage and

reference voltage. These variations may then result in erroneous data sensing operations, read

disturbance, readability degradation at scaled technology nodes, and retention failure [1]. These

reliability issues have increased the demand for designing advanced low-power approaches with

reliable sensing circuits to mitigate and leverage PV for improved performance and reliability of

NVMs, including increasing the SM and finding the optimum read current and latency [1].

Using NVM can increase energy efficiency via a significant reduction in leakage energy. How-

ever, effects of Process Variation (PV) still put a limit on the scalability and applicability of NVM
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devices. PV mainly impacts the CMOS peripheral circuits [24] and emerging technology NVM

elements such as Magnetic Tunnel Junction (MTJ) devices [10]. Effects of PV on MTJ devices

manifests itself as variation in oxide thickness and MTJ geometry, which in turn results in devi-

ations of MTJ resistance and severe fluctuations of the Sense Margin (SM), resulting in possible

false detection scenarios and increased bit error rates [36, 37]. Furthermore, PV negatively im-

pacts the performance consistency of memory operation, since the threshold voltage, Vth, and gate

length, Leff , of CMOS peripheral circuit fluctuates in presence of PV, which result in read and

write delays, driving current variations, and increased energy consumption [38]. Additionally, a

survey of reliability challenges and mitigation techniques for emerging NVM elements is presented

in [1]. As a result of PV impacts and the performance limitation it dictates on NVMs, there ex-

ists an increased demand for advanced reliable and energy-efficient read and write circuits, which

can be integrated into PV-resilient system architectures to provide high performance NVMs with

reliable read and write operations.

The work herein proposes a novel approach for read and write operations of emerging NVMs

used as Last Level Cache (LLC). One of the main focuses of this dissertation is on increasing

the energy-efficiency and reliability of the read operation in STT-/SHE-MRAM and is motivated

by the observation that in the PARSEC suite [39] using STT-/SHE-MRAM-based LLC and in the

presence of PV, approximately 27.5% of the sensed data has the potential to be read incorrectly.

However, out of 27.5%, roughly 21% of the incorrectly sensed data requires to be handled since

up to 6% of the incorrectly sensed data on average will be overwritten prior to being used by the

processor or to be committed to the main memory. Additionally, such a significant percentage

of incorrect data sensing requires close attention before they cause wrong outputs, application

crashes, or prolonged program executions [29].

In order to improve the reliability of the read operation based on the aforementioned observations,

we propose a circuit-architecture cross-layer solution suitable for multi-core processors as well
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as Internet of Things (IoT) devices. Our proposed technique, referred to as Self-Organized Sub-

bank (SOS), partitions STT-/SHE-MRAM data arrays into several sub-banks to directly access the

requested data while introducing individualized sensing resolution. In our proposed approach, two

Sense Amplifiers (SAs) are assigned to sub-banks, one energy-efficient SA and one high-resilient

SA. Initially during an evaluation phase each sub-banks is evaluated using a Power-On Self-Test

(POST) and then a preferred SA will be assigned to each sub-bank based on the results of the

POST. Our results indicate that SOS increases reliability of read operations, which in turn reduces

fault propagation, as well as reducing the risk of contaminating the application’s data structure.

1.1.3 Need for Reliable and Energy-Efficient Write Circuits

Another focus of this dissertation is on increasing energy efficiency and reliability of write opera-

tions in STT-MRAM and is motivated by the observation that the STT switching technique suffers

from high dynamic energy consumption [40]. SHE-MTJ has been recently studied as an energy-

efficient alternative for STT-MTJ due to its improved performance. Several write circuits have

been studied in recent years in order to achieve optimum energy while maintaining high reliability.

Herein, we explore SHE-MTJ write circuits and compared those with conventional STT-MTJ write

circuits in terms of performance and reliability. Furthermore, a high-resilient write circuit as well

as an energy-efficient write circuit are selected in order to be utilized in the SOS approach for fur-

ther performance and reliability improvements of SHE-MRAM. In particular, the SOS approach

is implemented once with the high-resilient write circuit and once with the energy-efficient write

circuit.

Our results indicate that the energy-efficient write circuit provides significant energy and delay

improvements over the conventional STT-MTJ write circuit and high-resilient SHE-MTJ write cir-

cuit. On the other hand, the high-resilient write circuit for SHE-MTJ offers reliability improvement
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over the energy-efficient SHE-MTJ write circuit.

1.1.4 Need for Reliable and Energy-Efficient Non-Volatile SRAM

Spin-based devices have been extensively researched as promising companions to Complimentary

Metal on Oxide Semiconductor (CMOS) devices. As CMOS scaling trends continue, the need to

identify viable approaches for reducing leakage power increases [26]. Especially, the increase of

leakage power in normally-off computing applications and sleep power critical systems, such as

mobile System-on-Chips and Internet of Things (IoT), has become a major challenge [17, 41, 42,

43, 44, 45, 46, 47, 48, 49].

Several approaches, such as Dynamic Voltage Scaling (DVS) [50], multiple threshold voltage lev-

els [51], and Power Gating (PG) [52], have been utilized to address the high-leakage power dissipa-

tion of highly-scaled CMOS devices. Conventional PG is one of the most widely-used approaches

where parts of the system will be turned off when there are no activities taking place in those parts.

In other words, when parts of the system are going into stand-by mode, the power supply to those

parts will be cut-off in order to reduce the power dissipation. A commonly-used method regarding

PG approaches for normally-off computing applications and sleep power critical systems, is utiliz-

ing two-macro architecture. In two-macro architectures, a volatile memory, such as Static Random

Access Memory (SRAM), is accompanied by a Non-Volatile Memory (NVM), such as FLASH,

and whenever the SRAM device is going to stand-by mode, the data will be stored in the NVM and

then stand-by mode will be activated via PG approach [17, 42]. Consequently, when the volatile

memory returns to its normal operation, the data stored in NVM will be restored to the volatile

memory and then normal operation will be resumed.

Despite the advantages that the two-macro architecture offers, such as reduced NVM accesses and

considering endurance criteria for NVM devices, one of the major drawbacks of the two-macro
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approach is the data transfer between the volatile memory and NVM, which induces a significant

data restoration delay and dynamic power dissipation overheads. Additionally, in case of a power

failure, long restoration delay might incur data loss and reliability challenges.

Recently, researchers have proposed a one-macro architecture, where the NVM device is integrated

within each volatile memory cell [17, 41, 42, 43, 44, 45, 46, 47, 48, 49]. This will enable fast and

more energy-efficient back-up and restore operations. Recently, a significant amount of research

is done on integration of SRAM-based volatile memory with emerging NVM devices, such as

Resistive RAM (RRAM), Phase Change Memory (PCM), Spin Transfer Torque Magnetic RAM

(STT-MRAM), and Spin-Hall Effect Magnetic RAM (SHE-MRAM) [17, 41, 42, 43, 44, 45, 46,

47, 48, 49]. SRAM devices offer a compact on-chip storage that utilizes a low minimum supply

voltage and provides fast read and write operations. However, the volatile nature and high leakage

power dissipation of SRAM devices have become a major challenge. On the other hand, the

emerging NVMs offer zero leakage power dissipation, which can increase energy efficiency via

a significant reduction in static power consumption and leakage energy consumption [2, 15, 53].

This has provided the opportunity to integrate the two types of memories in an approach which is

widely known as Non-Volatile SRAM (NV-SRAM).

SRAM devices have very fast read/write access times and relatively low dynamic energy require-

ments, but their disadvantages include volatility and substantial static operating current draws.

SHE-MRAM devices are non-volatile and have the potential for very low static energy require-

ments, but their write energy demands exceed that of SRAM. We seek to leverage the comple-

mentary nature of these two technologies by integrating them into parallel SRAM/SHE-MRAM

bit-cell devices.
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1.2 Transition from Memory to In-Memory Computing

1.2.1 Need for Reliable and Energy-Efficient Look-Up Tables for In-Memory Computing

Flexibility and runtime adaptability are two of the main motivations for the wide adoption of re-

configurable fabrics. Among the most commonly used reconfigurable fabrics, Field Programmable

Gate Arrays (FPGA) have been the primary focus due to their flexibility that allows realization of

logic elements at medium and fine granularities while incurring low non-recurring engineering

costs and rapid deployment to market. Additionally, FPGAs have been researched as promis-

ing platform that can be utilized effectively to increase reliability in case of process-voltage-

temperature variation [54]. The main challenge of static random access memory (SRAM)-based

FPGAs is their increased area and power consumption to achieve flexible design. The main compo-

nents of FPGAs are Look-Up Tables (LUTs) and switch boxes that are mainly consisted of SRAM

cells [55]. However, SRAM-based LUTs incur limitations such as high static power, volatility, and

low logic density.

Innovations using emerging devices within FPGAs have been sought to bridge the gaps needed

to overcome the limitations of SRAM-based FPGAs. High-endurance non-volatile spin-based

LUTs have been studied in the literature as promising alternatives to SRAM-based LUTs, Flash-

based LUTs, and other state-of-the-art emerging LUTs such as resistive random access memory

(RRAM)-based LUTs and phase change memory (PCM)-based LUTs [56, 57, 58, 59, 60, 61].

Spin-based devices offer non-volatility, near-zero static power, high endurance, and high integra-

tion density [1, 62]. The spin-based LUTs presented in the literature [56, 57, 58, 59, 60, 61] require

separate read and write operations as well as a clock, which makes these LUTs a suitable candidate

for sequential logic operations. However, the main challenge that has not been addressed in the

literature is providing a spin-based LUT design for combinational logic operation without the need

11



for a clock. Additionally, proposed spin-based LUTs proposed in the literature fail to maintain

a wide sense margin and high reliability without incurring significant area and power dissipation

overheads [56, 57, 58, 59, 60, 61].

Herein, in order to address the aforementioned challenges, we develop a clockless 6-input frac-

turable non-volatile Combinational LUT (C-LUT) with wide read margin using spin Hall effect

(SHE)-based Magnetic Tunnel Junction (MTJ) and provide a detailed comparison between the

SHE-MRAM and Spin Transfer Torque (STT)-MRAM C-LUTs. Additionally, we provide de-

tailed analysis on the reliability of our proposed C-LUT in the presence of Process Variation (PV).

1.2.2 Need for Reliable and Energy-Efficient Analog to Digital Converters

Adaptive signal acquisition and conversion circuits using emerging spin-based devices offer a new

and highly-favorable range of accuracy, bandwidth, miniaturization, and energy trade-offs. The use

of such approaches specifically targets new classes of Analog to Digital Converter (ADC) designs

providing sampling rate (SR) and quantization resolution (QR) adapted during acquisition by a

cross-layer strategy considering both signal and hardware specific constraints.

Prior works on adaptive rate and resolution ADCs [63, 64, 65, 66, 67, 68, 69, 70] have optimized the

rate/resolution trade-off assuming a low-pass signal model and utilizing Complementary Metal Ox-

ide Semiconductor (CMOS) technology. However, in this work, we use the theory of Compressive

Sensing (CS) [71, 72] and spin-based devices [1, 10, 30, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82, 83]

to advance beyond these limitations. Compressive sensing is a modern signal acquisition paradigm

that aims to measure sparse signals close to their information rate rather than their Nyquist rate.

This is specifically critical for spectrally sparse wide-band signals in which conventional sampling

becomes impractical due to challenges associated with building sampling hardware that operates

at prohibitively high Nyquist rates.
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Quantized CS [84, 85, 86, 87] aims at addressing the existing trade-off between the number of

measurements and the number of bits used to quantize each measurement for a fixed bit budget.

Although this trade-off has been studied previously [84, 85, 86, 87], adaptive optimization of the

SR and QR during signal acquisition has not been investigated. Moreover, despite the fundamental

theoretical discoveries in this field, quantized CS techniques are mostly designed and implemented

oblivious to the specifics and limitations of the hardware platform that performs the sampling/ac-

quisition. In other words, in the rate/resolution trade-off, both signal dependent constraints (e.g.,

sparsity and noise level) and hardware dependent constraints (e.g., energy, bandwidth, and battery

capacity) play an important role and as these constraints vary during signal acquisition, dynamic

and cross-layer optimization of SR and QR is desirable for efficient signal acquisition. While adap-

tive SR and QR seem to be viable approaches from the signal processing and algorithmic point of

view, the actual implementation of them requires a hardware platform that can adapt itself to these

variations.

1.2.3 Need for Analog to Digital Converters with In-Memory Computing Capabilities

Spin-based devices have been extensively researched as promising companions to CMOS devices.

As CMOS scaling trends continue, the need to identify viable approaches for reducing leakage

power increases [26]. With attributes of non-volatility, near-zero standby energy, and high density,

the Magnetic Tunnel Junction (MTJ) has emerged as a promising alternative post-CMOS tech-

nology for embedded memory and logic applications [1, 10, 30]. Recent studies have shown that

conventional Von-Neumann computing architectures, in which the storing elements are distinct

from computing elements, incur challenges created by interconnection and busing demands [88].

These challenges include, but are not limited to, increased static energy consumption, large access

latencies, and limited scalability. Recent studies have offered in-memory computing paradigms as

a potential solution to these challenges. Use of non-volatile memory devices such as spin-based
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devices have enabled researchers to design non-Von-Neumann architectures, where processing and

memory are integrated [88, 89].

Furthermore, there is an increasing demand for energy and area efficient Analog to Digital Con-

verters (ADCs) as the need for integrating the signal acquisition and processing as well as rapid

parallel data conversion in sensor nodes has increased [90, 91, 92]. One of the main challenges

of designing such sensors in CMOS is integrating ADCs in each sensor due to the large area of

analog circuits, especially in applications such as image processing where each pixel sensor re-

quires a compact ADC [93, 94]. Moreover, another main challenge is the increased static energy

consumption due to transistor scaling. Additionally, decreased reliability caused by high process

variation can become another major challenge in scaled technology nodes [95].

1.2.4 Need for MRAM Stochastic Oscillators for Adaptive Sampling of Sparse IoT Signals

Recently, non-uniform sampling approaches such as Compressive Sensing (CS) have been pro-

posed to reduce the energy consumption of sampling operation by reducing number of samples

in each frame, reduce required storage to save the sampled data, and reduce the data transmission

due to lower number of samples taken [84, 91, 96]. Additionally, event-driven sampling, such

as level-crossing sampling, has been widely adopted as a promising CS technique to maximize

the performance of sampling operation while reducing energy consumption [65]. Furthermore, CS

techniques are utilized to sample spectrally sparse wide-band signals close to their information rate

rather than their Nyquist rate, which can be a challenge using conventional uniform sampling tech-

niques due to the high cost of the hardware that is capable of performing the sampling operation at

a high Nyquist rate.

Despite all the benefits that CS techniques offer, they are typically realized oblivious to the hard-

ware limitations such as energy, bandwidth, and battery capacity. Additionally, signal-dependent
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constraints such as sparsity and noise level are ignored while studying the quantization rate and

resolution trade-off. The aforementioned hardware-dependent and signal-dependent constraints al-

ter during the sampling operation. Thus, an adaptive quantization rate and resolution optimization

circuitry is required to maximize sampling performance while minimizing the number of samples

to reduce energy consumption, data transmission, and storage. Adaptive quantization rate and res-

olution sampling might be readily achieved from the algorithm perspective, however it requires a

hardware platform that is capable of real-time adaptation according to certain signal behavior such

as sparsity rate. Recently, an adaptive optimization of the quantization rate and resolution during

signal acquisition has been investigated in [5].

Previous works on adaptive quantization rate and resolution ADCs have been implemented using

Complementary Metal Oxide Semiconductor (CMOS) technology and considering a low-pass sig-

nal model [65, 97]. Herein, we propose a spin-based Adaptive quantization rate (AQR) generator

circuit that considers the signal dependent constraint as well as hardware limitations. The proposed

AQR generator circuit utilized Magnetic Random Access Memory (MRAM)-based stochastic os-

cillator devices, which offer miniaturization and significant energy savings [7].

Researchers have recently expanded their efforts to maximize the signal sensing and reconstruction

performance while reducing energy consumption for Internet of Things (IoT) applications such as

sensors and mobile devices [5, 13]. Recently, Compressive Sensing (CS) has been proposed as a

sampling technique aimed at reducing the number of samples taken per frame to decrease energy,

storage, and data transmission overheads. CS can be used to sample spectrally-sparse wide-band

signals close to the information rate rather than the Nyquist rate, which can alleviate the high cost

of hardware performing sampling at high Nyquist rates [84, 91, 94, 98].

Implementing non-uniform CS in hardware requires a random number generator (RNG) since CS

theory assumes random sampling of data [98]. RNGs can be divided into two classes: true RNGs
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(TRNGs) and pseudo-RNGs (PRNGs). PRNGs include Linear Feedback Shift Registers (LFSR),

which begin with a seed value and then continuously update this value by means of a linear function

in order to create the illusion of randomness; such designs can suffer from limited quality in the

randomness of the output as well as high energy and area [99]. TRNGs, on the other hand, rely on

truly random events such as thermal noise, oscillator jitter, and metastability; TRNG designs can

be challenged by limited generation speed as well as post-processing requirements which impose

area and power overheads [100].

Previous attempts at TRNG design using spintronics have included use of bistable superparamag-

netic tunnel junctions [99], application of sub-threshold voltages for stochastic switching in mag-

netic tunnel junctions (MTJs) [100, 101], use of MTJ stack arrangements for precessional switch-

ing [102], and by means of the voltage-controlled magnetic anisotropy (VCMA) effect [103].

While these designs have been effective in their quality of randomness, they have also involved

relatively complex hardware resulting in power and area overhead. Thus, a spin-based TRNG is

sought to minimize the power dissipation and area. Furthermore, previous works on non-uniform

compressive sensing have been implemented using Complementary Metal Oxide Semiconductor

(CMOS) technology [65, 97].

Herein, we propose a spin-based non-uniform compressive sensing circuit-algorithm solution that

considers the signal-dependent constraint as well as hardware limitations called Adaptive Sam-

pling of Sparse IoT signals via STochastic-oscillators (ASSIST). The proposed ASSIST approach

utilizes Magnetic Random Access Memory (MRAM)-based Stochastic Oscillator (MSO) devices

as the main element in TRNGs, which offer miniaturization and significant energy savings [7, 13].

Additionally, MRAM-based Non-Volatile Memory (NVM) is used to store the output of TRNGs,

which are the elements of the CS measurement matrix.
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CHAPTER 2: BACKGROUND AND RELATED WORK1

Recent approaches to continue the trends associated with Moore’s Law have focused on beyond-

CMOS devices to supplement conventional computing methods. For instance, hardware integra-

tion and realization of highly-efficient Compressive Sensing (CS) methods have inspired novel cir-

cuit and architectural-level approaches [5]. The challenge is to design more optimal device-level

approaches for IoT applications wherein lifetime energy, device area, and manufacturing costs

are highly-constrained. Herein, we have developed a novel adaptive hardware-based approach for

NCS of sparse IoT signals.

2.1 Overview of MTJ-based Non-Volatile Memory (NVM) Operation

The basic concept of spin-based Non-Volatile Memory (NVM) devices is to control the intrinsic

spin of electrons in a ferromagnetic thin film based solid-state nano-device. Magnetic Tunnel

Junction (MTJ) devices are constructed with layered pillars of ferromagnetic and insulating layers

to leverage magnetic orientations that can be controlled and sensed in terms of electrical signal

levels. The non-volatile MTJ consists of two ferromagnetic (FM) layers , which are called the

fixed layer and the free layer, and one tunneling oxide layer between the two FM layers [1]. FM

layers could be aligned in two different magnetization configurations, Parallel (P) and Anti-Parallel

(AP). Accordingly, the MTJ exhibits a low resistance (RP ) or high resistance (RAP ), respectively

[1, 22].

Four switching schemes have been used by researchers in order to write into MTJ cells [104]. The

four switching schemes are: Field Induced Magnetization Switching (FIMS), Thermally Assisted

1©IEEE. Part of this chapter is reprinted, with permission, from [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 22]
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Switching (TAS), Current Induced Magnetic Switching (CIMS), which is also called Spin Torque

Transfer (STT), and Spin-Hall Assisted STT (SHA-STT). Herein, we have focused on the STT

and SHA-STT switching approaches.The P or AP state of the MTJ is configured by means of

the bidirectional current that passes through it, IMTJ , which could readily be produced by simple

MOS based circuits. The states of the MTJ are switched when IMTJ becomes higher than a critical

current, IC . The MTJ resistance in P (θ = 0◦), and AP (θ = 180◦) states is expressed by the

following equations:

R(θ) = 2RMTJ ×
1 + TMR(Vb)

2 + TMR(Vb) + TMR(Vb). cos(θ)

=


RP = RMTJ , θ = 0◦

RAP = RMTJ(1 + TMR) , θ = 180◦
,

(2.1)

RMTJ =
tox

Factor × Area ·
√
φ

exp(1.025× tox ·
√
φ), (2.2)

TMR(Vb) =
TMR(0)

(1 + ( Vb
Vh

)2)
, (2.3)

where Vb is the bias voltage, Vh = 0.5V is the bias voltage when Tunnel Magneto-Resistance

(TMR) ratio is half of the TMR0, tox is the oxide thickness of MTJ, Factor is obtained from the

resistance-area product value of the MTJ that relies on the material composition of its layers, Area

is the surface area of the MTJ, and φ is the oxide layer energy barrier height [15].

2.1.1 STT Switching Approach

The STT switching method is based on applying a spin polarized current through the MTJ junction

which will cause the magnetization of the free layer to change if the current magnitude passes a
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certain value known as critical current. As illustrated in Figure 2.1(b), STT-MRAM utilizes an

MTJ device as the storage element. Although STT-MRAM provides a high write endurance, the

advent of long write latency and high energy consumption exacerbate the energy and reliability

implications of STT-MRAM. STT switching is one of the most promising alternatives for data

storage since it doesn’t require external wires and magnetic fields, requires lower current density

for switching operation, and consumes less power compared to other methods introduced herein

[104]. Figure 2.1(a) shows an STT-MRAM cell, which has an access transistor. This STT-MRAM

cell structure is known as “one-transistor-one-MTJ (1T-1R)” structure [1].

(a) (b)

Figure 2.1: (a) 1T-1R STT-MRAM cell structure, (b) Right: Anti-parallel (high resistance), Left: Parallel
(low resistance) [2].

Based on the STT approach, a bidirectional spin-polarized current (IMTJ ) is required for switching

the MTJ nanomagnet configuration, which can be readily generated through simple MOS-based

circuits. STT switching behavior can be categorized into precessional region (IMTJ >IC), and

thermal activation region (IMTJ <IC). To achieve higher switching speed, STT-MRAM should

operate in the precessional region, which is described by the Sun model [105] as shown below:

1

〈τSTT 〉
=

[
2

C + ln(π2∆)

]
µBP

em(1 + P 2)
(IMTJ − IC), (2.4)
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where τSTT is the mean duration for precessional switching region, C = 0.577 is the Euler’s

constant, ∆ = E
4kBT

is the thermal stability factor, and m is the free layer magnetic moment. While

the STT approach offers significant advantages in terms of read energy and speed, a significant

incubation delay due to the pre-switching oscillation [106] incurs high switching energy. Recently,

the 3-terminal Spin-Hall Effect MTJ (SHE-MTJ) is introduced as an alternative for 2-terminal

MTJs, which provides separate paths for read and write operations, while expending significantly

less switching energy [107], as shown in Figure 2.2(b).

2.1.2 SHA-STT Switching Approach

Despite all of the merits that STT-MRAM offers, violation of reliability tolerances may result in

read and/or write failures [1]. Thermal fluctuations and other issues such as MTJ PV and the

CMOS peripheral circuit PV have severely limited the scalability of STT-MRAM devices [1].

Also, as a result of these issues, there is an increased demand for advanced sensing circuits that

can provide an adequate Sense Margin (SM) along with low power operation.

Due to the large incubation delay of write operation in the STT approach, which makes STT-

MRAM not a perfect candidate for LLC, Spin Hall Assisted STT (SHA-STT) is recently proposed

[21, 108, 109]. Since SHA-STT reduces the incubation delay and due to the fact that SHE-MTJ

offers separate read and write paths, SHE-MRAM provides a faster and more reliable write op-

eration compared to STT-MRAM. Furthermore, there is no need for an external magnetic field

in order to switch the magnetization direction of the free layer. As shown in Figure 2.2(b), in a

SHE-MRAM Cell a Heavy Metal (HM) stripe is placed next to the free layer. In order to write

into the MTJ using SHA-STT, a charge current should be applied between write terminals B and

C, as shown in Figure 2.2(b), which will produce SHE. Due to the SHE, pure spin current will be

produce in an upward or downward direction perpendicular to the charge current in the HM, which
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determines the magnetization orientation of the free layer of the MTJ. Reading the SHE-MTJ uses

the same operation as STT-MTJ. Figure 2.2(a) depicts a cell structure for SHE-MRAM bit-cell.

This SHE-MRAM cell structure is known as “two-transistor-one-MTJ (2T-1R)” structure [109].

In [107], ratio of the injected spin current to the applied charge current, called Spin Hall Injection

Efficiency (SHIE), is defined as shown below:

SHIE =
Isz
Icx

=
π.MTJwidth
4HMthick

θSHE

[
1− sech

(
HMthick

λsf

)]
, (2.5)

where MTJwidth is the width of the MTJ, HMthick is the thickness of the HM, λsf is the spin

flip length of the HM, and θSHE is the SHE angle. This equation is valid for SHE-MTJ devices

in which the length of the MTJ equals the width of the HM. The critical spin current required for

switching the free layer magnetization orientation is expressed by (2.6) [110]:

IS,critical = 2qαMSVMTJ (Hk + 2πMS) /h, (2.6)

where VMTJ is the MTJ free layer volume. Thus, the SHE-MTJ critical charge current can be

calculated using (2.5) and (2.6). The relation between SHE-MTJ switching time and the voltage

applied to the HM terminals is shown in (2.7), in which the Critical Voltage (vc) is given by (2.8)

[107].

τSHE =
τ0ln (π/2θ0)(

v
vc

)
− 1

, (2.7)

vc = 8ρIc

{
θSHE

[
1− sech

(
HMthick

λsf

)]
πHMlength

}−1
, (2.8)

where, θ0 =
√

(kB/2Eb) is the effect of stochastic variation,Eb is the thermal barrier of the magnet

of volume V ,HMlength is the length of the HM, and IC is the critical charge current for spin-torque

induced switching. In order to model the SHE-MTJ, the HM resistance is also required, which is

21



expressed by (2.9), where ρHM is the electrical resistivity of HM.

RHM = (ρHM .HMlength) /HMwidth ×HMthick (2.9)

(a) (b)

Figure 2.2: (a) 2T-1R SHE-MRAM cell structure, (b) Right: Anti-parallel (high resistance), Left: Parallel
(low resistance). A positive current along the +x axis induces a spin injection current along the +z axis.
The injected spin current produces the required spin torque for aligning the magnetic direction of the free
layer along the +y axis, and vice versa [3].

We have utilized the approach proposed in [109] to model the behavior of SHE-MTJ and STT-MTJ

devices, in which a Verilog-AMS model is developed using the aforementioned equations. Then,

the model is leveraged in SPICE circuit simulator to validate the functionality of the designed

circuits. A qualitative summary and comparison for all of the MTJ bit-cells described in herein are

listed in Table 2.1.

Table 2.1: Summary of NVM Bit-Cells using Different MTJ Switching Approaches [3].
Memory Bit-Cell External Energy Reliability ScalibilityBit-Cell Area Magnetic Field Consumption

FIMS-MRAM X YES - - - - - -
TAS-MRAM X YES - - - - - -
STT-MRAM XX NO X X XX
SHE-MRAM X NO XX XX X
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2.1.3 Differential Spin Hall Effect MRAM (DSH-MRAM)

Differential Spin Hall Effect MRAM (DSH-MRAM) bit-cell was proposed in [16] to store both the

bit value and its complimentary value with a single write operation. Using DSH-MRAM can re-

duce the write operation’s energy and delay compared to two SHE-MRAM devices [16]. The write

and read operations for DSH-MRAM are similar to SHE-MRAM, as shown in Figure 2.3. During

the write operation for the DSH-MRAM devices, the charge current, ISHE , is applied through the

terminals T2 and T4, and a strong spin-orbit coupling is generated, which results in generation of

a spin currents, ISpin−P and ISpin−N , perpendicular to the charge current, ISHE , and along the pos-

itive and negative directions of z-axis of the Cartesian coordinate system, respectively [16]. The

generated complimentary spin currents, ISpin−P and ISpin−N , will result in differential data being

stored in top and bottom MTJ devices, shown in Figure 2.3, by changing the magnetization orien-

tation of their free-layer simultaneously. Terminals T1 and T4 are used during the read operation

for the top MTJ device and terminals T3 and T4 are used during the read operation for the bottom

MTJ device.

Figure 2.3: DSH-MRAM device structure in P (top) and AP (bottom) states. [4]
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2.1.4 VCMA-MTJ Devices for Energy-Efficient Architectures

Although MTJs offer non-volatility, near zero stand-by power dissipation, area efficiency, and

fast read operation, their write energy is still significantly higher than volatile switching devices.

Thus, it is proposed here to address energy-inefficient and slow write operation by investigating a

new approach to modify the switching energy barrier [73]. Due to the current-driven operation of

spin-based devices, the majority of the dynamic power dissipation during the switching is caused

by ohmic losses and joule heating [74]. In order to solve this issue, researchers have studied

the magnetoelectric effect to enable new switching mechanism as an alternative to conventional

approaches. The magnetoelectric effect is achieved via utilizing an electric field in order to change

the state of the magnetic devices such as MTJs. Using the magnetoelectric effect, MTJ devices will

benefit from faster and more efficient switching while consuming less energy [73, 74, 75]. Recent

research studies have shown that use of the VCMA effect facilitates the use of an electric field to

ease or eliminate the demand of charge current for switching the state of MTJ devices. VCMA

generates an electric field that causes an accumulation of electron charge and results in a change

of occupation of atomic orbitals at the interface, which causes a change in the magnetic anisotropy

of the MTJ. Using a VCMA approach can result in a deterministic change of the magnetic state

of the MTJ in an energy-efficient and rapid manner. In other words, use of VCMA can lower the

energy barrier between the P and AP states and facilitate the MTJ to switch states using a voltage

applied across its terminals. The effective Perpendicular Magnetic Anisotropy (PMA) of an MTJ

in the presence of VCMA effect can be modeled using the following equations [73]:

Keff (Vb) =
MsHeff (Vb)

2
=
Ki(0)−Ki(Vb)

tf
− 2πM2

s , (2.10)

∆(Vb) =
Eb(Vb)

kBT
= ∆(0)−Ki(Vb)

A

kBT
, (2.11)

24



Vc = ∆(0)
kBTtox
Aξ

, (2.12)

where Vb is the bias voltage applied via VCMA effect, Keff (Vb) is the effective PMA, Heff (Vb)

is the effective magnetic field in the presence of bias voltage, Ms is the saturation magnetization,

Ki(0) is the initial interfacial PMA energy, Ki(Vb) is the interfacial PMA energy after applying

the bias voltage, tf is the MTJ’s free-layer thickness, A is the sectional area of the MTJ, ∆(0) is

the thermal stability factor under zero bias voltage, ∆(Vb) is the thermal stability factor under bias

voltage of Vb, Eb(Vb) is the voltage-dependent energy barrier, kB is the Boltzmann constant, T is

the temperature, Vc is the critical voltage required by VCMA effect to modify the energy barrier, ξ

is the VCMA coefficient, and tox is the MTJ’s oxide thickness.

VCMA-MTJ devices require a bias voltage to lower their energy barrier between the two stable

states of Parallel (P) and Anti-Parallel (AP). This will result in a more efficient method of switching

the device between the P and AP states. When the energy barrier is lowered, a current with smaller

magnitude and pulse duration can switch the magnetic orientation or the state of the MTJ devices.

As a result, the energy consumption of the write operation will be reduced. The VCMA bias

voltage that is required to modify the energy barrier can be found using (2.12). Additionally, as

experimental results in [73, 74, 75] have shown, Ki(Vb) demonstrates a linear dependency to the

electric field, hence, we can simplify it as Ki(Vb) = ξ Vb
tox

[73] through modifying the Landau-

Lifshitz-Gilbert (LLG) equation, shown in (2.13), while updating ~Heff (Vb). As shown in (2.15),

the voltage dependent anisotropy field, ~Hani (Vb), changes with the VCMA bias voltage. The

changes in (2.15) will then result in the modification of ~Heff (Vb) in (2.14), which presents the

effective magnetic field vector. As a result, the VCMA effect will enable the MTJ devices to

switch faster and with reduced switching currents due to the lowered energy barrier caused by the

VCMA bias voltage.

25



By requiring reduced current magnitude for a shorter pulse duration, this approach will reduce the

overall energy consumption of MTJ devices during the write operation. Additionally, in order to

observe the switching of the magnetic orientation of the MTJ devices in the z-axis of the Cartesian

coordinate system, we need to solve the LLG equation shown in (2.13). The modifications made

in the LLG equation to model the VCMA effect are shown below [73]:

d~m

dt
= −γ ~m× ~Heff (Vb) + α~m× d~m

dt
− ρstt ~m× (~m× ~mr), (2.13)

~Heff (Vb) = ~Hext + ~Hdem + ~Hth + ~Hani(Vb), (2.14)

~Hani(Vb) =

(
2Ki(0)tox − 2ξVb

µ0tfMstox

)
mz, (2.15)

where ~m is the magnetization vector of the MTJ’s free-layer {mx,my,mz}, ~mr is the polarization

vector, γ is the gyromagnetic ratio, α is the Gilbert damping factor, ~Heff (Vb) is the effective

magnetic field vector in the presence of bias voltage, ρstt is the STT factor, ~ is the reduced Planck

constant, P is the STT polarization factor, Jstt is the driving current density inducing STT, e

is the elementary electron charge, µ0 is the vacuum permeability, ~Hext is the external magnetic

field vector {Hx, Hy, Hz}, ~Hdem is the demagnetization field vector, ~Hth is the thermal noise field

vector, and ~Hani(Vb) is the voltage-dependent anisotropy field vector.

As it can be observed from (2.15), using the VCMA effect, by applying a positive bias voltage

across the MTJ, the PMA will be reduced and will result in reduction of its coercivity. On the

other hand, by applying a negative voltage across the MTJ, the PMA will be increased and as

a result, its coercivity will increase as well. Figure 2.4 shows the effects of VCMA on an MTJ

device.
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(a) (b)

Figure 2.4: (a) Structure of the VCMA-MTJ. (b) Modification of energy barrier (Eb(Vb)) using the VCMA
effect. When Vb > Vc, the energy barrier is completely eliminated. Additionally, if 0 < Vb < Vc, the energy
barrier will be reduced to facilitate the switching of the state of the MTJ. On the other hand, for Vb < 0 the
energy barrier will increase [5].

2.1.5 SHE-enabled Domain Wall MTJ Devices

In recent studies, researchers have exploited the use of emerging devices for signal processing

applications. In particular, they have explored designing ADCs using emerging devices such as

SHE-MTJ [79], Domain Wall Motion (DWM) [82, 111], and Racetrack Memory [112]. The basic

concept of spin-based devices is to control the spin of electrons in a ferromagnetic solid-state

nano-device.

Figure 2.5 shows a SHE-DWM device [18, 113]. The non-volatile MTJ consists of a Ferromagnetic

(FM) layer, which is called the fixed-layer, a FM nano-wire layer, which is called the free-layer,

a tunneling oxide layer between the fixed-layer and the free-layer, and a heavy metal to realize

Spin-Hall assisted switching. FM layers could be aligned in two different magnetization config-

urations according to the position of the Domain Wall (DW), Parallel (P) and Anti-Parallel (AP).

Accordingly, the MTJ exhibits low resistance (RP ) or high resistance (RAP ) states, respectively

27



[18]. The read and write process for the memory cells are like SHE devices.

Based on Spin-Transfer Torque (STT) switching principles, the P or AP state of the SHE-DWM

device is configured by means of the bidirectional current that passes through the Spin-Hall heavy

Metal (SHM) from terminal T1 to terminal T3, ISHE . When the ISHE is applied, a strong spin-

orbit coupling is generated, which results in generation of a spin current, ISpin, along the z-axis of

the Cartesian coordinate system and perpendicular to the ISHE current [113]. The DW will move

if ISHE exceeds the critical current, IC .

Figure 2.5: SHE-enabled Domain Wall Motion device structure. [6]

Additionally, in order to read the data stored in these devices, a Sense Amplifier (SA) [10] is used

to sense the difference between the resistance of the SHE-DWM device that is used to store the

data and a reference MTJ device with a known resistance. Terminals T2 and T3 are used during

the read operation, meaning that the read and write paths are separate, which is one of the reasons

for high reliability of these devices regarding read disturbance failures.

The main reason for using SHE-DWM devices is due to slow and high energy switching of DWM

devices alone. Utilizing SHE approach will help reduce the write energy consumption and increase

the DW velocity. Conventionally, the DWM was achieved using STT which could switch the do-

main wall due to the coupling between local magnetic moments of the DW and spin-polarized

currents. However, it has been practically shown in recent studies that SHE-DWM devices of-

fer significantly lower energy consumption and faster switching [18]. The spin current, ISpin,
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generated due to the charge current applied through the SHM, ISHE , can be described using the

following equations:

ISpin = θSHM ×
ASpin
ASHM

× ISHE × σ, (2.16)

ASpin = LDW ×WDW , (2.17)

ASHM = WSHM × tSHM , (2.18)

σ = 1− sech(
tSHM
λsf

), (2.19)

where, LDW and WDW are the length and width of the DW free-layer, WSHM and tSHM are the

width and thickness of the SHM, θSHM is the spin-Hall angle, and λsf is the spin flip length.

2.1.6 MRAM-based Stochastic Oscillator Devices

Recently, researchers have studied theoretically and experimentally the utilization of thermally

unstable superparamagnetic MTJs to realize a variety of functional spintronic devices [7, 114, 115].

Herein, we intend to demonstrate that a recently proposed building block with embedded MRAM

technology can enable the hardware realization of a stochastic bitstream generator. The structure

of the MRAM-based Stochastic Oscillator (MSO) is depicted in Figure 2.6.Due to the low energy-

barrier (i.e. EB � 40kT ), the MTJ’s resistance level fluctuates between the two resistance states

of RAP and RP , which results in the non-uniform stochastic output at the drain of the NMOS

transistor shown in Figure 2.6. We can amplify the NMOS drain output to provide full-swing

signal, i.e. [0.0 → 0.8]V, using a single inverter circuit. The probability of the output being ‘1’

can be controlled using the input signal connected to the gate of the NMOS transistor. Thus,
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by increasing the gate voltage of the NMOS transistor, VIN , its drain-source resistance, rds, will

decrease, which will result in the drain voltage to be closer to the GND. On the other hand,

by decreasing the gate voltage of the NMOS transistor, VIN , its drain-source resistance, rds, will

increase, which will result in the drain voltage to be closer to the V DD.

Figure 2.6: The building block of the proposed MRAM-based Stochastic Oscillator (MSO) [7].

Considering the MTJ conductance of the MSO, we can observe the behavior of the circuit shown

in Figure 2.6 [7]:

GMTJ = G0

[
1 +mz

TMR

(2 + TMR)

]
, (2.20)

where mz is the free layer magnetization, G0 is the average MTJ conductance, (GP +GAP )/2, and

TMR is the tunneling magnetoresistance ratio. The drain voltage of the NMOS transistor shown

in Figure 2.6 can be expressed as:

VDRAIN/VDD =
(2 + TMR) + TMR mz

(2 + TMR)(1 + α) + TMR mz

, (2.21)

where α is the ratio of the transistor conductance, GT , to the average MTJ conductance, G0. When

α ≈ 1 maximum fluctuations can be achieved. This means, when VIN = VDD/2, the MTJ resis-

tance is approximately equal to rds. Herein, we use a circular nanomagnet with near-zero energy

barrier without shape anisotropy. Such magnets have been fabricated and characterized in [116].
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Figure 2.7: (a) Output probability of MSO versus its input voltage, (b) The output and sampled output
voltages for VIN = 0.5VDD = 400mV. [8]

We use the embedded MRAM-based model developed in [7] to perform SPICE circuit simulations

using the parameters listed in Table 2.2 and the nominal voltage of VDD = 0.8. The magnetization

input for the MTJ conductance elaborated in Equation 2.20 is provided by the stochastic Landau-

Lifshitz-Gilbert (LLG) equation:

(1 + α2)
dm̂

dt
=− |γ|m̂× ~H − α|γ|(m̂× m̂× ~H) + 1/qN(m̂× ~IS × m̂) +

(
α/qN(m̂× ~IS)

)
,

(2.22)
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where α is the damping coefficient of the nanomagnet, γ is the electron gyromagnetic ratio, q is

the electron charge, and ~IS is the spin current. The relation between the probability of output being

‘1’ and VIN is depicted in Figure 2.7(a), where VIN = VDD/2 = 400mV generates an output

probability of 50%, as shown in Figure 2.7(b).

Table 2.2: Modeling and Simulation Parameters [7].
Parameters Value

Saturation magnetization (CoFeB) (Ms) 1100emu/cc
Free Layer diameter, thickness 22nm, 2nm

Polarization 0.59
TMR 110%

MTJ RA-product 9Ω− µm2

Damping coefficient 0.01
Temperature 26.85◦C

2.2 Reliability Challenges of MTJ Sensing Operation

An ongoing research on reliability issues of STT-MRAM devices resulted in some possible so-

lutions which each of them utilize different properties of the MTJ switching behavior. Based

on recent studies conducted on the reliability improvement of STT-MRAM devices, it has been

determined that some of the preferred SA designs are able to offer less than 5ns read sensing

latency while maintaining wide sensing margins. Furthermore, non-destructive sensing schemes

offer lower energy consumption while suffering from narrow sensing margins [25, 27, 36, 38, 83,

117, 118, 119, 120, 121, 122, 123, 124, 125, 126]. Research has also shown that STT-MRAM

SAs’ performance span in 3 different ranges across all proposed design strategies. The highest

performance strategies deliver a sensing margin of approximately above 300mV while incurring

low power and energy consumption in the order of pico-Joules and micro-Watts respectively with

read or sense latency in the range of pico-Seconds [25, 27, 36, 38, 83, 117, 118, 119, 120, 121,

122, 123, 124, 125, 126].
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STT-MRAM has several advantages over other emerging memory technologies, however, it faces

some distinct reliability challenges involving read and write failures [27] as listed herein. STT-

MRAM scalability is greatly influenced and limited due to thermal fluctuations and issues such as

MTJ process variations and the CMOS access transistor have had negative effects on STT-MRAM

devices. Also, as a result of these issues, demand for an advanced sensing circuit which can provide

required sensing margin along with low power operation has been increased.

STT-MRAM bit errors can be significantly influenced due to process variations [127] which pre-

cipitate another important issue that STT-MRAM suffers from as well as suffering from its unique

intrinsic thermal randomness. These variations include variation in the access transistor sizes, vari-

ation in threshold voltage Vth, MTJ geometric variation and initial angle of the MTJ. Whereas the

effect of variation involving the access transistor on system performance has been investigated in

[38], here we focus on the process variation of the MTJ cell. The difference between the sensed bit-

line voltage and the reference voltage which is known as the Sense Margin (SM) will be small due

to the wide distribution of MTJ resistance which can also result in a false detection scenario [36].

On the other hand, write speed can be affected and may vary due to the thermal fluctuations dur-

ing MTJ switching in write operations and this will further aggravate by process variation-induced

variability of the switching current [38].

Errors due to the STT-MRAM physical nature’s failures will be categorized into transient faults

and permanent faults as depicted in Figure 2.8. Transient faults, which can also be described as an

incorrect signal condition, is mostly caused by the parameters of free layer such as current density

(Jc) and thermal stability factor (∆). Permanent faults, which can be precipitated by destructive

device damage, are initially caused by susceptibility to the sensitive parameters of oxide barrier

such as barrier’s thickness tox and Tunnel Magneto-Resistance (TMR) ratio [124], which have been

expanded with additional parameters in Table 2.3.
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Figure 2.8: Taxonomy of STT-MRAM Device Failures. [1]

2.2.1 STT-MRAM Reliability

Several studies have shown that exposures to permanent and transient faults can be mitigated in var-

ious device technologies by employing spatial hardware redundancy, temporal operational redun-

dancy, error correcting codes, and resiliency via active reconfiguration. In order to make reliable

STT-MRAM cells which are less vulnerable to alpha-particle-induced transient faults, a variety

of design strategies and different considerations have been proposed in [83, 128, 129, 130, 131].

For instance, in [130], concept of ‘1’/‘0’ dual-array equalized reference is proposed that reduces

the error rate by lowering the read current which introduces a precise reference for stable read

operation.

Research studies have shown that STT-MRAM memory devices are vulnerable to radiation in-

duced transient faults due to their CMOS peripheral circuit used to read and write in the MTJ cells

[132, 133, 134]. It has been proven experimentally in [134] that the MTJ device itself is resilient

to radiation induced transient faults. In order to reduce the vulnerability of the STT-MRAM de-

vices to radiation induced transient faults caused by elements such as alpha particle, Kang et al.
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have designed and examined a novel area and power efficient sensing circuit in [135]. They have

experimentally shown that their design increases the robustness of memory and logic devices us-

ing hybrid CMOS/STT-MRAM to radiation induced transient faults such as Single Event Upsets

(SEUs) and Multiple Bit Upsets (MBUs) [135].

Table 2.3: STT-MRAM Reliability Issues. [1]
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Furthermore, in order to tolerate permanent faults, two solutions have been proposed in [124].

One option is Triple Modular Redundancy using a majority voter and the other option is to resize

the active transistors. However, both options introduce area overheads whereas Triple Modular

Redundancy requires two additional SAs along with a voting circuit, and meanwhile the second

option utilizes a larger transistor. While Triple Modular Redundancy is a popular approach for

masking soft errors and providing single-fault coverage in various circuits, it incurs roughly three-

fold increases in area and energy.

In a recent research study in [136], Kang et al. have proposed a novel area efficient and high

speed Error Correcting Code (ECC) circuit utilizing Orthogonal Latin Square Code (OLSC) in

order to increase the reliability of STT-MRAM with the option of adaptability that enables the

system to adapt the error correction based on its needs. Moreover, in order to increase the yield of

STT-MRAM devices, Kang [137] have introduce an innovative method to sustain permanent and

transient faults using an integration of ECC along with Fault Masking (FM) methods which they

address as sECC [137]. In addition, in their study by combining sECC method with Redundancy

Repair (RR) method, they have successfully managed to further improve and optimize the perfor-

mance of the emerging STT-MRAM devices. Kang et al. in [137] have managed to repair the

permanent faults in the system using redundant elements so called RR, mask transient faults and

Single Isolated Faults (SIFs) using sECC.

Alternatively, results of the study in [124] have shown that only resizing the transistors is sufficient

for increasing the reliability of the conventional applications, however, for those applications which

require extreme sensing reliability, Triple Modular Redundancy technique can be more useful.

Considerable amount of research has been performed on improving reliability and performance

of STT-MRAM memory devices. In [138], the write and read performance of STT-MRAM as

last-level on-chip cache have been estimated and analyzed over the processor performance.
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Moreover, in [139], an early-write-termination scheme was proposed in order to enhance STT-

MRAM reliability and reduce STT-MRAM write energy. Furthermore, in [140], an implementa-

tion of STT-MRAM under different technology nodes has been discussed in which the correspond-

ing process technology and scaling parameters were presented. Furthermore, in order to reduce the

probability of accidental bit-flipping and loss of data caused by the current applied during read pe-

riod, a disturbance-free read scheme was proposed in Gigabit scale STT-MRAM design in [141],

which, due to process variations of MTJs, this scheme is unable to solve the read failures.

In order to reduce the read disturb probability, [142] has proposed the pulsed read method and

[143] has proposed the disruptive reading and restoring scheme. Furthermore, in [27], in order to

alleviate the read disturb reliability issue, some bit-cell architectures are proposed. Moreover, it

has been shown that by increasing the thermal stability factor we can reduce the read disturb rate.

However, all of these techniques introduce large area overhead and/or large power dissipation and

large delays as mentioned in [27]. In general, sensing schemes can be classified into two cate-

gories, Destructive and Non-Destructive [118]. Based on the definition presented in this research,

Destructive Schemes are more vulnerable to read reliability failures. Non-Destructive Schemes

are more tolerant to process variation of reference cell, however, Destructive Schemes, typically,

provide smaller read/sense latency.

2.2.2 Destructive Sensing Schemes

The first category of strategies to mitigate the cost of self-referencing is through consecutive ac-

cesses that restore the destroyed value once it has been reliably read. Several self-reference sens-

ing schemes were proposed to overcome reliability concerns due to process variations of MTJs in

STT-MRAM. In [25], Sun, et al. have analyzed the Conventional Sensing Scheme (CSS) which

compares the bit line voltage to a reference voltage to read the value of a memory bit cell under
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certain conditions. However, as technology shrinks process variation will be increased and will

result in significant standard deviations of sense margin that will lead to large read failure proba-

bility. As a result, the chip yield in STT-MRAM design is highly limited due to poor robustness of

CSS.

As mentioned in [144, 145], original value stored in an MTJ cell in Conventional Self-Reference

Sensing Scheme (CSR), will be compared to a reference value which is stored in the same MTJ

in a different write cycle. As it can be found in [144, 145], CSR consumes a large amount of

power and also introduces long latency. Sun, et al. also analyzed CSR in [25], which needs two

write operations that results in long latency and will lead to large power overhead and can also be

destructive to the stored value. Comparing CSR to CSS, we can conclude that CSR maintains a

higher sense margin with the cost of sacrificing the reliability and performance.

One of the destructive sensing strategies that has been recently used in [30] was proposed by Zhao

et al. called Pre-Charge Sensing in [83, 124] which uses a Pre-Charge Sense Amplifier (PCSA)

and minimizes the read current value and read duration compared with conventional static data

sensing. As a result of this action, high reliability will be provided for the STT-MRAM while

maintaining the same thermal stability factor. This method, which is called Dynamic Sensing

Scheme (DSS) [129], has solved the sensing problem utilizing Dynamic Sensing [124]. In order to

reduce the read current required, Lakys et al. in [128] have used Dynamic Sensing Scheme using

two word selection transistors for each MTJ cell in order to perform read operations and switching

operations. Also with this method, the size of the reading transistor can minimized which can lead

to reduction of read current far below the disturb margin down to 10µA. This method introduces

some area overhead compared to conventional 1T-1R STT-MRAM cell designs, however, this area

overhead is negligible to implement cross-point memories since in these designs the selection

transistors are shared among several MTJs within the same word [128].
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Lakys et al. also suggest a method called Self-enable Switching Circuit (SSC) to decrease the im-

pact of stochastic switching in [128] which operates based on relaxing the bias voltage stress on the

oxide barrier and utilizing short duration write pulse sequence instead of fixed long writing pulse

within switching and sensing operations. This method reduces the probability of oxide breakdown

and allows short write pulse durations which will result in reduction in the number of switching

operation and this will improve the oxide barrier lifetime [124]. Later in 2012, Ren et al. have

proposed Body Voltage Sensing Circuit (BVSC) in [122], which like SSC utilizes a short pulse

reading scheme that enables fast sensing operations. They have shown that their design provides

improved speed at the cost of sacrificing sense margin and also improves reliability of the read

operation against read disturbance.

In order to increase the sensing margin while reducing the latency and improving device varia-

tion tolerance of the STT-MRAM cell, Zhang et al. in [36] have analyzed Regular Differential

STT-MRAM Cell Structure (RDAMS). This method uses a differential STT-MRAM cell design

including two separate 1T-1R cells which the resistance state of these two are always opposite.

This design doubles the maximum sense margin compared to the one of 1T-1R cells (CSS), how-

ever, RDAMS capacity is half of the one of the two 1T-1R cells used in this design. In the same

research publication, Asymmetric Differential Cell Structure (ADAMS) have been proposed in

order to improve the read and write performance of STT-MRAM and also increase the transient

fault tolerance compared to RDAMS. This method uses a differential STT-MRAM cell design like

RDAMS including two separate 1T-1R cells that one of the MTJ cells is reversely connected to the

NMOS transistor. Write latency of ADAMS is the same as RDAMS while maintaining smaller cell

area compared to other previous sensing schemes such as CSS, CSR, etc. ADAMS has improved

the read latency and has reduced the write error rate [36].

In an extension to a previous research on PCSA, Kang et al. proposed Separated Pre-Charge Sense

Amplifier (SPCA) [117]. Based on their simulation result, SPCA has a similar performance in
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terms of latency and power and provides better reliability with a small area overhead compared

to PCSA proposed in [83]. In another interesting research study proposed in 2014, Eken et al.

in [38] introduce a novel strategy called Field-Assisted STT Self-Referencing Scheme (FA-STT)

which utilizes an external magnetic field to generate the self-reference sensing signal. This method

offers improved process variation resilience and thermal fluctuation tolerance in STT-MRAM and

MTJ switching respectively. It also provides a much better read reliability by improving read sense

margin compared to conventional self-reference sensing schemes (CSS, CSR, NDSR, and VDRS)

and it significantly reduces the write error rate.

Furthermore, Slope Detection Sensing Scheme was suggested by Motaman et al. in [118] which

will also be categorized as destructive scheme in which they have claimed makes the STT-MRAM

cell design more reliable against device mismatch and variations. They have discussed that their

design has a high sensing robustness due to eliminating the reference comparison.

Finally, in a recent research published in 2016, Parallel Reading Sense Amplifier (PRSA) is pro-

posed [125]. This sense amplifier has two sensing steps that the first read step can be performed

in parallel with the write operation which reduces the read latency. Authors in [125] have claimed

that PRSA offers large sensing margin.

Table 2.4 lists detailed numerical values for all of the destructive sensing schemes reviewed herein

as well as a description of their qualitative attributes. Additionally, Figure 2.9 depicts the Read-

/Sense latency vs. Sensing Margin of STT-MRAM Destructive Sensing Schemes which have been

proposed as time progressed from the initial designs on the left side of the plot to current designs

on the right side of the plot.
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Table 2.4: Destructive Sensing Schemes and Their Attributes. [1]

# Reference(s) Approach

Area per Cell Cycle(s) Sense Margin
Read

AVG. Energy Simulation-based
Latency

(device count)
or

(VP/AP -VR)
or or or

Stage(s)
Sensing

Power consumption Theoretical
MTJ CMOS Cap Other Latency

1 [144]
Self-Reference Scheme

1 17 2 0 2 N/A
Large

N/A
Simulation-based

(SRS) (130ns) TSMC 240-nm

2
[25]

Conventional Sensing Scheme
1 1 0 0 2

Small Small Low

Theoretical
(CSS) (∼20mv) (2.5ns) (0.8937pJ)

3
Conventional Self-Reference

1 1 2 0 2
Large Large High

Sensing Scheme (CSR) (76.6mv) (40ns) (22.05pJ)

4 [124, 83]
Dynamic Sensing Scheme

2 7 0 0 2
Large Small Low Simulation-based

Using Pre-Charge Sense Amplifier (PCSA) (N/A) (∼164ps) (∼3.17fJ) TSMC 65-nm

5 [122]
Body Voltage Sensing Circuit

3 21 2 1 Res 1
Large Small Low Simulation-based

(BVSC) (195mv) (1ns)
(195.5fJ

TSMC 65-nm
& 300uW)

6 [128]
Self-enable Switching Circuit

2 13 0 0 2 N/A
Small Low Simulation-based

(SSC) (<200ps) (N/A) TSMC 65-nm

7
[36]

Regular Differential STT-MRAM
2 4 0 0 1

Large Small
N/A Simulation-based

Cell Structure (RDAMS) (N/A) (321.8ps)

8
Asymmetric Differential STT-MRAM

2 4 0 0 1
Large Small

N/A TSMC 45-nm
Cell Structure (ADAMS) (N/A) (266.7ps)

9 [117]
Separated Pre-Charge

2 7 0 0 2
Large Small Low Simulation-based

Sense Amplifier (SPCSA) (N/A) (∼187ps) (∼3.84fJ) TSMC 65-nm

10 [38]
Field-Assisted STT

1 5 2
External

2
Large

N/A N/A
Simulation-based

Self-Referencing Scheme (FA-STT) B-Field (>20mv) TSMC 45-nm

11 [118] Slope Detection Sensing Scheme 1 20+4 3
1 Current Source

2
Large Large Low Simulation-based

& 2 Switches
(N/A) (6.8ns) (150uW) TSMC 22-nm

& 1 Res

12 [125]
Parallel Reading Sense

1 18+2 2 1 Switch 2
Large Large

N/A
Simulation-based

Amplifier (PRSA) (N/A) (<20ns) TSMC 180-nm

Figure 2.9: Read Sense Latency vs. Sensing Margin of STT-MRAM Destructive Sensing Schemes and
Circuit Designs (with the same order as listed in # column in Table 2.4). [1]

2.2.3 Non-Destructive Sensing Schemes

The second category of strategies to mitigate the cost of destructive sensing are being discussed in

this Section. Two different design methods that have been demonstrated in [146] are Low-Power

Simple Sensing Circuit and High-Sensitivity Switched-Current Sensing Circuit. It has been exhib-
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ited that if low power operation is a priority, then Low-Power Simple Sensing Circuit can offer

better performance. On the other hand, if a better magneto-resistance ratio and faster reading is re-

quired, then High-Sensitivity Switched-Current Sensing Circuit would be preferred. Even though,

High-Sensitivity Switched-Current Sensing Circuit faces challenges compared to Low-Power Sim-

ple Sensing Circuit in terms of power consumption, it can provide better performance in terms of

speed. Reducing the sensing latency and read disturbance faults are of significant importance when

designing a sensing circuit. In order to maintain low read latency while improving the device per-

formance, an Adequate-Reference Scheme is proposed in [147] that increases the sense margin of

STT-MRAM cells which results in read latency reduction. However, the read disturbance error rate

might be increased due to increase in the magnitude of the sensing current. Negative-Resistance

Read Scheme (NRRS) which is a current-based sensing scheme has been proposed, fabricated, and

tested in [148], and authors have analyzed the non-destructive read operation performed.

Moreover, in [149], taking advantage of the different current dependencies of the high and the

low resistance states of an MTJ, another sensing scheme was proposed called Nondestructive Self-

Reference Sensing Scheme (NDSR). NDSR utilizes a characteristic of MgO-based MTJ which is

the difference between the current roll-off slope of high and low resistance states. Based on this

characteristic we can see that if the MTJ has a high resistance state, the current roll-off slope will

be steeper than the low resistance state. It has been proven in [149] that although this method has

two read steps, NDSR has reduced the power consumption and significantly improved the read la-

tency by removing the two write operation and performing one write operation instead. However,

compared to CSR, NDSR has a smaller sensing margin. Furthermore, in [150], they have im-

proved the sensing margin of NDSR utilizing combined magnetic and circuit level enhancements.

Researchers have introduced a dual-voltage row decoder with a charge sharing scheme in [123].

This scheme has shown reduced read disturbance while providing short sensing latency, resulting

in increase in the yield of STT-MRAM devices.
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Device variation tolerance and large sensing margin are other important considerations in designing

sensing circuits. In a recent research study published in 2012, a sensing scheme have been proposed

and discussed [151], which can tolerate the process variation in the scaled technology nodes. In

order to overcome the issues due to process variation and asymmetry of Read Access Pass Yield

(RAPY) of the memory cells, respectively they have developed a Source Degeneration Scheme

(SDS) and a Balanced Reference Scheme (BRS).

Furthermore, Non-Destructive Variability Tolerant Differential Read Scheme was proposed in

[152] which is targeting the device variation while improving other reliability aspects of the device.

This design has the advantage of complimentary inputs as well as providing large sense margin

along with better reliability by reducing error rate as mentioned in [152]. Later in 2012, due to the

small sensing margin of the NDSR proposed in [149], Sun et al. came up with a circuit to provide

a better sensing margin [25]. This method, which is called Voltage-Driven Non-Destructive Self-

Referencing Sensing Scheme (VDRS), is more robust than NDSR and maintains a better tolerance

on variation of MTJ devices as well as providing a high sense margin. VDSR has low read latency

and low power consumption compared to NDSR.

In [25], authors have shown that this method demonstrates the highest STT-MRAM array yield

among all existing sensing schemes of STT-MRAM design. In another research to improve the

STT-MRAM reliability, Offset-Tolerant Triple-Stage Sensing Circuit has been proposed by Kang

et al. in [153]. They have verified that their design can reduce the device errors due to process

variation and read disturbance which increases the STT-MRAM reliability in scaled technology

nodes while providing large sense margin.

In 2014, Kim et al. in another research have introduced Split-Path Sensing Circuit (SPSC) [154]

and have shown that using variable reference voltage, their design consumes less energy compared

to Highly-Symmetric Cross-Coupled Current Mirror (HSCC) proposed in [155], SDSC [151], and
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BVSC [122] while providing a large enough sensing margin.

Another sensing scheme which can tolerate the process variation in the scaled technology nodes

and improve the reliability of STT-MRAM, has been proposed and discussed in [119]. In this

research study, authors have suggested an Offset-Canceling Triple-Stage Sensing Circuit (OCTS)

in order to overcome the issues due to process variation and asymmetry of RAPY of the memory

cells that can operate with low currents which will result in avoiding read disturbance.

Moreover, in [156] Self-Body Biasing Sensing Circuit (Self-BB) is proposed, which is thought to

also tolerate issues due to process variation and asymmetry of RAPY of the memory cells while

providing better sensing margin compared to conventional sensing schemes and performing fast

sensing operations.

Read disturb faults and device variation are highly relative to the scaling of the technology node

which both can affect the device reliability in a negative way. The first step in order to prevent the

read disturb faults effectively is to detect them. In [27], a circuit has been proposed that has the

ability to detect the read disturb fault utilizing a self-test mechanism that is supposed to validate

its behavior which is called Read Disturb Detection Scheme (RDD). It has been shown that using

this method, up-to 95% of the total read disturb faults can be detected while maintaining negligible

area and power overhead.

In order to reduce device variation effect on STT-MRAM reliability, a variation-tolerant high-

reliability sensing scheme has been introduced and designed which is shown to increase the sensing

margin with the cost of more delay and loss of speed [157]. This design includes three stages of

sensing. One of these stages is a pre-amplifying stage which utilizes a charge transfer amplifier

to amplify the voltage difference between the reference MTJ cell and main MTJ cell. In another

research publication, Kang et al. [120] utilized a modified charge transfer stage and a source

follower amplifier which makes the design more reliable against device mismatch and variations,

44



prevents read disturbance, and further improves the sense margin.

In a recent research publication, Covalent-Bonded Cross-Coupled Current-Mode Sense Amplifier

(CBSA) has been proposed and fabricated in [158]. In this design, the source lines are merged

throughout the whole memory array in order to make the design more compact in terms of area

efficiency. Authors have shown that this design reduces the mismatch sensitivity of the cross-

coupled latch in the sense amplifier design.

Providing reliable solutions are valuable, however if the power consumption of a reliable design is

high, then that design cannot be a good alternative. In an effort for maintaining low power while

having a reliable design, Lee et al. have recently proposed Pre-Read and Write Sense Amplifier

(PWSA) which they have shown that due to its pre-read stage, the write error rate can be controlled.

Based on their result shown in [126], their design provides a fast reading circuit that consumes a

small amount of power and increases the reliability through controlling and reducing the write

error rate.

Another source of reliability exposure that results in read disturbance or read failure, is the thermal

instability. In [159], a Body-Biasing Feedback Circuit is proposed to improve the sensing margin

and reliability of the STT-MRAM against thermal instability which will further reduce read failures

and disturbance. In [160], authors have introduced Dynamic Referencing Sensing (DRS) scheme in

order to prevent read disturb reliability issue. Based on their design, the area overhead is negligible

due to the fact that the sensing circuitry is shared among the memory cells along the bit-line or

word-line. In their design, they manipulate the sensing circuit with regards to the sensed signal

and adaptively configure the resistance of the load transistor’s resistance.

In a recent research [161], another RDD circuit has been demonstrated and examined. Based on

the fact that if a read disturb occurs, then the read current will have a sudden change due to change

in the resistance of the MTJ and also knowing that this change will be in a unidirectional fashion
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either from P to AP or from AP to P, they have designed a circuit that can detect the read disturb

fault. However, they have also mentioned that there exists a small latency before activation of the

RDD circuit which if any read disturb fault occurs within the duration of the latency it will not be

detected. They have also exhibited that the probability if detecting the read disturb will increase

in their design if TMR ratio increases and/or if the detection time increases. The area overhead

of this RDD design is negligible compared to the area of the chip as claimed in [161]. Finally, a

Degenerated Cross-Coupled Sensing Circuit (DCCSC) is been proposed in [121] which is proven

to have wide sense margin while consuming small amount of energy with a fast sensing time. They

have designed a new reference cell that exhibited increased reliability against device mismatch and

variations, and ameliorates read disturbances.

Table 2.5 lists detailed numerical values for all of the non-destructive sensing schemes reviewed

herein as well as a description of their qualitative attributes.Moreover, Figure 2.10 illustrates the

Read/Sense latency vs. Sensing Margin of STT-MRAM Non-Destructive Sensing Schemes which

have been proposed as time progressed from the initial designs on the left side of the plot to current

designs on the right side of the plot.

Figure 2.10: Read Sense Latency vs. Sensing Margin of STT-MRAM Non-Destructive Sensing Schemes
and Circuit Designs (with the same order as listed in # column in Table 2.5). [1]
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Table 2.5: Non-Destructive Sensing Schemes and Their Attributes. [1]

# Reference(s) Approach

Area per Cell Cycle(s) Sense Margin
Read

AVG. Energy Simulation-based
Latency

(device count)
or

(VP/AP -VR)
or or or

Stage(s)
Sensing

Power consumption Theoretical
MTJ CMOS Cap Other Latency

1

[146]

Low-Power Simple

5

15+

0 0 2 N/A

Large High Simulation-based
(28ns) (6.23mW) TSMC 600-nm

2 Sensing Circuit 2×SA
Large High Simulation-based
(16ns) (1.75mW) TSMC 180-nm

3 High-Sensitivity Switched-Current 31+
Large High Simulation-based
(16ns) (8.99mW) TSMC 600-nm

4 Sensing Circuit 2×SA
Large High Simulation-based
(12ns) (5.70mW) TSMC 180-nm

5 [155, 154]
Highly Symmetric Cross-Coupled

5 16 0 0 1 N/A
Small Low Simulation-based

Current Mirror (HSCC) (3ns) (0.76pJ) TSMC 45-nm

6 [147, 158]
Adequate-Reference Scheme

6 26 0 1 Current Source 1 N/A
Large

N/A
Simulation-based

(ARS) (11ns) TSMC 65-nm

7 [148]
Negative-Resistance Read

1
14+

0 1 Res 1 N/A
Large

N/A
Simulation-based

Scheme (NRRS) 2×SA (8ns) TSMC 130-nm

8 [149, 150]
Nondestructive Self-Reference

1 5 1 2 Res 2
Large Large Low Simulation-based

Sensing Scheme (NDSR) (>20mv) (15ns) (1.04pJ) TSMC 130-nm

9 [123] Disturbance-Free Scheme 3 25+SA 0 0 1 N/A
Large

N/A
Simulation-based

(8ns) TSMC 45-nm

10 [151]
Source Degenerating Scheme and

3 19 0 0 1 N/A
Small Low Simulation-based

Balanced Reference Scheme (SDSC) (1.9ns) (134.4fJ) TSMC 65-nm

11 [152]
Non-Destructive Variability

4 11+SA 0 0 1 N/A N/A N/A
Simulation-based

Tolerant Differential Read Scheme TSMC 22-nm

12 [25]
Voltage-Driven Non-destructive

1 9 2 0 2
Large Large Low Simulation-based

Self-Reference Sensing Scheme (VDRS) (>45mv) (15ns) (12.08pJ) TSMC 130-nm

13 [136]
Offset-Tolerant Triple-Stage

5 8+2×SA 2 0 3 N/A
Small Low Simulation-based

Sensing Circuit (4.3ns) (40fJ) TSMC 40-nm

14 [154]
Split-Path Sensing

5 16 0 0 1 N/A Small Low
Simulation-based

Circuit (SPSC) TSMC 45-nm

15 [156, 120]
Offset-Canceling Triple-Stage

5 15+14 3 7 Switches 3
Large Large Low Simulation-based

Sensing Circuit (OCTS) ∼45.21mv (6.4ns) (395.5fJ) TSMC 45-nm

16
[156] Self-Body Biasing Sensing

3 15 0 0 1 N/A
Small

N/A
Simulation-based

Circuit (Self-BB) (2ns) TSMC 45-nm

17 [27]
Read Disturb Detection

6 37 0 0 1 N/A
Small Low Simulation-based

Scheme (RDD) (1.2ns) (N/A) TSMC 65-nm

18 [157]
Variation-Tolerant High-Reliability

5 17+14 3 7 Switches 3
Large Small

N/A
Simulation-based

Sensing Scheme (∼227.54mv) (3ns) TSMC 40-nm

19 [120]
Variation-Tolerant and

5 17+14 3 7 Switches 3
Large Small

N/A
Simulation-based

Disturbance-Free Sensing Circuit (∼102.14mv) (3ns) TSMC 40-nm

20 [158, 133, 135]
Covalent-Bonded Cross-Coupled

3 31+SA 0 0 2 N/A
Large

N/A
Simulation-based

Current-Mode Sense Amplifier (CBSA) (9.1 ns) TSMC 65-nm

21
[126] Pre-Read and Write

1 46 0 1 Res 4
Large Small Low Simulation-based

Sense Amplifier (PWSA) (360mv) (2ns) (18uW) TSMC 65-nm

22 [159] Body-Biasing Feedback Circuit 3 12+SA 0 0 1
Large Small

N/A
Simulation-based

(N/A) (N/A) TSMC 40-nm

23 [160]
Dynamic Referencing

5 11 0 0 1
Large

N/A N/A
Simulation-based

Sensing Scheme (DRS) (∼22.31mv) TSMC 40-nm

24 [161]
Read Disturb Detection

5 23 0 0 1 N/A
Small

N/A
Simulation-based

Scheme (RDD) (4ns) TSMC 28-nm

25 [121]
Degenerated Cross-coupled

3 33 0 0 1
Large Small Low Simulation-based

Sensing Circuit (DCCSC) (>495.3mv) (2ns) (0.195pJ) TSMC 65-nm

2.2.4 Summary of Sensing Schemes and Their Attributes

Based on whether tolerating process variation is of primary importance, some possible inflection

points between reliability and performance can occur which in that case, techniques such as [38,

36, 117, 118, 119, 120, 121] are recommended. On the other hand, if tolerating read disturbance

is required then [27, 117, 119, 122, 123] techniques can be more effective. Furthermore, if wide

sensing margin is a governing requirement then techniques such as [25, 36, 38, 83, 117, 118, 121,
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122, 124, 125] could be a preferable alternative, despite increased energy dissipation of some of

the approaches. In addition, for robust and reliable designs to reduce write polarization asymmetry,

sensing schemes such as [36, 38, 126] are believed to be more promising. Finally, if increasing

the yield is the main goal then [25, 123] techniques can be promising candidates for conventional

sensing schemes. These suggestions are also listed in Table 2.6, which offer a feasible guide to

the circuit designer seeking to trade-off the range of approaches available based on these important

parameters of reliability, performance, and energy.

Table 2.6: Sensing Schemes and Their Attributes. [10]
Attribute Reference Number

Process Variation Tolerant [38, 36, 117, 118, 119, 120, 121]
Read Disturb Reduction [27, 117, 119, 122, 123]

Wide Sense Margin [25, 36, 38, 83, 117, 118, 121, 122, 124, 125]
Write Polarization Asymmetry Reduction [36, 38, 126]

Yield Increase [25, 123]

2.3 Cache Partitioning Techniques for Energy Reduction

In order to reduce the energy consumption of cache designs, Cache Partitioning is explored in the

literature [162, 163, 164, 165]. Two mostly used cache partitioning approaches are introduced

in [163], namely, Vertical Cache Partitioning (VCP) and Horizontal Cache Partitioning (HCP). In

VCP, the main goal is to increase the cache hierarchy in order to optimize the capacitance of each

access. Block buffered cache is an example for VCP presented in [166] where the cache will be

accessed only if there is a cache miss, otherwise the data will be accessed from the block buffer

which acts as a cache closer to the processor. One of the drawbacks of this approach is that the

magnitude of energy saving is highly correlated to the spatial locality of applications and the size

of the block.

Furthermore, the main goal of HCP is to provide fine granularity for accessing data via dividing
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each cache segment into smaller sub-segments. This will provide flexibility in gating the power to

only sub-segments that are being accessed, which will result in energy saving. Cache sub-banking

proposed in [162] is an example of HCP where each bank is divided to smaller sub-banks. In this

approach, only the sub-bank that holds the data that is currently being accessed is active and all

other sub-banks within the bank are inactive. This helps saving unnecessary energy consumed due

to accessing the entire bank. As shown in [162], cache sub-banking provides energy savings for

instruction and data caches, however block buffering approach is more effective for instruction

cache. In particular, more sub-banks can result in more energy saving. Overall, due to the fact that

HCP offers more energy saving compared to VCP, herein we have adopted HCP and modified it to

fit our approach.

2.4 Hybrid Last Level Cache Design

In recent years, several hybrid spintronic-CMOS cache designs have been proposed to improve

the write performance while offering much larger cache capacity with low leakage power [167].

Some of these works such as [168, 169, 170] offer solutions for predicting write-intensive blocks

and using migration algorithms, place those write-intensive blocks in the SRAM ways to reduce

the energy consumption and delay as well as in-crease the performance. While the approach pro-

posed in [168] only works for core-write operations, the Access Pattern Predictor (APP) proposed

in [169] and the Prediction Hybrid Cache (PHC) proposed in [170] cover all different write oper-

ations. Additionally, [170] offers dynamic threshold adjustment that allows the threshold of write

intensity to change based on the characteristics of the application. Some of the recently published

works such as [171] suggest frequent movement of written cache blocks to other STT-MRAM or

SRAM lines to reduce the write variance of STT-MRAM lines, however such approaches often

result in unnecessary energy consumption, which can lower the performance.
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2.5 Non-Volatile SRAM Designs for Power Critical Applications

In recent studies, researchers have exploited the use of emerging devices for NV-SRAM appli-

cations. In particular, they have explored designing NV-SRAM using emerging devices such

as Resistive Random Access Memory (RRAM), Phase-Change Memory (PCM), STT-MRAM,

and SHE-MRAM [17, 41, 42, 43, 44, 45, 46, 47, 48, 49]. However, approaches using PCM and

RRAM face challenges such as high programming voltages/currents and high back-up/restore de-

lays, which will exacerbate in scaled technology nodes. With attributes of non-volatility, zero

stand-by energy consumption, high endurance, and high density, the Magnetic Tunnel Junction

(MTJ) has emerged as a promising alternative post-CMOS technology for embedded memory ap-

plications [2, 15, 53].

Many of the recently proposed NV-SRAM designs that utilize MTJ devices take advantage of

Spin-Transfer Torque (STT) switching approach for write operations. However, due to the large

incubation delay of write operations in the STT approach, SHE-MRAM is recently proposed as a

viable alternative for improved performance and energy profiles [15, 108]. Since SHE-MRAM re-

duces the incubation delay and offers separate read and write paths, a faster, more energy-efficient,

and reliable write operation can be achieved compared to STT-MRAM.

2.6 Energy-Aware Quantized Compressive Sesnsing via Adaptive Rate and Resolution

Spectrally sparse signals arise in many applications such as cognitive radio networks, frequency

hopping communications, radar/sonar imaging systems, and musical audio signals. In many cases,

the sparse components are spread over a wide-band spectrum and need to be acquired without

prior knowledge of their frequencies. This is a major challenge in spectrum sensing that is an

essential block in any spectrum-aware communication system. Spectrum-aware communication
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networks require Radio Frequency (RF) and mixed-signal hardware architectures that can achieve

very wide-band but energy-efficient spectrum sensing.

Several architectures have already been proposed for wide-band signal acquisition at rates close

to its information rate. These include the Random Demodulator (RD) [172, 173, 174], the Multi-

coset Sampler [175] and the Modulated Wideband Converter (MWC) [176, 177]. However, the

measurements need to be quantized and encoded to bits for subsequent transmission or processing.

In many potential applications the available bit budget is constrained, which suggests a trade-off

between the SR and QR. This trade-off is well studied in the Quantized Compressive Sensing

[84, 85, 86, 87] literature. Generally speaking, in high observation SNR, fewer but fine-quantized

measurements yield better reconstruction quality. However, in the low SNR case, more but coarse-

quantized measurements are preferred. As the observation noise varies during acquisition, dynamic

optimization of the rate/resolution trade-off is favorable, which is a key innovation of our approach.

So far, several algorithms have been proposed for sparse signal reconstruction from quantized

measurements [178, 179]. The extreme case of 1-bit compressive sensing has been extensively

studied [180, 181, 182, 183]. In the proposed architecture, the input signal is compared with the

level signal, and measurements of the error are acquired. The level signal is adaptively predicted

in a feedback loop at the ADC. The idea of acquiring sign measurements of level comparisons was

applied in [184] to overcome the scale ambiguity in 1-bit CS reconstruction. In [185, 186], the

levels were adaptively varied during acquisition.

There has been some effort to investigate the trade-off between resolution and the rate in a sensing

system [87, 187, 188, 189]. However, most of the related works do not include the power constraint

in their model. For instance, as in [187], Fisher information can be used to quantize the asymp-

totic performance of the sensing system. More related to the developed scheme, authors in [87]

derived an upper bound for error of quantized compressive sensing without any power constraints.
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Most recently, authors in [189] derived Cramer-Rao bound for quantized compressed sensing and

investigated the trade-off between SR and QR. However, to the best of our knowledge, there is no

work on investigating the rate/resolution trade-off under both power and bandwidth constraints for

quantized compressive sampling systems.

2.6.1 Fundamentals of Compressive Sensing

Compressive sensing (CS) is a technique for reconstructing a sparse signal of length N using M

measurements, with M � N . The signal is said to be k-sparse if it has at most k non-zero entries

in a given basis; the sparsity rate of the signal is defined as K
N

. The measurement vector y ∈ RM

is related to the signal vector x ∈ RN by the measurement matrix Φ ∈ RM×N through the relation

y = Φx. While this is an undetermined system with infinitely many solutions, it has been shown

that the signal x can still be recovered from the M measurements by solving the basis pursuit

problem:

x̂ = argmin ‖x‖1 s.t. y = Φx, (2.23)

where ‖x‖1 =
∑

i |x|. It has been shown that x̂ reconstructs the original signal vector if Φ satisfies

a special condition known as the Restricted Isometry Property (RIP). AnM×N matrix Φ satisfies

RIP(p) if for any k-sparse vector x:

‖x‖p (1− δ) ≤ ‖Φx‖p ≤ ‖x‖p (1 + δ), 0 < δ < 1 (2.24)

In real-world applications, signals may contain special Regions of Interest (RoI), i.e., subsections

of the signal which are more critical to accurately reconstruct than the rest of the signal [91, 94].

Moreover, the sparsity of the signal may be non-uniform. Typically, non-uniform CS measurement

matrices utilize Bernoulli and Gaussian distributions as shown in Figure 2.11.

52



(a) (b)

Figure 2.11: Compressive Sensing with a (a) Bernoulli measurement matrix and (b) Gaussian non-uniform
measurement matrix. [9]

Use of a non-uniform measurement matrix allows RoI and parts of the signal with higher sparsity

rates to be sampled with higher frequency (i.e., sampled with a sub-matrix containing a higher

density of ones). It has been verified that non-uniform measurement matrices satisfy the RIP

condition and therefore may be used for sparse signal sampling [91, 94].

Prior work on sparse measurement matrices includes Gilbert and Indyk [190] who described sev-

eral CS recovery algorithms using sparse measurement matrices and Jafarpour et al. [191] who

introduced an efficient and low-complexity sparse recovery algorithm. In addition, Kung et al.

[192] introduced the concept of neighbor-weighted decoding as a means of partitioned compres-

sive sensing, i.e. partitioning a signal into blocks which can then be decoded in parallel [96]. Gan

[193] proposed to have blocks in the measurement matrix correspond to independent parts of the

signal. While [192] and [193] do not take signal non-uniformity into account, Yu et al. [194]

proposed saliency-based compressive sensing for image processing, where pixels are divided into

blocks and the number of measurements applied to a block depends on the saliency of the pixels in

that block. Different schemes for non-uniform measurement matrix design have also been reported

in [195] and [196].
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Recently, researchers have achieved significant performance improvements using sparse signal re-

covery techniques. Spectrally sparse signals are utilized in many applications such as frequency

hopping communications, musical audio signals, cognitive radio networks, and radar/sonar imag-

ing systems [5]. The cornerstone to achieving high-accuracy and efficient CS recovery approaches

and non-uniform sampling techniques is the utilization of an adaptive measurement matrix that

changes according to the signal characteristics extracted from previous time frames [91, 94]. In

most cases, hardware used to implement non-uniform CS sampling and recovery requires a large

number of CMOS transistors and incurs significant area overhead and power dissipation [65, 97].

Herein, we propose a low-complexity hardware design to achieve significant power dissipation and

area reduction compared to other designs proposed in the literature.

2.6.2 Spectrally-Sparse Signal Model

Similar to [172, 173, 174, 197], we approximate a spectrally sparse signal x(t) by the sum of ex-

ponential components x(t) =
∑

s∈S xs(t) in which S = {s1, s2, ..., sN} and xsi(t+ ε) = esiεxsi(t)

and assume that only a few number of the components have significant amplitudes ‖xs(t)0‖.

Now consider a frame of the signal asXm =

[
x(mτ) x((m− 1)τ) · · · x((m−M + 1)τ)

]T
in which (τ = τ (nf )) is the corresponding sample period adapted for the frame and T = (M − 1)τ

is the frame length. Let us define Φ by

Φ =



1 1 · · · 1

e−s1τ e−s2τ · · · e−sN τ

...
... . . . ...

e−s1(M−1)τ e−s2(M−1)τ · · · e−sN (M−1)τ


. (2.25)
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We can write Xm = ΦX ′m, where X ′m =

[
xs1(mτ) xs2(mτ) · · · xsN (mτ)

]T
is the sparse

representation of Xm. Defining a diagonal predictor matrix P = Diag(eMs1τ , eMs2τ , · · · , eMsN τ ),

we get X ′m = PX ′m−M , which shows the relation between the sparse representations of the signal

for two consecutive frames. This relation later will help us in designing an iterative reconstruction

algorithm.
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CHAPTER 3: LEVERAGING PROCESS VARIABILITY FOR

NON-VOLATILE CACHE RESILIENCE AND YIELD1

In this Chapter, in an effort to mitigate and leverage the increased effects of PV in deeply-scaled

memory devices, we intriduce the concept of a Self-Organized Sub-bank (SOS) [198]. The pro-

posed SOS approach focuses on leveraging PV in order to provide reliable sensing operation by

matching the as-built resource performance with the applications’ usage demands while taking the

energy budget into consideration. In order to achieve these goals, SOS partitions STT-MRAM

data arrays into several sub-banks, which are evaluated using a Power-On Self-Test (POST) phase.

The POST assesses the PV impact on the sub-banks, and then, each sub-bank will be assigned

an Energy-Aware Sense Amplifier (SA) or a High Resilience SA with regard to a predefined bit

error threshold. Based on the results provided in [198], SOS reduces the risk of contaminating the

application’s data structure by fault propagation as described herein.

In recent years, several hybrid spintronic-CMOS cache designs have been proposed to improve

the write performance while offering much larger cache capacity with low leakage power [15, 83,

170, 171, 199, 200]. These methodologies have inspired us to maximize the efficiency of SOS

by proposing a dynamic PV-aware and Energy-aware cache block migration policy as a circuit-

architecture solution for hybrid memory devices that utilizes a combination of SRAM and STT-

MRAM banks in Last Level Cache (LLC).

The proposed approach reorganizes the addresses of the cache blocks within the LLC so that the

cache blocks with more frequent write operations are allocated to SRAM cache blocks, whether

they are in high-PV impacted regions or not. Additionally, the proposed approach utilizes SOS

to transfer the cache blocks with more frequent read operations to STT-MRAM cache blocks that

1©IEEE. Part of this chapter is reprinted, with permission, from [10, 2]
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suffer less from PV. As a result, read-intensive operations migrate to low-PV regions of the LLC

and sub-banks with less frequent read operations are allocated to high-PV regions of the LLC.

We identify herein how an SOS-enabled hybrid cache approach can significantly improve cache

utilization and bank accessibility while reducing energy consumption and increasing reliability,

since SOS allocates the SA with better energy profile to low-PV regions and the SA with better

reliability profile to high-PV regions.

3.1 Proposed Process Variation Immune and Energy Aware Sense Amplifiers for Resistive

Non-Volatile Memories

The most common Sense Amplifiers (SAs) which have been studied are Pre-Charge SA (PCSA)

[83] and Separated Pre-Charge SA (SPCSA) [117]. While, PCSA offers improved sense latency

and power consumption compared to SPCSA, it suffers from increased Bit Error Rate (BER) [117].

SPCSA, on the other hand, offers increased reliability while incurring an acceptable increase in

sense latency and power consumption with a negligible area overhead compared to PCSA [117].

In this Section, our focus is performance improvement of the PCSA in terms of Energy Delay Prod-

uct (EDP) and reliability improvement of SPCSA in terms of Bit Error Rate Reduction (BERR).

Additionally, new SA circuits are proposed and simulation result and analysis for the proposed

designs are provided. In addition, a new metric is introduced as Sense Error Energy Ratio (SEER)

that provides an insight on overall performance and reliability of SAs.

Reducing the amount of resistance in the MTJ devices’ paths increases the Sense Margin (SM)

and voltage headroom. This reduces the error rate in scaled technology nodes as supply voltage

is reduced, which is the case with SPCSA versus PCSA [117]. As shown in Figure 3.1, in PCSA,

during the pre-charge stage, SEN signal is low, turning MN2 off while turning MP0 and MP3 on.
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This will pre-charge the output nodes OUT and OUT to VDD. As a result, MN0 and MN1 will

turn on while MP1 and MP2 are still off. As soon as the sensing stage begins, MP0 and MP3 turn

off and MN2 turns on. Thus, based on the difference between MTJ0 and MTJ1 resistance, which

is determined by the magnetization orientation of their free layer compared to their fixed layer, one

of the output nodes begins to discharge more rapidly to GND, leading either MP1 or MP2 to turn

on and charge the other output to VDD.

Figure 3.1: PCSA (MTJ1: Reference MTJ). [10]

As depicted in Figure 3.2, in SPCSA, during the pre-charge stage, SEN signal is low, turning MN4

off while turning MP0, MP1, MP4, and MP5 on. This will pre-charge the output nodes OUT,

OUT, Node0, and Node1 to VDD. As a result, MN0 and MN1 will turn on while MP2, MP3,

MN2, and MN3 are still off. As soon as the sensing stage begins, MP0, MP1, MP4, and MP5

turn off and MN4 turns on. Thus, in the secondary discharge path, based on the difference between

MTJ0 and MTJ1 resistances, one of the two intermediary output nodes, Node0 or Node1, begins

to discharge more rapidly to GND. This will lead one of the INV0 or INV1 output to turn on MN2

or MN3, respectively, which then will cause the primary discharge path to activate and discharge

one of the output nodes OUT or OUT more rapidly to GND, resulting in either MP2 or MP3 to

turn on and charge the other output to VDD.
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To improve the performance and reliability of PCSA and SPCSA, respectively, Energy Aware SA

(EASA) and Variation Immune SA (VISA) are proposed herein as shown in Figure 3.3 and Figure

3.4, respectively. In order to achieve performance and reliability improvements, Transmission

Gates (TGs) were utilized to improve the voltage headroom [10]. TGs provide near optimal full-

swing switching, and as it has been shown in [201], using TGs, can help reduce the vulnerability

to reliability issues caused by PV.

Figure 3.2: SPCSA (MTJ1: Reference MTJ). [10]

In addition, using TGs, as presented in [30], can help reduce the energy consumption by reducing

the leakage energy. Thus, TG0, TG1, and TG2 are added to improve the performance of the

PCSA, as shown in Figure 3.3 [10], and to improve the reliability of SPCSA, as shown in Figure

3.4 [10].

In EASA, during the pre-charge stage, TG0, TG1, and TG2 are off, resulting in a reduction of

leakage energy from output nodes, OUT and OUT, that are pre-charged to VDD. During the

sensing stage, TG0, TG1, and TG2 turn on and the output nodes start to discharge to GND. Based

on the resistance difference between the two MTJ branches with regard to the MTJs’ states, one of

the two output nodes begins to discharge more rapidly, leading the other output to charge to VDD.

59



EASA offers reduced energy consumption by reducing the leakage, however including the TGs on

the path of MTJs results in increased resistance of the branches, which will reduce the SM and

may result in decreased reliability.

Figure 3.3: EASA (MTJ1: Reference MTJ). [10]

Similar to EASA, in VISA, during the pre-charge stage all the TGs will be turned off, resulting in

reduced leakage energy, and both OUT, OUT, Node0, and Node1 will be charged to VDD. During

the sensing stage, TG2 will turn on and in the separated part of the SA, based on the resistance

difference between the two branches with MTJs with regard to the MTJs’ states, one of the two

intermediary output nodes, Node0 or Node1, begins to discharge more rapidly. Then, based on the

voltage potential of the intermediary outputs, either TG0 or TG1 will turn on faster and one of the

main branches of the SA begins to discharge quicker, resulting in the output node of that branch to

drop and charge the other branch’s output node to VDD. INV0 and INV1 are used to amplify the

voltage difference of Node0 and Node1 of the SA. Using TG0 and TG1 and utilizing Node0 and

Node1 as well as their amplified value, the authors have reduced the effects of PV by reducing the

chance of failure due to device mismatch in the Inverters. Furthermore, by utilizing TG2, energy

consumption is reduced due to the reduction in the leakage energy [10].
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Figure 3.4: VISA (MTJ1: Reference MTJ). [10]

As shown in Figure 3.1, Figure 3.2, Figure 3.3, and Figure 3.4, an alternative referencing configu-

ration is used to further improve the reliability of the SAs. Using (MTJP +MTJAP )||(MTJP +

MTJAP ) configuration for the reference MTJ, referred to as MTJ1 in Figure 3.1, Figure 3.2, Fig-

ure 3.3, and Figure 3.4, a reference value of (MTJP + MTJAP )/2 is achieved, which provides

increased SM [10, 120].

3.1.1 Circuit-Level Results and Analysis

Extensive circuit-level simulation results and analysis are provided in this Section. The 22nm

Predictive Technology Model (PTM) CMOS library [202] is used alongside the MTJ model used

in [15] to calculate the power and performance of a 1-bit MSA and ASA. We have utilized the

approach proposed in [15] to model the behavior of STT-MRAM devices, in which a Verilog-

AMS model is developed and leveraged in a SPICE circuit simulator to validate the functionality

of the designed circuits. Table 3.1 lists the technology parameters and PV values used in the circuit

simulations.
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Table 3.1: Circuit Simulation Technology Parameters. [10]
Parameter Value Std. Dev. (σ)

PMOS
Vth (Threshold Voltage) 460mV 10%
Width/Length (W/L)P 2 & 4 1%

NMOS
Vth (Threshold Voltage) 500mV 10%
Width/Length (W/L)N 1 & 2 1%

MTJ

STT-MTJ Area
Data MTJ (MTJ0) (π4 )× 40× 40 nm2 1%

Reference MTJ MTJAP (π4 )× 30× 30 nm2 1%
(MTJ1) (MTJP +MTJAP )/2 4× [(π4 )× 40× 40 nm2] 1%

tox (Oxide Thickness) 0.85nm 1%
TMR (Tunnel Magneto Resistance) 100% 1% & 10%

R×A (Resistance Area Product) 5Ω.µm2 N/A
φ (Potential Barrier Height) 0.4V N/A

α (Damping Factor) 0.01 N/A
Nominal Voltage (Vdd) 1.0V N/A
SEN Signal Period (T) 1.0ns N/A

All PMOS and NMOS transistors are considered minimum size except transistors used in INV0

and INV1 shown in Figure 3.2 and Figure 3.4. Since INV0 and INV1 are vital to the reliability

of the circuit, we have optimized the size of their transistors to maintain width (W) to length (L)

ratio (W/L) of 4 to provide reliable functionality. All of the designs provided in this chapter

are simulated and analyzed in a case where no PV is present and in a case where PV is present.

Monte Carlo (MC) simulation methods are utilized to model the PV. Table 3.2 lists the results

for delay, power consumption, and Energy Delay Product (EDP) where no PV is present and the

TMR = 100% with MTJP = 3.2KΩ and MTJref = 5.7KΩ. Table 3.3 lists similar results with

MTJP = 3.2KΩ and MTJref = (MTJP +MTJAP )/2 = 4.8KΩ.

In order to further investigate the effects of PV on the SAs, 10, 000 MC simulations were performed

on a single bit memory cell, considering different standard deviations for the CMOS threshold

voltage as well as MTJ MgO thickness and surface area. During the simulation, values of Vth, W,

and L of the CMOS transistors vary in the netlist based on a Gaussian distribution having a mean

equal to the nominal model card for PTM and σVth as provided in [203]. For the MTJ variation,

the model provided in [15] was used to find the effects of variation on MTJ devices.
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Table 3.2: Simulation Results with no PV considering MTJref = 5.7KΩ. [10]

Design

Area Anti-Parallel Parallel(Device Count)

PMOS NMOS MTJ
Delay Power EDP Delay Power EDP
(ps) (µW) (fJ*ps) (ps) (µW) (fJ*ps)

PCSA 4 3 2 17.79 0.7267 12.93 16.86 0.7026 11.85
SPCSA 8 5 2 27.26 2.2960 62.59 25.44 2.2690 57.72
EASA 7 5 2 24.92 0.2445 6.09 27.24 0.2205 6.01
VISA 11 7 2 25.38 1.8560 47.11 23.29 1.7990 41.90

Table 3.3: Simulation Results with no PV considering MTJref = 4.8KΩ. [10]

Design

Area Anti-Parallel Parallel(Device Count)

PMOS NMOS MTJ
Delay Power EDP Delay Power EDP
(ps) (µW) (fJ*ps) (ps) (µW) (fJ*ps)

PCSA 4 3 2 15.56 0.7139 11.11 17.80 0.7026 12.63
SPCSA 8 5 2 24.72 2.2710 56.14 26.51 2.2770 60.36
EASA 7 5 2 22.73 0.2325 5.28 28.38 0.2274 6.45
VISA 11 7 2 22.68 1.8150 41.16 24.28 1.7990 43.68

In [56], authors have fitted the experimental data measured in [204] to an exponential curve to

obtain the effect of oxide thickness (tOX) variation on TMR values. The relation between the

tOX and TMR is expressed by following equation, TMR = K1 − K2
K3

(1 − e(−K3.tOX)), where

K1 = −8109.436, K2 = −37145, and K3 = 4.45 are fitting parameters. We have considered a

speculative variation of 1% for oxide thickness, which can result in a range of 1% to 10% TMR

variations. This can cover the full range of possible variations enabling a comprehensive PV anal-

ysis.

Due to structural limitations of MTJ devices, the TMR ratio is considered 100% as the baseline

design herein [83, 117, 205]. Based on the results listed in Table 3.2 and Table 3.3, ASA-EASA

provides, on average, 2-fold reduced EDP over MSA-PCSA, 7-fold reduced EDP compared to

ASA-VISA, and 9-fold reduced EDP compared to MSA-SPCSA. On the other hand, ASA-VISA

provides, on average, 1.4-fold reduced EDP compared to MSA-SPCSA. Figure 3.5(a) depicts the
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EDP distribution of MSA-PCSA and MSA-SPCSA for sensing AP state, respectively. Figure

3.5(b) exhibit similar results for ASA-EASA and ASA-VISA.

(a) (b)

Figure 3.5: EDP of sensing “1” with MTJref = 5.7KΩ and TMR = 100%, σTMR = 10% for(a) MSA
in PCSA and SPCSA mode and (b) ASA in EASA and VISA mode. [2]

Bit Error Rate (BER) is calculated based on the number of wrong output bits divided by all the

sensing operations performed for both P and AP states. The values provided in Figure 3.6 and

Figure 3.7 are the average BER values of P and AP states’ sensed output obtained from simulating

a single bit cell. Figure 3.6(a) lists the 10, 000 MC simulation results, where MTJP = 3.2KΩ,

MTJref = 5.7KΩ, and MTJAP = 6.4KΩ for TMR = 100%. Considering 10% variation

on TMR, the results show that on average ASA-VISA provides 8.3% reduced BER compared to

ASA-EASA, 6.1% reduced BER compared to MSA-PCSA, and 1.6% reduced BER compared to

MSA-SPCSA considering TMR = 100%. The results also exhibit further reliability improvement

considering TMR = 150% where ASA-VISA provides 10.6% reduced BER compared to ASA-

EASA, 7.2% reduced BER compared to MSA-PCSA, and 1.2% reduced BER compared to MSA-

SPCSA.

Furthermore, Figure 3.6(b) shows 10, 000 MC simulation results, whereMTJP = 3.2KΩ,MTJAP =
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6.4KΩ, and MTJref = (MTJP + MTJAP )/2 = 4.8KΩ for TMR = 100%. Considering 10%

variation on TMR, the results exhibit that on average ASA-VISA provides 10.3%, 5.7%, and 1.3%

reduced BER compared to ASA-EASA, MSA-PCSA, and MSA-SPCSA respectively, considering

TMR = 100%. The results also indicate additional improvement of reliability for TMR = 150%

where ASA-VISA provides 10.7%, 7.2%, and 1.1% reduced BER compared to ASA-EASA, MSA-

PCSA, and MSA-SPCSA respectively.

(a) (b)

Figure 3.6: Average BER for σTMR = 1% & 10%, σVth = 10%, MTJP = 3.2KΩ, (a) MTJref =
5.7KΩ and (b) MTJref = (MTJP +MTJAP )/2. [2]

Figure 3.7 shows the 10, 000 MC simulation results considering (W/L)P ratio of 2 and 4, and

(W/L)N ratio of 1 and 2. The results show that in TMR of 100% on average SA designs with

increased transistor sizes provide 8.8% and 13.2% reduced BER for MTJref = 5.7KΩ as shown

in Figure 3.7(a) and MTJref = (MTJP + MTJAP )/2 as shown in Figure 3.7(b), respectively,

compared to minimally-sized transistors. The results also exhibit further reliability improvement

considering TMR of 150% where SAs having increased transistor sizes provide 9.3% and 9.4%

reduced BER for MTJref = 5.7KΩ as shown in Figure 3.7(a) and MTJref = (MTJP +

MTJAP )/2 as shown in Figure 3.7(b), respectively, compared to SAs with minimum transistor

sizes. Additionally, considering TMR of 200% further improvements in reliability is observed.

65



The BER for SAs with increased transistor sizes is reduced by 6.3% and 5.7% on average for

MTJref = 5.7KΩ as shown in Figure 3.7(a) and MTJref = (MTJP + MTJAP )/2 as shown in

Figure 3.7(b), respectively, compared to SAs with minimum transistor sizes. It can be observed

that by optimizing the reference MTJ and using (MTJP + MTJAP )/2 configuration, the BER

can be decreased by 8.9% on average for a TMR of 100% due to increases in the SM for both P

and AP states of the MTJ. The distribution of P and AP states of the MTJs and the reference MTJ

is depicted in Figure 3.8. Based on the results of MC simulations, it is clear that the larger TMR

values results in an increased SM, which reduces the impact of PV.

(a) (b)

Figure 3.7: Average BER for σTMR = 1% & 10%, σVth = 10%, (W/L)P = 2 & 4, (W/L)N = 1 & 2,
MTJP = 3.2KΩ, (a) MTJref = 5.7KΩ and (b) MTJref = (MTJP +MTJAP )/2. [2]

Figure 3.8: Distribution of P and AP states of the MTJ devices, MTJref1 = 4.8KΩ, and MTJref2 =
5.7KΩ. [2]
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In order to be able to compare the reliability and performance of different SAs more comprehen-

sive, SEER metric is introduced herein, which represents the ratio of BERR to average EDP as

demonstrated in (3.1). BERR is calculated as shown in (3.2). SEER will enable the designers

to effectively assess the most appropriate SA for their need based on whether they are seeking

reliability or energy efficiency. Any increase in BERR or decrease in EDP will cause the SEER

to increase. As a result, larger values of SEER imply increased reliability and performance and

on the contrary, small values of SEER imply decreased reliability and performance.

SEER((fJ × ps)−1) =
BERR (Design X)

EDP (Design X)
(3.1)

BERR(%) = 100−BER (Design X for desired TMR) (3.2)

Qualitative performance comparison of the designs and metrics proposed in this Section is listed in

Table 3.4. Based on physical layout design of PCSA, EASA, SPCSA, and VISA shown in Figure

3.9(a), Figure 3.9(b), Figure 3.9(c), and Figure 3.9(d) respectively, it is clear that the proposed

EASA and VISA designs offer small area overhead compared to their counterparts, considering

overall size of the memory.

Table 3.4: Qualitative performance comparison of Sense Amplifier designs discussed herein. [10]

Design Delay Power EDP BERR SEER SEER
(Iso-BERR) (Iso-EDP)

PCSA [83] 333 3 33 - - 33 -
EASA

3 333 333 - - 333 - -(Proposed herein)
SPCSA [117] 3 - - - - 33 - - 33

VISA
3 - - 333 - 333(Proposed herein)
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(a) (b)

(c)

(d)

(e)

Figure 3.9: (a) PCSA Layout, (b) SPCSA Layout, (c) EASA Layout, (d) VISA Layout, and (e) Layout
Legend. [10]
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3.2 Proposed SOS Schematic for SA Assignment

By combining PCSA and SPCSA, the Merged Sense Amplifier (MSA) [198] is realized to utilize

each SA’s properties to increase performance and reliability. In order to improve energy efficiency

of MSA proposed in [198], the selectors MUX1 and MUX2 are included in order to make sure

only one SA is operating and to avoid unnecessary energy consumption by gating the SEN signal

of the offline SA as shown in Figure 3.10.

Figure 3.10: MSA (SB: Sub-Bank). [2]

Herein, we propose an alternative for MSA that further improves energy consumption and reliabil-

ity due to PV. The Adaptive Sense Amplifier (ASA), as shown in Figure 3.11, has a functionality

similar to MSA described in [198]. However, by utilizing EASA, as shown in Figure 3.3 [10],

and VISA, as shown in Figure 3.4 [10], instead of PCSA and SPCSA, it can achieve better energy

and reliability profiles, respectively [10]. Like MSA, MUX1 and MUX2 are included in ASA to

reduce energy consumption by gating the SEN signal of the offline SA so that only one SA is oper-
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ating. SPCSA and VISA both increase reliability by reducing the amount of resistance in the MTJ

read paths, which increases the SM and voltage headroom of the SA, resulting in a more reliable

sensing. Increasing voltage headroom is an important issue in scaled technology nodes since the

supply voltage is reduced to 1 volt or below, and even a small voltage drop can result in a sensing

error [117].

Figure 3.11: ASA (SB: Sub-Bank). [2]

The schematic of different SOS designs is depicted in Figure 3.10 and Figure 3.11, and the process

for assigning the preferred SA to each Sub-Bank (SB) is shown in Algorithm 1 for MSA and

ASA. As shown in Algorithm 1, SOS starts with a POST function. In both SA designs, after the

POST function, an analyzer function is called to determine the preferred SA for that particular SB.

A select input is used in the circuit called MODE to choose between the two SAs based on the

assigned bit set value as shown in Figure 3.10 and Figure 3.11. If the logic 1 is assigned to input

MODE, then the circuit will operate in PCSA mode in MSA or EASA mode in ASA. On the other

hand, if logic 0 is assigned to MODE, it will change the operation of the SA to SPCSA mode in
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MSA or VISA mode in ASA. As discussed earlier, in both MSA and ASA, the SEN signal is gated

for the SA that is not in use to increase energy saving of the SA. In other words, only one SA will

turn on, and the other SA’s SEN signal will be connected to GND, which results in OUT and OUT

to be 1 at all times. ASA offers improved reliability and performance, while maintaining a small

footprint of 2.5µm2 as depicted in Figure 3.12(a). Additionally, ASA incurs 0.5-fold, 10.4-fold,

2.3-fold, 3.3-fold, and 1.4-fold area overhead compared to the new MSA shown in Figure 3.12(b),

PCSA [10], SPCSA [10], EASA [10], and VISA [10], respectively.

(a)

(b)

(c)

Figure 3.12: (a) ASA Layout, (b) MSA Layout, and (c) Layout Legend. [2]
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Algorithm 1: SOS Approach to Assign Preferred SA to Sub-bank. [2]
1 Function SOS() /*SOS Approach for SA Assignment*/
2 for ∀ cache line ∈ LLC do
3 for ∀ sub− bank ∈ cache line do
4 begin
5 POST() /*Power-On Self-Test*/
6 Analyzer() /*Evaluate the correctness of the outputs*/

7 Function POST() /*Power-On Self-Test*/
8 begin
9 set SEN = 1 /*start the discharge and evaluation stage*/

10 if output != expected-value then
11 ++number-wrong-outputs /*increment number of wrong outputs*/

12 set SEN = 0 /*keep the sense signal in pre-charge stage*/

13 Function Analyzer() /*Evaluate the correctness of the outputs*/
14 begin
15 if number-wrong-outputs > threshold then
16 set MODE = 0 /*assign MSA-SPCSA or ASA-VISA to sub-bank*/
17 /*MUX3 takes sensed data from MSA-SPCSA or ASA-VISA to output*/
18 /*MUX1 selects SEN signal to activate MSA-SPCSA or ASA-VISA and deactivate MSA-PCSA or

ASA-EASA*/
19 else
20 set MODE = 1 /*assign MSA-PCSA or ASA-EASA to sub-bank*/
21 /*MUX3 takes sensed data from MSA-PCSA or ASA-EASA to output*/
22 /*MUX2 selects SEN signal to activate MSA-PCSA or ASA-EASA and deactivate MSA-SPCSA or

ASA-VISA*/

3.2.1 Extracting the PV Parameters

In our PV modeling process, we assume that the cache tag and peripherals (e.g., row decoder,

column decoder, row buffer and SAs) are fabricated at the CMOS layer while memory cells are

realized through MTJ devices. Since the MTJs are vertically stacked on top of the CMOS layer and

these components are tightly coupled to realize the function of STT-MRAM, the SM varies readily

based on the effect of PV on that particular region of the die. Accordingly, we have utilized the

approach mentioned in [198] to extract the PV parameters. One PV map is randomly selected from

a large pool of PV maps with a resolution of one million (1, 000 × 1, 000) sample points that are

generated utilizing the approach presented in [198]. The degree of variation is shown by a range

of colors. Each color corresponds to a specific value of sample points as shown in Figure 3.13.
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In our simulation, we consider the amount of PV for each site based on the location of the LLC

components within the floorplan and their associated sample points. Thus, the generated maps are

relatively accurate estimation of the impact of PV on the read SM of each SB.

(a)

(b)

Figure 3.13: (a) PV map of a 4-core CMP, and (b) Determining preferred SA based on post-fabrication SB
PV resiliency assessment. [2]

3.2.2 Power On Self-Test (POST)

As shown in Figure 3.13, the cache bank floorplan of the STT-MRAM layer is superimposed on

the map. In our SOS approach, each cache bank is partitioned into 16 SBs. The size of each

SB is matched with the word size to maintain the energy consumption of the tag to be as low as

possible, e.g. 32 bits in our case study. We consider one additional bit per SB to identify the
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preferred SA for that particular SB during post-fabrication resiliency assessment to PV. The POST

phase is basically a March Test that targets PV-induced faults in STT-MRAM [206]. Similar to the

widely-used March test, during the POST operation, first we write 0 to all memory cells, then we

read the memory cells and then we write 1 to all memory cells and then read again. Based on the

outcome of all read operations we will be able to find the number of erroneous outputs and based

on that, it is possible to recognize the high-PV regions. We assume the proposed SRAM March

Test with O(n) test length can be utilized for our purpose because the tag and peripherals of STT-

MRAM are considered to be implemented in the CMOS layer. Thus, variation-induced delay faults

in both SRAM and STT-MRAM manifests itself as the same fault model as an insufficient pre-

charge period, insufficient discharge and evaluation period, insufficient amplify time, disturbance

of sensing operation, and simultaneously activation of multiple word lines.

In this regard, PV-aware March Test examines all STT-MRAM data arrays and performs a sequence

of operations (e. g., exhaustive pair-wise address transitions) to identify PV-induced delay faults in

each cell [206]. If the error rate of the impacted STT-MRAM cells in a SB exceeds the predefined

threshold, the extra bit is set to 0 indicating that an array of reliable SAs are re-quired for sensing

the data of this SB. Otherwise, the extra bit is set to 1, which indicates that an array of low-

power SAs offering reduced delay and power consumption can be considered for that particular

SB. Since POST is a one-time operation, it will not impact the performance of the memory as a

whole, resulting in a negligible overhead.

3.2.3 Fault Models Associated with Sensed Data

In the PARSEC suite [207], when considering the presence of PV, around 27.5% of the sensed

data when utilizing a STT-MRAM based LLC has the potential to be incorrect, 6% of which

will be overwritten prior to being used by the processor or to be committed to the main memory,
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on average. Despite the fact that 6% might not be significant, a substantial portion of incorrectly

sensed data requires handling before manifesting themselves as wrong outputs, application crashes,

or prolonged program executions [29]. To be specific, we classify the outcomes of SA operation

to the following categories for broad adaption according to [198]:

• True Data Sensing (TDS): The sensed data value is identical to the value stored in the STT-

MRAM cell.

• Vulnerable False Data Sensing (VFDS): The sensed data value differs from the value stored

in the STT-MRAM cell, which propagates out of cache to be either used by the process or

committed to oth-er levels of memory [29].

• Non-Vulnerable False Data Sensing (NVFDS): The sensed data value differs from the value

stored in the STT-MRAM cell, however the replica copy of the sensed false data in the upper

levels of cache will be overwritten by a write operation prior to being used. During a block

eviction, replica data becomes written back to the lower levels of cache because it is a dirty

victim block. Thus, this benign fault does not threaten the semantic correctness.

Based on these categories, the experiment concentrates on the faults that are caused by incorrectly

sensed data rather than alternative fault models that can impact the stored value in STT-MRAM

cells [208].

3.2.4 Proposed Hybrid SRAM and STT-MRAM LLC Design

Figure 3.14 illustrates the scheme of a hybrid 8-way set associative SRAM and STT-MRAM LLC

design, where way-0 and way-1 are implemented within SRAM-based banks while way-2 through

way-7 are built in STT-MRAM-based banks. This configuration is selected based on our exper-
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imental results, whereby the average number of write-intensive blocks in each set was approx-

imately 2 across all workloads. Since the peripherals required for read and write operations in

NVM arrays occupy a relatively larger portion of the cache footprint than peripherals required by

SRAM arrays, it is beneficial to build the tag array with SRAM cells. Thus, we assume that the

entire tag array is built with SRAM. With cache tags residing in CMOS, erroneous SRAM-based

tags lie outside of the scope of this study.

Unlike conventional cache design approaches, where the tag and data array are accessed simultane-

ously to reduce access latency while incurring significant power overhead, we propose to split the

cache access into two stages similar to the work presented in [209], but with adjustments in favor of

high SOS throughput. If LLC is accessed with a read operation, the tag array and all STT-MRAM

banks are accessed in parallel. Thus, assuming that data is found in STT-MRAM banks, the un-

necessary accesses to SRAM banks can be skipped. Upon a LLC miss on STT-MRAM banks, but

hit on a tag corresponding to a SRAM bank, the associated SRAM data array of the bank in LLC

is accessed. Even though this mechanism incurs additional latency if the data is stored in SRAM

banks, we argue that this incident occurs rarely since our insertion/migration policy maintains the

read-dominant cache blocks in STT-MRAM banks while write-intensive blocks are transferred to

SRAM banks.

If the cache set is accessed by a write operation, the tag arrays and SRAM banks are searched

in the first stage. If the data is not found in SRAM banks but found in a STT-MRAM bank, the

corresponding STT-MRAM banks is accessed in the next stage. Unlike the insertion strategy in

[209] where SRAM banks are selected for inserting fetched data from memory upon an LLC miss,

our insertion policy allocates a way from either SRAM or STT-MRAM banks according to the

miss type. In particular, the SRAM and STT-MRAM banks are allocated upon an LLC write miss

and read miss, respectively.
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Figure 3.14: The scheme of hybrid 8-way set associative SRAM and STT-MRAM cache design, whereby
each bank stores a way. In the above configuration, two SRAM-based banks and six STT-MRAM based
banks are illustrated. [2]

Based on our observation presented in [210], a portion of a workload might be re-executed several

times, indicating that the read-intensive cache blocks which were brought to LLC once, transferred

to low-PV impacted region of a set, and finally evicted need to be re-allocated from low-PV im-

pacted STT-MRAM banks while being re-referenced again. In order to keep track of read-intensive

blocks, even after eviction from LLC, we utilize a read-intensive block profiler, which is basically

a queue of 16 entries that maintain the address of recent frequently-read blocks. Upon a read miss

in LLC, the address of missed data is searched in the profiler. If it is found, a cache block from

low-PV impacted STT-MRAM ways based on Least Recently Used (LRU) policy is replaced by

fetched data from memory. The dirty victim block is written back into memory while the clean

victim block is silently dropped.
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3.2.5 Proposed PV/Energy-Aware Cache Migration Policy

Besides considering hybrid SRAM and STT-MRAM designs to accelerate service to write op-

erations and improve bank accessibility, we also propose an efficient block insertion/migration

policy to maximize the SOS throughput [2]. The tag store associated with STT-MRAM banks are

equipped with three fields, Read Counter (RC), Write Counter (WC), and PV status. The main

idea behind using RC is to identify vulnerable read-intensive blocks in the set. If a frequently-read

block is allocated to a high-PV impacted STT-MRAM array, the cache block must be relocated to

a low-PV impacted region of the set to guarantee reliable read operations.

We conducted an extensive exploration to evaluate the preferred value for the read threshold level,

NRth, within our design. We found that if NRth is small, the ratio of blocks that must be transferred

to a low-PV impacted region significantly increases, while if NRth is large, then SOS utilization

significantly decreases because only a few read-intensive cache blocks are selected for migration.

Thus, we set NRth based on extensive study on block access patterns of under test workloads. In

addition, the non-access-intensive cache blocks located in low-PV impacted data arrays in STT-

MRAM is selected to be replaced by vulnerable read-intensive blocks, if the corresponding RC of

one of the high-PV impacted blocks reaches NRth.

Additionally, WC is a saturating counter to keep track of write access patterns to a cache block. If

WC reaches its write threshold level, NWth, it is considered as a write-intensive block. We propose

to transfer these blocks to SRAM data arrays in order to amortize the latency and high dynamic

energy consumption associated with incoming write operations. The PV status determines whether

a cache block is located in low-PV or high-PV impacted data array regions. This bit is set based

on a consensus decision-making process in the tag store during the POST phase.
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Table 3.5: Architecture Simulation and Evaluation Parameters. [2]
Parameter Values and Description

core 3.3GHz, Fetch/Exec/Commit width 4
L1 Private, 32 KB, I/D separate, 8-way, 64 B, SRAM, WB
L2 Shared, 4 MB, 8 banks, 8-way, 64 B, STT-MRAM, WB

Memory 8 GB, 1 channel, 4 ranks/channel, 8 bank/rank
4MB L2 cache bank configuration (32nm, temperature=350K)

L2 Cache RL/WL RE WE LP Area Iso-
Technology (cycles) (nJ) (nJ) (mW ) (mm2) Area
1MB SRAM 7.43/5.78 0.161 0.156 295.58 1.82 Case 1

4MB STT-MRAM 9.08/25.58 0.216 0.839 18.39 1.86 Case 1
4MB MSA-based

9.08/25.58
PCSA=0.209

0.839 18.39 2.64 Case 2
SOS SPCSA=0.218

4MB ASA-based
9.08/25.58

EASA=0.208
0.839 18.39 2.72 Case 2

SOS VISA=0.217
RL: Read Latency, WL: Write Latency, RE: Read Energy, WE: Write Energy, LP: Leakage Power

3.2.6 Architecture-Level Results and Analysis

To comprehensively evaluate the efficacy of SOS, we analyzed SOS on both circuit-level and

architecture-level simulators. Architectural experimental results are presented in this Section uti-

lizing the evaluation parameters listed in Table 3.1 and Table 3.5. The latency and energy usage

associated with read and write operations for SRAM and conventional SA cache accesses are pro-

vided by NVSim [211]. However, we integrate the obtained results from Section 3.1.1 for 1-bit

MSA and ASA into NVSim to extract the power and performance parameters for cache accesses in

the SOS design. PARSEC 2.1 benchmarks suite [207] is executed on a modified MARSSx86 [212],

which supports asymmetric cache read and write from distinct cache banks to extract the evaluation

parameters of different cache designs during program execution. We model a Chip Multi-Processor

(CMP) with four single-threaded x86 cores. Each core consists of private L1 cache, and shared

LLC among all the cores. Eleven workloads are executed for 500 million instructions starting at

the Region of Interest (RoI) after warming up the cache for 5 million instructions. The simsmall

input sets are used for all PARSEC workloads [207].
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(a)

(b)

Figure 3.15: (a) LLC dynamic energy comparison, and (b) LLC leakage energy comparison for SRAM,
STT-MRAM, SOS-MSA, SOS-ASA, and HC-SOS, respectively. [2]

The experimental results indicate that HC-SOS can save up to 10.6%, on average, of dynamic en-

ergy consumption compared to STT-MRAM-based LLC. Although SRAM exhibits lower dynamic

energy consumption, its high leakage power has worsened the overall consumed energy compared

to other designs, as shown in Figure 3.15. Both STT-MRAM and SOS-MSA/ASA can conserve

88% on average of the total consumed energy. HC-SOS incurs higher leakage energy compared

to STT-MRAM and SOS-MSA/ASA due to leveraging two SRAM-based banks in the design,

incurring relatively more leakage energy to the entire cache subsystem.
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Figure 3.16: Write performance comparison for SRAM, STT-MRAM, SOS MSA/ASA, and HC-SOS. [2]

HC-SOS improves the write performance by 12.4%, on average, compared to STT-MRAM. The

results indicate that the workloads, such as vips, swaptions, and ferret, leverage the full potential

of HC-SOS to further diminish the high write latency, which adversely impacts the entire cache

sub-system throughput and accessibility.

The proposed PV-/Energy-Aware cache block migration policy further improves the SOS through-

put by relocating read/write intensive blocks, which results in enhanced TDS, write performance,

and bank service time. Namely, the VFDS in the HC-SOS-ASA is reduced by 89% on average

compared to LLC with STT-MRAM, thus improving the mean TDS from 72.5% to 97% across all

workloads.

The energy consumption of PV/energy-aware migration policy is shown in Figure 3.18, which

demonstrates the dynamic energy consumption breakdown associated with swapping high-PV im-

pacted read-intensive blocks within STT-MRAM-based banks and migrating write-intensive blocks

to SRAM-based banks. The corresponding energy overhead for PV/energy-aware migration policy

is around 14µJ which is less than 0.7% of total LLC dynamic energy consumption. This implies

that the migration energy overhead is insignificant and incurs a minor energy overhead to the entire

system. A comparison with previous works is listed in Table 3.6.
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Figure 3.17: Distribution of sensed data. SOS is equipped with MSA, ASA, and migration policy for ASA
design. [2]

Figure 3.18: The dynamic energy consumption associated with PV/energy-aware migration policy. [2]

3.3 Conclusion

Spin-Transfer Torque Magnetic Random Access Memory (STT-MRAM) has been explored as a

post-CMOS technology for embedded and data storage applications seeking non-volatility, near-

zero standby energy, and high density. Towards attaining these objectives for practical implementa-

tions, various techniques to mitigate the specific reliability challenges associated with STT-MRAM

elements are surveyed, classified, and assessed herein.
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Table 3.6: Related Work Comparison Table. [2]
Design

Circuit-Level/
Architecture-Level

Read Enhancement Write Enhancement
Contribution

PV Reliability Performance PV Reliability Performance

RWHCA [213] Architecture-Level 7 3 7 3

RWHCA reduces power dissipation by
55% on average, while achieving 5%

improvement IPC compared to the baseline
SRAM cache across 30 workloads.

APM [169] Architecture-Level 7 7 7 3
Provides 18.9% and 19.3% reduction in

power dissipation for single-thread
and multi-thread workloads, respectively.

PHC [170] Architecture-Level 7 7 7 3

Offers 28% and 31% reduction in energy
consumption compared to existing hybrid

architectures in single-core and
multi-core systems, respectively.

PVA-NUCA [37] Architecture-Level 7 3 7 3
Offers 26.4% reduced energy consumption and
provide 25.29% IPC performance improvement

while incurring less than 1% area overhead.

Relaxed-Retention [214]
Circuit- and

Architecture-Level
3 3 7 3

Increases read and write performance of STT-MRAM
and reliability of read at the cost of decreasing

retention time and thus requiring periodic refresh.

HC-SOS (This Work)
Circuit- and

Architecture-Level 3 3 3 3

SOS-enabled Hybrid Cache improves
write performance by 12.4% on average

compared to STT-MRAM baseline cache design,
improves the mean TDS from 72.5% to 97%, and

reduces VFDS by 89% on average across all workloads.

Some solutions to the reliability issues identified are addressed for reliable STT-MRAM designs. In

an attempt to further improve the Process Variation (PV) immunity of the Sense Amplifiers (SAs),

two new SAs have been introduced: Energy Aware Sense Amplifier (EASA) and Variation Immune

Sense Amplifier (VISA). Results have shown that EASA and VISA achieve superior performance

in most cases compared to two of the most common SAs, namely PCSA and SPCSA respectively,

while reducing Bit Error Rate (BER) and increasing reliability.

While inclusion of emerging technology-based Non-Volatile Memory (NVM) devices in on-chip

memory subsystems offers excellent potential for energy savings and scalability, their sensing

vulnerability creates PV challenges. In this dissertation, I propose a circuit-architecture cross-

layer solution to realize a radically-different approach to leveraging as-built variations via specific

SA design and use. This novel approach, referred to as a Self-Organized Sub-bank (SOS) design,

assigns the preferred SA to each Sub-Bank (SB) based on a PV assessment, resulting in energy

consumption reduction and increased read access reliability. To improve the PV immunity of SAs,

two reliable and power efficient SAs, called the Merged SA (MSA) and the Adaptive SA (ASA)

are introduced herein for use in the SOS scheme. Furthermore, I propose a dynamic PV and
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energy-aware cache block migration policy that utilizes mixed SRAM and STT-MRAM banks in

Last Level Cache (LLC) to maximize the SOS bandwidth. The experimental results indicate that

SOS can alleviate the sensing vulnerability by 89% on average, which significantly reduces the

risk of application contamination by fault propagation. Furthermore, in the light of the proposed

block migration policy, write performance is improved by 12.4% on average compared to the STT-

MRAM-only design.
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CHAPTER 4: SELF-ORGANIZED SUB-BANK SHE-MRAM-BASED

LLC: AN ENERGY-EFFICIENT AND VARIATION-IMMUNE READ

AND WRITE ARCHITECTURE1

In this Chapter, we focus on increasing energy efficiency and reliability of write operations in

STT-MRAM and is motivated by the observation that the STT switching technique suffers from

high dynamic energy consumption [40]. SHE-MTJ has been recently studied as an energy-efficient

alternative for STT-MTJ due to its improved performance. Several write circuits have been studied

in recent years in order to achieve optimum energy while maintaining high reliability. Herein, we

explore SHE-MTJ write circuits and compared those with conventional STT-MTJ write circuits

in terms of performance and reliability. Furthermore, a high-resilient write circuit as well as an

energy-efficient write circuit are selected in order to be utilized in the SOS approach for further

performance and reliability improvements of SHE-MRAM. In particular, the SOS approach is

implemented once with the high-resilient write circuit and once with the energy-efficient write

circuit. Our results indicate that the energy-efficient write circuit provides significant energy and

delay improvements over the conventional STT-MTJ write circuit and high-resilient SHE-MTJ

write circuit. On the other hand, the high-resilient write circuit for SHE-MTJ offers reliability

improvement over the energy-efficient SHE-MTJ write circuit.

4.1 Write Circuit Design and Analysis

In this section, various write schemes are investigated for switching the states of the STT-MTJ and

SHE-MTJ devices. Herein, we have simulated the write circuits using SPICE circuit simulator in

1©IEEE. Part of this chapter is reprinted, with permission, from [3]
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22nm PTM library [202] using 1.0V nominal voltage. To provide a fair comparison, the size of

the write transistors are enlarged 6-fold to produce a write current greater than the critical current

for all of the investigated bit cells. Herein, we have utilized a chain of four inverters to drive Bit

Line (BL), Source Line (SL), and Word Line (WL). Each successive inverter is twice as large as

the previous one.

4.1.1 STT-MRAM Write Schemes

Figures 4.1(a) and 4.1(b) show energy-aware STT-MRAM bit cell circuits inspired by the designs

proposed by Ben-Romdhane et al. [11] and Zand et al. [109], respectively. The transmission

gate (TG)-based write circuit leverages the near-optimal full-swing switching behavior of TGs to

provide a high amplitude write current, which leads to a high speed switching. The simulation

results listed in Table 4.1 indicate the advantage of TG-based STT-MRAM bit cell circuit (1T-

1R) compared to conventional 1T-1R circuit and the write scheme proposed by Ben-Romdhane et

al. [11]. According to the results listed in Table 4.1, 1TG-1R design provides roughly 1.7-fold

improved EDP compared to 1T-1R design and 1.5-fold improved EDP compared to the design

proposed in [11].

Figure 4.1: (a) 7T-1R [11] STT-MRAM Bit-Cell, (b) 1TG-1R STT-MRAM Bit-Cell. [3]
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Table 4.1: Write Characteristics for Various STT-MRAM Bit-Cells. [3]

Features 1T-1R 7T-1R[11] 1TG-1R

Parallel (P) Current (µA) 136.3 118.1 172.3
to Delay (ns) 3.67 4.5 2.7

Anti-Parallel (AP) Power (µW) 137 119.1 181.5
Anti-Parallel (AP) Current (µA) 81.36 110.2 134.3

to Delay (ns) 5.73 3.95 3.1
Parallel (P) Power (µW) 82.13 111.2 143.46

Average Energy (fJ) 486.7 487.6 467.4
Energy Delay Product (EDP) (fJ×ns) 2270.9 2073.4 1350.9

Average EDP Improvement
7T-1R – – 34.8%
2T-1R – 8.7% 40.5%

4.1.2 SHE-MRAM Write Schemes

Despite the advantages of conventional STT switching approaches, their main challenge is rel-

atively high switching delay and energy consumption. SHE-assisted STT switching mechanism

have been introduced as an alternative for conventional STT switching enabling significantly re-

duced switching energy. Herein, we have leveraged two bit cells proposed by authors in [109] for

switching the SHE-MTJ devices. Figure 4.2(a) shows a 7T-1R bit cell requiring two read tran-

sistors and five write transistors. The 7T-1R bit cell has a completed current path from VDD to

GND via the transistors and the HM. Since the BL and the SL are electrically isolated from the

current path, the strengths of the BL and SL drivers do not need to be considered for the write

operation. This makes 7T-1R an energy-efficient design, however it incurs significant area over-

head. A 1TG-1T-1R bit cell is shown in Figure 4.2(b) which includes one TG for write and one

transistor for read operation. The results provided in Table 4.2 shows that 1TG-1T-1R bit cell is

the most energy-efficient design with significantly improved EDP values. According to the results,

1TG-1T-1R offers 1.6-fold improved EDP compared to 2T-1R and roughly 1.7-fold improved EDP

compared to 7T-1R design.
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Figure 4.2: (a) 7T-1R SHE-MRAM Bit-Cell, (b) 1TG-1T-1R SHE-MRAM Bit-Cell. [3]

Table 4.2: Write Characteristics for Various SHE-MRAM Bit-Cells. [3]

Features 2T-1R 7T-1R 1TG-1T-1R

Parallel (P) Current (µA) 138.7 119.8 181.7
to Delay (ns) 2.25 2.63 1.61

Anti-Parallel (AP) Power (µW) 139.4 120.9 190.8
Anti-Parallel (AP) Current (µA) 112.4 119.8 176.9

to Delay (ns) 2.85 2.63 1.66
Parallel (P) Power (µW) 113.1 120.9 186.1

Average Energy (fJ) 317 318 308
Energy Delay Product (EDP) (fJ×ns) 812.18 836.25 503.7

Average EDP Improvement
7T-1R – – 34.8%
2T-1R – 8.7% 40.5%

Normalized Area Compared to 2T-1R 1 10.1 2.88

We have also examined the performance of the introduced SHE-MRAM bit cells in presence of

variations in HM dimensions (σHM ) and transistors’ threshold voltage (σVth). These two types

of PVs have the most impact on the produced write current. Figure 4.3 shows the produced

write current fluctuations versus σHM and σVth. The results exhibit that the 7T-1R bit cell is

the most variation-resilient design with less than 8% variation for the worst case scenario inves-

tigated herein, i.e. σHM = 10% and σVth = 10%. In 7T-1R bit cell, the size of the transistors

should be tripled to generate a write current greater than switching critical current. Although this
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leads to a significant area overhead, it can enhance the PV-tolerance since increasing the size of the

transistors is one of the most commonly-used methods to improve the variation resistance [215].

Figure 4.3: Write current variations versus σVth for σHM = 10%. [3]

4.2 Architecture-Level Simulation Results

In order to fully evaluate the SOS approach’s efficacy using both the STT and SHE write ap-

proaches, architectural-level analysis is necessary. The evaluation parameters used in order to

extract the architectural-level simulation results are listed in Table 4.3. In our analysis method,

first the circuit-level simulation is performed in order to extract the required parameters for a sin-

gle bit-cell and then these parameters are forwarded to architecture-level simulators, GEM5 [216]

and NVSim [211], to extract system-level results.

In this Section, the EDP is calculated for read and write memory operations in each cache ac-

cess based on the circuit-level results from Section 4.1 and [2]. PARSEC benchmarks suite [207]

executed on modified MARSSx86 [212] which supports asymmetric cache read and write from
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distinct cache banks to extract the evaluation parameters of different cache designs during pro-

gram execution. We model a Chip Multi-Processor (CMP) with four single-threaded x86 cores.

Each core consists of private L1 cache, and shared LLC among all the cores. Eleven workloads

are executed for 500 million instructions starting at the Region Of Interest (ROI) after warming up

the cache for 5 million instructions. The simsmall input sets are used for all PARSEC workloads

[39].

Table 4.3: Architecture Parameters. [3]
Parameter Values and Description

core 3.3GHz, Fetch/Exec/Commit width 4
L1 private, 32 KB, I/D separate, 8-way, 64 B, SRAM, WB

L2
shared, 4 MB, 8 banks, 8-way, 64 B, STT-MRAM, WB
shared, 4 MB, 8 banks, 8-way, 64 B, SHE-MRAM, WB

memory 8 GB, 1 channel, 4 ranks/channel, 8 bank/rank
4MB L2 cache bank configuration (32nm, temperature=350K)

L2 Cache RL/WL RE WE LP Area
Technology (cycles) (nJ) (nJ) (mW ) Overhead∗

STT-based SOS 9.08/25.58
PCSA=0.209

0.839 18.39 7.44∗∗
SPCSA=0.218

SHE-based SOS 9.08/13.30
PCSA=0.209

0.553 18.39 7.44∗∗
SPCSA=0.218

RL: Read Latency, WL: Write Latency, RE: Read Energy,
WE: Write Energy, LP: Leakage Power

∗: Area overhead reflects the overhead of SA and calculated as:
(Area using the MSA)
(Area using the PCSA)

∗∗: Since STT-MTJ and SHE-MTJ are fabricated on top of the CMOS
circuitry, the area of the STT-based and SHE-based SOS are identical.

4.2.1 Energy Delay Product (EDP)

In order to clarify the advantage of using SOS equipped with SHE devices for read and write oper-

ations, four LLC designs are compared in terms of EDP. The conventional STT-MRAM based LLC

utilizes PCSA [83] in its organization to maintain the consumed power as low as possible. On the
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other hand, SOS improves the sense margin of high-PV impacted regions of LLC through SPCSA

[117] employment. Even though SPCSA sacrifices energy efficiency to offer higher reliability, the

amount of additional consumed energy due to the utilization of SPCSA can be alleviated by SOS

technique. To be specific, SOS neutralizes the high energy consumption of SPCSA via assigning

low-power PCSA array to the LLC regions that are impacted by PV negligibly. The effect of this

compensation has been shown in Figure 4.4 whereby the EDP of SOS technique and the design

that benefit exclusive SPCA is approximately even across all benchmarks.
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Figure 4.4: EDP comparison for STT-MRAM, SOS, SOS-7T1R, and SOS-1TG1T1R. [3]

The high write energy overhead for storing a value into STT-MRAM cell incurs significant energy

overhead in both conventional STT-MRAM and SOS while SHE devices utilized in SOS-7T1R

and SOS-1TG1T1R significantly reduce the required write energy. In particular, the EDP of each

memory cell in SOS-1TG1T1R is less than SOS-7T1R according to the basis presented in Sec-

tion 4.1. Thus, the EDP of LLC entailing 1TG1T1R in its arrangement is significantly less than

other designs. This incident is conspicuous for write-intensive workloads such as facesim, ferret,

and vips where the ratio of write accesses to the LLC is significantly more than read accesses.

On average, SOS-1TG1T1R decreases the EDP by 39% compared to SOS-7T1R, leading to the

considerable performance improvement and energy consumption reduction.
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4.2.2 Empirical Analysis of Fault Model Associated with Sensed Data

The memory accesses to the LLC blocks has unprecedented pattern for each class of workloads.

This means that some cache lines in the banks may experience a large number of read operations

while others may be accessed by frequent write operations. This non-uniform access can be prob-

lematic when the read-intensive cache lines are placed into a high PV-impacted region of a bank,

which results in increasing the ratio of VFDS for that particular workload. SOS reduces the ratio

of VFDS by assigning high-reliable SA to the high-PV impacted sub-banks while substantially

reducing the energy consumption overhead associated with read operations through low-power SA

assignment to low-PV impacted sub-banks.

Figure 4.5 illustrates the comparison of distribution of read operation reliability between LLC

equipped with conventional STT-MRAM, SOS circuit strategy, and different SHE devices. We

assume that the PV map for each cache bank is similar to the floorplan shown in Figure 3.13.

Based on the position of accessed sub-bank in the floorplan, different PV ratios are applied during

fault analysis of the workloads. To be specific, if a sub-bank experiences a high amount of PV,

the probability that the data will be sensed incorrectly is high. Our experimental results indicate

that the PV effect may incur around 27.5% of the sensed data to be read incorrectly from which

21.5% are extremely vulnerable which implies that about one fifth of the overall sensing operations

have the potential to contaminate the application’s data structure. If this rate of sensed data is not

accommodated, it may induce application crashes or prolong the program execution. Based on

the PV map and the access pattern shown in different class of benchmarks, we observed that the

proportion of read operations and dirty victim blocks residing in LLC in blackscholes and canneal

workloads, are more than write operations which results in the increased VFDS. Furthermore,

the streamcluster workload is a read-intensive application in which more than 85% of memory

operations are read accesses which increases the chance for enduring higher VFDS.

92



The probability of sensing incorrect data is addressed through leveraging PV-resilient SAs array

(SPCSA) in the SOS approach whenever the sub-bank’s PV ratio is more than a predefined thresh-

old. Namely, the VFDS in the SOS design is reduced by 82% on average compared to LLC

with conventional STT-MRAM. The VFDS of write-intensive benchmarks such as ferret and vips

is 15.87% and 14.35%, respectively which is substantially less than the VFDS of read-intensive

benchmarks such as streamcluster (34.93%).
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Figure 4.5: Distribution of read operation reliability. The rightmost bars for each workload show the SOS
equipped with SHE (7T1R) and SHE (1TG1T1R), respectively. [3]

Additionally, SOS considerably improves the TDS of read-intensive benchmarks. In particular, we

observed that the TDS of streamcluster can improve by 32.43% using SOS. However, this im-

provement is not significant for write-intensive benchmarks. For example, SOS improves the TDS

of vips workload by 17.87% which is almost half of the improvement observed in read-intensive

workloads. In overall, the mean TDS is improved from 72.5% to 95% across all workloads via

SOS utilization.

4.3 Conclusion

In order to reduce static energy consumption, emerging NVM technologies such as STT-MRAM,

Spin-Hall Effect Magnetic RAM (SHE-MRAM), Phase Change Memory (PCM), and Resistive
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RAM (RRAM) are under intense research. Additionally, there is a demand for more reliable cir-

cuits as the technology scales due to increased error rates caused by the increased impact of PV.

In order to combat PV-induced reliability problems, a novel approach is proposed herein that im-

proves the reliability of read and write operations in emerging NVMs. In the proposed SOS design,

two SAs have been adopted, one with improved reliability and one with improved energy efficiency

profiles, in order to increase the performance of the read operation. In particular, based on the result

of a Power-On Self-Test (POST), which detects PV-impact on sub-banks, SOS chooses between

a reliable and an energy-efficient SA and assigns a preferred SA to each sub-bank. Based on the

preliminary observation in our case study, 21.5% of read operations are extremely vulnerable to

PV impacts. Our results indicate that the proposed SOS approach reduces the vulnerability of the

read operation by 40% on average, hence reducing the fault propagation. In particular, the SOS

alleviates Vulnerable False Data Sensing (VFDS) by 82% on average, while enhancing True Data

Sensing (TDS) from 72.5% to 95% across all workloads studied herein compared to LLC with

conventional STT-MRAM.

Furthermore, in order to increase the performance of the write operation, SHE-MRAM is replaced

with STT-MRAM to provide better write energy profile. Additionally, SOS design is once imple-

mented with a reliable write scheme and once with an energy-efficient write scheme and results

are compared and analyzed. Additionally, SOS using the reliable write circuit provides 161% im-

proved Energy Delay Product (EDP) on average compared to SOS with conventional STT-MRAM,

while providing less than 8% write current variation. On the other hand, SOS using energy-efficient

write circuit offers 39% improved EDP on average compared to the SOS using reliable write circuit

and 62% EDP improvement over conventional STT-MRAM.
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CHAPTER 5: BGIM: BIT-GRAINED INSTANT-ON MEMORY CELL

FOR SLEEP POWER CRITICAL MOBILE APPLICATIONS1

In this Chapter, we devise an energy-efficient and fast Non-Volatile Static Random Access Mem-

ory (NV-SRAM) design utilizing emerging spin-based devices. Herein, we propose a Bit-Grained

Instant-on Memory (BGIM) cell. The proposed BGIM, utilizes Differential SHE-MRAM (DSH-

MRAM) devices to provide fast back-up and restore operations in a novel energy-efficient fashion.

By leveraging non-volatility and zero leakage power dissipation, BGIM can reduce stand-by en-

ergy consumption via instant off/on operation without the use of a separate Non-Volatile Memory

(NVM) macro, such as FLASH. This design takes advantage of the SRAM cell’s speed during nor-

mal operation and uses the corresponding DSH-MRAM cell for nonvolatile storage of the mem-

ory’s state with very low time and energy costs for each store/restore operation.

Internet of Things (IoT) and mobile devices that operate under significant energy constraints but

require fast memory performance, especially those that undergo frequent transitions to and from

stand-by mode, could particularly benefit from the proposed BGIM design. The BGIM in-situ

intra-cell retention mechanism proposed herein offers two advantages in that regard. First, design

regularity is increased while long-wire and busing complexity are decreased, especially during

verification and validation, as compared to a checkpointing-and-restore strategy. Second, the long

break-even sleep period required due to the energy overhead of a backing store can be partitioned

and reduced using a bit-cell resolution only where needed throughout any datapath or storage

module.

1©IEEE. Part of this chapter is reprinted, with permission, from [4]
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5.1 Proposed Bit-Grained Instant-on Memory (BGIM) Cell

Our proposed BGIM one-macro architecture is shown in Figure 5.1(b) and the circuit view of the

BGIM cell leveraging DSH-MRAM devices is shown in Figure 5.1(c). As observed from Figure

5.1(a) and 5.1(b), our proposed BGIM one-macro architecture is capable of energy-efficient and

rapid back-up and restore operations compared to the conventional two-macro architecture due to

the elimination of data transfer between the SRAM and NVM macros. As shown in Figure 5.1(b),

two control signals, namely Write Enable (WE) and Read Enable (RE), are included in our bit-cell

to control the back-up and restore operations. The proposed BGIM cell consists of a 6-Transistor

(6T) SRAM cell accompanied with a NVM device. As shown in Figure 5.1(c), the DSH-MRAM

device consists of 5 access transistors, N4-N8, to control back-up, stand-by, and restore operations

and 2 MTJ devices, MTJ0 and MTJ1, used for holding the SRAM data. The combination of the

control transistors and MTJ devices, which comprises the NVM part of the BGIM cell, is referred

to as 5T2R herein.

Additionally, control signals for different operating modes of the proposed BGIM cell are listed

in Table 5.1. One of the major benefits of the proposed BGIM cell is that unlike STT-MRAM

design, it does not require high current densities for write operations. Another major benefit of the

proposed BGIM cell is that unlike other NV-SRAM cells, it does not require an additional sensing

step to read the value store in the SRAM cell before back-up operation. Furthermore, as shown in

Figure 5.1(c), the proposed BGIM cell requires only five additional transistors (N4-N8) and two

additional control signals (WE and RE) to perform back-up and restore operations compared to

other conventional NV-SRAM approaches using STT-MRAM and RRAM, where more additional

peripheral circuitry is required for back-up and restore operations [17].
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(a)

(b) (c)

Figure 5.1: (a) Conventional two-macro architecture, (b) the proposed one-macro BGIM architecture, and
(c) The proposed one-macro BGIM bit-cell circuit view using DSH-MRAM. [4]
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Table 5.1: The Signaling of the BGIM cell for different operations. [4]

Operation BL BL WL WE RE

Normal
Original Data Differential Data

1 0 0
to store in SRAM to store in SRAM

Back-up 0 0 0 1 0
Stand-by 0 0 0 0 0

Restore
Pre-charge Pre-charge

1 0 1
to VDD to VDD

Figure 5.2: The proposed one-macro BGIM bit-cell in normal operation mode. [4]

5.1.1 Normal Operation

During the normal operation of the BGIM cell, WE and RE signals are set to 0 and the SRAM

cell is separated from the NVM cell, as shown in Figure 5.2. When the SRAM cell is in the

normal operation mode, N4, N5, N6, N7, and N8 transistors are turned off and P0, P1, N2, and N3

transistors are turned on to hold the value stored in the SRAM cell. In the normal operation mode,

if a data is ready to be written in the SRAM cell, WL signal will turn N0 and N1 transistors on and
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connects the BL and BL to OUT and OUT, respectively, and the data will be stored in the SRAM

cell as a result.

5.1.2 Back-up and Stand-by Operations

When the stand-by mode is activated, the device will go into back-up and PG state as shown in

Figure 5.3. During the back-up operation, WE is set to 1 while RE is set to 0, which causes N5

and N6 transistors to turn on and store the SRAM data into the NVM device, as shown in Figure

5.3(a). According to the data stored in the SRAM cell, if OUT holds a value of 1, and OUT

holds a value of 0, a charge current, ISHE , will be applied in the positive direction of x-axis of the

Cartesian coordinate system, shown as a red dashed line in Figure 5.3(a). In this case, ISHE will

lead to two spin currents, ISpin−P in the positive direction of the z-axis of the Cartesian coordinate

system, and ISpin−N in the negative direction of the z-axis of the Cartesian coordinate system,

which will change the magnetic orientation of the MTJ0 and MTJ1 free-layers simultaneously

and this results in the storage of 1 in MTJ0 and 0 in MTJ1.

On the other hand, if OUT holds a value of 0, and OUT holds a value of 1, a charge current, ISHE ,

will be applied in the negative direction of x-axis of the Cartesian coordinate system, shown as

a purple dashed line in Figure 5.3(a). Similarly in this case, ISHE will lead to two spin currents,

ISpin−P in the negative direction of the z-axis of the Cartesian coordinate system, and ISpin−N in

the positive direction of the z-axis of the Cartesian coordinate system. As a result, the value of 0

will be stored in MTJ0 and the value of 1 will be stored in MTJ1. Furthermore, as soon as the

back-up operation terminates, the PG state will turn off the SRAM cell as well as N4, N5, N6, N7,

and N8 transistors to reduce the leakage and static power dissipation as shown in Figure 5.3(b).

Since there is no need to read the data from the SRAM cell before storing it in the NVM cell, this

will result in a significant reduction in the energy and delay of the back-up operation.
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(a)

(b)

Figure 5.3: The proposed one-macro BGIM bit-cell in (a) back-up and (b) stand-by operation modes. [4]
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5.1.3 Restore Operation

When the stand-by mode is deactivated, the device will go to restore and power-on mode. During

the restore operation, WE is set to 0, which causes N5 and N6 transistors to turn off, as shown in

Figure 5.4. During the restore operation, in order to read the values stored in MTJ0 and MTJ1,

first WL, BL, and BL are set to 1. As a result, N0 and N1 are turned on to pre-charge the output

nodes OUT and OUT to VDD. Then, RE is set to 1, which causes N4, N7, and N8 transistors to

turn on to restore the SRAM data stored in MTJ0 and MTJ1.

Figure 5.4: The proposed one-macro BGIM bit-cell in restore operation mode. [4]

When N7 transistor turns on, it will provide discharging paths from OUT and OUT to the GND.

As a result, based on the difference between MTJ0 and MTJ1 resistances, which are determined

by the magnetization orientation of their free-layer compared to their fixed-layer, one of the two

output nodes, OUT and OUT, begins to discharge more rapidly to the GND, leading either P0

to turn on and charge OUT to VDD, or P1 to turn on and charge OUT to VDD. As a result, if

OUT node is charged to VDD, this will cause the N3 transistor to turn on more rapidly than the
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N2 transistor and discharge OUT to GND. Additionally, if OUT node is charged to VDD, this

will cause the N2 transistor to turn on more rapidly than the N3 transistor and discharge OUT to

GND. After completion of the data restoration phase, SRAM will return to its normal operation

and NVM cell will turn off until the next back-up and stand-by operations.

5.2 Simulation Results and Analysis

In order to verify and analyze the behavior of the DSH-MRAM BGIM cell proposed herein, SPICE

simulation is conducted utilizing the parameters listed in Table 5.2 as well as 22nm Predictive

Technology Model (PTM) [202]. To accurately model the behavior of the DSH-MRAM BGIM

devices proposed herein, the modeling approach introduced in [15] and [16] is utilized.

Table 5.2: Circuit parameters and constants with their corresponding values for the DSHE-MRAM device
model. [4] (Parameters are taken from [15, 16])

Parameter Description Default Value
Ms Saturation Magnetization 6.8× 105A/m
α Gilbert Damping Factor 0.007
tox Oxide-layer Thickness 1.2nm
RA MTJ Resistance Area Product 10.6Ωµm2

(L×W × t)FL MTJ Free-Layer Dimensions 40× 20× 2nm3

(L×W × t)SHM Spin Hall heavy Metal (SHM) dimensions 100× 40× 2.8nm3

ρSHM Resistivity of SHM (W) 200µΩcm2

θSHM Initial Spin-Hall angle 0.3
TMRAP Tunnel Magneto Resistance 172%
λsf Spin Flip Length 1.5nm
P Electron Polarization Percentage 0.52
λsf Spin Flip Length 1.5nm
Hk Anisotropy Field 80Oe
µ0 Permeability of Free Space 1.25663× 106T.m/A
e Electric charge 1.602× 10−19C
h̄ Reduced Planck’s Constant 6.626× 10−34/2πJ.s
γ Gyromagnetic Ratio 1.76× 107(Oe.s)−1

φ Potential Barrier Height 0.4V

102



Table 5.3: Comparison of the Proposed BGIM cell with other NV-SRAM designs. [4] (? The values are
taken from [17])

NV-SRAM NVM VDD Back-up Back-up
Design Technology (V) Energy Delay

[42] RRAM 1.8 836.2 fJ 10.0 ns
[43]? STT-MRAM 2.4 10.5 pJ 32.7 ns
[44]? STT-MRAM 1.6 7.71 pJ 30.0 ns
[45]? STT-MRAM 1.0 4.78 pJ 35.7 ns
[46]? STT-MRAM 1.7 8.43 pJ 36.0 ns
[47]? STT-MRAM 2.5 12.5 pJ 5.0 ns
[48]? STT-MRAM 1.8 12.7 pJ 25.0 ns
[17]? SHE-MRAM 1.2 189.7 fJ 2.0 ns
[49] SHE-MRAM N/A 492.8 fJ 6.43 ns

BGIM DSH-MRAM 1.2 121.51 fJ 1.0 ns

Based on the simulation results of the proposed BGIM cell using DSH-MRAM device, the energy

consumption of each back-up operation is 121.51fJ, and the energy consumption of each restore

operation is 1.56fJ. Furthermore, each back-up operation only requires 1ns and the restore op-

eration can be done in 13.2ps. Circuit operation waveforms of the proposed BGIM cell using

DSH-MRAM device is shown in Figure 5.5.

A comparison of the proposed BGIM cell design and other NV-SRAM cells using various NVM

technologies is provided in Table 5.3. As it can be observed, among the most energy-efficient NV-

SRAM designs listed in Table 5.3, the proposed BGIM cell using DSH-MRAM devices provides∼

36% reduction in the energy consumption compared to the lowest energy consuming design, which

utilizes SHE-MRAM devices [17]. Furthermore, the proposed BGIM cell using DSH-MRAM

devices can perform the back-up or store operation ∼ 2-fold faster than the fastest design listed in

Table 5.3, which uses SHE-MRAM devices [17].

The energy-efficiency and high performance of the proposed BGIM are due to the fact that it can

perform the back-up and store operation with a single write operation on both MTJ devices utilizing

a single Spin Hall heavy Metal (SHM). However, the proposed SHE-MRAM-based designs in [17]
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and [49] require separate write operations on two MTJ devices using two different SHMs, which

can incur extra energy consumption. Moreover, the restore operation is highly reliable because

MTJ0 and MTJ1 hold differential values, the sense margin is large and as a result, the data stored

in the NVM cell can be restored rapidly, reliably, and with high energy-efficiency.

Figure 5.5: Sample simulation waveforms for the proposed BGIM cell using DSH-MRAM device in the
presence of parasitic capacitances. [4]
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Additionally, the proposed BGIM only incurs ∼ 0.4µm2 area overhead compared to conventional

6T SRAM cell, due to the addition of 5 access transistors for realizing the one-macro NV-SRAM

cell, as shown in the Figure 5.6. The HML and HMR terminals shown in Figure 5.6(a) will be

connected to the left and right terminals of the SHM terminals, respectively. Additionally, the

MTJ0 and MTJ1 terminals shown in Figure 5.6(a) will be connected to the MTJ0 and MTJ1, re-

spectively. Since the DSH-MRAM device can be fabricated on top of the baseline CMOS process,

it won’t affect the area of the proposed BGIM cell and it is not shown in Figure 5.6(a). It is worth

noting that the area overhead can be considered negligible since the need for an extra NVM macro,

such as FLASH, which incurs additional energy consumption and delay due to the data movements

for each back-up and restore operation, is eliminated.

Furthermore, in order to analyze the reliability of the back-up and restore operations of the pro-

posed BGIM cell, Monte Carlo simulation is performed to cover a wide range of Process Variation

(PV) cases that may occur in the fabricated device. The MC simulation is performed consider-

ing the effects of PV on CMOS peripheral circuit, the SHM, and the MTJ devices. In particular,

maximum variation of 10% for the MTJs’ resistance levels, which is mainly due to the oxide thick-

ness fluctuations during the fabrication process, along with 10% variation on the threshold voltage

and 1% variation on width and length of the CMOS transistors are assessed via MC simulation in

agreement with [2]. According to the MC simulation results, the proposed BGIM device provides

reliable performance by only incurring 0.14% back-up failure errors. Additionally, since the states

of the MTJ devices are differential, they provide a large sense margin and as a result, there are no

restore errors. Figure 5.7a depicts the distribution of the back-up time and Figure 5.7b illustrates

the distribution of MTJ resistances in P and AP states for the 10,000 MC instances.
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(a)

(b)

(c)

Figure 5.6: (a) Layout of the proposed BGIM cell, (b) Layout of a traditional 6T SRAM cell, and (c) Layout
legend. [4]
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(a) (b)

Figure 5.7: Simulation Results of 10, 000 MC instances for (a) Back-up Time and (b) RAP and RP states of
the DSH-MRAM. [4]

5.3 Conclusion

A novel energy-aware Non-Volatile Static Random Access Memory (NV-SRAM) framework for

sleep power critical mobile applications is devised. The beyond-Complementary Metal Oxide

Semiconductor (CMOS) hardware architecture has been designed to minimize the overall static

and leakage energy consumption while providing fast back-up and restore operations. Differential

Spin-Hall Effect Magnetic Random Access Memory (DSH-MRAM) devices are utilized to realize

the proposed framework called Bit-Grained Instant-on Memory Cell (BGIM). Our results indicate

that the proposed BGIM consumes 121.51fJ on average for each back-up operation and 1.56fJ on

average for each restore operation. Furthermore, the proposed BGIM can perform rapid back-up

operations in 1ns and fast restore operations in 13.2ps. Moreover, the proposed BGIM cell incurs

< 1µm2 area overhead compared to the traditional 6T SRAM cell, however it eliminates the need

for data transmission and a separate non-volatile memory macro.
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CHAPTER 6: CLOCKLESS SPIN-BASED LOOK-UP TABLES WITH

WIDE READ MARGIN1

In this chapter, the goal is to address the challenges of previous spin-based LUTs proposed in

the literature such as narrow sense margin and low reliability while incurring significant area and

power dissipation overheads [56, 57, 58, 59, 60, 61]. Herein, in order to design a spin-based

LUT for combinational logic operation without the need for a clock, we develop a clockless 6-

input fracturable non-volatile Combinational LUT (C-LUT) with wide read margin using spin Hall

effect (SHE)-based Magnetic Tunnel Junction (MTJ) and provide a detailed comparison between

the SHE-MRAM and Spin Transfer Torque (STT)-MRAM C-LUTs. Additionally, we provide

detailed analysis on the reliability of our proposed C-LUT in the presence of Process Variation

(PV).

6.1 Proposed Fracturable 6-Input Clockless LUT

The primary goal of using LUTs in the reconfigurable fabrics is for implementing combinational

logic. Generally, M -input Boolean functions are implemented using LUTs that are considered a

memory that has 2M memory cells. The inputs are assigned using a select tree which is constructed

with Pass Transistors and Transmission Gates (TGs) [30]. Most contemporary FPGAs, utilize frac-

turable 6-input LUTs in their design in order to be able to implement one 6-input boolean function

or two 5-input boolean functions [217]. Figure 6.1(a) depicts our proposed 6-input fracturable

SHE-MRAM C-LUT and Figure 6.1(b) illustrates the 6-input fracturable STT-MRAM C-LUT. In

Figure 6.1(a) and Figure 6.1(b), where red color indicates the write path and black color indicates

the read path. When the WWL and WWL signals are asserted, the Write TGs of each memory

1©IEEE. Part of this chapter is reprinted, with permission, from [12]
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cell, TGW1 and TGW2, will turn on and using Bit Lines, BLi, and Source Lines, SLi, we write

into both MTJs in each memory cell, MTJi and MTJi, so that they hold complementary values. If

MTJi is in the P state then MTJi will be in the AP state and vice versa. This will result in a wide

read margin during the read operation.

After the termination of the write operation, in order to read the data stored in the MTJs, RWL and

RWL signals will be enabled, which results in activation of Read TGs of each memory cell, TGR.

During the read operation, PR and NR transistors are turned on when RWL and RWL are asserted,

which provides the read path from VDD to GND. The source of PR, which is a PMOS transistor,

is connected to VDD to provide strong one and the source of NR, which is an NMOS transistor,

is connected to GND to provide strong zero. A voltage divider circuit is designed as a result of

resistance difference between the MTJi and MTJi, and the divided voltage can be observed at

the Di nodes shown in Figure 6.1(a) and Figure 6.1(b). According to the select tree input signals,

shown as A, B, C, D, E, and F in Figure 6.1, using two inverters, the voltage on Di nodes will be

amplified to generate the required output. Since the values stored in the MTJi and MTJi devices

are complementary, using one MTJ device to retain the data value and the other as the reference

value will result in a wide read margin from AP to P [4], which we leverage herein to increase the

reliability of the read operation.

In the proposed C-LUT design, there is no need for an external clock or a large sense amplifier

circuit. Furthermore, the proposed fracturable C-LUT can perform as a single 6-input LUT or two

5-input LUTs. The Operation mode of the proposed LUT is controlled using S5 and S6 signals. If

S5 signal is enabled and S6 is disabled, then the C-LUT will be operating as two 5-input LUTs and

the outputs of the C-LUT will be OUT0 and OUT2. On the other hand, if S5 signal is disabled and

S6 signal is enabled, then the C-LUT will be operating as a 6-input LUT and OUT1 will be the C-

LUT’s output. The proposed fracturable C-LUT provides significantly higher functional flexibility

at the expense of slightly more power consumption as studied in Section 6.2.
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(a)

(b)

Figure 6.1: The circuit-level diagram of the proposed 6-input fracturable Combinational Look-Up Table
(C-LUT) using (a) SHE-MTJ devices and (b) STT-MTJ devices. [12]
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6.2 Simulation Framework, Results, and Analysis

Herein, we use the HSPICE circuit simulator to validate the functionality of proposed C-LUT

using 45nm CMOS technology and the STT-MRAM model developed by Kim et al. in [218].

Figure 6.2(a) and 6.2(b) show the transient response of the C-LUT implementing a 6-input OR

operation for ABCDEF = “000000” and ABCDEF = “111111” input signals, respectively. In

order to generate the current required for a write delay of less than 2ns, the write transistors are

required to be enlarged 4-fold. As shown, the HSPICE simulations verify the correct functionality

of our proposed C-LUT. Table 6.1 lists comparison results between the SRAM-LUT and proposed

C-LUT in terms of power consumption and delay.

Table 6.1: Comparison between SRAM-LUT and MRAM-LUT. [12]
Power (µW ) Delay

Read Write Standby Read Write

SRAM LUT
Logic “0” 2.58 28.4 1.5 30 ps 20 ps
Logic “1” 7.55 27.7 1.85 30 ps 20 ps
Average 5.06 25.08 1.67 30 ps 20 ps

MRAM C-LUT
Logic “0” 14.38 81.16 0.31 20 ps 2 ns
Logic “1” 19.91 81.25 0.31 60 ps 2 ns
Average 17.15 81.18 0.31 40 ps 2 ns

The results show more than 80% standby power reduction at the cost of increased write power

which can be tolerated due to its infrequent occurrence of write operations in LUTs. There are

three energy profiles in the FPGA LUT circuits: (1) Read energy consumption during the FPGA

normal operation, (2) Standby energy for the LUTs that are not on the active datapath, which can

constitute a significant portion of the FPGA fabric, and (3) write energy that is consumed during

the LUTs’ configuration operation which occurs rarely.

Table 6.2 provides an area and energy consumption comparison between SRAM-LUT and C-LUT.

As listed, the structure of a 6-input MRAM-based C-LUT requires 1, 547 MOS transistors plus
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128 MTJs, which can be fabricated on top of the CMOS transistors incurring low area overhead,

while the conventional 6-input SRAM-LUT includes 1, 029 MOS transistors. This results in an

area overhead of roughly 50% for C-LUT compared to SRAM-LUT, which is primarily induced

by the write circuits. Thus, innovations are sought to reduce the area and energy consumption of

the MRAM cell’s write circuit to mitigate these issues.

Table 6.2: Area and Energy Consumption comparison between SRAM LUT and
MRAM C-LUT. [12]

Features SRAM LUT MRAM C-LUT
Storage Cells 384 MOS 128MTJ

Device Write/Control 384 MOS 256×4 + 256 MOS(1)

Count Read 261 MOS 267 MOS
Total 1029 MOS 1547 MOS + 128 MTJ

Average Energy Read 2.53 fJ 8.58 fJ
Consumption Write 14 fJ 162.36 fJ

(1) Write transistors are 4× larger than minimum feature size.

Recently, SHE-MRAM cells have attracted considerable attentions as an alternative for the conven-

tional STT-MRAMs. Herein, we have used the SHE-MRAM device model proposed by Camsari

et al. [219] to realize a circuit-level simulation of our SHE-MRAM C-LUT. The results obtained

exhibit that a TG-based write circuit with minimum-sized MOS transistors can produce the suf-

ficient write current amplitude required for switching the SHE-MRAM’s state in less than 2ns.

Thus, table 6.3 provides an iso-delay comparison between STT-MRAM and SHE-MRAM C-LUT

in terms of device count and write energy. As listed, the SHE-MRAM C-LUT can achieve more

than 49% area reduction, while realizing comparable write energy consumption. Moreover, the

SHE-MRAM C-LUT achieves at least 24% device count reduction compared to SRAM-LUT.

Furthermore, to analyze the reliability of the read and write operations of the proposed C-LUT,

Monte Carlo (MC) simulation is performed to cover a wide range of PV scenarios that may occur

in the fabricated device. The MC simulation is performed with 1, 000 instances considering the

effects of PV on CMOS peripheral circuit and the MTJs. In particular, variation of 10% for the
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MTJs’ dimensions along with 10% variation on the threshold voltage and 1% variation on transis-

tors dimentions are assessed.

Table 6.3: Iso-Delay Area and Write Energy Consumption comparison be-
tween STT-MRAM and SHE-MRAM C-LUTs. [12]

Features
C-LUT

STT-MRAM SHE-MRAM
Storage Cells 128MTJ 128MTJ

Device Write/Control (256×4)+256MOS (1) 256+256MOS (2)

Count Read 267MOS 267MOS
Total 1547MOS+128MTJ 779MOS+128MTJ

Average Write
162.3 fJ 175.5 fJ

Energy per Cell
(1) Write transistors are 4× larger than minimum feature size.
(2) Write transistors with minimum feature size are used.

Figure 6.3(a) depicts the distribution of the switching times for TP−AP and TAP−P , Figure 6.3(b)

illustrates the distribution of MTJ resistances in RAP and RP states, and Figure 6.3(c) shows the

distribution of read, IREAD, and write, IWrite currents for the 1, 000 MC instances. According

to the MC simulation results, C-LUT provides reliable write performance resulting in less than

0.001% write errors in 1, 000 error-free MC instances. In particular, results of the MC simulation

show that the switching time for P −AP is 1.63ns on average and the switching time for AP −P

is 1.13ns on average, which both fall under the 2ns duration of the write operation, as depicted in

Figure 6.3(a).

Additionally, since the states of the MTJs are differential, they provide a wide read margin and as

a result, there are less than 0.001% read errors caused by PV based on the 1, 000 error-free MC

simulation results. Furthermore, our proposed C-LUT does not suffer from read disturbance due to

the small read current compared to the write current as shown in Figure 6.3(c). According to our

MC simulation results, the read current is 38.21µA on average, which is significantly lower than

the write current that is 71.13µA on average.
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(a)

(b)

Figure 6.2: Transient response of C-LUT implementing 6-input OR operation for (a) ABCDEF =
“000000” input signal, and (b) ABCDEF = “111111” input signal. [12]
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(a) (b)

(c)

Figure 6.3: Simulation Results of 1, 000 MC instances for (a) TP−AP and TAP−P Switching Times, (b)
RAP and RP resistance states, and (c) read, IREAD, and write, IWrite currents. [12]

6.3 Conclusion

A 6-input fracturable non-volatile Clockless LUT (C-LUT) using spin Hall effect (SHE)-based

Magnetic Tunnel Junctions (MTJs) is developed and a detailed comparison between the SHE-

MTJ-based C-LUT and Spin Transfer Torque (STT)-MTJ-based C-LUT is provided. The proposed

C-LUT offers an attractive alternative for implementing combinational logic as well as sequential

logic versus previous spin-based LUT designs in the literature. Foremost, C-LUT eliminates the
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sense amplifier typically employed by using a differential polarity dual MTJ design, as opposed

to a static reference resistance MTJ. This realizes a much wider read margin and the Monte Carlo

simulation of the proposed fracturable C-LUT indicates no read and write errors in the presence of

a variety of process variations scenarios involving MOS transistors as well as MTJs. Additionally,

simulation results indicate that the proposed C-LUT reduces the standby power dissipation by

5.4-fold compared to the SRAM-based LUT. Furthermore, the proposed SHE-MTJ-based C-LUT

reduces the area by 1.3-fold and 2-fold compared to the SRAM-based LUT and the STT-MTJ-

based C-LUT, respectively.
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CHAPTER 7: ENERGY-AWARE ADAPTIVE RATE AND RESOLUTION

SAMPLING OF SPECTRALLY SPARSE SIGNALS LEVERAGING

VCMA-MTJ DEVICES1

In this Chapter, we devise an adaptive framework for efficient acquisition of spectrally sparse

signals utilizing emerging spin-based devices. In the first contribution herein, we propose a Spin-

based Adaptive Intermittent Quantizer (AIQ) to perform adaptive signal sampling and quantization.

AIQ utilizes Voltage-Controlled Magnetic Anisotropy Magnetic Tunnel Junction (VCMA-MTJ)

devices to provide fast SR and adaptive QR in a novel energy-efficient fashion. By leveraging non-

volatility, a spin-based AIQ can reduce energy consumption via instant off/on operation without

use of a backing store.

The second contribution herein focuses on investigating the trade-offs between SR and QR under

power and bandwidth constraints using dynamic optimization of SR and QR. The energy consump-

tion, hardware limitations, and specifics of the underlying sampler and quantizer become central

to system optimization.

The proposed beyond-CMOS hardware architecture and corresponding adaptive quantized CS

techniques are considered in synergy with each other. Together, these are used to minimize the

overall cost of signal acquisition which is later formulated as a combination of the amount of

dynamic energy consumed in hardware for acquisition (energy constraint) and the number of

bits acquired for each frame (bandwidth constraint) within the reconstruction error (MSE) for a

spectrally-sparse input signal.

1©IEEE. Part of this chapter is reprinted, with permission, from [5]
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Figure 7.1: The system-level block diagram of the proposed signal acquisition [5].

7.1 Proposed Cross-Layer Approach

In this Chapter, we develop a novel cross-layer device/circuit/architecture design for adaptive sig-

nal sampling, reconstruction, and the enabling hardware for energy-efficient acquisition of wide-

band spectrally sparse signals. First, a framework for smart and adaptive determination of the

sampling rate and quantization resolution based on the instantaneous signal and hardware con-

straints is introduced. Second, we develop a spin-based Adaptive Intermittent Quantizer (AIQ) to

facilitate the realization of the adaptive sampling proposed herein. Figure 7.1 shows the system-

level diagram for our proposed design. In this figure, the input signal x(t) is compared with the

estimate signal x̂(t). The error signal e(t) then goes through our proposed AIQ which samples

each frame of the input at a specific sample rate, i.e. frame nf is sampled at t = mτ (nf ), quantized

to symbols cm and subsequently to the corresponding bit stream bm. Note that τ (nf ) is the sampling

interval, which is adaptively determined for frame nf of the signal.

The adaptive Sample-Rate (SR) / Quantization-Resolution (QR) controller is a key innovation of

our approach. This block optimizes SR ( 1

τ
(nf ) Hz) and the number of digital bits used to quantize
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each sample (QR) for each frame of the input signal. For that, this block utilizes the signal pa-

rameters (e.g., sparsity, noise level) estimated at the previous frame and hardware-level constraints

(e.g., energy, bandwidth). This block provides the optimized clock period and bit depth for the

next frame of the signal. The same block is present at the receiver to extract bit-depth resolution

and the sampling rate from the received sequence of bits. Components of our design are described

below.

Spin-based devices have been extensively researched as promising companions to CMOS devices.

As CMOS scaling trends continue, the need to identify viable approaches for reducing leakage

power increases. With attributes of non-volatility, near-zero standby energy, and high density,

Magnetic Tunneling Junction (MTJ) has emerged as a promising alternative post-CMOS technol-

ogy for embedded memory and logic applications [1, 10, 30, 73]. The basic concept of spin-based

Non-Volatile Memory (NVM) devices is to control the intrinsic spin of electrons in a ferromagnetic

solid-state nano-device. Recent research studies have shown that the use of Voltage-Controlled

Magnetic Anisotropy (VCMA) effect facilitates the use of an electric field to ease or eliminate the

demand of charge current for switching the state of MTJ devices. As a result of using VCMA-MTJ

devices, the majority of the dynamic power dissipation caused by ohmic losses and joule heating

during the switching of the spin-based devices can be significantly reduced [73, 74, 75, 76, 77, 78].

Adaptive Intermittent Quantizer (AIQ): Herein, to implement the adaptive rate/resolution sam-

pling, a recently-developed type of spin-based device, namely the VCMA-MTJ, is utilized to pro-

vide faster and more energy-efficient signal sampling and quantization. Previously, emerging spin-

based technologies have been explored as an alternative to CMOS technology for embedded and

data storage applications due to their non-volatility, near-zero standby energy, and high density.

These emerging devices, such as Spin Transfer Torque Magnetic RAM (STT-MRAM) and Spin-

Hall Effect Magnetic RAM (SHE-MRAM), have been the focus of the research in recent years

[1, 10, 30, 73, 79, 80, 81]. Using spin-based devices can increase energy efficiency via a signif-
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icant reduction in leakage energy. Furthermore, these devices offer small area footprint and can

be fabricated in 3D stacks on top of baseline CMOS design using the same backend fabrication

process. A detailed explanation of this block is provided in Section 7.2.

Figure 7.2: The Proposed AIQ Architecture [5].

Adaptive SR/QR Optimization: The concept of energy-aware SR/QR optimization is motivated

by the fact that, in any practical scenario, sensing operations need to be able to satisfy the power

and bandwidth constraints. Under a bandwidth constraint, the sensing device is constrained by a

bit-rate when transmitting or storing the signal. On the other hand, the energy supply might impose

strict constraints on the SR and/or QR. Thus, it is desirable to have a system that adapts SR and QR

to maximize the sensing performance in the long run, while considering the power and bandwidth

constraints.
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7.2 Intermittent Spin-based Adaptive Quantizer Using VCMA-MTJ Devices

In recent studies, researchers have exploited the use of emerging devices for signal processing ap-

plications. In particular, they have explored designing ADCs using emerging devices such as SHE-

MTJ [79], Domain Wall Motion (DWM) [82], and Racetrack Memory [112]. Herein, we propose

an Adaptive Intermittent Quantizer (AIQ) to perform signal sampling and quantization. AIQ uses

VCMA-MTJ devices to provide fast SR and adaptive QR, along with energy-efficient sampling and

quantization operations. Use of VCMA-MTJs enables AIQ to provide various quantization levels

by changing the energy barrier of MTJ devices. An example of Q-level AIQ architecture is shown

in Figure 7.2, where Q is the number of QR levels determined by the optimization algorithm. The

operation of AIQ has three main steps:

• First, during the Reset step, all active VCMA-MTJ devices will be reset to zero representing

a Parallel state,

• Second, during the Sampling step, based on the determined SR and QR , first a bias volt-

age, Vb, will be applied across the active VCMA-MTJ devices’ terminals to modify and set

their energy barrier followed by the analog input, e(t), to write into the active VCMA-MTJ

devices, as shown in Figure 7.1, and

• Third and final step is the Read (or Sensing) step to sense the data stored in each device using

a sense amplifier in a conventional fashion.

Based on the architecture shown in Figure 7.2, during the Reset step, Source Line (SL) is set to

zero, Bit Line (BL) is set to one, and Read Lines (RLs) are high impedance, which causes all

devices to go to the P state. During the Sampling step, SL is set to input voltage (Vin), BL is set

to zero, and RLs are high impedance. In this state, an Input Voltage Generator circuit is used to
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allow the VCMA bias voltage, Vb, followed by the analog input, e(t), to be applied through Vin

to adjust the threshold of MTJ devices and write into the MTJs. A signal called Adaptive Clock

(AClk), which is set based on the τ (nf ) as described in Section 7.1, will control the sampling rate

of the input signal. During the Read (or Sensing) step, SL is set to high impedance, BL is set to

zero, and RLs are sent to sense amplifiers to read the value stored in each MTJ. The design of the

sense amplifiers for an MTJ read operation is discussed broadly in the literature [1].

The combination of switches and resistors included in our proposed architecture is used to realize

the adaptive quantization resolution levels. The switch ladder is used to adaptively set the reso-

lution and the resistance ladder is used to provide different VCMA bias voltages, Vb, for different

MTJs. By providing different bias voltage levels for different MTJs, some MTJs turn on with lower

input voltages while some require higher input voltages to switch state. Furthermore, the switches,

which are realized using transmission gates in order to provide reliable switching [10], enable the

Adaptive SR/QR Controller shown in Figure 7.1 to optimize the QR by turning unused MTJs off.

As demonstrated subsequently, this results in significant energy savings.

A Pre-Charge Sense Amplifier (PCSA) [83] is used to read the value stored in the SHE-MTJ

devices. The AIQ circuit provides different QR levels. A Look-up Table (LUT)-based encoder

is used to encode the values for different levels into bits. For instance, the example shown in

Figure 7.2 can provide 1 bit with 1 level, 2 bits with 3 levels, 3 bits with 7 levels, and so forth.

Since the number of active components of the LUT-based encoder depends on the number of active

levels, spin-based devices have also been utilized within the encoder structure. Correspondingly,

depending on how many QR levels our algorithm is using, we can adaptively disable the parts

of the LUT-based encoder that are not being used in the encoding process. This will lead to

significant energy savings and improved performance as shown in [30] compared to conventional

CMOS encoders since spin-based devices offer zero leakage energy consumption.
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The behavior of a single VCMA-MTJ device is demonstrated in Figure 2.4. As it is observed,

different values of Vb results in different energy barrier heights. Different energy barrier heights

result in different switching behavior for the VCMA-MTJ devices. In our proposed AIQ design,

we have utilized an example of 255 VCMA-MTJ devices to realize a wide range of quantization

resolutions from 1-bit to 8-bit ADC operation. Additionally, different Vb values will be applied to

the active VCMA-MTJ devices to realize discriminable quantization resolutions. Moreover, for 1-

bit resolution, one level is used, which is set to 650mV considering a signal range that is normalized

between [0 − 1.3]V. Additionally, the levels are spaced by 542mV, 201mV, 90mV, 43mV, 21mV,

10mV, and 5mV for 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, 7-bit, and 8-bit resolution levels, respectively.

7.3 Simulation Results and Analysis

7.3.1 AIQ Sampling Results and Performance Analysis

In order to evaluate and validate the behavior and functionality of the proposed AIQ design, SPICE

and MATLAB simulations were performed. We have utilized the 22nm Predictive Technology

Model (PTM) [202] as well as VCMA-MTJ model represented in [73] along with other circuit

parameters and constants listed in Table 7.1 in our simulations to implement and evaluate the

proposed AIQ design.

To examine the performance and potential of the VCMA-MTJ devices in circuit designs and appli-

cations, the circuit behavior of VCMA-MTJ devices maintaining resistance in P (θ = 0◦) and AP

(θ = 180◦) states as well as the voltage-dependent TMR effect are modeled by Kang, et al. [73]

and expressed using the following equations [10, 73]:

RP =
tox

Factor × Area ·
√
φ

exp(
2
√

2me

~
× tox ·

√
φ), (7.1)
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TMR(Vb) =
TMR(0)

1 + ( Vb
Vh

)2
, (7.2)

RMTJ(Vb) = RP

1 + ( Vb
Vh

)2 + TMR(0)

1 + ( Vb
Vh

)2 + TMR(0)[0.5(1 + cos(θ))]
, (7.3)

where Vb is the bias voltage, TMR(Vb) is the Tunnel Magneto-Resistance (TMR) ratio, Vh = 0.5V

is the bias voltage when TMR ratio is half of the TMR(0), tox is the oxide thickness of MTJ,

Factor is obtained from the resistance-area product value of the MTJ that relies on the material

composition of its layers, Area is the surface area of the MTJ, and φ is the oxide layer energy

barrier height. The switching of the perpendicular magnetization of the VCMA-MTJ’s free-layer

is determined by θ is the polar angle of the magnetization vector of the free-layer, ~m. In other

words, mz = cos(θ) provides the component of the magnetization vector, ~m, along the z-axis of

the Cartesian coordinate system. The parameters and constants used in the VCMA-MTJ model for

the simulation results are provided in Table 7.1 [73].

As depicted in Figure 7.3(b), a growing sinusoidal signal is sampled by 3 levels to 2 bits based

on the AClk signal, shown in Figure7.3(a), with 12 sampling intervals resulting in the bit budget

of B(nf ) = 24. Additionally, Figure 7.3(c) illustrates the switching of each of the 3 VCMA-MTJ

devices with different switching energy barriers resulting in different levels. According to our re-

sults, the energy consumption of this sampling configuration equals 596.31fJ, which consists of

the reset, sample, and read operations as well as the peripheral circuitry energy consumption dur-

ing the 50ns signal duration. The corresponding quantized CS reconstruction algorithm achieves a

Mean Square Error (MSE) of 4.7 × 10−5 on this signal which proves efficient reconstruction ca-

pability of the proposed design. Furthermore, Figure 7.4(b) depicts sampling of the same growing

sinusoidal using the AClk signal with 8 sampling intervals, as shown in Figure 7.4(a), to achieve

3 bits resolution while maintaining the same bit budget of B(nf ) = 24. Moreover, Figure 7.4(c)
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demonstrates the switching of each of the 7 VCMA-MTJ devices. The energy consumption of this

configuration is 906.39fJ during the 50ns signal duration. The proposed reconstruction algorithm

achieves an MSE of 1.2× 10−4 in this case.

Table 7.1: Circuit parameters and constants values for the VCMA-MTJ model [5].
Parameter Description Default Value

Ms Saturation magnetization 0.625× 106A/m
Ki(0) Initial interfacial PMA energy 0.32mJ/m2

tf Free-layer thickness 1.1nm
α Gilbert damping factor 0.05

∆(0) Thermal stability factor at Vb = 0 40
T Temperature 300K
ξ VCMA coefficient 60fJ/V ·m
tox Oxide-layer thickness 1.4nm
Hx External Magnetic Field 4.8× 104 ◦/m
P STT polarization factor 0.58
d MTJ diameter 50nm
φ Potential barrier of MgO 0.4V

TMR(0) TMR ratio at Vb = 0 200%
Vh Bias Voltage at TMR2 0.5V

Constants Description Default Value
γ Gyromagnetic ratio 2.21276× 105m/(A · s)
kB Boltzmann constant 1.38× 10−23J/K
µ0 Vacuum permeability 1.2566× 10−6H/m
m Electron mass 9.11× 10−31kg
e Elementary charge 1.6× 10−19C
~ Reduced Planck constant 1.054× 1034Js

It is observed that as the bit budget is fixed in the experimental scenarios of Figure 7.3 and Figure

7.4, an increase in the number of QR results in a decreased SR considering the SR / QR trade-

off.This is observed in Figure 7.3(b) and Figure 7.4(b) when the number of samples is decreased

from 12 to 8 in the provided snapshot of the signal. The MSE values achieved show that for the

experiment parameters (noise, power, bit budget, etc.), an increased number of coarsely quantized

samples, as shown in Figure 7.3, perform better than accurately quantized samples acquired at a

decreased rate, as shown in Figure 7.4.
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Figure 7.3: (a) shows the AClk signal over time, (b) depicts the e(t) signal being sampled with 2 bits (3
levels) with 12 sampling intervals, and (c) illustrates the switching of the 3 VCMA-MTJ devices in the
sampling intervals [5].

According to our results, the energy consumption of each VCMA device is ∼ 17fJ, which con-

sists of a reset and a sample operation for a single VCMA-MTJ device. Meanwhile, the energy

consumption of the peripheral circuit that sets the VCMA bias voltages and performs the read oper-

ation is∼ 2fJ. Figure 7.5 illustrates the energy consumption versus QR for 22nm technology node,

considering two different sampling rates of 5 samples and 10 samples within the same sampling

duration of 50ns.
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Figure 7.4: (a) shows the AClk signal over time, (b) depicts the e(t) signal being sampled with 3 bits
(7 levels) with 8 sampling intervals, and (c) illustrates the switching of the 7 VCMA-MTJ devices in the
sampling intervals [5].
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It can be observed that for every extra resolution bit, the number of VCMA-MTJs added to the

design to provide required QR levels grows exponentially. As a result, the number of reset, sample,

and read operations will increase based on the number of active levels. It is known that the lower

bound for power of ADCs grows exponentially for every bit of resolution [220, 221]. Thus, QR

plays a crucial role in the energy cost of the device. The energy consumed by the proposed MTJ

devices can be simplified to a formula to calculate and estimate the amount of dynamic energy

consumption for each frame as EL × 2βM , where EL is the dynamic energy per QR level that is

a technology dependent value. According to our simulation results, the EL value equals 16.63fJ.

Hence, the energy per frame is given by 16.63× 2βM , where β is the number of bits and M is the

number of samples.

Figure 7.5: Energy consumption versus Quantization Resolution (QR) [5].

Accordingly, for every VCMA-MTJ read, write, and reset operations, approximately 16fJ is re-

quired using a 22nm technology node library. The aforementioned energy equation can be em-

ployed in the SR/QR optimization process. According to our results, it can be estimated that using

VCMA-MTJ devices, overall reset, sample, and read operations would require about 1ns in 22nm

technology node library to provide a reliable outcome. As the results show, increasing the QR can

increase the energy consumption due to the increase in the number of active MTJ devices. How-

ever, by decreasing SR if possible, in cases where increased QRs are required, energy consumption
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can be decreased. Additionally, an increase in the SR can result in an increase in the energy con-

sumption of AIQ. This is because an increase in SR requires fast reset, sampling, and read steps.

Hence, the MTJ devices require to be demagnetized at a faster pace, which can incur extra energy

cost. This would be exacerbated if an increase in QR is required, since additional devices will need

to be rapidly demagnetized. Overall, energy consumption in the hardware is not simply a function

of the bit budget, i.e., B(nf ). Rather, it is a complex function of its components SR and QR as well

as circuit elements and peripherals that are added for every additional quantization level. Herein,

we investigated and formulated the hardware energy cost and trade-offs as a function of SR and

QR and utilized the results in the proposed cross-layer energy-aware SR/QR optimization.

7.3.2 SR and QR Optimization

Furthermore, to illustrate the necessity of adapting SR and QR during acquisition, we plot the

optimal QR and SR values versus the frame number in Figure 7.6. Note that in this simulation

scenario, the variance for the e(t), which is the input to our proposed AIQ block, is decreasing

with the frame number. This is because l(t) becomes increasingly accurate estimate of x(t) along

iterations. However, the input noise is considered random. The resulting SNR along with the QR

and SR values that minimize the performance upper bound and the energy bound are provided in

Figure 7.6. As the SNR of the signal varies over time, the controller needs to tune the SR and QR to

minimize the error metric. It is also worthwhile to point out the fact that, due to exponential growth

of the energy with QR, the energy constraint prevents us from sampling the signal with high QR.

Thus, adding an energy budget to the simulation places a limit on the QR. These results further

encourage adaptive and energy-aware adjustments of SR and QR to improve the performance of

the proposed signal acquisition process.
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Figure 7.6: (a) Optimal QR and (b) optimal SR for different frames. The dashed line shows the SNR of the
signal [5].

7.3.3 Reliability Analysis

In order to evaluate the functionality of our proposed AIQ design in the presence of Process Vari-

ation (PV), we have conducted a series of Monte Carlo (MC) simulations with 10, 000 instances

for the sample operation and 10, 000 instances for the read operation. During the MC simulation,

we have considered 10% variation for the components of the peripheral circuitry such as threshold

voltage of the CMOS transistors as well as 1% variation for the MTJ devices in agreement with
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[2]. This can cover a wide range of possible variations enabling a comprehensive PV analysis.

We have analyzed our circuit separately for sample operation, as well as read operation. The

results of the reliability analysis for the sample operation are shown in Figure 7.7. As it can be

observed from Figure 7.7(a), for sampling duration within the range of 3ns to 3.5ns with VCMA-

MTJ switching duration within the range of 0.4ns to 0.5ns, depicted as dark blue region in Figure

7.7(a), the sample error rate is near 0.0%. However, in order to minimize the energy consumption

of the sample operation, sample duration should be within the range of 5ns to 5.5ns with VCMA-

MTJ switching duration within the range of 0.3ns to 0.35ns according to Figure 7.7(b). Hence,

there is a trade-off between sample error rate and energy consumption. Thus, the dark blue region

in Figure 7.7(b) reflects a reduced energy consumption at the expense of the corresponding sample

error rate indicated in Figure 7.7(a).

Furthermore, the results of the reliability of the read circuit are provided on Figure 7.8. Herein, we

have conducted the reliability analysis for four of the most commonly-used approaches for sensing

according to the study presented in [2]. As shown in Figure 7.8, the Variation Immune Sense Am-

plifier (VISA) proposed in [10] and the Separated Pre-Charge Sense Amplifier (SPCSA) proposed

in [117], provide highly-reliable outputs considering Tunnel Magnetoresistance Ratio (TMR) of

200% by only incurring 0.05% and 0.07% error rate during the read operation, respectively. How-

ever, VISA and SPCSA incur large area and energy consumption overheads compared to the En-

ergy Aware Sense Amplifier (EASA) proposed in [10] and the Pre-Charge Sense Amplifier (PCSA)

proposed in [83]. As shown in [2], EASA and PCSA provide area- and energy-efficient sensing

circuits, while VISA and SPCSA provide more reliable sensing circuits at the cost of increased

energy consumption and area footprint.
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(a)

(b)

Figure 7.7: (a) The sample operation error rate trade-off with sample duration and VCMA-MTJ switch-
ing duration, and (b) The energy consumption trade-off with sample duration and VCMA-MTJ switching
duration [5].
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Figure 7.8: The read operation error rate trade-off with different TMR values for PCSA, EASA, SPCSA,
and VISA [5].

7.3.4 Comparisons

In Table 7.2, we compare the performance of the developed adaptive acquisition framework with

prior non-uniform ADC architectures. The proposed AIQ exhibits power dissipation of 0.32uW for

1-bit resolution, 1uW for 2-bit resolution, 2.33uW for 3-bit resolution, 5.02uW for 4-bit resolution,

10.37uW for 5-bit resolution, 21.08uW for 6-bit resolution, 42.48uW for 7-bit resolution, and

85.3uW for 8-bit resolution. Furthermore, our results indicate that the energy consumption per

sample for 1-bit, 2-bit, 3-bit, 4-bit, 5-bit, 6-bit, 7-bit, and 8-bit quantization resolutions are 16.68fJ,

51.79fJ, 120.46fJ, 258.54fJ, 533.98fJ, 1.09pJ, 2.19pJ, and 4.39pJ, respectively.

Since our proposed design benefits from intermittent operation, which enables the proposed AIQ

to turn off parts of the circuit that are not being utilized during the sampling process and turn them

on whenever appropriate, its dynamic power dissipation is averaged from 1-bit to 8-bit resolutions

for one sample. It should be noted that the amount of energy required for our proposed AIQ

depends on the SR and QR values adapted for each frame. Thus, we report the power consumed

averaged for different number of bits per frame. According to our results, the proposed AIQ incurs

only 20.98µW power dissipation on average, while providing uniform digital output of 1 to 8 bits.

Furthermore, our results indicate that the AIQ consumes ∼ 1pJ energy per sample on average.
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Table 7.2: Comparison with prior ADC designs utilizing Non-Uniform Sampling [5].
Uniform Process Adaptive Power Maximum Energy
Digital

(SupplyVoltage) SR
QR

(Average Power)
Effective per

Output (#Bits) Bandwidth Sample

Bellasi, et al. [63] No
28nm

Yes X
No

7.5mW
2.4 2.9

(1.0V) (4-bit) GHz pJ

Varshney, et al. [64] No
45nm

Yes X
Yes X 80µW-1.15mW 120 3.68

(1.2V) (4-6 bit) (442µW) MHz pJ

Wu, et al. [65] Yes X
65nm

Yes X
No

30mW
20 5

(1.0V) (4-bit) MHz pJ

Naraghi, et al. [66] No
90nm

Yes X
No

14µW
300 98

(1.0V) (9-bit) KHz fJ

Kurchuk, et al. [67] Yes X
65nm

Yes X
Yes X 1.1mW-10mW 2.4 36

(1.2V) (1-3 bit) (6.2mW) GHz fJ

AIQ (herein) Yes X
22nm

Yes X
Yes X 0.319µW-85.302µW 500 1

(1.0V) (1-8 bit) (20.98µW) MHz pJ

As it can be observed in Table 7.2, our proposed AIQ design provides 421µW and 6.18mW power

savings on average compared to other adaptive rate and resolution ADC designs proposed in [64]

and [67], respectively, while offering a wider range of quantization resolution up to 8 bits. Addi-

tionally, our proposed AIQ design consumes∼ 1.34pJ less energy per sample on average compared

to other state-of-the-art ADC designs proposed in [63, 64, 65, 66, 67]. Moreover, despite utiliz-

ing an adaptive clock for sampling operation, our proposed AIQ design utilizing VCMA-MTJ

spin-based devices achieves a performance comparable with other state of the art CMOS-based

architecture as shown in Table 7.2 in terms of average power dissipation and energy consumption

per sample, while providing adaptive SR and QR.

Moreover, since the MTJ devices are considered as non-volatile memory cells, there is no need for

an external FLASH memory or latch to store the data after each sampling operations. The sampled

data will remain in the MTJ devices even if the power failure occurs. As a result, an extreme area

reduction is achieved. For example, in the 8-bit resolution ADC, 256 comparators are used, and

each comparator is connected to a latch for storing the sampled value. However, by utilizing MTJ

devices, 256 latches can be eliminated from the circuit, resulting in a significant area reduction.

Furthermore, since the MTJ devices can be fabricated on top of the baseline CMOS process, they
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need not occupy extra area in lateral space, which further advances an area efficient design.

7.4 Conclusion

A novel adaptive framework for energy-aware acquisition of spectrally-sparse signals is proposed.

The adaptive quantized Compressive Sensing (CS) techniques, beyond-Complementary Metal Ox-

ide Semiconductor (CMOS) hardware architecture, and corresponding algorithms which utilize

them have been designed concomitantly to minimize the overall cost of signal acquisition. First,

a spin-based Adaptive Intermittent Quantizer (AIQ) is developed to facilitate the realization of the

adaptive sampling technique. Second, a framework for smart and adaptive determination of the

sampling rate and quantization resolution based on the instantaneous signal and hardware con-

straints is introduced. Simulation results indicate that an AIQ architecture using a spin-based

quantizer incurs only 20.98µW power dissipation on average using 22nm technology for 1 to 8 bits

uniform output. Furthermore, in order to provide 8-bit quantization resolution, 85.302µW maxi-

mum power dissipation is attained. Our results indicate that the proposed AIQ design provides up

to 6.18mW power savings on average compared to other adaptive rate and resolution CMOS-based

CS Analog to Digital Converter (ADC) designs. Additionally, the Mean Square Error (MSE) val-

ues achieved by the simulation results confirm efficient reconstruction of the signal based on the

proposed approach.
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CHAPTER 8: AQURATE: MRAM-BASED STOCHASTIC

OSCILLATORS FOR ADAPTIVE QUANTIZATION RATE SAMPLING

OF SPARSE SIGNALS1

Previous works on adaptive quantization rate and resolution ADCs have been implemented using

Complementary Metal Oxide Semiconductor (CMOS) technology and considering a low-pass sig-

nal model [65, 97]. In this Chapter, we propose an spin-based Adaptive quantization rate (AQR)

generator circuit that considers the signal dependent constraint as well as hardware limitations.

The proposed AQR generator circuit utilized Magnetic Random Access Memory (MRAM)-based

stochastic oscillator devices, which offer miniaturization and significant energy savings [7].

8.1 Proposed AQR Generator Circuit

To realize an effective hybrid emerging device and CMOS circuit, one useful approach can be

to consider stochastic and deterministic attributes separately. For instance, Figure 8.1 depicts the

proposed AQR generator circuit wherein a 2-terminal MTJ realizes stochastic behavior to provide

the non-uniform clock generation capability.

The quantized Sparsity Rate Estimator (SRE) module shown in Figure 8.1 estimates the sparsity

rate of the digital output bit-stream by estimating the sparse spectral components of the digital

output using an iterative algorithm. Recently, rapid and optimized sparse component estimation

method is proposed in [5]. In the approach proposed in [5], in order to minimize the computational

complexity of the sparse component estimation, a sliding window approach is utilized and the

algorithm operates only one iteration on each frame of the input by utilizing the previous estimate

1©IEEE. Part of this chapter is reprinted, with permission, from [13]
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as an initial value. This will result in gradual convergence of the sparse components to the actual

values across iterations. These algorithms can be employed to find the sparsity rate of the signal.

In most cases, sparsity rate of analog signals, which can be described as the number of non-zero

elements in the sparse representation of the signal divided by the total number of elements, is

between 5% to 15% in many applications including those targeted herein.

When the SRE module estimates the sparsity rate of the signal based on the digital output of the

previous frame, it will then generate a voltage level according to that sparsity rate of the input

analog signal. This voltage, referred to as VSR, will be applied to the gate of the NMOS transistor

shown in Figure 8.1 and results in an stochastic bit-stream generated by the MRAM-based stochas-

tic oscillator device. The stochastic bit-stream output generated by the MRAM-based stochastic

oscillator device will be forwarded to the D-Flip-Flop (D-FF) as shown in Figure 8.1 and the result

of the 2-input NAND gate between the output of the D-FF and the actual clock of the circuit will

generate the required quantization rate to be used for the following frame of the signal acquisition,

referred to as Asynchronous Clock (A-Clk) in Figure 8.1. Additionally, the SRE module can also

be used by the recovery algorithms to efficiently recover the sampled signal [5]. Additionally, the

A-Clk will be forwarded to the sparse recovery algorithm to provide necessary information about

the samples taken from the signal to assist with the signal reconstruction.

To obtain the relation between the output probability of the stochastic MRAM-based AQR genera-

tor and its input voltage, we have applied an input pulse that its amplitude starts from GND and is

increased by 200mV every 100ns until it reaches VDD. The output of the building block is sampled

with a 1GHz clock frequency using a D-FF circuit, as shown in Figure 8.2.

137



Figure 8.1: Integration of AQR generator circuit within the Compressive Sensing ADC (CS-ADC) system
design. [13]

Figure 8.2: The sampled output of the stochastic MRAM-based building block for AQR generator for vari-
ous input voltages. [13]
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8.2 Simulation Results

In order to evaluate and validate the behavior and functionality of the proposed AQR generator cir-

cuit, SPICE and MATLAB simulations were performed. We have utilized the 14nm High Perfor-

mance FinFET Predictive Technology Model (PTM) [222] as well as the MRAM-based stochastic

oscillator device model and parameters represented in [7] to implement and evaluate the proposed

AQR generator circuit.

According to our results, AQR provides significant power dissipation and area reductions com-

pared to the state-of-the-art non-uniform clock generators listed in Table 8.1 [75, 97, 223, 224].

According to our simulation results, power dissipation of the proposed AQR generator circuit is

22.64µW on average. With respect to area utilization, our proposed AQR design requires only

23 FinFET transistors, which attains a significant reduction in the transistor count and complexity

of the non-uniform clock generator circuit present in state-of-the-art designs [75, 97, 223, 224].

Thus, AQR avoids high transistor counts while making it unnecessary to use large LFSR circuits

that contain numerous D-FFs as well as several logic gates and multiplexers. For a more equitable

comparison in terms of area and power dissipation, we have derived (8.1) and (8.2) considering

General Scaling method [225] to normalize the power dissipation and area of the designs listed in

Table 8.1. Based on the General Scaling method, voltage and area scale at different rate of U and

S, respectively. Thus, the power dissipation is scaled with respect to 1/U2 and area per device is

scaled according to 1/S2 [225]:

Powernorm =
Powerx
PowerAQR

× (
1

U
)2 =

Powerx
PowerAQR

× (
0.8V

Vnominal
)2, (8.1)

Areanorm =
Areax
AreaAQR

× (
1

S
)2 =

Areax
AreaAQR

× (
14nm

Technology
)2, (8.2)
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where, Vnominal is the nominal voltage of the technology model, Technology refers to the tech-

nology node in nanometers, and subscript x refers to the design that we want to scale its power

dissipation and area according to the technology models. According to (8.1) and (8.2), AQR pro-

vides power dissipation reduction up to one-order-of-magnitude compared to the state-of-the-art

nonuniform clock generators as listed in Table 8.1. Additionally, AQR offers up to one-order-of-

magnitude area reduction compared to the designs provided in Table 8.1 using the scaling compar-

ison trends accepted in the literature.

Table 8.1: Comparison with recently proposed non-uniform clock generator designs. [13]
Design Technology (Vnominal) Powernorm Areanorm

[75] 65nm (1.1V) ∼ 1× ∼ 1×
[223] 65nm (1.1V) ∼ 2× ∼ 21×
[224] 90nm (1.2V) ∼ 2× ∼ 51×
[97] 28nm (1.0V) ∼ 18× N/A

This Work 14nm (0.8V) 1× 1×

As described in Section 8.1, sparsity rate of analog signals is usually within the range of 5%−15%.

Moreover, we have embedded our proposed AQR generator within CS recovery algorithms called

Orthogonal Matching Pursuit (OMP) and Compressive Sampling Matching Pursuit (CoSaMP) [14]

in order to evaluate the architectural simulation results and in order to recover the signal from the

samples taken using the AQR generator. According to the results, the mean normalized errors of

the reconstruction of the signals with 5%, 10%, and 15% sparsity rates using OMP are 0.0504,

0.0446, and 0.0252, respectively. Moreoever, the mean normalized errors of the reconstruction of

the signals with 5%, 10%, and 15% sparsity rates using CoSaMP are 0.0487, 0.0304, and 0.0245,

respectively. Figure 8.3 depicts an example signal with 10% sparsity rate and its reconstructed

signal using CoSaMP algorithm [14] with MSE=0.0304.
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Figure 8.3: Recovery of an sparse signal with sparsity rate of 10% using CoSAMP [14] and samples taken
by AQR generator output (MSE=0.0304). [13]

8.3 Conclusions

Recently, the promising aspects of compressive sensing have inspired new circuit-level approaches

for their efficient realization within the literature. However, most of these recent advances in-

volving novel sampling techniques have been proposed without considering hardware and signal

constraints. Additionally, traditional hardware designs for generating non-uniform sampling clock

incur large area overhead and power dissipation. Herein, we propose a novel non-uniform clock

generator called Adaptive Quantization Rate (AQR) generator using MRAM-based stochastic os-

cillator devices. Our proposed AQR generator provides ∼ 25-fold reduction in area, on average,

while offering ∼ 6-fold reduced power dissipation, on average, compared to the state-of-the-art

non-uniform clock generators.
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CHAPTER 9: SLIM-ADC: SPIN-BASED LOGIC-IN-MEMORY ANALOG

TO DIGITAL CONVERTER LEVERAGING SHE-ENABLED DOMAIN

WALL MOTION DEVICES1

Challenges incurred by conventional Von-Neumann computing architectures that are mainly due to

interconnection and busing demands [88], increase static energy consumption, causes large access

latency, and limited scalability. Furthermore, there is an increasing demand for energy and area

efficient Analog to Digital Converters (ADCs) as the need for integrating the signal acquisition

and processing as well as rapid parallel data conversion in sensor nodes has increased [90, 91, 92].

Moreover, increased static energy consumption and decreased reliability caused by high process

variation have become a major challenge in scaled technology nodes [95]. Thus, we devise a

framework for efficient acquisition of analog signals utilizing emerging spin-based devices. In this

Chapter, we propose a spin-based intermittent quantizer with logic computation capabilities. The

proposed architecture, called Spin-based Logic-In-Memory ADC (SLIM-ADC), utilizes Spin-Hall

Effect driven Domain Wall Motion (SHE-DWM) devices to provide fast quantization of analog sig-

nals in a novel energy-efficient fashion as well as realizing intrinsic logic operations. By leveraging

non-volatility, SLIM-ADC can reduce energy consumption via instant off/on operation without the

use of backup storage.

9.1 Proposed Spin-based Logic-In-Memory Analog to Digital Converter (SLIM-ADC)

Our proposed SLIM-ADC design leveraging SHE-DWM devices is shown in Figure 9.1. Our pro-

posed dual-mode device is capable of implementing ADC operations as well as logical operations.

1©IEEE. Part of this chapter is reprinted, with permission, from [6]
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The MTJ0, MTJ1, and MTJ2 each can represent a quantization level referred to as L0, L1, and L2

as shown in Figure 9.1, in order to quantize the analog input signal. Additionally, each of these

MTJ devices can represent a different function such as 3-input OR gate, 3-input Majority Gate

(MG), and 3-input AND gate, shown in Figure 9.1 as F0, F1, and F2, respectively. The proposed

write circuit used for the SLIM-ADC device is illustrated in Figure 9.2. Since there are notches

[226] in the magnetic domain, in order to move the DW, the input requires an appropriate current

magnitude and direction. Furthermore, the signals used to activate the read and write operations

of the SLIM-ADC device are listed in Table 9.1. One of the main contributions of the proposed

SLIM-ADC devices is their tolerance to intermittency which enables these devices to save energy

by going to standby mode when there is no ADC or logic operation requested. Moreover, the

instant-on feature of these devices allows them to resume normal operation without loss of data

stored in the MTJs.

Figure 9.1: The proposed SLIM-ADC device in (a) 000, (b) 100, (c) 110, and (d) 111 modes. [6]
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Figure 9.2: The proposed write circuit for the SLIM-ADC device. [6]

Table 9.1: The Signaling of the SLIM-ADC device for read and write operations. [6]
Operation WSL RSL WE RE BL

Reset From write circuit Hi-Z 1 0 1
Write From write circuit Hi-Z 1 0 0
Read 0 From SA 0 1 0

9.1.1 ADC Mode

As depicted in Figure 9.2, when the Func signal for MUX0 is set to 1, the device will be in ADC

mode. ADC mode has three simple steps: 1) reset, 2) conversion, and 3) read-out. During the

reset state, the Rst signal of MUX1 will be set to 1 and the DW will be pushed all the way to

the beginning of the magnetic domain (leftmost location) to reset and prepare the device for the

conversion state. As shown in Figure 9.2, during the conversion state, the Smpl signal will be

enabled for a short period to sample the analog input signal and the Rst signal of MUX1 will be

set to 0 to allow the sampled analog input signal to move the DW, depending on the input signal’s

magnitude. During the read-out state, using the read operation and SAs presented in [10], we can

read the values stored in all 3 MTJs, and based on their resistance values, find the digital output

encoded using 3 levels to realize a 2-bit ADC operation as shown in Figure 9.1, where L0, L1, and

L2 refer to Level 0, Level 1, and Level 2, respectively. During the read operation one of the 000,

100, 110, or 111 states will be achieved that can be encoded into two bits as shown in Table 9.2.
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Table 9.2: The SLIM-ADC’s bit encoding for ADC operation. [6]
MTJ0 / L0 MTJ1 / L1 MTJ2 / L2 Encoded Bits

0 0 0 0 0
1 0 0 0 1
1 1 0 1 0
1 1 1 1 1

9.1.2 Logic-in-Memory Mode

Furthermore, when the Func signal for MUX0 is set to 0, the device will be in logic operation

mode, as illustrated in Figure 9.2. The logic operation has also three steps: 1) reset, 2) computation,

and 3) read-out. During the reset state, which is the same as ADC mode, the Rst signal of MUX1

will be set to 1 and the DW will be pushed all the way to the beginning of the magnetic domain

(leftmost location) to reset and prepare the device for the computation state. As depicted in Figure

9.2, after the reset state, the input currents of A, B, and C will be applied during the computation

state for logic operation. Based on the current magnitude applied through the inputs A, B, and C,

the DW will move. Finally, in the read-out state, the output of each MTJ will provide a different

function as shown in Figure 9.1. The proposed device is designed so that F0 provides a 3-input

OR gate, OR(A,B,C), F1 provide a 3-input Majority gate, MG(A,B,C), and F2 provides a 3-input

AND gate, AND(A,B,C), as listed in Table 9.3. Additionally, one of the inputs can be used as a

bias to achieve 2-input OR and AND gates. Herein, if we consider input C as the bias and connect

it to logic 0, then MTJ0 will provide OR(A,B) as F0, and MTJ1 will provide AND(A,B) as F1, as

listed in Table 9.4.

9.1.3 Sense Amplifier (SA) Circuit for the Read Operation

The Sense Amplifier (SA) circuit shown in Figure 9.3 is used to read the data of the three MTJ

devices, namely MTJ0, MTJ1, and MTJ2, simultaneously. The read operation is comprised of two
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steps: pre-charge and sensing. During the pre-charge step, the RE signal is connected to the logic

0, which turns on MP0 and MP3 transistors and causes Transmission Gates (TGs), TG0, TG1,

and TG2, to turn off and as a result the output nodes of each SA, referred to as OUTi and OUTi

in Figure 9.3, are pre-charged to VDD. During the sensing step, the RE signal is connected to

logic 1, which causes TG0, TG1, and TG2 to turn on and as a result the output nodes of each SA,

referred to as OUTi and OUTi in Figure 9.3, start to discharge to the ground.

Table 9.3: The Truth Table for the 3-input Logic Operations. [6]
A B C F0=OR(A,B,C) F1=MG(A,B,C) F2=AND(A,B,C)
0 0 0 0 0 0
0 0 1 1 0 0
0 1 0 1 0 0
0 1 1 1 1 0
1 0 0 1 0 0
1 0 1 1 1 0
1 1 0 1 1 0
1 1 1 1 1 1

Table 9.4: The Truth Table for the 2-input Logic Operations. [6]
A B C/Bias F0=OR(A,B) F1=AND(A,B)
0 0 0 0 0
0 1 0 1 0
1 0 0 1 0
1 1 0 1 1

Figure 9.3: The proposed SA circuit for the SLIM-ADC device (i = {0, 1, 2}). [6]
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According to the difference in the resistance states of the MTJi and Refi in each SA, one of the

two output nodes, OUTi and OUTi, discharges more rapidly, leading the other output to charge

to VDD [10]. All of the reference cells, Ref0, Ref1, and Ref2, share the same dimensions and

resistance values. The dimensions are set so that the resistance values of the reference cells hold a

value between the P and AP states of the MTJs used with the SHE-DW. All of the reference cells,

Ref0, Ref1, and Ref2, share the same dimensions and resistance values. The dimensions are set

so that the resistance values of the reference cells hold a value between the P and AP states of

the MTJs used with the SHE-DW in order to achieve a sufficient sensing margin during the read

operation.

9.2 Simulation Framework, Results, and Analysis

In order to accurately simulate the behavior of the proposed SLIM-ADC design, we have extracted

the values used in [18], [19], and [20]. The Domain Wall Simulator presented in [19] are used

along with SPICE simulation with the 22nm Predictive Technology Model (PTM) [202], in order

to analyze the behavior of the SHE-DWM devices proposed herein utilizing the parameters listed

in Table 9.5.

The modeling of the SHE-DWM can be realized through modifying the Landau-Lifshitz-Gilbert

(LLG) equations as shown below [20]:

d~m

dt
= −γ ~m× ~Heff + α~m× d~m

dt
+ ~τstt + ~τsot, (9.1)

where, ~m is the magnetization vector of the DW’s free-layer {mx,my,mz}, γ is the gyromagnetic

ratio, α is the Gilbert damping factor, ~Heff is the effective magnetic field vector derived from

the energy density of the system, τstt is the Spin-Transfer Torque (STT) factor, and τsot is the
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Spin-Orbit Torque (SOT) factor. Additionally, Heff can be described as [20]:

~Heff =
−1

µ0Ms

× δεDM
δ ~m

, (9.2)

εDM = −D[mz∇ · ~m− (~m · ∇)mz] if tDW << LDW & WDW , (9.3)

where, µ0 is the vacuum permeability, Ms is the Saturation Magnetization, εDM is the Dzyaloshin-

skii Moriya Interaction (DMI) energy density, and D is the DMI intensity parameter.

Table 9.5: Circuit parameters and constants with their corresponding values for the SHE-DWM device
model. The values are taken from [18], [19], and [20]. [6]

Parameter/Constant Description Default Value
Ms Saturation Magnetization 6.8× 105A/m
Ku Initial Interfacial PMA energy 3.5× 105J/m3

α Gilbert Damping Factor 0.03
tox Oxide-layer Thickness 1nm
Aex Exchange Stiffness 1.1× 10−11J/m
ρ Resistivity of Magnet 170Ωnm
RA MTJ Resistance Area Product 2.38Ωµm2

(L×W )MTJ MTJ Dimensions 20× 20nm2

(L×W × t)DW DW Nano-wire Dimensions 100× 20× 2.8nm3

(L×W × t)SHM SHM dimensions 120× 20× 2.8nm3

MTJi MTJ Resistance in [P, AP] States [3.2, 6.4]KΩ
Refi Reference Cell Resistance 4.8KΩ
ρSHM Resistivity of SHM (W) 200µΩcm2

θSHM Initial Spin-Hall angle 0.3
TMRAP Tunnel Magneto Resistance 100%

P Spin Polarization 0.6
λsf Spin Flip Length 1.5nm
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As a result, the effective DMI field can be described as below [20]:

~HDM =
−2D

µ0Ms

× [
∂mz

∂x
~ux +

∂mz

∂y
~uy − (

∂mx

∂x
~ux +

∂my

∂y
~uy)~uz]. (9.4)

Furthermore, assuming that ~ is the reduced Planck constant, P is the STT polarization factor, ja

is the driving current density, e is the elementary electron charge, µB is the Bohr magneton, θ is

the initial spin-Hall angle, η is the non-adiabatic Rashba term, ξ is the dimensionless non-adiabatic

parameter, αR is the Rashba parameter, and ~HR is the effective Rashba field, the STT and SOT

factors can be described as below [20]:

~τstt = (ja
µBP

eMs

)× (~ux · ∇)~m− (ja
µBP

eMs

)× ξ ~m× (~ux · ∇)~m, (9.5)

~τsot = −γ ~m× ~HR + ηγξ ~m× (~m× ~HR)− γ ~m× (~m×HSH~uy), (9.6)

~HR =
αRP

µ0µBMs

(~uz ×~ja) =
αRPja
µ0µBMs

~uy, (9.7)

HSH =
~θSHja

µ02eMstDW
=

µBθSHja
γ2eMstDW

. (9.8)

Authors in [19] have utilized the modeling approach described in [20] to implement a standalone

one-dimensional DWM simulator. This model takes STT, SOT, and DMI fields into account [19].

According to our results, if ja ' 0.75 × 1012A/m2 is applied, the DW will move to the first notch

within 1ns, if ja ' 1.44× 1012A/m2 is applied, the DW will move to the second notch within 1ns,
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and if ja ' 2.08× 1012A/m2 is applied, the DW will move all the way to the end of the magnetic

domain within 1ns. Figure 9.4 depicts sample simulation waveforms for the proposed SLIM-ADC

device. According to our results, the energy consumption of each ADC or logic operation on

average is ∼ 201.48fJ, which on average includes ∼ 117.94fJ for the reset operation, ∼ 79.70fJ

for the sampling/computing operation, and ∼ 3.84fJ for the read operation. Considering 0.6ns for

the reset operation, 1ns for the sample/compute operation, and 0.4ns for the read operation, the

overall operation time is 2ns, which means the proposed SLIM-ADC device can perform ADC or

logic operations with 500MHz frequency.

Faster ADC and logic operations can be achieved by increasing the input current corresponding to

reset and sample/compute operations, however this will elevate the power dissipation. In order to

increase the speed of the proposed SLIM-ADC device to be able to perform ADC or logic oper-

ations with 1GHz frequency, the reset operation is required to be done in 0.3ns, sample/compute

operation is required to be done in 0.5ns, and read operation requires to be done in 0.2ns. Further-

more, according to our results, if ja ' 1.57 × 1012A/m2 is applied, the DW will move to the first

notch within 0.5ns, if ja ' 2.85 × 1012A/m2 is applied, the DW will move to the second notch

within 0.5ns, and if ja ' 4.1 × 1012A/m2 is applied, the DW will move all the way to the end

of the magnetic domain within 0.5ns. In this case, the energy consumption of each ADC or logic

operation is equal to ∼ 196.65fJ on average, which includes ∼ 117.1fJ for the reset operation,

∼ 79.52fJ for the sampling/computing operation, and ∼ 0.03fJ for the read operation.

In Table 9.6, we compare the performance of the developed SLIM-ADC device with other low-

resolution ADC architectures that utilize CMOS or emerging spin-based technologies. It can be

observed that the proposed SLIM-ADC device provides fast and energy-efficient analog to digital

conversion compared to state of the art ADC designs. In particular, the proposed SLIM-ADC

operating in 1GHz frequency, in most cases outperform other designs listed in Table 9.6 in terms

of power dissipation by ∼ 5.3mW on average.

150



Figure 9.4: Simulation waveforms for the proposed SLIM-ADC device. [6]

Moreover, the proposed SLIM-ADC design improves the power dissipation of the sampling in

500MHz frequency by ∼ 5.6mW on average compared to most of the designs provided in Ta-

ble 9.6. Additionally, a 1-bit MG-based Full-Adder (MG-FA) circuit is implemented utilizing the

proposed SLIM-ADC devices using the circuit shown in Figure 9.5. According to our results,

the power dissipation of the proposed SLIM-ADC-based MG-FA in 1GHz frequency is equal to

589.95µW and the result of the addition will be ready within 2ns. Furthermore, the power dissi-
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pation of the proposed SLIM-ADC-based MG-FA in 500MHz frequency is equal to 302.22µW

and the result of the addition will be ready within 4ns. The output waveform of the 1-bit MG-FA

circuit using the proposed SLIM-ADC devices is shown in Figure 9.6.

Table 9.6: Comparison with prior low-resolution ADC designs. [6] (N/A: Data Not Available in the refer-
enced manuscript.)

Design
Resolution Maximum Energy

Technology in Power Bandwidth per
Bits Frequency Sample

[65] CMOS 4-bit 30mW 20MHz 5pJ
[227] CMOS 3-bit 3.1mW 2GHz 0.27pJ
[228] SHE-MTJ 3-bit 1.9mW 500MHz 0.48pJ
[82] DWM 5-bit 3.4mW 500MHz 3.5pJ

[111] DWM 3-bit
0.22mW 200MHz N/A
1.44mW 500MHz N/A
6.56mW 1GHz N/A

[112] Racetrack DWM 8-bit 96.5µW 20MHz 21fJ

SLIM-ADC SHE-DWM 2-bit 285.87µW 500MHz 79.71fJ
549.51µW 1GHz 79.52fJ

Figure 9.5: Proposed 1-bit MG-FA circuit implemented utilizing the SLIM-ADC devices. [6]

Table 9.7 compares the performance of the developed SLIM-ADC-based MG-FA with other FA

designs that utilize CMOS or emerging spin-based technologies. It can be observed that the pro-

posed SLIM-ADC-based MG-FA operating in 1GHz frequency outperforms the other FA designs

listed in Table 9.7 in terms of power dissipation by 2.7-fold on average. Additionally, the pro-

posed SLIM-ADC MG-FA offers faster FA operation by 3.2-fold on average compared to other
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FA designs listed in Table 9.7. Furthermore, the proposed SLIM-ADC MG-FA offers ∼ 2-fold

and ∼ 3.8-fold reduced power dissipation on average in 1GHz and 500MHz operating speeds, re-

spectively, and provides ∼ 2.3-fold and ∼ 1.13-fold delay improvement on average in 1GHz and

500MHz operating speeds, respectively, compared to other emerging spin-based FA designs listed

in Table 9.7.

Figure 9.6: Simulation waveforms for the proposed 1-bit MG-FA circuit implemented utilizing the SLIM-
ADC devices with inputs A=1, B=0, and Cin=1. [6]
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Table 9.7: Comparison with prior Full-Adder designs. [6] (*The values are taken from [21].)
Design Technology Power Delay Energy per bit
[229]* CMOS 2mW 2.2ns 4pJ
[229]* STT-MTJ 2.1mW 10.2ns 4.2pJ
[21]* SHE-MTJ 0.71mW 7ns 4.3pJ
[31] DWM 1.364mW 2.54ns 1.4pJ

[230] STT-MTJ 0.315mW 2.1ns 6.3pJ
[231] Racetrack DWM 0.432mW 3.03ns 1.3pJ

SLIM-ADC SHE-DWM 589.95µW 2ns (1GHz) 0.6pJ
302.22µW 4ns (500MHz) 0.6pJ

Previous results indicate that for a conventional 2-bit CMOS ADC requires 49 transistors [232] and

1-bit CMOS FA requires 42 transistors [229], while our proposed SLIM-ADC can perform 2-bit

ADC and 1-bit FA operation with 90 total transistors and 6 total MTJs. Thus, the device count for

implementing a single ADC and FA circuit is comparable with the conventional CMOS-based ap-

proaches. However, compared to the conventional Logic In Memory (LIM) and ADC approaches,

the area of the proposed SLIM-ADC is reduced, since an array of SAs is shared among the en-

tire column of SLIM-ADC devices and an array of write circuits is shared among the entire row

of SLIM-ADC devices. Hence, there is no need for a distinct SA and write circuit per device.

Furthermore, the proposed SLIM-ADC device is capable of both logic and ADC operations while

conventional approaches are only capable of performing one operation, either logic or ADC. Ad-

ditionally, according to our results, the proposed SLIM-ADC consumes ∼ 0.2µW leakage power

which is negligible compared to CMOS designs which is around ∼ 1nW [229].

9.3 Conclusion

Herein, a novel ADC framework for energy-aware acquisition of analog signals with Logic-in-

Memory capabilities is devised. Spin-Hall Effect driven Domain Wall Motion (SHE-DWM) de-

vices are utilized to realize the proposed framework called Spin-based Logic-In-Memory ADC
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(SLIM-ADC). Our simulation results indicate that the proposed SLIM-ADC offers ∼ 200fJ en-

ergy consumption on average for each analog conversion or logic operation with up to 1GHz

speed. Furthermore, our results indicate that the proposed SLIM-ADC outperforms other state of

the art spin-based ADC designs by offering ∼ 5.45mW improved power dissipation on average.

Additionally, a Majority Gate (MG)-based Full-Adder (MG-FA) is implemented using the pro-

posed SLIM-ADC. Our results show that the proposed MG-FA offers ∼ 2.9-fold reduced power

dissipation on average and ∼ 1.7-fold reduced delay on average compared to the state of the art

Full-Adder designs reported herein.
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CHAPTER 10: MRAM-BASED STOCHASTIC OSCILLATORS FOR

ADAPTIVE NON-UNIFORM SAMPLING OF SPARSE SIGNALS IN IOT

APPLICATIONS1

A novel circuit-algorithm solution called Adaptive Sampling of Sparse IoT signals via STochastic-

oscillators (ASSIST) is devised in this Chapter. ASSIST utilizes non-uniform compressive sensing

algorithms as well as spin-based hardware circuit to improve energy-efficiency and performance of

sampling and reconstruction operations within IoT applications. The proposed ASSIST approach

utilizes Spin-based Stochastic Oscillator circuit to generate the CS measurement and then uses

Spin Orbit Torque Magnetic Random Access Memory (SOT-MRAM) based resistive devices to

store the CS measurement matrix elements.

10.1 Proposed Adaptive Sampling of Sparse IoT signals via STochastic-oscillators (ASSIST)

The proposed MRAM-based stochastic bitstream generator circuit is depicted in Figure 10.1(a),

wherein a 2-terminal low energy-barrier thermally unstable MTJ is utilized. As shown in Figure

10.1(a), the output of the MSO is connected to a D-Flip-Flip (D-FF) which is controlled by a

Power-Gated Clock (PG-CLK). This will provide control over the number of stochastic outputs

provided by the MSO. In other words, by setting the duration of PG-CLK to run for M clock

cycles, we would have a stochastic bitstream output, VM , with the length of M bits, as shown in

Figure 10.1(a). Additionally, having control over VN enables us to adaptively adjust the number of

‘1’s that appear in the output bitstream, VM .

As shown in Figure 10.1(c), we have utilized a complementary SHE-MRAM array to store the

1©IEEE. Part of this chapter is reprinted, with permission, from [8]
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elements of the measurement matrix and for each column of the measurement matrix we have

used an MRAM-based stochastic bitstream generator. Thus, in order to adaptively change the

number of rows in the measurement matrix to account for increased sparsity rate, we can adjust VM

accordingly to increase the number of measurements. Furthermore, in order to increase accuracy

of the signal recovery, we can increase VN of the MRAM-based stochastic bitstream generators

located in the columns corresponding to the RoI to maintain more ‘1’s in the measurement matrix.

It is worth noting that in order to use the MRAM-based stochastic bitstream generator output to

write into the SHE-MRAM bit-cells, the PG-CLK clock cycle should be long enough for the write

current to flow through the HM of the SHE-MTJs.

As mentioned earlier, we utilize the non-volatile complementary SHE-MRAM array, which will

result in a wide read margin and increases reliability of the read operation [4]. Additionally, using

a non-volatile complementary SHE-MRAM array enables a clockless read operation that is rapid,

reliable, and energy-efficient. In order to use the MSO to write into the SHE-MRAM bit-cells,

we utilize the circuit shown in Figure 10.1(b). Every column of the SHE-MRAM array shown in

Figure 10.1(c) is populated using a separate MSO shown in Figure 10.1(a).

In order to write into each memory cell, WWL should be asserted to enable the write Transmission

Gates (TGs), TGW. Then by setting Bit Line, BL, and Source Line, SL, we can write comple-

mentary data values in MTJ and MTJ. Additionally, in order to use the MSO to write into the

SHE-MTJ devices, the output of the D-FF is connected to the write NMOS transistor, NW. Thus,

if the output of the D-FF is ‘1’, then NW is turned on and will result in a current passing through

the SHE-MTJs. On the other hand, if the output of the D-FF is ‘0’, then NW will not turn on and

the contents of the SHE-MTJs will remain untouched.

To read the data stored in the SHE-MTJs, RWL is asserted, which turns on the read TG, TGR.

Additionally, the read transistors, PR and NR, are enabled. Thus, by applying VDD at BL and
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GND at SL, a read path from VDD to GND is formed. This will lead to a voltage divider circuit

and by connecting the node between the complementary SHE-MTJs, Dout, to two inverter logic

gates, the output voltage will be amplified and presented at the output node, OUT.

(a)

(b) (c)

Figure 10.1: The proposed ASSIST approach, where (a) depicts the stochastic bitstream generator circuit,
(b) shows a complementary MTJ memory bit-cell connected to the stochastic bitstream generator, and (c)
illustrates the architecture view. [8]
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Table 10.1: Parameters of the 3-terminal SHE-MTJ device. [8]
Parameter Description Value
MTJArea lMTJ × wMTJ × π/4 60nm× 30nm× π/4
HMV olume lHM × wHM × tHM 100nm× 60nm× 3nm

tf Free Layer thickness 1.3 nm
RA MTJ resistance-area product 9 Ω · µm2

T Temperature 358 K
α Gilbert Damping factor 0.007
P Spin Polarization 0.52

θSHE Spin Hall Angle 0.4
ρHM HM Resistivity 200µΩ.cm
λsf Spin Flip Length 1.5nm

10.2 Simulation Results

In order to evaluate and validate the behavior and functionality of the proposed ASSIST approach,

SPICE and MATLAB simulations were performed. We have utilized the 14nm HP-FinFET Predic-

tive Technology Model (PTM) library as well as the MSO device model and parameters represented

in [7] along with other circuit parameters and constants listed in Table 10.1 and Table 2.2 in our

simulations to implement and evaluate the proposed ASSIST approach.

According to our simulation results, power dissipation of the stochastic bitstream generator circuit

is 23µW on average over a period of 100ns for generating a 100-bit bitstream composed of equal

likelyhood for ‘0’s and ‘1’s. Furthermore, the area estimate of each stochastic bitstream generator

circuit in the 14nm technology node according to the transistor count is 0.4µm2. For a more

equitable comparison in terms of area and energy consumption per bit, we have derived (10.1) and

(10.2) considering general scaling method [225] to normalize the energy consumption per bit and

area of the designs listed in Table 10.2. Based on the general scaling method, voltage and area scale

at different rates of U and S, respectively. Thus, the energy consumption is scaled with respect to
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1/SU2 and area per device is scaled according to 1/S2 [225], as shown below:

Energynorm =
Energyx

EnergyMSO

× (
1

S
)× (

1

U
)2 =

Energyx
EnergyMSO

× (
14nm

Technology
)× (

0.8V

VDD
)2,

(10.1)

Areanorm =
Areax

AreaMSO

× (
1

S
)2 =

Areax
AreaMSO

× (
14nm

Technology
)2, (10.2)

where, VDD is the nominal voltage of the technology model, Technology refers to the technology

node in nanometers, and subscript x refers to the design that we want to scale its power dissipation

and area according to the technology models. According to (10.1) and (10.2), MSO reduces energy

consumption per bit by ∼ 9-fold on average compared to the state-of-the-art TRNGs as listed in

Table 5.3. Additionally, MSO offers up to ∼ 3-fold area reduction on average compared to the

TRNG designs provided in Table 5.3 using the scaling comparison trends accepted in the literature.

Table 10.2: Comparison with recent TRNG designs. [8]
Design Technology (VDD) Energynorm Areanorm

[99] 28nm (1.0V) 0.3X 1.25X
[100] 28nm (1.0V) 8.9X 4.8X
[101] 28nm (1.0V) 17.4X 3.7X

This Work 14nm (0.8V) 1X 1X

Furthermore, transient output of a single complementary SHE-MRAM NVM bit-cell shown in

Figure 10.1(b) is provided in Figure 10.2. According to our simulation results, writing in a NVM

bit-cell requires 155.2fJ on average while reading the content of a NVM bit-cell requires 21.9fJ on

average. Additionally, based on our simulation results, the standby energy consumption is 36.4aJ.

Moreover, in Figure 10.3, we use the sampling and recovery algorithm discussed in [91, 233] to

evaluate the performance of ASSIST for different values of undersampling ratios, M
N

, for a signal

with sparsity level of k
N

= 0.1 considering N = 200 and with RoI that occupies 10% of the entire

signal.
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(a) (b)

Figure 10.2: Transient output for SHE-MRAM NVM array: writing and reading a (a) ‘0’ bit, and (b) ‘1’ bit.
[8]

Figure 10.3: TNMSE vs. Undersampling Ratio, M
N , for a signal with k

N = 0.1, N = 200, and RoI
occupying 10% of N . [8]

This experiment shows that the proposed ASSIST is able to decrease the Time-Averaged Normal-

ized Mean Squared Error (TNMSE) of RoI coefficients by up to 2dB for various undersampling

ratios. This benefit comes at the cost of reduced performance on total recovery error. It is worth

noting that for smaller undersampling ratios, ASSIST incurs no additional performance degrada-

tion compared to uniform CS for non-RoI entries.
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10.3 Conclusion

Recent advances to hardware integration and realization of highly-efficient Compressive Sensing

(CS) approaches have inspired novel circuit and architectural-level approaches. These embrace

the challenge to design more optimal non-uniform CS solutions that consider device-level con-

straints for IoT applications wherein lifetime energy, device area, and manufacturing costs are

highly-constrained, but meanwhile the sensing environment is rapidly changing. Thus, we de-

velop a novel adaptive hardware-based approach for non-uniform compressive sampling of sparse

and time-varying signals. The proposed Adaptive Sampling of Sparse IoT signals via STochastic-

oscillators (ASSIST) approach intelligently generates the CS measurement matrix by distributing

the sensing energy among coefficients by considering the signal characteristics such as sparsity

rate and noise level obtained in the previous time step. In our proposed approach, MRAM-based

stochastic oscillators are utilized to generate the random bitstreams used in the CS measurement

matrix. SPICE and MATLAB circuit-algorithm simulation results indicate that ASSIST efficiently

achieves the desired non-uniform recovery of the original signals with varying sparsity rates and

noise levels.
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CHAPTER 11: CONCLUSION

11.1 Technical Summary

11.1.1 Mitigating Process Variability for Non-Volatile Cache Resilience and Yield

To elevate the reliability and energy-efficiency of emerging NVMs a novel circuit-architecture

cross-layer approach called Self-Organized Sub-banks (SOS) is developed and evaluated. SOS

organizes the NVM banks into sub-banks and utilizes two different SAs for read operation. An

algorithm is designed to assign appropriate SA to each sub-bank based on the PV-based reliability

measures of each sub-bank so that a high-resilient SA will be assigned to the sub-banks with high

BER and an energy-efficient SA will be assigned to those sub-banks that are adequately reliable

based on the results acquired from the POST.

Additionally, SOS-enabled hybrid cache provides a wide-ranging solution to leverage PV in order

to improve the performance and reliability of emerging NVM technologies. Our results indicate

both STT-MRAM and SOS using MSA or ASA offer up to 88% conservation of the total consumed

energy, on average. ASA offers improved reliability and performance, while maintaining a small

footprint of 2.5µm2. Additionally, ASA incurs 0.5-fold, 10.4-fold, 2.3-fold, 3.3-fold, and 1.4-

fold area overhead compared to the new MSA, PCSA [10], SPCSA [10], EASA [10], and VISA

[10], respectively. Furthermore, our results exhibit that SOS-enabled hybrid cache improves the

write performance by 12.4% on average compared to STT-MRAM design. Moreover, the VFDS is

reduced by 89% on average in the SOS-enabled hybrid cache using ASA design compared to LLC

with STT-MRAM. This improves the mean TDS from 72.5% to 97% across all workloads.

Furthermore, since STT-MRAM suffers from high dynamic energy consumption mostly due to
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the write operation, SHE-MRAM is used as a replacement, which offers better write operation

performance compared to STT. Moreover, several different write schemes for SHE-MRAM is ex-

plored and among those, a high-resilient design, 7T1R, and an energy-efficient design, 1TG1T1R,

are chosen to be combined with SOS approach for further improvements of reliability and energy

efficiency. In particular, SOS-1TG1T1R outperforms SOS-7T1R in terms of EDP by 1.7-fold,

however SOS-7T1R provides increased reliability by providing less than 8% variation in the worst

case scenario.

11.1.2 Beyond von Neumann Architectures for Intelligent IoT Edge Processing

A novel framework for sleep power critical mobile applications is proposed to advance energy-

sparing and fast NV-SRAM designs. The proposed framework, called Bit-Grained Instant-on

Memory (BGIM), is designed to minimize the overall static and leakage energy consumption while

providing rapid back-up and instant-on restore operations through the integration of DSH-MRAM

devices with SRAM cells. The proposed BGIM cell performs back-up and restore operations

within 1ns and 13.2ps, respectively, while consuming 121.51fJ and 1.56fJ, respectively. Accord-

ing to the results, BGIM outperforms similar NV-SRAM cells that utilize emerging devices in

their designs. Additionally, BGIM only incurs 0.4µm2 area overhead compared to the traditional

6T SRAM cell, while eliminating the need for data transmission and a separate NVM macro.

Furthermore, to overcome the conventional SRAM-LUT limitations such as high static power,

volatility, and low logic density, we have proposed a novel LUT design using spin-based devices.

The proposed Combinational LUT (C-LUT) is a clockless design and a suitable candidate for

combinational logic, which can also be combined with a flip-flop circuit to implement sequential

logic. According to our simulation results, the standby power dissipation of the proposed C-LUT is

0.31µW, which is reduced by 5.4-fold compared to the SRAM-based LUT. Moreover, the structure
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of the proposed SHE-MRAM based C-LUT includes 250 and 768 fewer transistors compared to

the SRAM-based LUT and the STT-MRAM based C-LUT, respectively. Additionally, according

to the process variation reliability analysis, the C-LUT circuit exhibits < 0.001% error rate for

read and write operations in presence of variations spanning both transistors and MTJs.

Moreover, to advance energy-sparing sampling methods, we propose a spin-based Adaptive Inter-

mittent Quantizer (AIQ) to perform adaptive signal sampling and quantization. The contributions

of the developed cross-layer design can be summarized as follows: (1) a novel framework for

efficient and intelligent sensing through the integration of resource allocation, quantized compres-

sive sensing, and configurable spin-based devices are introduced using a multilayered approach,

(2) the utility of VCMA-MTJ devices within the proposed AIQ architecture are demonstrated to

realize rapid and more energy-efficient sampling and signal processing while achieving reduced

area footprint compared to conventional CMOS designs is demonstrated, (3) the energy consump-

tion of VCMA-MTJ is formulated and the energy equation that was derived was then utilized

for SR/QR optimization, (4) SR and QR trade-off under resource constraints are studied and an

energy-aware adaptive SR/QR optimization framework to tune the sampling rate and quantization

resolution is demonstrated, and (5) the adaptive SR/QR controller is integrated with the proposed

AIQ for energy-efficient signal acquisition. Finally, the novel sampling and reconstruction al-

gorithms, which have been developed in the context of adaptive quantized CS, open the door to

broader applications beyond those addressed herein.

Additionally, we have devised a novel non-uniform clock generator called Adaptive Quantization

Rate (AQR) generator using MRAM-based stochastic oscillator devices. Our proposed AQR gen-

erator considers signal constraints, such as sparsity rate, as well as hardware constraints, such as

area and power dissipation, in order to generate the non-uniform clock for the asynchronous CS-

ADC. Compared to similar non-uniform clock generators presented in the literature, AQR genera-

tor provides significant area reduction of ∼ 25-fold on average, while achieving power dissipation
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reduction of ∼ 6-fold, on average.

Furthermore, a novel framework for efficient and intelligent computing approach through the in-

tegration of resource allocation and spin-based devices is introduced to advance energy-sparing

sampling methods. The utility of SHE-DWM devices within the proposed Spin-based Logic-

In-Memory ADC (SLIM-ADC) architecture is demonstrated to realize rapid and more energy-

efficient sampling while achieving reduced area footprint compared to conventional CMOS de-

signs. Moreover, SLIM-ADC takes a step towards the realization of non-Von-Neumann archi-

tectures via in-memory computation utilizing SHE-DWM devices. According to our simulation

results, the proposed SLIM-ADC offers ∼ 200fJ energy consumption on average for each ana-

log conversion or logic operation with up to 1GHz speed. Furthermore, our results indicate that

the proposed SLIM-ADC outperforms other state of the art spin-based ADC designs by offering

∼ 5.5mW improved power dissipation on average. Additionally, a Majority Gate (MG)-based

Full-Adder (MG-FA) is implemented using the proposed SLIM-ADC. Our results show that the

proposed MG-FA offers ∼ 2-fold and ∼ 3.8-fold reduced power dissipation on average in 1GHz

and 500MHz operating speeds, respectively, compared to the state of the art Full-Adder designs

reported herein. Additionally, according to our results, the proposed MG-FA provides ∼ 2.3-fold

and ∼ 1.13-fold reduced delay on average in 1GHz and 500MHz operating speeds, respectively,

compared to the state of the art Full-Adder designs reported herein.

Moreover, we have devised a spin-based non-uniform compressive sensing circuit-algorithm so-

lution called Adaptive Sampling of Sparse IoT signals via STochastic-oscillators (ASSIST). High

payoff considerations to leverage for device hardware optimization, which are advanced herein,

include the signal sparsity and noise levels. According to our simulation result, the MRAM-based

Stochastic Oscillator (MSO) used as a TRNG provides significant area improvement of ∼ 3-fold

while achieving energy consumption per bit reduction of∼ 9-fold, on average, compared to similar

TRNGs presented in the literature. Additionally, our circuit-algorithm simulation results indicate
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that ASSIST efficiently achieves the desired non-uniform recovery of the original signals with

varying sparsity rates and noise levels.

11.2 Technical Insights

A summary of technical insights gained from the proposed research presented in this dissertation

is provided below:

• Emerging spin-based circuits offer significant improvements over traditional CMOS-based

circuits in terms of static power dissipation and area footprint, which make them a great

candidate for IoT applications.

• Recent commercial availability of vertically-integrated spin-based devices provide a founda-

tion for intrinsic device computation.

• Utilization of emerging spin-based devices to realize Compressive Sensing techniques re-

sults in significant area and energy consumption improvements within IoT applications.

• Compressive Sensing algorithms are designed to achieve desirable signal acquisition and

reconstruction while tolerating certain degree of error. Thus, utilizing emerging spin-based

devices within Compressive Sensing approaches can further reduce energy consumption and

area footprint while acheiving increase in performance.

• Majority of the energy within Compressive Sensing algorithms is consumed by Vector Ma-

trix Multiplication operations as well as Analog to Digital Conversions. Thus, developing

circuits to perform analog computation can results in significant energy consumption and

performance improvements.
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• Design of low-power Analog to Digital Converters using emerging spin-based devices pro-

vides significant energy consumption and area improvements.

11.3 Future Directions

11.3.1 Power Efficient AI Hardware System Design for IoT Edge Sensing and Computing

Recent advances to hardware integration and realization of highly-efficient analog computing ap-

proaches have inspired novel circuit and architectural-level innovations that consider device-level

constraints for Internet of Things (IoT) applications wherein lifetime energy, device area, and man-

ufacturing costs are highly-constrained. Additionally, recently machine learning approaches have

been widely used in IoT applications. However, there is an increasing demand for novel circuits

and architectures that can yield several orders of magnitude improvements in energy consump-

tion of machine learning applications while maintaining consistent accuracy. I intend to propose

a device-level-to-application-level approach is to integrate front-end signal processing operations

within a low-footprint neuromorphic computing array. This cross-cutting beyond-von Neumann

view of machine learning is explored within the potential of compressive imaging such as Single-

Pixel Camera (SPC) towards the goal of decision-making from data observations rather than re-

construction of the data. This consolidated platform selectively leverages a single memristive

post-CMOS device across multiple processing phases to simultaneously reduce the area require-

ment and energy consumption. Use of a unified platform allows in-the-field adaptation across a

continuum of information conversion losses and costs targeted for IoT devices. In this project, I

will investigate a novel adaptive hardware-based approach for non-uniform compressive sampling

and perform inference on the compressed samples acquired by a SPC without the need for recon-

structing the signal utilizing Long Short Term Memory (LSTM) networks on video [234]. Addi-

tionally, my proposed approach will eliminate the need for an analog to digital converter and is
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able to perform analog processing on the compressed sampled signal. I intend to demonstrate that

my proposed approach can achieve orders of magnitude area and speed improvement compared

to similar approaches in the literature due to elimination of the bulky analog to digital converter

circuit and data storage as well as reduction of the amount of data that requires processing. Re-

gardless of whether or not the hypothesis is validated, the proposed research will advance multiple

efforts to produce post-CMOS devices.

11.3.2 Mixed-Signal Reconfigurable Array for Energy-Aware Neuromorphic Processing in IoT

Field Programmable Gate Arrays (FPGAs) are promising candidates for online algorithms re-

quiring dynamic reconfiguration as well as general-purpose computations while minimizing soft-

ware overheads [235, 236]. However, process variation, soft errors, and hard errors introduces

reliability challenges, which results in performance degradation. Thus, fault tolerant FPGAs

have been introduced to provide reliable and self-adaptive operations to mitigate these challenges

[237, 238, 239, 240, 241, 242, 243, 244, 245, 246, 247, 248, 249]. On the other hand, Field

Programmable Analog Arrays (FPAAs) are more efficient in terms of computation energy con-

sumption and performance since they enable analog domain computation. As a result, overheads

and accuracy loss incurred due to signal conversions from analog to digital domain and vice versa

are significantly reduced [250]. Furthermore, the parallelism provided by the reconfigurable fabric

can be used for artificial intelligence applications [251].

Furthermore, Neuromorphic computing leveraging analog processing has been shown to be energy,

wire-count, and area-efficient [252]. However, the pathways from its software simulation to real-

izable neuromorphic chips using mixed-signal approaches are underexplored [253]. This project

aims to address such need by advancing the research hypothesis that a reprogrammable fabric of

a concise palette of analog and digital components can realize an energy-efficient platform for
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neuromorphic computing while accommodating adaptable precision, reduced dynamic range, and

maintain consistent accuracy despite process variation of emerging devices via inherent reconfig-

urability features. This research leverages the advantages of mixed-signal processing on a single

die to realize neuromorphic architectures yielding orders of magnitude reduction in energy con-

sumption. Thus, I propose investigating a device-level-to-architecture-level approach to integrate

front-end signal processing and machine learning operations within a low-footprint reconfigurable

fabric that enables mixed-signal processing. This project will advance a new class of chips called

Mixed-signal Field Programmable Arrays (MFPAs), which enable high-throughput on-chip learn-

ing via established approaches for artificial neural network processing. Mixed-signal techniques

combined with in-memory compute geared to the demands of neuromorphic processing will be

combined in a field-programmable and run-time adaptable platform.

11.3.3 Intelligent Approaches to Hardware Trojan Detection

In this project, I intend to propose an advanced Intelligent Compressive Sensing Hardware Tro-

jan Detection framework and design methodology to explore the neuromorphic hardware design

space in various architecture-to-device granularities to realize an energy-aware, rapid, and accurate

hardware trojan detection during design-time and run-time fortified by machine learning methods.

Initially, the proposed framework will leverage a top-down approach based on computationally-

optimized models of spintronic-based implementation of compressive sensing algorithms. The

developed framework will be equipped with intelligent optimization methods such as Genetic Al-

gorithms [254], Bayesian Inference methods such as the ones discussed in [91, 96, 233, 255], and

Outlier Detection Algorithms similar to the ones proposed in [256, 257, 258], to realize multi-

objective optimizations in terms of accuracy, area, and energy consumption through exploration

of the design space and tuning of the algorithm parameters at various granularities. Once the

device-level and circuit-level parameters are optimized, a bottom-up modular approach embrac-
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ing the essential physics of the spintronic devices will be leveraged to adjust the characteristic of

spin-based circuit such that it can realize the desired behavior required for compressive sensing

hardware trojan detection. The resulting designs will be evaluated using several benchmarks and

the framework and its evaluation results will be disseminated as open source libraries and tools to

be used by academia and industry.
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