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Abstract— A Full Adder circuit takes in two to three inputs and 

produces, at a maximum, two outputs. These inputs and outputs 

are required to compute binary addition. A standard Full Adder 

will successfully produce one of eight possible outputs, according 

to its truth table. Approximate Mirror Adders are enhancements 

made to the simple Full Adder. The purpose of enhancing a Full 

Adder is to decrease power dissipation, lower energy consumption, 

and reduce hardware area being used. The Approximate Mirror 

Adders also cause some error to occur on the output side, which is 

not seen in a standard Full Adder; this is due to the removal of 

transistors. AMA3 consumes the least amount of energy, 3.5 pico-

Joules for this design, compared to the Conventional Full Adder, 

which consumes 143.3 pico-Joules.       
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I. PROJECT DESIGN 

The purpose of this design was to calculate the amount of 
times a user-inputted word occurred in a given sentence. The 
sentence is pre-loaded into the data. The first step in the code is 
to prompt the user to enter their word of choice. This input is 
then loaded into a register. The string, the given sentence, is also 
loaded into a register. Next, the program enters the start loop. 
Initially the first byte of the string and the word are loaded into 
different registers. Then the program checks if the end of the 
string has been reached. If so, the code will jump to the exit line 
of code. If the string is not finished, then the program will next 
check for a completed word. If this is true, then the word counter 
will be incremented, the word will be reset, the string byte 
location will be incremented, and the code will jump back to the 
start of the loop. If there isn’t a word match at this point, then 
the code will check for a character match. If no match, then the 
code will add 32 to the word character value and check again. 
Then it will subtract 64, if still no match is found, and check for 
the last time. If there is no character match, then the program 
will increment the string byte, reset the word byte, and jump 
back to the start. If there is a character match, then both the word 
and string registers will be incremented, and the loop is restarted. 
The only way for this code to finish is if the end of the string has 
been reached.   

 This program was tested by using inputs of varying case and 
characters. The first input used was ‘KNIGHT’, in order to 
verify that the uppercase was being detected, which gave a result 
of six. The next test input was ‘knight’, used to check for the 
opposite lowercase condition, also producing a result of six 
occurrences. To check that upper and lower case were working 

 

Fig.1: Flowchart of the assembly program. 

 

Fig.2: Sample outputs of the assembly program. 



harmoniously, the input given was ‘KniGhT’. The results were 
a success. A final test used the input ‘Kn ight’ to verify that the 
program accounted for spaces, which correctly produced zero 
results.   

II. FULL-ADDER CIRCUIT 

 Full Adders (FA) are pieces of hardware that contain a 

combination of logic gates. The inputs for a single FA are A, B, 

and Carry in (Cin). The outputs are Sum and Carry out (Cout). The 

reason there is a Cin is because there will be many FAs connected 

to one another and the way this is done is by connecting a Cout to 

the next Cin. The following truth table will show this process 

more clearly: 

  

Logic gate representation of a Full Adder: 

 

     There are various approximations of a FA. A Conventional 

Mirror Adder (CMA) is a standard FA, as seen in the diagram 

above, which also consists of 24 transistors. In order to decrease 

the number of transistors, reduce the hardware area used, and 

lower power dissipation, the CMA must be altered. In 

Approximation 1 (AMA1), transistors are removed from the 

CMA and the hardware is tested for open or short circuits. In 

this approximation, eight transistors are removed and only 6 out 

of the 8 cases are still correct. This circuit makes Sum = COUT 

(inverse). With this technique, Sum produces three errors and 

COUT has one. These errors signify the differences in output 

compared to the CMA, there is an acceptable amount of error 

based on what the result is. In Approximate Mirror Adder 2 

(AMA2), COUT is set to equal A, forcing COUT to have two errors. 

It is also noticed that the circuit can be further simplified by 

inverting input A and calculating COUT and Sum as in a CMA. 

This method results in two errors for COUT and three errors for 

Sum. In AMA1 and AMA2 the COUT value is calculated using 

an inverted COUT as input. In the case of Approximate Mirror 

Adder 3 (AMA3), Sum has four errors. By setting Sum equal to 

input B and COUT equal to input A, we get a result of only four 

errors out of eight total outputs. AMA 3 also uses the least 

amount of area, as well as the least amount of total energy (as 

seen in Table II).   

 

III. RESULTS AND DISCUSSION 

The results of this program were used to calculate its energy 
consumption based on the consumption per instruction values 
below:  

1) ALU = Refer to Table I 

2) Branch = 3 pJ 

3) Jump = 2 pJ 

4) Memory = 100 pJ 

5) Other = 5 pJ 

 

The total energy consumption for this program, not 

including the ALU instruction, was 135.841 nano-Joules.  The 

overall focus of this program was to identify which type of Full 

Adder had the lowest power dissipated. Compared to the CMA 

circuit, the AMA 1 and 2 remove eight transistors which 

reduces the amount of power used. AMA 3 has the highest 

number of errors produced, but it only has 1 ferro-Joule of 

energy consumed for each ALU instruction. These major 

differences in energy may outweigh the need to minimize 

output error.    

 

Based on the results below, it is evident that the 3rd AMA 

was the most energy efficient. These dynamic instruction 

values were obtained by accessing: 

 

MARS4.5ToolsInstruction Statistics. 

 

 

Inputs Outputs 

A B CIN Sum COUT 

0 0 0 0 0 

0 0 1 1 0 

0 1 0 1 0 

0 1 1 0 1 

1 0 0 1 0 

1 0 1 0 1 

1 1 0 0 1 

1 1 1 1 1 

Table II: Total Energy consumption for the assembly 

program using designs provided in [1-3]. 

 

Design Total Energy Consumption 

[1] 135.859 nJ 

CMA [2] 135.984 nJ 

AMA [2] 135.885 nJ 

[3] 135.845 nJ 

 

Table I: Energy consumption for a single ALU Instruction 

in the designs provided in [1-3]. 

 

Design 
Energy Consumption 

For Each ALU Instruction 

[1] 5 fJ 

CMA [2] 39 fJ 

AMA [2] 12 fJ 

[3] 1 fJ 

 



IV. CONCLUSION 

 There is more than one type of Full Adder. The various 

types can be used to alter the power dissipated while running a 

program through the Arithmetic Logic Unit (ALU), which is 

where the Full Adders reside. A standard Full Adder, or a 

Conventional Mirror Adder, contains 24 transistors and 

produces zero errors from any of its eight possible outputs. 

There are more than three different hardware changes that can 

be made to the CMA to improve its energy consumption, but in 

this paper, the ones listed are Approximate Mirror Adder 1, 2, 

and 3. AMAs 1 and 2 calculate the Carry out value by inverting 

the Carry out from the preceding Adder. AMA 3 produces the 

most amount of errors (4 out of 8) but it has a substantially lower 

energy consumption. The total energy consumption of the best 

design for this program was 135.845 nano-Joules from using the 

Approximate Mirror Adder 3, which is 139 pico-Joules less than 

the Conventional Mirror Adder.  
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