
Page 1 of 3

Controlling Power Dissipation in Full-Adders by Enhancement

of Logic Gate Design and Transistor Reduction

Lauren Tyler

Department of Electrical and Computer Engineering

University of Central Florida

Orlando, FL 32816-2362

Abstract— A Full Adder circuit takes in two to three inputs and

produces, at a maximum, two outputs. These inputs and outputs

are required to compute binary addition. A standard Full Adder

will successfully produce one of eight possible outputs, according

to its truth table. Approximate Mirror Adders are enhancements

made to the simple Full Adder. The purpose of enhancing a Full

Adder is to decrease power dissipation, lower energy consumption,

and reduce hardware area being used. The Approximate Mirror

Adders also cause some error to occur on the output side, which is

not seen in a standard Full Adder; this is due to the removal of

transistors. AMA3 consumes the least amount of energy, 3.5 pico-

Joules for this design, compared to the Conventional Full Adder,

which consumes 143.3 pico-Joules.

Keywords—Full Adder, Approximate Mirror Adder,

Conventional Mirror Adder, Carry-out, Carry-in, Truth Table,

Inversion, Hardware Area, Logic Gate, Sum

I. PROJECT DESIGN

The purpose of this design was to calculate the amount of
times a user-inputted word occurred in a given sentence. The
sentence is pre-loaded into the data. The first step in the code is
to prompt the user to enter their word of choice. This input is
then loaded into a register. The string, the given sentence, is also
loaded into a register. Next, the program enters the start loop.
Initially the first byte of the string and the word are loaded into
different registers. Then the program checks if the end of the
string has been reached. If so, the code will jump to the exit line
of code. If the string is not finished, then the program will next
check for a completed word. If this is true, then the word counter
will be incremented, the word will be reset, the string byte
location will be incremented, and the code will jump back to the
start of the loop. If there isn’t a word match at this point, then
the code will check for a character match. If no match, then the
code will add 32 to the word character value and check again.
Then it will subtract 64, if still no match is found, and check for
the last time. If there is no character match, then the program
will increment the string byte, reset the word byte, and jump
back to the start. If there is a character match, then both the word
and string registers will be incremented, and the loop is restarted.
The only way for this code to finish is if the end of the string has
been reached.

 This program was tested by using inputs of varying case and
characters. The first input used was ‘KNIGHT’, in order to
verify that the uppercase was being detected, which gave a result
of six. The next test input was ‘knight’, used to check for the
opposite lowercase condition, also producing a result of six
occurrences. To check that upper and lower case were working

Fig.1: Flowchart of the assembly program.

Fig.2: Sample outputs of the assembly program.

harmoniously, the input given was ‘KniGhT’. The results were
a success. A final test used the input ‘Kn ight’ to verify that the
program accounted for spaces, which correctly produced zero
results.

II. FULL-ADDER CIRCUIT

 Full Adders (FA) are pieces of hardware that contain a

combination of logic gates. The inputs for a single FA are A, B,

and Carry in (Cin). The outputs are Sum and Carry out (Cout). The

reason there is a Cin is because there will be many FAs connected

to one another and the way this is done is by connecting a Cout to

the next Cin. The following truth table will show this process

more clearly:

Logic gate representation of a Full Adder:

 There are various approximations of a FA. A Conventional

Mirror Adder (CMA) is a standard FA, as seen in the diagram

above, which also consists of 24 transistors. In order to decrease

the number of transistors, reduce the hardware area used, and

lower power dissipation, the CMA must be altered. In

Approximation 1 (AMA1), transistors are removed from the

CMA and the hardware is tested for open or short circuits. In

this approximation, eight transistors are removed and only 6 out

of the 8 cases are still correct. This circuit makes Sum = COUT

(inverse). With this technique, Sum produces three errors and

COUT has one. These errors signify the differences in output

compared to the CMA, there is an acceptable amount of error

based on what the result is. In Approximate Mirror Adder 2

(AMA2), COUT is set to equal A, forcing COUT to have two errors.

It is also noticed that the circuit can be further simplified by

inverting input A and calculating COUT and Sum as in a CMA.

This method results in two errors for COUT and three errors for

Sum. In AMA1 and AMA2 the COUT value is calculated using

an inverted COUT as input. In the case of Approximate Mirror

Adder 3 (AMA3), Sum has four errors. By setting Sum equal to

input B and COUT equal to input A, we get a result of only four

errors out of eight total outputs. AMA 3 also uses the least

amount of area, as well as the least amount of total energy (as

seen in Table II).

III. RESULTS AND DISCUSSION

The results of this program were used to calculate its energy
consumption based on the consumption per instruction values
below:

1) ALU = Refer to Table I

2) Branch = 3 pJ

3) Jump = 2 pJ

4) Memory = 100 pJ

5) Other = 5 pJ

The total energy consumption for this program, not

including the ALU instruction, was 135.841 nano-Joules. The

overall focus of this program was to identify which type of Full

Adder had the lowest power dissipated. Compared to the CMA

circuit, the AMA 1 and 2 remove eight transistors which

reduces the amount of power used. AMA 3 has the highest

number of errors produced, but it only has 1 ferro-Joule of

energy consumed for each ALU instruction. These major

differences in energy may outweigh the need to minimize

output error.

Based on the results below, it is evident that the 3rd AMA

was the most energy efficient. These dynamic instruction

values were obtained by accessing:

MARS4.5ToolsInstruction Statistics.

Inputs Outputs

A B CIN Sum COUT

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Table II: Total Energy consumption for the assembly

program using designs provided in [1-3].

Design Total Energy Consumption

[1] 135.859 nJ

CMA [2] 135.984 nJ

AMA [2] 135.885 nJ

[3] 135.845 nJ

Table I: Energy consumption for a single ALU Instruction

in the designs provided in [1-3].

Design
Energy Consumption

For Each ALU Instruction

[1] 5 fJ

CMA [2] 39 fJ

AMA [2] 12 fJ

[3] 1 fJ

IV. CONCLUSION

 There is more than one type of Full Adder. The various

types can be used to alter the power dissipated while running a

program through the Arithmetic Logic Unit (ALU), which is

where the Full Adders reside. A standard Full Adder, or a

Conventional Mirror Adder, contains 24 transistors and

produces zero errors from any of its eight possible outputs.

There are more than three different hardware changes that can

be made to the CMA to improve its energy consumption, but in

this paper, the ones listed are Approximate Mirror Adder 1, 2,

and 3. AMAs 1 and 2 calculate the Carry out value by inverting

the Carry out from the preceding Adder. AMA 3 produces the

most amount of errors (4 out of 8) but it has a substantially lower

energy consumption. The total energy consumption of the best

design for this program was 135.845 nano-Joules from using the

Approximate Mirror Adder 3, which is 139 pico-Joules less than

the Conventional Mirror Adder.

REFERENCES

[1] A. A. Naseer, R. A. Ashraf, D. Dechev, and R. F. DeMara, “Designing
energy-efficient approximate adders using parallel genetic algorithms,”
SoutheastCon 2015, Fort Lauderdale, FL, 2015, pp. 1-7.

[2] V. Gupta, D. Mohapatra, S. P. Park, A. Raghunathan, and K. Roy,
“IMPACT: imprecise adders for low-power approximate computing,” In
Proceedings of the 17th IEEE/ACM international symposium on Low-power
electronics and design (ISLPED '11), Piscataway, NJ, USA, 409-414.

[3] E. Deng, Y. Zhang, J. O. Klein, D. Ravelsona, C. Chappert and W. Zhao,
"Low Power Magnetic Full-Adder Based on Spin Transfer Torque MRAM,"
in IEEE Transactions on Magnetics, vol. 49, no. 9, pp. 4982-4987, Sept.
2013.

