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Abstract

Communication bandwidth and latency reduction techniques are developed

for Distributed Interactive Simulation (DIS) protocols. DIS Protocol Data Unit

(PDU) packets are bundled together prior to transmission based on PDU type,

internal structure, and content over a sliding window of up to C adjacent

transmission requests, for 1 < C < 64. At the receiving nodes, the packets

are replicated as necessary to reconstruct the original packet stream. Bundling

strategies including Always-Wait, Always-Send, Type-only, Type-and-Length, and

Type-Length-and-Time predictions are developed and then evaluated using both

heuristic parameters and a back propagation neural network.

Several communication case studies from the OneSAF Testbed Baseline (OTB)

are assessed for multiple-platoon, company, and battalion-scale force-on-force

vignettes consistent with Future Combat Systems (FCS) Operations and

Organizations (O&O) scenarios. Traffic is modeled using OMNeT++ discrete

event simulator models and scripts developed for a hierarchical communication

architecture consisting of eight enroute C-17 aircraft each carrying three

Ethernet-connected M1A2 ground vehicles, a wireless flying LAN based on

Joint Forces Command’s Joint Enroute Mission Planning and Rehearsal System

(JEMPRS) for Near-Term (JEMPRS-NT) and follow-on bandwidth capacities.

The simulation model is presented in detail, including the OMNeT characteristics

necessary to understand it. The topology of the network is defined using the

NED language and the behavior of each object is defined in C++ code. The

simulation traffic includes Opposing Force (OPFOR) control via a CONUS-based

ii



ground station and the corresponding satellite links. Different bandwidth capacities

are simulated and analyzed. PDU travel time and slack time, router and satellite

queue length, and number of packet collisions are assessed at 64 Kbps, 256 Kbps, 512

Kbps, and 1 Mbps capacities. Results indicate that a Type-and-Length prediction

strategy is sufficient to reduce travel time up to 85%, slack time up to 97%, queue

length up to 98% on bandwidth restricted channels of 64 Kbps.
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CHAPTER 1

INTRODUCTION

1.1 Overview

Computer modeling and simulation are commonly used in areas such as analysis

and prediction of behavior of complex systems, training, education, games, etc., and

has been applied to systems in all scientific disciplines such as Physics, Chemistry,

Engineering, Psychology, Sociology, Meteorology, etc.

The U. S. Department of Defense (DoD) defines a model as a physical,

mathematical, or otherwise logical representation of a system, entity, phenomenon,

or process, and a simulation as a method for implementing a model over time [Def94].

The DoD also classifies computer simulations in three broad categories called

live, virtual, and constructive simulation [US95b]. However, DoD recognizes that

the categorization of simulation into live, virtual, and constructive is problematic,

because there is no clear division between these categories. The degree of human

participation in the simulation is infinitely variable, as is the degree of equipment

realism. This categorization of simulations also suffers by excluding a category for

simulated people working real equipment (e.g., smart vehicles) [US98].

According to [US95b] and [US98], each category is defined as follows:

a. Live Simulation A simulation involving real people operating real systems.
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b. Virtual Simulation A simulation involving real people operating simulated

systems. Virtual simulations inject human-in-the-loop (HITL) in a central

role by exercising motor control skills (e.g., flying an airplane), decision skills

(e.g., committing fire control resources to action), or communication skills

(e.g., as members of a C4I team).

c. Constructive Model or Simulation Models and simulations that involve

simulated people operating simulated systems. Real people stimulate (make

inputs) to such simulations, but are not involved in determining the outcomes.

Embedded Simulation (ES) integrates simulation technology with real systems,

providing the soldier with a chance to rehearse a mission in the real vehicle,

interacting with the virtual world as if it were real, and enhancing training

locally and in remote locations. The virtual interaction includes mission rehearsal,

battlefield visualization, command coordination, and training.

Objective Force Embedded Training (OFET) methods offer several distinct

advantages for 21st century training environments. Benefits include the ability to

perform in-situ exercises on actual equipment, more direct provision of support

for the variety of equipment in the field, and a greater opportunity to develop

new training exercises using much shorter lead times than were previously

possible with stand-alone training systems [BAC97]. A fully operational OFET

platform also presents several technology challenges. In particular, management

of Command, Control, Communications, Computers, Intelligence, Surveillance, and

Reconnaissance (C4ISR) resources is required for successful integration of simulation

within the actual environment.

The general project proposal from which this dissertation is one of the research

branches can be found in [GDD02], and the final report for its phase 2 is in [VGD03].
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1.1.1 Development of OneSAF Testbed Baseline

As pointed out by McDonald [McD88], McDonald and Rullo [MR90], and

McDonald and Bahr [MB98a], [MB98b], in the late 1980’s Embedded Training (ET)

started as an important initiative of the US Army for training army personnel.

Among some of the reasons for developing ET there were budget cuts, security

interests, need to train forces by practicing missions without physically disturbing

cultural and environmental issues, etc. Other initiatives developed included

Embedded Operations (EO) and Embedded Simulation (ES). The three initiatives

had areas in common that facilitated the migration among them. The Inter-Vehicle

Embedded Simulation Technology (INVEST) program was proposed by the US

Army Simulation, Training and Instrumentation Command (STRICOM) in order

to explore key technologies to apply ET and ES to future ground combat vehicles.

Computer Generated Forces (CGF) was a project sponsored by DOD in

the 1990’s. The idea behind CGF is that the trainees need opposing forces

against which to rehearse, although they can also use them as friendly forces

to fight along with [HGG00]. These forces are generated by one or more of

the participating sites in the synthetic battlefield. Under CGF the two major

efforts were Modular Semi-Automated Forces (ModSAF) and Close Combat Tactical

Trainer Semi-Automated Forces (CCTT-SAF). In 1998, STRICOM started to

develop a recommendation of the SAF system to be used as the baseline for

integrating ModSAF and CCTT-SAF into a OneSAF Testbed Baseline (OTB).

OTB was planned to be used for supporting research and development for the

next generation of architecture experiments, extending toward providing a Battalion

Battle Simulation (BBS) replacement capability through a Battalion Level Behavior

(BLB) Application Program Interface (API), and providing the training capacity of
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CCTT-SAF. Detailed information about the historic development of OTB can be

found in [Cor98] and [MWH01].

1.2 Distributed Simulation Environments

As Roger Herdman explains in [Tec95], Distributed Interactive Simulation (DIS)

is the linking of several military simulators like tank and aircraft in locations that

can be geographically distributed throughout LANs and WANs in such a way that

the crew of a given simulator can interact with crews in the other simulators playing

the roles of friendly or opposing forces. The participants can cooperate with friendly

forces, and shoot and destroy enemy ones. Command structures are also simulated.

In this way, the participants get trained in a broad range of scenarios without risking

their lives and at a fraction of the cost of a real operation.

The objective of DIS is to develop standards that provide guidelines for

interoperability in military simulations. DIS is a protocol initially specified in

ANSI/IEEE Std 1278-1993 Standard for Information Technology, Protocols for

Distributed Interactive Simulation [IEE93]. The standard has been refined and

extended in [IEE95a], [IEE95b], [IEE96], and [IEE98]. The main contribution of

the DIS standards was the definition of the Protocol Data Unit (PDU).

Because DIS is a stateless system that does not utilize servers, reliable multicast

communication is used to transmit information like terrain and environmental

updates. A Log-Based Receiver-reliable Multicast (LBRM) communication was

proposed in [HSC95] as a means to provide efficient DIS communications in

high-performance simulation applications. This reliability is given by a logging

server that logs all transmitted packets from the source. If a packet is lost, the

corresponding receiver asks the logging server to retransmit it. Another important
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fact of the logging server is that at the end of the simulation the logged PDUs are

available for subsequent analysis, which is the case of the OTB logger. One successful

DIS application (precursor of OTB) was ModSAF, that simulates the hierarchy of

military units and their associated behaviors, combat vehicles, and weapons systems

[COM96].

A drawback in DIS is its high network bandwidth requirements and the large

computational loads placed on host computers. To overcome the problem, an agent

based architecture together with smart networks was proposed in [SZB96]. Mobile

agents consist of program scripts that are sent over the network to a remote server.

They contain state information and the executable code to be run in the remote

server, using the Remote Programming (RP) Paradigm. Remote programming

is different form the traditional Remote Procedure Call (RPC) in the sense that

not only the parameters but also the corresponding procedure is sent over the

network. The mobile agent can start its execution in one server, and continue

in another one by saving and attaching its state to itself. According to [SZB96],

Entity State PDUs (ESPDU) account for up to 70% of the network traffic. They

are used to communicate any change of state from one entity to the others, once a

given threshold is achieved. Also, DIS indicates that entities must send a heartbeat

message at specified time intervals, usually every five seconds, broadcasting their

state, so that if a new entity joins the simulation, it can be informed about all the

other entities already present. Also, every simulator broadcasts a Simulator Present

PDU every 20 seconds as a heartbeat message required by the Persistent Object

(PO) protocol implemented in ModSAF and OTB [Kir95]. If an entity is moving,

ESPDUs are sent at a higher rate than if it is still, but even still entities have to

inform its position at a given rate. Mobile agents can lower the usage of ESPDUs by

maintaining the positions of the still entities, instead of constantly sending ESPDU

messages.

5



1.3 Need for Simulation Communication Optimizations

In an embedded simulation system, the participating entities of a mission can

be physically separated by long distances, possibly onboard mobile vehicles, and

communicated via wireless channels. All the vehicles share a common virtual

world that has to be constantly updated, which carries realtime constraints on the

bandwidth, latency and connectivity of the subjacent network. OTB, for instance,

communicates through the PDU messages under the DIS protocol. Every time an

event occurs in a participating entity, like acceleration, firing, detonation, etc., a

PDU is broadcasted, making all the other entities aware of that event. Even if

nothing special is happening, the entities generate an ESPDU every five seconds as

a heartbeat to inform that the entity is still up and running [SZB96, Sri96].

In distributed simulation exercises it has been found that 50% to 80% of

the network traffic is originated from updates transmitted to ensure that all

the simulators have consistent information about the entities participating in the

simulated battlefield [CD96]. In order for the participants of the simulation to

interact with the virtual world in a realistic way, they must see and communicate

with each other in real time. To accomplish this, each simulator maintains

dead-reckoning models of its own state and of the state of all other vehicles with

which it may interact, and so the network used for embedded training must be able

to transfer massive volumes of data [HGG01].

Scalability is not only desirable, but a requirement of current simulation

protocols like HLA [WJ98]. Bandwidth is a scare resource, and the larger the number

of participating sites, the more compromise the available bandwidth becomes.

Stone [SZB96] indicates that the greatest problem currently facing the progress

of distributed simulations is scalability, and that it is very difficult to scale up
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beyond approximately 2000 entities due to the tremendous requirements for network

bandwidth.

Several attempts have been done to overcome the bandwidth problem. The

general idea relies on finding new methods or algorithms to reduce the network

traffic, either by applying some lossless compression algorithms, by eliminating

some redundant packets, by splitting some PDUs into static and dynamic data

and sending the static data once and the dynamic data more often (delta-PDUs),

by concatenating (bundling) some PDUs into a larger packet that is later split at the

destinations into individual PDUs (replication), by re-scheduling some PDUs from

high intensive traffic spikes to periods of lower traffic demands, by using multicasting

instead of broadcasting, by applying priorities to PDUs and using Head of Line

(HOL) algorithms at router queues, or by applying a mix of all these ideas.

In this dissertation some of the previous methods are investigated. Re-scheduling

of the PDUs attempts to alleviate the occurrence of spikes of negative slack time

when OTB timestamps PDUs at exactly the same time. The basic idea is that it is

possible to slightly modify those timestamps in such a way that the overall simulation

is not affected, while exploiting the time interval of positive slacks following the

negative ones. The re-scheduling effect is automatically achieved by bundling those

PDUs and sending a single packet at a slightly later time.

Bundling and replication deal with sequences of several consecutive PDUs

timestamped at the same time or almost the same time, for instance PDUs of type

po fire parameters, which are the main cause of the said negative spikes. Basically,

these PDUs are copies of an initial base PDU. Then, a new method that eliminates

all the duplications is proposed. Bundling occurs at the sending sites and replication

is performed at the receiving ones.
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1.4 Outline of This Dissertation

The rest of the document is divided in the following way. In Chapter 2,

PREVIOUS WORK, a review of the State of the Art in bandwidth assessment

for Embedded Simulations is given. The section Bundling And Aggregation of

Network Packets deals with current techniques for bundling PDUs. The section

Data Compression mentions some common compression techniques belonging to

the loss and lossless sets. The section Data Transmission refers to the possibility

of PDU rescheduling as a means of diminishing high traffic demands during short

periods of time. The chapter ends with the section Comparison of Techniques that

compares and contrasts the investigated techniques for making the most of the

available bandwidth.

In Chapter 3, COMMUNICATION RESOURCES AND ARCHITECTURE, the

Flying LAN is presented and serves as a framework for the rest of the document.

OMNeT is introduced along with the key concepts of model design, simple and

compound modules, and instantiation of the network, applied to the simulation at

hands.

In Chapter 4, ACTIVE BUNDLING STRATEGIES, the concepts of offline and

online bundling are stated, and how they relate to the algorithms proposed in this

dissertation. The characteristics of embedded simulation traffic impacting bundling

are exposed, and a description of the proposed offline and online algorithms is shown.

In Chapter 5, EMBEDDED SIMULATION TRAFFIC ANALYSIS, four

experiments are described. The general format of the input data is explained, and

two examples of actual PDUs are given. Simulation results are graphically presented

for each one of the experiments. In each case, an independent analysis consisting

of bandwidth statistics calculated before running the simulation are shown as a

means of predicting and corroborating the simulation outcomes. The PDU traffic is
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then analyzed considering the criteria of slack time, travel time, queue length and

collision analysis. Spike analysis resulting from many observed negative spikes in

the slack time of the senders is studied in one of the experiments. A sample of some

negative spikes is collected, and the corresponding PDUs are identified, resulting in

interesting observations about the constant appearance of po fire parameters PDUs.

These observations are the key points for the proposed algorithm called PDUAlloy.

In Chapter 6, TRAFFIC OPTIMIZATION USING PDUAlloy, a new bundling

algorithm is proposed, and its behavior is analyzed by running the simulator.

Comparisons against the non-bundling algorithm are given. The conclusions indicate

that PDUAlloy is a successful algorithm, much better than the non-bundling

counterpart.

In Chapter 7, CONCLUSIONS, the results of the experiments are summarized

and general conclusions about the simulation tool, the methodology employed, PDU

traffic and minimum bandwidth requirements, are drawn.

In Chapter 8, FUTURE WORK, the continuation of the project is proposed.

Several areas are proposed for further research, related to new bundling options,

better prediction tools for upcoming PDUs, and the application of these techniques

to other communication protocols.

1.5 Contributions of This Dissertation

A summary of the main contributions made by this dissertation follows.

1. The formalization of the independent (offline) analysis for PDU traffic based

on availability of logged PDUs aimed at the assessment of minimum bandwidth

requirements for the network. The independent analysis provides a first
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approximation to the minimum bandwidth requirements, which is a lot cheaper

than performing the actual simulation, perhaps having to run it several times

under different parameter combinations. Applied to the studied vignette and

without using simulation, the independent analysis estimated the required

bandwidth on 200 Kbps, which was later confirmed by the simulation.

2. The formalization of selective PDU bundling, called PDUAlloy. This kind

of bundling gets more active when it is needed the most: during negative

spikes of the slack time, and produces new packets that preserve the

internal PDU format, reason why the resulting packets can be considered

a new type of PDU. Due to that characteristic, bundled PDUs are subject

to further bundling and/or compression by more traditional techniques.

For example, if A and B are PDUs such that A = (a1, a2, a3, a4),

B = (b1, b2, b3, b4), and a2 = b2, a4 = b4, then the bundle A&B is

represented as (a1, a2, a3, a4, ((b1, 1), (b3, 3))). A simpler example could

be: (10, 8, 12, 20, 9)&(10, 6, 12, 20, 3) = (10, 8, 12, 20, 9, ((6, 2), (3, 5)))

3. The proposal and study of different predictive algorithms for the next PDU,

three of them on-line: neural network, Always-Wait and Always-Send,

and three off-line: type, type-and-length and type-length-and-size. Applying

Always-Wait to the studied vignette and setting the wireless links to 64 Kbps,

a reduction in the magnitude of negative slack time from -75 to -9 seconds

for the worst spike was achieved, which represents a spike reduction of 88%.

Similarly, at 64 Kbps Always-Wait reduced the average satellite queue length

from 2963 to 327 messages for a 89% reduction.
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CHAPTER 2

PREVIOUS WORK

Many different solutions aimed at decreasing the network traffic have been

studied in the literature: bundling, delta-PDUs, dead-reckoning, relevance filtering,

compression, multicasting, quiescent entities, and the use of unreliable transport

mechanisms. Some of the most common bundling-related mechanisms are explained

next.

2.1 Bundling And Aggregation of Network Packets

Several authors have contributed to the principle of bundling packets, not only

applied to the DIS protocol, but also in other fields. In 1988 Baum and McMillan

applied the concept to messages traversing an hypercube network. They investigated

a mechanism for reducing the communication cost by bundling together messages

sent along the same channel, and concluded that the additional overhead required to

bundle the messages at the sending processor and to unbundle them at intermediate

processors is not large [BM88].

Calvin and Van Hook have proposed very similar definitions of bundling. They

say that bundling combines PDUs into larger packets in order to reduce packet

rates. A packet is transmitted when either a timer expires or the packet reaches a

maximum size. As a consequence, bit rates are reduced since fewer packet headers
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are transmitted, placing multiple DIS PDUs in one single packet for transport

[CST95, VCR96].

Frederiksen and Larsen introduce a new parameter to the bundling

discussion: the necessary gap that must exist to separate physical packets in a

communication channel. They say that if data to be sent becomes available a little

at a time at irregular intervals, the sending side must decide whether to send a given

piece of data immediately or to wait for the next data to become available, such

that they can be sent together as a bundle [FL02]. The decision of sending is not

trivial because of physical properties of the networks requiring that after sending

each packet, a certain minimum amount of time (gap) must elapse before the next

packet may be sent. Thus, whereas waiting for more data will certainly delay the

transmission of the current data, sending immediately may delay the transmission

of the next data to become available even more [FL02].

In a recent article, Ceranowicz describes the Joint Experimental Federation

(JEF) and the Millennium Challenge 2002 (MC02), a simulation conducted in July

and August of 2002 by 13,500 personnel at locations across the United States. In the

article, he reports about the maximum limit of bytes that can be bundled. In one of

the experiments, up to to 4500 bytes were bundled in each IP packet and updates

were collected for up to one second. He concludes that the tradeoffs were that

bundling more data together increased latency and packet loss due to transmission

errors, while smaller packets increased the transmission of overhead data [CTH02].

In [BCL97] and [LCL99] consecutive PDUs are concatenated in a single packet

even if their types are different, and redundancy in the fields that make up a PDU

is not eliminated. Bassiouni explains that the benefit of PDU bundling comes from

the fact that network routers, bridges, gateways, and computer hosts have a limited

bound on the number of packets that they can process or transmit per second, and
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bundling can effectively increase this bound. Bassiouni and Liang have the same

formalization of PDU bundling, which follows.

Let rs be the maximum number of PDUs of size s bytes that can be transmitted

from host A to host B in one second. Suppose that host A starts bundling its

transmitted PDUs, instead of sending them as individual packets, by assembling

k PDUs into a larger packet that is transmitted as a single unit. Let rks be the

maximum number of packets per second that can be transmitted from host A to

host B if k PDUs are bundled into a single packet, where k > 1. In many networks

under most loading conditions, the following relationship holds [BCL97, LCL99]:

rs < krks (2.1)

and the percentage gain in the PDU peak rate is 100(krks − rs)/rs

The term ks in inequality 2.1 implies that the proposed bundling mechanism

does not compress or reduce the size of the bundled PDUs. The PDUs are just

concatenated regardless of their internal structure, type or redundancy.

It is also interesting to note that Bassiouni and Liang indicate that some

time-critical PDUs like fire, detonation or explosion cannot be bundled. In this

dissertation those types of PDUs are bundled, given that they are scheduled at the

same time and are subject to an unavoidable delay caused by the satellite link, facts

that make the incurred bundle delay negligible.

Liang also proposes bundling using Multilevel Priority Queues (MPQ) as well as

Single Priority Queues (SPQ) [LCL99]. Both mechanisms are variants of the Head

of Line (HoL) strategy from queue theory referenced by many authors, for instance

[LS93, DGR01, Liu02, PW03, GM04]. The general idea in HoL algorithms is to

assign a priority to the incoming elements (PDUs, cells, frames, etc.) and using a
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priority queue, serve the higher priority elements first, possibly defining timeouts

for the low priority ones so that starvation is prevented.

A delta-PDU encoding technique is mentioned in [US95a, Mac95] consisting of

PDUs that carry changes respect to a reference PDU initially given. The technique

exploits the fact that most information in DIS entity state PDUs is redundant

from one packet to the next. The delta-PDU encoding is accomplished by splitting

the DIS Entity State PDUs into static and dynamic data PDUs. The static data

becomes the reference PDU, while the dynamic one carries the changes. The idea

has also been studied for the HTTP protocol using intermediate proxy servers as

cache memory [MDF97, MDF02, WAS96]. Wills [WMS01] describes several delta

encoding and bundling techniques generally applicable to Web pages under the

TCP/IP protocol suite, but none is specific to the DIS protocol.

A protocol called DIS-Lite developed by MäK Technologies [Tay95, Tay96b,

Tay96a, PW98] also splits the Entity State PDU into static and dynamic data

PDUs, so that the static information is sent once and the changes (dynamic PDUs)

are subsequently sent as separate PDUs. DIS-Lite offers several advanced features,

including packet bundling, latency compensation and enhanced dead-reckoning

algorithms tailored for air vehicles [PW98]. According to [Ful96], by eliminating

redundancy DIS-Lite can perform between 30% and 70% more efficiently than DIS.

DIS-Lite also includes several other improvements not related to the combination

of individual fields from a set of similar PDUs. These objectives complement

related predictive strategies developed for conserving simulation bandwidth [BD96,

HGG01].

The bundling principle is also applied to TDM (Time Division Multiplexed)

networks, where a number of lower order frames are multiplexed into one higher

order frame [Ber02].
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2.2 Data Compression

Data compression has been long studied and many papers have been written

around it. One of the goals of this dissertation is to diminish the bandwidth

requirements of OTB simulations by compressing the PDUs transmitted over the

network. It has been observed that in many cases the next PDUs are almost identical

to previously transmitted ones. This observation leads to the conclusion that it is

possible to apply one or several compression techniques to achieve better bandwidth

utilization.

Generally speaking, compression algorithms can be classified in two broad

categories: loss and lossless algorithms. Loss compression corresponds to algorithms

that do not guarantee an exact recovery of the compressed data. In many

applications like sound and video this loss is acceptable because human senses do

not detect the faults in the uncompress data, or because the final quality of the

uncompressed data is acceptable.

Lossless compression involves algorithms that can recover the original data

without faults. Applications include the transmission of an executable binary file,

or the compression/uncompression of TCP/IP packets. In this research, the lossless

compression of PDUs is sought. A detailed treatment of loss and lossless compression

algorithms is found in Deorowicz’s PhD dissertation [Deo03].

Compression algorithms can also be classified by the method employed to

compress the data. Some methods are based on dictionaries, guess tables or a

mix of both [Hew95, TS02]. Methods based on dictionaries create a dictionary of

strings commonly repeated in the data and corresponding keys much shorter than

the strings. Then, instead of the string, the key is transmitted. Obviously, each

communicating party needs to know the dictionary, which is transmitted in advance.

One of the most common lossless compression algorithms based on dictionaries is
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the Lempel-Ziv (LZ) algorithm [ZL77] Common compressors like gzip, winzip and

pkzip are based on the LZ algorithm.

Guess tables are based on the idea that certain bytes can be guessed from the

previous transmitted ones. Both, the sending and receiving sites maintain the

same guess table. If the transmitter can guess the next byte, then that byte is

not transmitted but entered into the table.

Some algorithms are based on the concept of entropy taken from the information

theory to produce high compression rates. They are related to Shannon’s

fundamental source coding theorem [Sha48] and an example of this kind of

algorithms is Huffman coding [Huf52]. In [FY94] a lossless algorithm to compress

volume data based on differential pulse-code modulation (DPCM) and Huffman

coding is presented.

Compression algorithms have been devised specifically to compress network

packets. Dorward [DQ00] presents such an algorithm based on a variant

of Lempel-Ziv’s compression, and Ishac and Degermark [Ish01, DNP99] deal

specifically with TCP/IP headers. If the data to be transmitted in the TCP/IP

packets is too small, the transmission overhead of the headers starts to be an

important factor of bandwidth waste. The header compression combined with

data concatenation of several small PDU packets is then an appealing technique.

According to Degermark, header compression can decrease the header overhead for

IPv6/TCP from 19.5 per cent to less than 1 per cent for packets of 512 bytes.

TCP/IP compression has been researched by companies like Dataline

(http://www.dataline.com/) that claims that by using its TCP/IP acceleration

technology Joint En-route Mission Planning and Rehearsal System - Near Term

(JEMPRS-NT) can deliver the functionality required by a traveling team of

12-15 users over a satellite link. Dataline affirms that by using its technology,

a 64 Kbps link can give the equivalent throughput of a virtual 256 Kbps
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[Fro02]. As an interesting observation, the simulations run in Chapter 6 using the

proposed bundling algorithm PDUAlloy, produced results comparable to Dataline’s

affirmation, just by employing bundling. The usage of several compression strategies

could lead to even better results.

There are two general classes of compression techniques for removing PDU

redundancies: application dependent and application independent. Algorithms that

fall in the first group know and take advantage of characteristics of the simulation

application like encoding data based on bit strings typical of the application and

sending delta PDUs. In the second group, algorithms are more general, do not

know particularities of the application and work by examining and compressing the

bit strings by detecting bit patterns. According to Van Hook [VCN94], application

dependent techniques can achieve slightly more compression than the independent

counterparts, but are a lot more complex and require much more processing power.

In 1994, Advanced Research Projects Agency (ARPA)s simulation exercise

called Synthetic Theater of War–Europe Application Gateway (STOW-E AG)

was conducted to test a new communication architecture. The AG was installed

between each site LAN and the WAN to apply several algorithms and techniques

for managing traffic flowing to and from each site, like blocking unnecessary PDUs,

Protocol Independent Compression Algorithm (PICA), grid filtering, Quiescent

Entity Service (QES), rethresholding, bundling, load leveling. Calvin reports that

the application of all these techniques produced a reduction in network traffic by

more than an order of magnitude [CST95].

PICA was originally proposed as a compression algorithm by Van Hook in 1994

to compress SIMNET PDUs [VCM94], achieving up to 76% reduction in bit rate.

The SIMNET protocol and simulation was a precursor of DIS protocol developed

in the late 1980’s by the Defense Advanced Research Projects Agency (DARPA).

PICA compresses ESPDUs by transmitting a reference ESPDU that becomes
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known to the communicating entities, and subsequently sending delta-PDUs, also

called Differential Data Unit (DDU), containing those bytes which differ from the

reference ESPDU. Eventually, a new reference PDU, called Differential Key Data

Unit (DKDU), is transmitted because at that time the compression being achieved

by PICA falls below a threshold, due to increasingly larger bit pattern differences

[DCV94, VCN94, Fuj95]. PICA has been reported to yield fourfold compression

of entity state PDUs, although Fire, Detonation, and Collision PDUs are not

compressed before bundling, due to their relatively few number and small size

[VCN94]. However, in this dissertation, po fire PDUs are successfully compressed

because of the conditions (similar timestamps, long satellite link delays) specified

for the vignette.

2.3 Data Transmission

One of the goals in this dissertation consists of rescheduling some of the PDU

packets in order to better utilize the bandwidth by transferring PDUs from periods

of high activity to periods of low activity. As stated in the introduction, one of the

main causes of negative slack spikes is the scheduling of several PDUs at the same

time, which causes a bottleneck in the transmitting sites.

Packet rescheduling is an old technique, initially developed for the Ethernet

CSMA/CD protocol 802.3 [IEE85] to manage collisions during the contention period.

The exponential backoff algorithm is commonly used to reschedule the collided

packets, although Molle considers that the stability of the algorithm is somewhat

open to debate [Mol94]. If PDUs are timestamped at the same time, they can be

considered as a kind of collision that needs to be solved.
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The scheduling of packet networks at the router level has been recently studied

in [APR03] where a randomized parallel scheduling algorithm for scheduling packets

in routers based on the Switch-Memory-Switch (SMS) architecture is developed.

Multicast routing algorithms and protocols with emphasis on QoS is addressed

in [WH00]. The network is represented as a weighted digraph with one or more

parameters associated to the links. Each parameter represents a characteristic

of the link, like transmission and propagation delay, bandwidth, etc. The nodes

also contain parameters that describe their stauts, like buffer space available,

queue length, etc. The multicast routing problem consists of finding minimum

spanning trees for a given objective function subject to QoS constraints. The

problem is classified into several categories depending on the objective functions

to be minimized and the QoS constraints. Examples of those categories

are: link constrained problems, tree constrained problems, link and tree constrained

problems, tree optimization problem, etc.

Packet transmission using priorities have been largely studied. The Head of Line

algorithms and priority queues are examples that make use of packet priorities. A

method that exploits a priority scheme to guarantee static preplanned message slots

for hard real-time communication is found in [KLJ00]. The mechanism is embedded

in the MAC layer. The method considers that there are highly time-critical messages

that require bounded transmission times. Applied to the present simulation, these

time-critical messages could be the po fire parameters PDUs involved in the negative

slack spikes.

Priorities are also used in real-time applications when the traffic is shared

with non real-time ones. A recent PhD dissertation by Pope addresses the issue

of bounding packet delay based on various queuing disciplines under real-time

constraints [Pop02].
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2.4 Comparison of Bundling Techniques

The following list summarizes the most common bundling-related strategies used

to conserve bandwidth over WAN networks.

1. Plain concatenation of PDUs

• Consecutive PDUs are concatenated so that the total length of the bundle

is equal to the sum of the components.

• PDU types and timestamps are not decision variables

• Usually applied to ESPFUs, not fire and detonation ones.

• Each PDU conserves its own PDU header.

• Advantages: Savings in packet headers and ACK replies at the transport

layer, and separator gaps at the physical layer, by using a single header,

ACK and gap instead of many ones. Fewer collisions are produced

by having to acquire the channel fewer number of times, assuming a

CSMA/CD link.

• Disadvantages: Concatenation should be limited to the maximum size of

a network packet, to keep the previous advantages. Redundance is not

eliminated, and so fewer packets can be bundled in the same block.

2. IP header compression

• Consecutive IP headers having high similarity are compressed by a

lossless algorithm.

• Applicable to TCP/IP packets, not to PDUs.

• More useful if data segments are small in the packet.
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• Advantages: By shortening the headers, less data is transmitted. Good

for short packets.

• Disadvantages: Low compression ratio for PDUs, given that they are not

compressed and in general are long. Redundancy is not eliminated.

3. Delta-PDUs

• A reference PDU is transmitted first, followed by packets carrying the

differences only.

• Destinations must keep the reference PDU in order to extract the original

PDUs from the deltas. This makes the PDUs dependent of the reference.

• After a threshold, a new reference PDU is transmitted

• Advantages: all the advantages of plain concatenation are applicable here,

plus high compression ratio.

• Disadvantages: delta PDUs are dependent on the reference PDU. If the

reference PDU gets lost or out of sequence (assuming unreliable UDP

transport), the deltas become useless and all the sequence have to be

retransmitted.

4. DIS-Lite

• Implements delta-PDUs and many other optimizations not related to

bundling.

• Terminology calls the reference and delta PDUs static and dynamic,

respectively.

• Tailored for air vehicle simulations, has been applied to video games

played on the internet.
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• Advantages: all the advantages of delta-PDUs are valid here, as this

technique is a refinement of delta-PDUs. Involves several other

compression and bandwidth-saving techniques.

• Disadvantages: Has been applied to compression of ESPDUs only. Does

not examine and take advantage of the type, timestamp and internal

structure of PDUs. Mainly targeted at simulations of aircraft vehicles.
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CHAPTER 3

COMMUNICATION RESOURCES AND

ARCHITECTURE

3.1 Simulation Vignette

A simulation environment aimed at assessing One Semi-Automated Force

(OneSAF) communications bandwidth during mission rehearsal of Future Combat

System (FCS) vignettes was developed at the Electrical and Computer Engineering

Department of the University of Central Florida, sponsored by the U.S. Army

Program Executive Office for Simulation, Training, & Instrumentation (PEO STRI),

formerly STRICOM.

Activities were undertaken to understand FCS mission rehearsal operations and

define a vignette to generate the simulation traffic to be modeled. The Operational

and Organizational (O&O) document [For02] entitled US Army Objective Force

Operational and Organizational Plan for Maneuver Unit of Action, TRADOC

525-3-90 /O&O, 22 July 2002 was obtained and reviewed for adaptation to our

vignette.

Several different FCS vignettes were prepared and simulated on a Local Area

Network (LAN) using the OneSAF Testbed Baseline (OTB) software, a military

simulation application that implements a Joint En-route Mission Planning and

Rehearsal System (JEMPRS) in an FCS environment. In [VDG04a, VDG04b],
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the author describes an initial implementation of the OMNeT simulator used, and

corresponding results obtained when the vignette logs were run.

Traffic logs were created from the participating sites. OTB communications are

based on the Distributed Interactive Simulation (DIS) protocol defined in the IEEE

Standards 1278.1 [IEE95a], 1278.2 [IEE95b], 1278.3 [IEE96] and 1278.1a [IEE98].

The fundamental communication packets under DIS are the Protocol Data Units

(PDUs), which were logged including relevant PDU information used for alternative

parameter variations of the model. The information logged included the type,

length, and time-stamp of each PDU.

In particular, the MR1 vignette illustrating a mission rehearsal operation while

en-route to deployment and reproduced in Appendix A, was used to generate the

PDU traffic logs. This vignette was partly based on and extends TRADOC PAM

525-3-90 Operations & Organizations (O&O) document, “Annex F - Unit of Action

Vignettes [For02].” In the section called Statement Of Required Capabilities For

Future Combat Systems the TRADOC PAM document indicates that the Unit of

Action (UA) must be able to integrate into Enroute Mission Planning and Rehearsal

Systems (EMPRS) during alert, deployment and employment. FCS and Unit of

Action C2 systems must access enroute mission planning, and support mission

rehearsal, battle command, and ability to integrate into gaining C2 architectures

during movement by air, land and sea. The document contains three vignettes

including Entry Operations, Combined Arms Operations for Urban Warfare to

Secure Portion of Major Urban Area, and Mounted Formation Conducts Pursuit

and Exploration.

The duration of the MR1 vignette is approximately 25 minutes of simulation

time. It involves Entry Operations and Maneuver to Attack of a battalion-sized

unit tasked with pursuing an enemy delaying force immediately upon landing. The

lead elements (Alpha company) detect a fortified position between the main elements
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and the target enemy force. Four RAH-66 Comanche helicopters are deployed and

follow closely. Next, the East friendly forces, begin to advance on the enemy position,

however, they must traverse minefields during their pursuit. The enemy force flees

southward from the North and East force. The South force engages the enemy, and

is assisted by the North and East forces.

The general scenario is that a Battalion Task Force equivalent has been rapidly

deployed. There are 8 aircraft, C-17 equivalent, in formation, each one carrying

up to three ground vehicles. Inside each aircraft, the vehicles are connected to

each other, and also to the aircraft communication resources, via a hardwired

Ethernet-type network. Each ground vehicle contains a computer station running

the MR1 vignette on OTB. The aircraft are in communication with each other

via satellite that also provides a link to a Continental United States (CONUS)

ground station. This ground station provides core exercise support including

Semi-Automated Forces (SAF). Additional links are utilized directly between the

aircraft to reduce demands on the satellite feed. This is based on SECOMP-1 /

JEMPRS Near-Term (JEMPRS-NT) architecture as of January 2003.

Figure 1 shows the model of the flying network used for rehearsal and training

on the MR1 vignette. The number of airplanes and simulation stations onboard

is variable in the model. The three simulation stations onboard each airplane are

connected at 100 Mbps. Connections from plane to plane are achieved via routers

and wireless links. Possible values for the wireless bandwidths range from 64 Kbps

to 1024 Kbps. Because the aircraft are flying in formation, the network is not

considered an ad hoc network.

The main stages in the development of the model included:

1. Design, obtain approval, and using OTB construct a vignette illustrating

mission rehearsal enroute to deployment.
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Figure 1: The Flying network

2. Analyze the steady-state and bursty traffic to determine network bandwidth

requirements as a proportion of capacity in the tactical C4ISR network.

3. Assess latency and degradation of message delivery due to routing delays,

queuing time, and network loading.

4. Improve the network traffic by eliminating redundancy and possibly

compacting the PDUs which are the network packets used by the OTB

software.

The purpose of this research is to assess the bandwidth in the wireless links and

to develop improved strategies that more effectively utilize the available bandwidth.

3.2 Communication Architecture

After evaluating a number of possible configurations, a suitable communication

infrastructure was defined and represented in Figure 2, which depicts the
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communication architecture model used in most of the experiments performed. The

simulated model consists of eight airplanes flying in formation towards deployment.

Each aircraft carries three ground vehicles, and each vehicle contains a workstation

running OTB. Due to the proximity of the aircraft and the fact that they are flying

in a steady formation, all the planes and workstations conform a flying LAN.

Figure 2: Communication architecture model. Sites flagged T are transmitters, the
others are receivers.

Planes are numbered 0 to 7, and stations local to each plane are numbered 0 to

2, as well as 0 to 23 for the global network. The CONUS ground station is numbered

24. Routers are numbered the same as the plane they are onboard. According to

the data logged form the vignette, some stations are transmitters while others are

just receivers. The stations flagged “T” represent packet transmitters; the others

are the receivers. But according to the DIS protocol, the transmitters broadcast

their packets, and so transmitters are receivers, too.

The number of airplanes, computers onboard and channel bandwidth is not

a tight restriction in the model. The three computers onboard the airplanes are

27



connected via Ethernet cable or similar. Connections from plane to plane are done

via routers and wireless links. The bandwidth of the wireless connections is initially

set to 64 Kbps, and different runs of the simulator using speeds of 128, 200, 256,

512, and 1024 Kbps are carried out. The Ethernet LAN is maintained at 100 Mbps

in all cases, due to the fact that this technology is very common nowadays, and

the LAN bandwidth is at least two orders of magnitude greater than the wireless

bandwidth. A ground station is connected to the flying network through a satellite

link. All the computers in the network use the DIS protocol to broadcast messages,

as specified in [IEE95a].

An object of type bus models all the communication links. A bus contains input

and output connectors separated by known distances. Each bus is configured to

operate at a specific bandwidth and propagation delay. When a message enters

through one of the input connectors, the bus delivers it to each of the output

connectors at different times depending on the distance and propagation delay of

the medium. The bus was programmed so that signals propagate through it in

both directions. If (ICi, OCi) is a pair of input and output connectors located at

a distance di from one of the bus endpoints, p is the propagation delay in the bus

(nanoseconds/meter), b is the bus bandwidth (bps), and a message of length n

bits arrives into (IC i at time t, then when the message reaches any other output

connector OC j the following measures hold:

Distancetraveled = |di − dj| (3.1)

Propagationdelay = Distancetraveled ∗ p (3.2)

Transmissiontime = n/b (3.3)

StarttimeatOC j = t + Propagationdelay

= t + |d(i − dj| ∗ p (3.4)

EndtimeatOC j = start + transmissiontime

28



= t + |di − dj| ∗ p + n/b (3.5)

The start and end times at OC j are useful to determine collisions. If a message

has a time interval defined by start and end times overlapping the time interval

defined by the start and end times at OC j of any other message, then a collision

occurs.

Generalizing, the model can be described as a collection of computer nodes and

routers interconnected by different media at several bandwidths. The transmitters

broadcast packets at unspecified rates. In order to generate the packets, it is possible

to use a specific probability distribution over time. However, to obtain maximum

accuracy, a log of the actual packets generated by OTB, including the PDU type,

time-stamp, and packet length was used in place of a random distribution function,

providing more realism to the results.

3.3 Transmission and Receiving Devices

The OMNeT++ discrete event simulator was used as the main tool for the

model setup. OMNeT++ was designed by András Varga [Var03] at the University

of Budapest. The kernel was written in C++, and the user specifies additional

modules to program the behavior of the entities in the model. The model design

follows a bottom-up approach for modeling the communication architecture. Simple

modules are built first and compound modules are built on top of the simple ones.

Figure 3 gives a general view of the simple and compound modules of the simulator

connected together. It is an actual screenshot of the main OMNeT++ window. If

the simulator is run with the animation option activated, each one of the traveling
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messages is displayed in this window as a small circle moving across the arrow lines

carrying an identification label.

Figure 3: OMNeT screenshot of the whole network showing 8 planes, satellite ground
station and 3 wireless channels.

The entities comprising the model in Figure 3 include the four communication

links: LAN (not shown), Wireless Plane-to-Plane (WPP, upper horizontal bar),

Wireless Satellite-to-Plane (WSP, middle bar), Wireless Ground-station-to-Satellite

(WGS, bottom bar), the computer nodes containing a generator and a sink of packets

(not shown), routers (not shown), the satellite, and the ground station. Each of the

entities was realized as a C++ module.
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3.3.1 Simple Modules in OMNeT

These are modules that contain no other modules inside them. They are used

to describe the most basic elements of the simulator. Generators of messages,

sinks or consumers of messages, communication channels (wireless and Ethernet

buses), routers and the satellite correspond to simple modules. Each simple module

is defined by two files. The first is a .ned file that describes input parameters

to the module and the set of input and output gates or communication ports.

The second is a C++ source file that defines the behavior of the module, i.e. it

indicates how to process each message received through any of the input gates

and which messages to send through the output gates. The simulator in this

project includes the following .ned files of simple modules: generator.ned,

simplebus.ned, sink.ned, router.ned, and satellite.ned. Figures 4 to 9

show the corresponding ned source codes.

3.3.1.1 The Generators

A generator is the module that produces new messages, following the instructions

in the corresponding C++ file. The module reads in a sequence of PDUs from a

summary file containing the type, length and timestamp. When the simulation time

has reached the timestamp of a message, the generator outputs that packet to the

LAN link if it is onboard an airplane, or to the WGS link if it is in the ground

station.

After sending a packet, employing the transmission time corresponding to the

packet length and bus bandwidth, an inter-frame space (IFS) or time gap of 50
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µseconds is added, in accordance with the specifications given in ANSI/IEEE

protocol 802.11 [IEE99].

The ned instructions declaring a generator are given in Figure 4. Due to OTB

specifications, all the messages sent by one generator are broadcasted to all of the

other nodes.

simple Generator // Generator is a simple module
parameters:
fromAddr: numeric, // origin, unique ID within network
totalNodes: numeric; // number of nodes in the network

// (routers not counted)
gates:
out: out; // The only gate of a generator is called "out"

endsimple

Figure 4: Source file generator.ned

The fromAddr parameter is used to give the generator a unique identification.

In this simulator, generator IDs range from 0 to 24, where 0, 1, 2 are generators

onboard plane 0, 3, 4, 5 onboard plane 1, etc. up to 21, 22, 23 onboard plane 7, and

generator 24 is in the ground station.

The totalNodes parameter represents the highest ID value assigned to a

generator in the model, 24 in this case. The parameter was intended to be used

in determining all the valid destination IDs of a message. However, due to the

broadcasting feature of the model, the parameter is not actively used in the current

version of the generators.

3.3.1.2 The Buses

A simplebus is the module that represents the communication links in the

network. Instances of it are used to simulate both the Ethernet and the wireless

links. Figure 5 shows the corresponding source code of the ned file.
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simple SimpleBus
parameters:

busType: string, // Types: LAN, WPP, WSP, WGS.
numChannels, // number of independent channels
wantCollisionModeling, // collision modeling flag
wantCollisionSignal, // "send collision signals" flag
isFullDuplex, // channel mode
delaySecPerMeter, // delay of the bus
dataRateBps, // data rate of the bus
gapTime; // minimum gap between packets.

gates:
in: in[ ];
out: out[ ];

endsimple

Figure 5: File simplebus.ned

The busType parameter indicates the type of link. The possible values of this

parameter are LAN, WPP, WSP, and WGS to represent, respectively, the Ethernet

link in each airplane, the three wireless links already explained. Each link can

be subdivided into several independent channels. The numChannels parameter

indicates the number of subdivisions. Currently, the simulator is using just 1

channel per link. The module can be tailored to handle collisions and full/half

duplex communications, and the next three parameters indicate this preference. The

parameters delaySecPerMeter, dataRateBps and gapTime indicate the propagation

delay in seconds per meter, the data rate in bits per second (bps) and the minimum

time separation between packets for this link in microseconds, respectively. The

module contains arrays of input and output gates, which sizes are specified at each

instantiation of the bus. OMNeT imposes a restriction that not two modules can

be connected to the same given gate. Therefore, if 3 computers plus a router are to

be connected to the same Ethernet link, then the input and output gates are arrays

of size 4.
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3.3.1.3 The Sinks

A sink is a module that consumes packets. The sink consumes PDUs and keeps

statistics about the number of frames received, the latency of each one, and number

of collisions detected at the corresponding node. There is one sink per computer.

The sink contains an input gate only.

simple Sink
gates:
in: in; // input gate

endsimple

Figure 6: File sink.ned

3.3.1.4 The Routers

Each airplane encompass three computer nodes and one router. The router is

connected to the LAN, WPP and WSP links, as indicated in Figure 7.

Figure 7: Router onboard a plane and its connections to the LAN, WPP and WSP
links
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The LAN connection is direct because the bus module and the router module

are connected without requiring any intermediate object. However, the connections

to the wireless channels are indirect because the router is contained in the airplane,

which is the intermediate object between the router and the wireless buses.

Therefore, the ned specifications indicate that the router is directly connected to the

airplane, which in turn is directly connected to the wireless links. Each connection

requires one input and one output gate. The connections are:

1. Direct connection to the local Ethernet bus (100 Mbps)

2. Indirect connection to the wireless plane-to-plane bus (64 Kbps or more)

3. Indirect connection to the wireless plane-to-satellite bus (64 Kbps or more)

Because the entire DIS traffic is broadcasted, a PDU coming from one of the

input connectors is propagated to the other outputs according to Table 1. The ned

source code defining a router is listed in Figure 8.

Table 1: Routing table in broadcast mode
Input Link Output Link

LAN WPP and WSP
WPP LAN
WSP LAN

Any device connected to a bus gate must indicate its position measured in meters

from one end of the bus. This position is a parameter involved in propagation delay

calculations. The router is directly connected to the local Ethernet bus. For this

reason, a LANposition parameter is required to establish the position of the router

within the bus. The other bus connections are indirect because the router is really

connected to a gate in the plane that, in turn, is connected to the bus. Therefore,

positions for the wireless buses are indicated as parameters of the airplane, the

compound module holding the LAN.
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simple Router
parameters:

routerID : numeric,
nodesPerPlane: numeric,
totalPlanes: numeric,
LANposition : numeric, // Local LAN position
routerServiceTime: numeric;

gates:
in: inFromLocal; // gate #0
out: outToLocal; // gate #1
in: inFromWirelessPP; // gate #2
out: outToWirelessPP; // gate #3
in: inFromWirelessSP; // gate #4
out: outToWirelessSP; // gate #5

endsimple

Figure 8: File router.ned

Routers maintain an M/M/1 queue of input messages. Every time a new message

arrives, the router records statistics about the number of messages in the queue at

that time. The message length, the IFS gap, and the output bandwidth determine

the service time, as indicated by the following formula:

servicetime = (messagelength /outputbandwidth) + IFSgap (3.6)

3.3.1.5 The Satellite

The satellite behaves like a router with only two links attached: the WSP and

the WGS links. The satellite also maintains a queue of messages and calculates

statistics as any other router does. Its ned source code can be seen in Figure 9. The

parameter descriptions are similar to the parameters of a router, and so they are

omitted here.
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simple Satellite
parameters:

satelliteID : numeric,
satServiceTime : numeric,
totalNodes : numeric,
WGSposition : numeric, // Position at wirelessGS
WSPposition : numeric; // Position at wirelessSP

gates:
in: inBus1; // gate #0 (wirelessGS)
out: outBus1; // gate #1 (wirelessGS)
in: inBus2; // gate #2 (wirelessSP)
out: outBus2; // gate #3 (wirelessSP)

endsimple

Figure 9: File satellite.ned

3.3.2 Compound Modules

Compound modules are modules that contain other modules inside. For example,

a computer onboard an airplane is a compound module because it contains a message

generator and a sink. A plane is also a compound module that contains a computer,

a router and an Ethernet bus. The largest compound module corresponds to the

whole network that contains the airplanes, the satellite, the ground station, and

the wireless buses linking these elements. Each one of these compound modules is

briefly discussed in the following paragraphs.

3.3.3 The Flying Computer Nodes

Each workstation in the model consists of a computer node that contains two

other submodules: the generator and the sink of PDUs. These computer nodes are

directly connected to the LAN link. Figure 10 shows the OMNeT++ representation

of a computer node, and Figure 11 lists its ned source code. The module Node

is composed of the simple modules gen (generator) and sink. The module also

contains an input (in) and an output (out) gate.
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Figure 10: OMNeT representation of a computer node and its components

module Node
parameters:
nodeID : numeric,
LANposition : numeric;

gates:
out: out;
in: in;

submodules:
gen: Generator;

parameters:
fromAddr = nodeID,
totalNodes = ancestor totalNodes;
display: "i=gen;p=120,49;b=32,30";
sink: Sink;
display: "i=sink;p=81,49;b=32,30";
connections:
gen.out --> out;
sink.in <-- in;
display: "p=18,2;b=176,102";

endmodule

Figure 11: Ned code of a computer node
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3.3.3.1 The Planes

The module plane is composed of the modules router, an array of nodes and the

ethernetBus, as seen in Figure 12. The array length is one of the input parameters,

set to 3 in this simulation. The corresponding ned file of this module is longer than

the file of previous modules and is, therefore, listed in Appendix B.

The arrows in Figure 12 represent connections between modules via input and

output gates. The router is also connected to the airplane input and output gates

(not shown) which in turn are connected to two wireless buses.

Figure 12: Airplane view showing 3 computer nodes, a bus and a router

3.3.4 The Ground Station

The ground station behaves exactly as any of the flying workstations. It is

connected to the WGS link only. Figure 13 represents the ground station and Figure

14 shows its ned source code. This module is quite similar to the computer nodes and

therefore a description is omitted. Although the CONUS ground station technically
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Figure 13: OMNeT view of the ground station and its components

is like any other flying workstation, it plays an important role in the simulator

because it is the only station directly connected to a slow wireless link. The rest

of the stations are connected to a 100 Mbps LAN link. Due to this characteristic,

some of the simulations assigned the highest load in terms of number of generated

PDUs to the ground station, and many statistics were collected around it.

module GroundStation
parameters:
nodeID : numeric,
WGSposition : numeric;

gates:
out: out;
in: in;

submodules:
gen: Generator;

parameters:
fromAddr = nodeID,
totalNodes = ancestor nodesPerPlane * ancestor numPlanes;
display: "i=gen;p=120,49;b=32,30";
sink: Sink;
display: "i=sink;p=81,49;b=32,30";
connections:
gen.out --> out;
sink.in <-- in;
display: "p=18,2;b=176,102";

endmodule

Figure 14: Ned Code of Ground Station

The parameter fromAddr of the generator comes from the parameter nodeID

of the ground station. TotalNodes is defined as the product of nodesPerPlane

and numPlanes that are defined at a higher level in the hierarchy of modules. The

display feature indicates the position of this module in the graphical user interface
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(GUI). Finally, the module establishes the connections between the gates from the

inner (simple) modules and the container module (the ground station).

3.3.5 Instantiation of the Network

The compound module TheNet contains the submodules wirelessPP,

wirelessSP, wirelessGS, groundStation, satellite, and plane as shown in

Figure 3. Due to its length, the source code of the ned language for this module is

found in Appendix B.

OMNeT++ uses the object programming approach. The modules as well as the

whole network are considered classes that must be instantiated. In this simulation

TheNet is the class name of the network that is instantiated as Network OTBNet.

It includes all of the model parameters that are read from the omnetpp.ini file.

Figure 15 shows this instantiation and the corresponding parameters.

network OTBNet : TheNet
parameters:
startTime = input, //First PDU timestamp in seconds
nodesPerPlane = input,//Set to 3 in this simulation
numPlanes = input, //Set to 8 in this simulation
LANgapTime = input, //Minimum gap between frames in LAN
LANbandwidth = input, //Set to 100 Mbps
LANdelay = input, //nanosec/meter (70% light speed)
WPPgapTime = input, //Minimum gap between frames in WPP
WPPbandwidth = input, //Wireless bandwidth in WPP
WPPdelay = input, //nanosec/meter (light speed)
WSPgapTime = input, //Minimum gap between frames in WSP
WSPbandwidth = input, //Wireless bandwidth in WSP
WSPdelay = input, //nanosec/meter (light speed)
WGSgapTime = input, //Minimum gap between frames in WGS
WGSbandwidth = input, //Wireless bandwidth WGS
WGSdelay = input, //nanosec/meter (light speed)
satServiceTime = input, //Satellite service time
routerServiceTime = input; //Router service time

endnetwork

Figure 15: Instantiation of the network TheNet
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The initialization file omnetpp.ini is shown in Figure 16 for an OMNeT model.

It is used to specify input parameters to the model.

The parameter output-vector-file is used to specify the output file that

contains all the simulation results. At the end of the simulation, this ASCII file

is processed by any application capable of interpreting it and producing statistics

and/or graphics. OMNeT provides the plove plotting tool to process this kind of

vector file.

The parameter sim-time-limit is used to indicate an upper limit to the

simulation time. Similarly, cpu-time-limit gives an upper limit to the CPU time

used by the simulator.

The parameter display-update is used for the simulation with animation, and

indicates the refreshing rate of the window. The section under [Run 1] contains

all the parameters specific to a given run. It is possible to indicate several run

sets with different parameters each by appending sections [Run 2], [Run 3], etc.

A more detailed explanation of the initialization file is found in the OMNeT User

Manual [Var03].

3.4 Bundling and Replication of PDUs

If several PDUs are scheduled at the same or almost the same time, and the

structure of those PDUs is the same, with only small but predictable differences,

then only one single PDU needs to be sent together with instructions on how to

recover the other PDUs from the given one. Comparisons of po fire parameters

among other PDUs involved in the same negative spike showed that the stated

conditions (same timestamp, small differences) can be exploited. These PDUs differ

42



[General]
network = OTBNet
ini-warnings = no
random-seed = 1
warnings = yes
snapshot-file = planes.sna
output-vector-file = planes64repl.vec
sim-time-limit = 2550s # simulated seconds (42:30)
cpu-time-limit = 20h # 20 hours of real cpu time max.
total-stack-kb = 4096 # 4 MByte, increase if necessary
[Cmdenv]
module-messages = yes
verbose-simulation = yes
display-update = 0.5s
[Tkenv]
default-run=
use-mainwindow = yes
print-banners = yes
slowexec-delay = 300ms
update-freq-fast = 10
update-freq-express = 100
breakpoints-enabled = yes
[DisplayStrings]
[Parameters]
[Run 1]
OTBNet.startTime = 1034s # 17:14
OTBNet.nodesPerPlane = 3
OTBNet.numPlanes = 8
OTBNet.LANgapTime = 50us
OTBNet.LANbandwidth = 100E6 # 100 MBps
OTBNet.LANdelay = 4.761904762ns #nsec/meter, 70% light sp
OTBNet.WPPgapTime = 50us
OTBNet.WPPbandwidth = 64000
OTBNet.WPPdelay = 3.333333333ns #nsec/meter, light speed
OTBNet.WSPgapTime = 50us
OTBNet.WSPbandwidth = 64000
OTBNet.WSPdelay = 3.333333333ns #nsec/meter, light speed
OTBNet.WGSgapTime = 50us
OTBNet.WGSbandwidth = 64000
OTBNet.WGSdelay = 3.333333333ns #nsec/meter, light speed
OTBNet.satServiceTime = 5us
OTBNet.routerServiceTime = 5us
OTBNet.generatorServiceTime = 5us #PDU bundling time
OTBNet.blockWaitTime = 100ms

Figure 16: Initialization File Omnetpp.ini
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on consecutive identification attributes (like counters), and memory addresses that

change according to the PDU length.

Table 2 shows two consecutive po fire parameters PDUs, identified as PDUs

#19855 and #19856 in the OMNeT simulator and captured at second 1577.697 of

simulation time, which are contributors to the negative spike described in Section

61. The table is quite long, but it is included here, and not in an appendix, because

the comparison showed is considered a key point in this dissertation. The bundling

method called PDUAlloy described in Section 3.4.1 was proposed after analyzing

this comparison. The table shows that the two PDUs are almost identical, and

most of their fields are zeros. Besides the address associated with each field, only

two differences were found, highlighted in grey for the second PDU. The shown

PDUs are not an exceptional coincidence. In all of the negative spikes studied, the

participating PDUs have similar redundancies, provided that they are of the same

type and length.

Table 2: Comparison of two consecutive
po fire parameters PDUs

<dis204
po fire parameters
PDU>:

19855 19856

dis header.version = 8b3bae0 = 4 = 0x04 = 8b3bd78 = 4 = 0x04

dis header.exercise = 8b3bae1 = 1 = 0x01 = 8b3bd79 = 1 = 0x01

dis header.kind = 8b3bae2 = 236 = 0xec = 8b3bd7a = 236 = 0xec

dis header.family = 8b3bae3 = 140 = 0x8c = 8b3bd7b = 140 = 0x8c

dis header.timestamp = 0x70311d96 =
:26:17.697 (relative)

= 0x70311d96 =
:26:17.697 (relative)

dis header.sizeof = 8b3bae8 = 544 =
0x0220

= 8b3bd80 = 544 =
0x0220

po header.po version = 8b3baec = 28 = 0x1c = 8b3bd84 = 28 = 0x1c
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po header.po kind = 8b3baed = 2 = 0x02 = 8b3bd85 = 2 = 0x02

po header.exercise
id

= 8b3baee = 1 = 0x01 = 8b3bd86 = 1 = 0x01

po header.database
id

= 8b3baef = 1 = 0x01 = 8b3bd87 = 1 = 0x01

po header.length = 8b3baf0 = 528 =
0x0210

= 8b3bd88 = 528 =
0x0210

po header.pdu count = 8b3baf2 = 9215 =
0x23ff

= 8b3bd8a =
9216 = 0x2400

do header.database
sequence number

= 8b3baf4 = 0 =
0x00000000

= 8b3bd8c = 0 =
0x00000000

do header.object
id.simulator.site

= 8b3baf8 = 1532 =
0x05fc

= 8b3bd90 = 1532 =
0x05fc

do header.object
id.simulator.host

= 8b3bafa = 47451 =
0xb95b

= 8b3bd92 = 47451 =
0xb95b

do header.object
id.object

= 8b3bafc = 2898 =
0x0b52

= 8b3bd94 = 2898 =
0x0b52

do header.world
state id.
simulator.site

= 8b3bafe = 0 = 0x0000 = 8b3bd96 = 0 = 0x0000

do header.world
state id.
simulator.host

= 8b3bb00 = 0 = 0x0000 = 8b3bd98 = 0 = 0x0000

do header.world
state id.object

= 8b3bb02 = 0 = 0x0000 = 8b3bd9a = 0 = 0x0000

do header.owner .site = 8b3bb04 = 1532 =
0x05fc

= 8b3bd9c = 1532 =
0x05fc

do header.owner .host = 8b3bb06 = 47451 =
0xb95b

= 8b3bd9e = 47451 =
0xb95b

do header.sequence
number

= 8b3bb08 = 17 = 0x0011 = 8b3bda0 =
18 = 0x0012

do header.class = 8b3bb0a = 19 = 0x13 = 8b3bda2 = 19 = 0x13

do header.missing
from world state

= 8b3bb0b = 0 =
0x00000000

= 8b3bda3 = 0 =
0x00000000

reserved9 = 8b3bb0c = 0 =
0x00000000

= 8b3bda4 = 0 =
0x00000000
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fire parameters
.unit.simulator .site

= 8b3bb10 = 1519 =
0x05ef

= 8b3bda8 = 1519 =
0x05ef

fire parameters
.unit.simulator .host

= 8b3bb12 = 47263 =
0xb89f

= 8b3bdaa = 47263 =
0xb89f

fire parameters
.unit.object

= 8b3bb14 = 2726 =
0x0aa6

= 8b3bdac = 2726 =
0x0aa6

fire parameters
.fire zone[0]
.simulator.site

= 8b3bb16 = 0 = 0x0000 = 8b3bdae = 0 = 0x0000

fire parameters
.fire zone[0]
.simulator.host

= 8b3bb18 = 0 = 0x0000 = 8b3bdb0 = 0 = 0x0000

fire parameters
.fire zone[0] .object

= 8b3bb1a = 0 = 0x0000 = 8b3bdb2 = 0 = 0x0000

fire parameters
.fire zone[1]
.simulator.site

= 8b3bb1c = 0 = 0x0000 = 8b3bdb4 = 0 = 0x0000

fire parameters
.fire zone[1]
.simulator.host

= 8b3bb1e = 0 = 0x0000 = 8b3bdb6 = 0 = 0x0000

fire parameters
.fire zone[1] .object

= 8b3bb20 = 0 = 0x0000 = 8b3bdb8 = 0 = 0x0000

fire parameters
.fire zone[2]
.simulator.site

= 8b3bb22 = 0 = 0x0000 = 8b3bdba = 0 = 0x0000

fire parameters
.fire zone[2]
.simulator.host

= 8b3bb24 = 0 = 0x0000 = 8b3bdbc = 0 = 0x0000

fire parameters
.fire zone[2] .object

= 8b3bb26 = 0 = 0x0000 = 8b3bdbe = 0 = 0x0000

fire parameters
.fire zone[3]
.simulator.site

= 8b3bb28 = 0 = 0x0000 = 8b3bdc0 = 0 = 0x0000

fire parameters
.fire zone[3]
.simulator.host

= 8b3bb2a = 0 = 0x0000 = 8b3bdc2 = 0 = 0x0000

fire parameters
.fire zone[3] .object

= 8b3bb2c = 0 = 0x0000 = 8b3bdc4 = 0 = 0x0000
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fire parameters
.fire zone[4]
.simulator.site

= 8b3bb2e = 0 = 0x0000 = 8b3bdc6 = 0 = 0x0000

fire parameters
.fire zone[4]
.simulator.host

= 8b3bb30 = 0 = 0x0000 = 8b3bdc8 = 0 = 0x0000

fire parameters
.fire zone[4] .object

= 8b3bb32 = 0 = 0x0000 = 8b3bdca = 0 = 0x0000

fire parameters
.fire zone[5]
.simulator.site

= 8b3bb34 = 0 = 0x0000 = 8b3bdcc = 0 = 0x0000

fire parameters
.fire zone[5]
.simulator.host

= 8b3bb36 = 0 = 0x0000 = 8b3bdce = 0 = 0x0000

fire parameters
.fire zone[5] .object

= 8b3bb38 = 0 = 0x0000 = 8b3bdd0 = 0 = 0x0000

fire parameters
.fire zone[6]
.simulator.site

= 8b3bb3a = 0 = 0x0000 = 8b3bdd2 = 0 = 0x0000

fire parameters
.fire zone[6]
.simulator.host

= 8b3bb3c = 0 = 0x0000 = 8b3bdd4 = 0 = 0x0000

fire parameters
.fire zone[6] .object

= 8b3bb3e = 0 = 0x0000 = 8b3bdd6 = 0 = 0x0000

fire parameters
.fire zone[7]
.simulator.site

= 8b3bb40 = 0 = 0x0000 = 8b3bdd8 = 0 = 0x0000

fire parameters
.fire zone[7]
.simulator.host

= 8b3bb42 = 0 = 0x0000 = 8b3bdda = 0 = 0x0000

fire parameters
.fire zone[7] .object

= 8b3bb44 = 0 = 0x0000 = 8b3bddc = 0 = 0x0000

fire parameters
.no fire zone[0]
.simulator.site

= 8b3bb46 = 0 = 0x0000 = 8b3bdde = 0 = 0x0000

fire parameters
.no fire zone[0]
.simulator.host

= 8b3bb48 = 0 = 0x0000 = 8b3bde0 = 0 = 0x0000
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fire parameters
.no fire zone[0]
.object

= 8b3bb4a = 0 = 0x0000 = 8b3bde2 = 0 = 0x0000

fire parameters
.no fire zone[1]
.simulator.site

= 8b3bb4c = 0 = 0x0000 = 8b3bde4 = 0 = 0x0000

fire parameters
.no fire zone[1]
.simulator.host

= 8b3bb4e = 0 = 0x0000 = 8b3bde6 = 0 = 0x0000

fire parameters
.no fire zone[1]
.object

= 8b3bb50 = 0 = 0x0000 = 8b3bde8 = 0 = 0x0000

fire parameters
.no fire zone[2]
.simulator.site

= 8b3bb52 = 0 = 0x0000 = 8b3bdea = 0 = 0x0000

fire parameters
.no fire zone[2]
.simulator.host

= 8b3bb54 = 0 = 0x0000 = 8b3bdec = 0 = 0x0000

fire parameters
.no fire zone[2]
.object

= 8b3bb56 = 0 = 0x0000 = 8b3bdee = 0 = 0x0000

fire parameters
.no fire zone[3]
.simulator.site

= 8b3bb58 = 0 = 0x0000 = 8b3bdf0 = 0 = 0x0000

fire parameters
.no fire zone[3]
.simulator.host

= 8b3bb5a = 0 = 0x0000 = 8b3bdf2 = 0 = 0x0000

fire parameters
.no fire zone[3]
.object

= 8b3bb5c = 0 = 0x0000 = 8b3bdf4 = 0 = 0x0000

fire parameters
.no fire zone[4]
.simulator.site

= 8b3bb5e = 0 = 0x0000 = 8b3bdf6 = 0 = 0x0000

fire parameters
.no fire zone[4]
.simulator.host

= 8b3bb60 = 0 = 0x0000 = 8b3bdf8 = 0 = 0x0000

fire parameters
.no fire zone[4]
.object

= 8b3bb62 = 0 = 0x0000 = 8b3bdfa = 0 = 0x0000
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fire parameters
.no fire zone[5]
.simulator.site

= 8b3bb64 = 0 = 0x0000 = 8b3bdfc = 0 = 0x0000

fire parameters
.no fire zone[5]
.simulator.host

= 8b3bb66 = 0 = 0x0000 = 8b3bdfe = 0 = 0x0000

fire parameters
.no fire zone[5]
.object

= 8b3bb68 = 0 = 0x0000 = 8b3be00 = 0 = 0x0000

fire parameters
.no fire zone[6]
.simulator.site

= 8b3bb6a = 0 = 0x0000 = 8b3be02 = 0 = 0x0000

fire parameters
.no fire zone[6]
.simulator.host

= 8b3bb6c = 0 = 0x0000 = 8b3be04 = 0 = 0x0000

fire parameters
.no fire zone[6]
.object

= 8b3bb6e = 0 = 0x0000 = 8b3be06 = 0 = 0x0000

fire parameters
.no fire zone[7]
.simulator.site

= 8b3bb70 = 0 = 0x0000 = 8b3be08 = 0 = 0x0000

fire parameters
.no fire zone[7]
.simulator.host

= 8b3bb72 = 0 = 0x0000 = 8b3be0a = 0 = 0x0000

fire parameters
.no fire zone[7]
.object

= 8b3bb74 = 0 = 0x0000 = 8b3be0c = 0 = 0x0000

fire parameters
.fire cnt

= 8b3bb76 = 0 = 0x0000 = 8b3be0e = 0 = 0x0000

fire parameters
.no fire cnt

= 8b3bb78 = 0 = 0x0000 = 8b3be10 = 0 = 0x0000

fire parameters
.method

= 8b3bb7a = 0 = 0x00 = 8b3be12 = 0 = 0x00

fire parameters
.technique

= 8b3bb7b = 0 = 0x00 = 8b3be13 = 0 = 0x00

fire parameters
.permission

= 8b3bb7c = 0 = 0x00 = 8b3be14 = 0 = 0x00
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fire parameters
.enemytype

= 8b3bb7d = 0 = 0x00 = 8b3be15 = 0 = 0x00

fire parameters
.launchtype

= 8b3bb7e = 0 = 0x00 = 8b3be16 = 0 = 0x00

fire parameters
.fire unknown

= 8b3bb7f = 0 = 0x00 = 8b3be17 = 0 = 0x00

fire parameters
.vehicle def[0]
.engagement range

= 8b3bb80 = 0 =
0x00000000

= 8b3be18 = 0 =
0x00000000

fire parameters
.vehicle def[0]
.ignore after

= 8b3bb84 = 0 =
0x00000000

= 8b3be1c = 0 =
0x00000000

fire parameters
.vehicle def[0]
.priority

= " " =
0x0000000000000000
0000000000000000

= " " =
0x000000000000000
00000000000000000

fire parameters
.vehicle def[1]
.engagement range

= 8b3bb98 = 0 =
0x00000000

= 8b3be30 = 0 =
0x00000000

fire parameters
.vehicle def[1]
.ignore after

= 8b3bb9c = 0 =
0x00000000

= 8b3be34 = 0 =
0x00000000

fire parameters
.vehicle def[1]
.priority

= " " =
0x0000000000000000
0000000000000000

= " " =
0x000000000000000
00000000000000000

fire parameters
.vehicle def[2]
.engagement range

= 8b3bbb0 = 0 =
0x00000000

= 8b3be48 = 0 =
0x00000000

fire parameters
.vehicle def[2]
.ignore after

= 8b3bbb4 = 0 =
0x00000000

= 8b3be4c = 0 =
0x00000000

fire parameters
.vehicle def[2]
.priority

= " " =
0x0000000000000000
0000000000000000

= " " =
0x000000000000000
00000000000000000

fire parameters
.vehicle def[3]
.engagement range

= 8b3bbc8 = 0 =
0x00000000

= 8b3be60 = 0 =
0x00000000

fire parameters
.vehicle def[3]
.ignore after

= 8b3bbcc = 0 =
0x00000000

= 8b3be64 = 0 =
0x00000000
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fire parameters
.vehicle def[3]
.priority

= " " =
0x0000000000000000
0000000000000000

= " " =
0x000000000000000
00000000000000000

fire parameters
.vehicle def[4]
.engagement range

= 8b3bbe0 = 0 =
0x00000000

= 8b3be78 = 0 =
0x00000000

fire parameters
.vehicle def[4]
.ignore after

= 8b3bbe4 = 0 =
0x00000000

= 8b3be7c = 0 =
0x00000000

fire parameters
.vehicle def[4]
.priority

= " " =
0x0000000000000000
0000000000000000

= " " =
0x000000000000000
00000000000000000

fire parameters
.vehicle def[5]
.engagement range

= 8b3bbf8 = 0 =
0x00000000

= 8b3be90 = 0 =
0x00000000

fire parameters
.vehicle def[5]
.ignore after

= 8b3bbfc = 0 =
0x00000000

= 8b3be94 = 0 =
0x00000000

fire parameters
.vehicle def[5]
.priority

= " " =
0x0000000000000000
0000000000000000

= " " =
0x000000000000000
00000000000000000

fire parameters
.vehicle def[6]
.engagement range

= 8b3bc10 = 0 =
0x00000000

= 8b3bea8 = 0 =
0x00000000

fire parameters
.vehicle def[6]
.ignore after

= 8b3bc14 = 0 =
0x00000000

= 8b3beac = 0 =
0x00000000

fire parameters
.vehicle def[6]
.priority

= " " =
0x0000000000000000
0000000000000000

= " " =
0x000000000000000
00000000000000000

fire parameters
.vehicle def[7]
.engagement range

= 8b3bc28 = 0 =
0x00000000

= 8b3bec0 = 0 =
0x00000000

fire parameters
.vehicle def[7]
.ignore after

= 8b3bc2c = 0 =
0x00000000

= 8b3bec4 = 0 =
0x00000000

fire parameters
.vehicle def[7]
.priority

= " " =
0x0000000000000000
0000000000000000

= " " =
0x000000000000000
00000000000000000

51



fire parameters
.vehicle def[8]
.engagement range

= 8b3bc40 = 0 =
0x00000000

= 8b3bed8 = 0 =
0x00000000

fire parameters
.vehicle def[8]
.ignore after

= 8b3bc44 = 0 =
0x00000000

= 8b3bedc = 0 =
0x00000000

fire parameters
.vehicle def[8]
.priority

= " " =
0x0000000000000000
0000000000000000

= " " =
0x000000000000000
00000000000000000

fire parameters
.vehicle def[9]
.engagement range

= 8b3bc58 = 0 =
0x00000000

= 8b3bef0 = 0 =
0x00000000

fire parameters
.vehicle def[9]
.ignore after

= 8b3bc5c = 0 =
0x00000000

= 8b3bef4 = 0 =
0x00000000

fire parameters
.vehicle def[9]
.priority

= " " =
0x0000000000000000
0000000000000000

= " " =
0x000000000000000
00000000000000000

fire parameters
.vehicle def[10]
.engagement range

= 8b3bc70 = 0 =
0x00000000

= 8b3bf08 = 0 =
0x00000000

fire parameters
.vehicle def[10]
.ignore after

= 8b3bc74 = 0 =
0x00000000

= 8b3bf0c = 0 =
0x00000000

fire parameters
.vehicle def[10]
.priority

= " " =
0x000000000000000
00000000000000000

= " " =
0x000000000000000
00000000000000000

fire parameters
.vehicle def[11]
.engagement range

= 8b3bc88 = 0 =
0x00000000

= 8b3bf20 = 0 =
0x00000000

fire parameters
.vehicle def[11]
.ignore after

= 8b3bc8c = 0 =
0x00000000

= 8b3bf24 = 0 =
0x00000000

fire parameters
.vehicle def[11]
.priority

= " " =
0x000000000000000
00000000000000000

= " " =
0x000000000000000
00000000000000000

fire parameters
.vehicle def[12]
.engagement range

= 8b3bca0 = 0 =
0x00000000

= 8b3bf38 = 0 =
0x00000000
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fire parameters
.vehicle def[12]
.ignore after

= 8b3bca4 = 0 =
0x00000000

= 8b3bf3c = 0 =
0x00000000

fire parameters
.vehicle def[12]
.priority

= " " =
0x000000000000000
00000000000000000

= " " =
0x000000000000000
00000000000000000

fire parameters
.vehicle def[13]
.engagement range

= 8b3bcb8 = 0 =
0x00000000

= 8b3bf50 = 0 =
0x00000000

fire parameters
.vehicle def[13]
.ignore after

= 8b3bcbc = 0 =
0x00000000

= 8b3bf54 = 0 =
0x00000000

fire parameters
.vehicle def[13]
.priority

= " " =
0x000000000000000
00000000000000000

= " " =
0x000000000000000
00000000000000000

fire parameters
.vehicle def[14]
.engagement range

= 8b3bcd0 = 0 =
0x00000000

= 8b3bf68 = 0 =
0x00000000

fire parameters
.vehicle def[14]
.ignore after

= 8b3bcd4 = 0 =
0x00000000

= 8b3bf6c = 0 =
0x00000000

fire parameters
.vehicle def[14]
.priority

= " " =
0x000000000000000
00000000000000000

= " " =
0x000000000000000
00000000000000000

fire parameters
.vehicle def[15]
.engagement range

= 8b3bce8 = 0 =
0x00000000

= 8b3bf80 = 0 =
0x00000000

fire parameters
.vehicle def[15]
.ignore after

= 8b3bcec = 0 =
0x00000000

= 8b3bf84 = 0 =
0x00000000

fire parameters
.vehicle def[15]
.priority

= " " =
0x000000000000000
00000000000000000

= " " =
0x000000000000000
00000000000000000

The observations and analysis of those PDUs participating in negative spikes

lead to the proposal of PDUAlloy, a new way of bundling PDUs that can be seen

as a kind of high level of compression because the resulting block still conserves the
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characteristics of a PDU, perhaps of a different type, and so it is subject to further

compressions. In fact, the proposed bundling does not remove the redundancy

within the same PDU: the fields filled with zeros in the basic (reference) PDU

will continue being the same length of zeros. Only the redundancy resulting from

the similarities between consecutive PDUs is removed. Therefore, other traditional

compression mechanisms are recommended after the bundling.

Replication is the converse procedure of bundling. Given a bundled block that

arrived to a destination, the individual PDUs have to be extracted or replicated

from it. Replication is independent of other data compression techniques because

it is targeted at the PDU level and the resulting traffic is of PDU type. Therefore,

even if there are no plans to modify the transport protocol in effect (by compressing

TCP/IP headers, for instance), the reduction of PDU packets to increment the

bandwidth availability by using replication is still applicable.

After running the simulator without using bundling, and collecting performance

statistics, it was observed that at 64 Kbps the generator in ground station could

not cope with the demanding traffic, and an increasing delay in timeliness to send

PDUs at the indicated timestamp started to build up. The proposed solution was to

bundle PDUs of the same type and length into longer ones, eliminating redundancy

in similar fields, as explained in the following section.

3.4.1 Mathematical Description of Bundling: PDUAlloy

The following definition is named PDUAlloy Bundling in this dissertation, and

is the base for the PDUAlloy algorithm of Section 4.4.

Given a set N = {1, 2, . . . , n} of indexes and two consecutive PDUs A =

(a1, a2, . . . , an) and B = (b1, b2, . . . , bn), where A and B are of the same type
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and the ai and bi represent PDU fields, and a subset S ⊆ N such that ai = bi

for all i ∈ S, then the bundle of A and B is defined as the PDU A&B =

(a1, a2, . . . , an, ((bj, j)j∈N\S)). A is called the base PDU in the bundle. The definition

can be extended to any number of PDUs.

Example:

Given the PDUs: A = (a1, a2, a3, a4), B = (b1, b2, b3, b4), and C = (c1, c2, c3, c4),

such that a2 = b2 = c2, a3 = b3, a4 = c4, then the bundle A&B&C is the new

PDU

A&B&C = (a1, a2, a3, a4, ((b1, 1), (b4, 4)), ((c1, 1), (c3, 3)))

From the information contained in the shown n-tuple it is possible to reconstruct

the original PDUs A, B and C. Each component (bj, j) indicates that the value bj

replaces the field j in the base PDU. In a practical implementation, j could be a

pointer or an offset into the base PDU.

The above bundle will be called PDUAlloy because it acts like a metal alloy,

bundling PDUs based on their internal structure. It differs from other proposals

in several ways. First, the resulting bundle conserves the basic characteristics of

any other PDU and therefore, can be considered a new type of PDU subject to

further bundling and/or compression algorithms. In [BCL97] consecutive PDUs

are concatenated in a single packet even if their types are different, and field

redundancy is not eliminated. A delta-PDU encoding technique is mentioned

in [US95a] consisting of PDUs that carry changes respect to a reference PDU

initially given. In [WMS01] several bundling techniques generally applicable to

Web pages under the TCP/IP protocol suite are described, but none is specific

to the DIS protocol. A protocol called DIS-Lite developed by MäK Technologies

[Tay95, Tay96b, Tay96a, PW98] splits the Entity State PDU into static and dynamic

data PDUs, so that the static information is sent once and the changes (dynamic
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PDUs) are subsequently sent as separate PDUs. According to [Ful96] by eliminating

redundancy, DIS-Lite can perform between 30 % and 70 % more efficiently than DIS.

DIS-Lite includes also several other improvements not related to the combination of

individual fields from a set of similar PDUs.

3.4.2 Implementation of PDU Bundling in the Simulator

After analyzing all of the PDUs in the log file for a given vignette, it was observed

that the type and the size of a PDU completely determine its internal field structure.

In other words, if PDUs A = (a1, a2, a3, . . . , an) and B = (b1, b2, . . . , bm) are such

that type(A) = type(B) and length(A) = length(B), then n = m and field type(ai) =

field type(bi) for all 1 ≤ i ≤ n, assuming that type, length and field type are functions

that return the type, the length in bytes, and the field type of a PDU, respectively.

If two PDUs are of the same type and length, they are called compatibles and are

candidates to be bundled.

The basic idea behind PDU bundling is that if consecutive PDUs of the same

type and length are scheduled within a predefined short time interval, then they can

be bundled and delivered as a single packet.

The pseudo-algorithm of PDU bundling is described as follows:

1. Wait until next PDU is ready for delivery. Let A be that PDU.

2. bundling = A. This is the first PDU (called base PDU) in the bundling.

3. Set timeout = maximum time A will wait in the bundle.

4. While (timeout not expired){

If next PDU is ready for delivery, let B be that PDU,

otherwise repeat the while-loop;
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If A and B are compatible PDUs

{bundling = bundling & B; B = ∅;}
else break the while-loop}

5. Send bundling PDUs through the network as a single packet.

6. If B = ∅ then repeat from step 1) else A = B and repeat from step 2).

This algorithm is called the Always-Wait algorithm because after processing a

PDU, the algorithm waits for the next one unless a timeout is detected. When the

next PDU is obtained, its type is checked and if it is different from the type of the

base PDU, the base PDU is sent and the time waited was wasted. It seems that if

there were a way to predict the type and length, or at least the type, of the next

PDU and the prediction indicates a type different form the type of the current base

PDU, then the current bundle could be sent immediately, saving the waiting time.

So, in the next paragraphs a variation of the above algorithm is introduced.

3.4.2.1 PDU Type prediction using a Neural Network

One way to predict the next PDU based on the recent history is by using a neural

network (NN) approach. A NN can learn sequences of PDU patterns and use them

as a basis for predicting the incoming type. In this research, we set up a gradient

descent NN that predicts the next type based on the types of the previous 48 PDUs.

Inorder not to complicate the simulator logic, the NN procedure was run offline, and

the results were incorporated into the PDU summary file. The NN predicted the

next PDU type with a certainty of near 70 %. Considering that there are near 27

different PDU types, the percentage is meaningful. If the NN prediction indicates

that the next PDU type is the same as the current one, a w (for wait) character is

appended offline to the summary file, otherwise an s (for send) is appended.
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Due to the fact that the summary PDU files do not include the actual PDU

fields, it is impossible to determine the bundling resulting from two PDUs of the

same type and length because their fields cannot be compared and their differences

cannot be established. In this research, the comparison took place offline in the

pre-process stage using actual PDU fields, which resulted in three perfect prediction

offline methods, additionally to the in line neural network prediction. The perfect

prediction methods calculate the next PDU type with 100 % certainty because they

know all the sequence of PDUs in advance.

The first perfect prediction method considers the PDU type only, the second one

considers the type-and-length, and the last one considers the type-length-and-time.

Given any PDU, if the next one can be bundled to it because its type (method

1), and length (method 2), and timestamp (method 3) are equal, a W character

(meaning wait) is appended to the description of the current PDU in the summary

file, otherwise an S (send) is appended.

Figure 19 in Chapter 5 shows four characters at the end of each line containing the

S and W letters. The first character corresponds to the neural network prediction

and the rest correspond to each one of the perfect prediction methods. Only one

character is processed per run by the simulator and the omnetpp.ini file has been

set up to include the prediction method desired in each run.

Additionally to the four predictive methods already described, there are two

other ones called Always-Wait and Always-Send, obtained by assuming that one

column is filled all with either w or s characters, respectively.

Figure 17 shows the general algorithm used by each generator for sending PDUs

to the network. The abbreviations used in the figure are:

EOF end of file

bwt block waiting time, delayed incurred due to bundling

58



gt gap time, minimum separation between packets

rts ready-to-send message (future OMNeT event)

tt transmission time

∅ empty set

The generator is activated when it receives one of two possible messages from

the OMNeT kernel:

BlockTimeout: indicates that the oldest PDU in the current bundle has timed

out (bwt has elapsed), and therefore the generator must send it as soon as

possible, which means that if the generator is idle, the bundle can be sent

immediately, but if it is busy transmitting an older packet, then the current

bundle has to wait for the end of that transmission plus the gap time.

ReadyToSend (rts): indicates that the generator is not transmitting and is ready

to send a block that has timed out, or to get the next PDU from the summary

file. If during reading the next PDU the EOF condition arises, The the current

block of bundled PDUs is examined. If the block is empty, the generator stops,

otherwise it sets the conditions to proceed to send the bundle.

If a new PDU is successfully retrieved form the summary file, the generator

calculates its slack time. If the slack is positive, the generator schedules an rts

to be awaken at the PDU timestamp. If the slack is negative, the generator

is behind the schedule and proceeds to bundle the PDU to previous PDUs

already bundled, or to initiate a new bundle, or to send the current bundle

which is not compatible with this PDU and create a new bundle starting with

this PDU. In any case, the prediction character (W or S) is read and the

generator acts accordingly, either keeping the bundle in case of W, or sending

it in case of S.
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If a bundle is performed, some time should be spent in the bundle operation itself.

In other words, it is not possible to process a PDU (read it and bundle it) in zero

time. Each schedule ready-to-send operation (Sched rts) includes some minimum

time (5µs) for the bundle operation. This time could be considered as generator

service time. The busy time is then computed as the transmission time(tt), plus

the gap time (gt), plus any generator service time if a bundling operation is carried

out.
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Figure 17: Decision tree of the algorithm used by generators for sending PDUs to
the network
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CHAPTER 4

ACTIVE BUNDLING STRATEGIES

Bundling strategies are confronted with the decision of waiting for the next

packet to arrive and bundle it to the current block, or sending the current block and

start a new collection of packets from scratch. This type of decisions are typical of

online and offline algorithms.

4.1 Offline Bundling

Given a sequence σ of input data, in which the decision of processing each

individual data element applying one of several possible actions is taken with

complete knowledge of the whole sequence σ, constitutes an offline algorithm.

Applied to the network packets, each frame, message or PDU is an element of the

sequence, and the possible actions are bundling the incoming packet to the current

block, or sending the current block and start a new block. Because offline algorithms

know the complete packet sequence at the decision time, including the future packet

sequence, the best offline algorithm must take the optimal decision. A decision is

optimal if it minimizes some cost function. In the transmission of network packets,

the cost function could be the total latency time incurred by all the packets sent

from the origin to the final destination. Another cost function could be the absolute

value of the sum of all negative slack times when the PDUs are sent.
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Symbolically, given a sequence σ = {PDU i}i=1,...,n of PDUs, where each packet

i is released and stamped at time Tstampi, and arrives at the final destination at

time Tarr i, then the cost function for the total latency of the travel time is:

CTtrav(σ) =
n∑

i=1

(Tarr i − Tstampi) (4.1)

Similarly, if the simulator is reading PDUs from a summary log file, and each

PDU i is read for the first time at time Tread i, the cost function that measures the

absolute value of the total negative slack time is:

CTslack(σ) =
n∑

i=1

H(Tread i − Tstampi)(Tstampi − Tread i) (4.2)

where H represents the Heaviside step function, H(x) = 1 if x > 0, 0 otherwise,

used to select only the negative slacks.

Offline algorithms are useful in many other computer-related areas. Most of the

database algorithms like sorting and searching files are offline. A recent example of

an offline algorithm for compressing data is given by Turpin in [TS02].

Offline algorithms are not supposed to be implemented in an actual real-time

simulation because obviously the messages to be produced in future times are not

known at the present simulation time. In simulation, the main application of

offline algorithms lies in the possibility of comparing them to the corresponding

online counterparts, with the purpose of asses online performances. A measure

of comparison of performance for online algorithms is the competitive ratio. A

competitive ratio of t > 0 means that the performance of an online algorithm is at

least a factor of 1/t of the performance achieved by the best offline algorithm. This

will be expanded in the next section.

Offline bundling is the process of taking decisions about to bundle or not

consecutive packets. Considering that after one packet has been sent, a certain
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minimum time gap must elapse before sending the next packet, then the decision is

not trivial. If the first packet is sent immediately, the second one could be delayed

more than if the two packets are sent in a single bundle. This decisions are referred

to as the Packet Bundling Problem [FL02].

In the case of the OTB simulation, the offline bundling is carried out taking as

input the PDU log files produced by the OTB simulator, and not only the time

gaps, but also the type and the length of the PDUs are considered.

4.2 Online Bundling

General online and offline algorithms have been studied in the literature for a

long time [Kar92, FL02, FLN03, GHP03]. Karp defines these algorithms in the

following way.

An on-line algorithm is one that receives a sequence of requests and

performs an immediate action in response to each request. On-line

algorithms arise in any situation where decisions must be made and

resources allocated without knowledge of the future. The effectiveness

of an on-line algorithm may be measured by its competitive ratio, defined

as the worst-case ratio between its cost and that of a hypothetical off-line

algorithm which knows the entire sequence of requests in advance and

chooses its actions optimally (with minimum cost)[Kar92].

Online algorithms are characterized by a lack of knowledge about the future.

Phillips [PW99] indicates that the online algorithm receives each input and must

process it immediately, serving the sequence of requests one item at a time without

having explicit knowledge of the following inputs.
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The performance of online deterministic algorithms is measured by its

competitive ratio when compared with the optimal offline algorithm. Ambühl

[AGS01] defines this ratio in the following way. If σ is any input sequence,

A(σ) represents the cost function of an online algorithm A, and OPT (σ) is the

corresponding cost function of the optimal offline algorithm OPT , then A is called

c-competitive for a constant c if there exists a real number a such that for all input

sequences σ, it is true that:

A(σ) ≤ c · OPT (σ) + a (4.3)

If a = 0, then A is called strictly c-competitive. If A is a randomized algorithm,

equation 4.4 becomes:

E[A(σ)] ≤ c · OPT (σ) + a (4.4)

where E[A(σ)] represents the expected cost of algorithm A on the sequence σ.

The competitive ratio of an algorithm is defined as the infimum over all real

numbers c such that the algorithm is c-competitive [FLN03, GIS03].

4.3 Characteristics of Embedded Simulation Traffic
Impacting Bundling

Several characteristics of the Embedded Simulation traffic are to be considered

for bundling purposes. The discussion here applies to PDUs generated under the

DIS protocol, although many of them are general enough to be valid under other

protocols as well.
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4.3.1 The Simulation is a Real-Time Application

During the Embedded Simulation, the participants interact with each other in

real time. If one tank fires, or starts moving, or decelerates, all the other entities

should be informed of the event as soon as possible. This characteristic impacts

bundling in several aspects. First, the time a PDU waits for the upcoming PDU

creates a delay against the meaning of real time. Therefore, a small timeout should

be introduce to limit that waiting time. Second, not bundling PDUs could cause

that the following PDU will be delayed even more, due to the gap time that must

separate frames. Also, not bundling produces more traffic and longer router queues,

which finally goes in detriment of the real time properties.

The decision of bundling PDUs must consider the pros and cons of each

alternative. It is possible that for some environments bundling is not a necessity, for

example a scenario in which few sites are simulating a simple vignette, connected in

a LAN, not requiring a router.

4.3.2 There Is a High Percentage of ESPDUs

It is well documented that ES traffic contains 70% or more of Entity State PDUs.

Usually these ESPDUs are redundant and not urgent. For example, if a vehicle is not

moving, it still needs to send heartbeat ESPDUs at regular intervals. ESPDUs are

less harmed by waiting to be bundled than other PDUs of higher priority. Because

they are so abundant, bundling and compressing ESPDUs have a major impact on

the overall traffic decrease. However, in this research ESPDUs were not bundled in

the majority of cases because they did not participated in negative spikes as bursts

of consecutive ones, as po fire parameters did.

66



4.3.3 There Is a Low Percentage of High Priority PDUs

Some high priority PDUs like fire and detonation occur in short bursts, but

they are usually sent at the same time, creating negative slack spikes that attempt

against the real time approach. If the bundling operation is not time-consuming and

the waiting timeout is selected appropriately, bundling a sequence of consecutive

PDU and sending a single block could take less time than sending the individual

PDUs without bundling them. For instance, if a PDU is 512 bytes long and the

bandwidth is 64 Kbps, the transmission time of one single PDU is 64 milliseconds,

while bundling several PDUs could take less than one millisecond.

4.3.4 High Levels of Redundancy

PDUs contain lots of redundancy, both inside each PDU and across PDUs. As

a sample, the PDUs listed in Table 2 contain zeroes in the majority of fields, and

just two differences from one PDU to the other. Bundling and compression can take

advantage of this high redundancy. For example, the proposed algorithm PDUAlloy

would append only the two fields containing the differences in the second PDU of the

table to the first one. Other bundling algorithms also profit from this redundancy,

like those based on sending delta PDUs.

4.3.5 PDU Internal Structure

PDUs have a definite structure made up of fields of different sizes, that are

determined by the type and length of the PDUs. This characteristic allows the

comparison of PDUs at the field level, which facilitates the extraction of the
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differences. Determination of the PDU structure based on the type and the length

allows a fast comparison among PDUs for algorithms like PDUAlloy.,

4.3.6 PDUs Are Broadcasted

In the DIS protocol, PDUs are broadcasted. This characteristic simplifies the

PDU header since a particular destination is not needed. All the PDUs in a bundle

are to be delivered to the same recipients.

4.3.7 Slow Connections Favor Bundling

The slower the connections, the better the bundling. If a connection is slow,

bundling and compression becomes more necessary. In slow connections, gap times

are larger, and so the penalty for not bundling the next PDU. Also, a slow bandwidth

shows more negative slack times during transmission, causing bottlenecks and long

queues. As an example, in the MR1 vignette the satellite connection introduces a

propagation delay of about 0.25 seconds, much higher than the time gap required

to separate frames during transmission. Therefore, bundling of high priority PDUs

like po fire parameters is worth.

4.3.8 PDU Bursts Scheduled at Once

Bursts of PDUs timestamped at the same or almost the same time encourages

bundling, because not doing it causes a large negative slack spike, or bottleneck, at

the transmitting site that delays the following PDUs.
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4.4 PDUAlloy Bundling Model

The proposal of the algorithm PDUAlloy involves decisions about to bundle or

not two consecutive PDUs. Three variables can be considered in this algorithm: the

type, the length and the timestamp of each PDU. Observations taken from PDUs

participating in negative spikes indicate that if the type and the length of consecutive

PDUs are the same, they are compatible and can be bundled according to the

definition in Section 3.4.1.

4.4.1 Overview

The online algorithms proposed try to identify compatible PDUs P1 and P2 that

can be bundled in a block B = P1&P2. A requirement is that the two PDUs should

have the same type and length. But because P2 has not arrived by the time P1 is

being processed, the generating site must decide whether it will send P1 immediately,

or wait for P2. Chances are that P2 will not be compatible with P1. If the generator

could predict the type and the length of P2, then the prediction could be used in

the decision process. It is more difficult to predict both, type and length, than only

one variable. For decisions based on one variable only, the type is preferred because

it discriminates better among PDUs.

A neural network approach was used to predict the type only, as indicated

in Section 3.4.2.1. Besides that, other non-predictive online algorithms were

proposed: Always-Wait and Always-Send. The former takes the decision of wait

all the time, using a timeout of 100 milliseconds, much less than the 0.25 second

delay of the satellite link. The latter never waits. It sends the PDU as soon as the

time gap has elapsed, actually not bundling PDUs.
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Considering the functions:

type(PDU ) (4.5)

length(PDU )

timestamp(PDU )

compatible(PDU 1,PDU 2)

that return the type, length and timestamp of any PDU, as well as the true value

of PDU compatibility, respectively, then three offline bundling algorithms can be

defined: Type, Type+Length and Type+Length+Time, as explained next.

4.4.2 Type

If (Pi)i=1...n is the sequence of PDUs to be transmitted from some site, then

the Type offline algorithm takes its bundling decision based on the type of the

PDUs. Using the notation of Section 3.4.1, if the block B already contains some

PDUs, being Pk the first one (base PDU), then Pj will be bundled: B = B&Pj if

type(Pj) = type(Pk) and compatible(Pj, Pk) is true.

In words, if the two PDUs bear the same type, then their compatibility is

analyzed, and if a successful comparison results, they are bundled.

4.4.3 Type+Length

The Type+Length offline algorithm takes its bundling decision based on the type

and length of the PDUs. Given the sequence (Pi)i=1...n of PDUs, and assuming the

the block B contains the base PDU Pk, then a new PDU Pj will be bundled in
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the sense of B = B&Pj if type(Pj) = type(Pk), and length(Pj) = length(Pk) and

compatible(Pj, Pk) is true.

In words, if the two PDUs bear the same type and length, then their compatibility

is analyzed, and if a successful comparison results, they are bundled.

4.4.4 Type+Length+Time

This last algorithm called Type+Length+Time is similar to the previous

ones, except that it includes an extra condition for bundling: timestamp(Pj) =

timestamp(Pk). The condition looks very restrictive because it asks for an exact

match of timestamp in both PDUs. If two PDUs were scheduled with a time

difference of one single nanosecond, the offline algorithm will not bundle them.

In practice, it has been observed hundreds of PDUs scheduled exactly at the same

time. Therefore, the purpose of this algorithm is to evaluate the impact of bundling

just those PDUs.
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CHAPTER 5

EMBEDDED SIMULATION TRAFFIC

ANALYSIS

5.1 Processing Flow and Sequencing

The simulator was run on data collected from several vignettes. Initially, a

vignette developed by Hubert Bahr for his PhD research under the advice of Dr.

Ronald DeMara was used. This vignette contained PDUs sent by one single entity.

A second simulation was run on a vignette containing two senders. Because of

its simplicity, this vignette, as well as the previous one, were used mainly to test

the simulator and to have some insight about the preprocessing that had to be

performed on the input data previous to the simulation phase.

The most important results in this research come from the MR1 vignette

described in Appendix A, which includes 6 senders. Four sets of simulations were

performed on it, varying the assignment of senders to computer nodes. Additionally,

simulations were run to observe the effect of applying PDU bundling, as well as the

usage of the Head of Line (HOL) priority in router queues.

5.2 Input Data and AWK preprocessing

The input data to this model comes from the OTB logger. After setting up

a particular vignette, OTB runs it and the logger records all the Protocol Data
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Units into an output file that is later converted to ASCII text. OTB does not

generate regular PDUs, but Persistent Object PDUs (PO PDUs) that are a subclass

of the general category of PDUs. PDU formats are defined in the IEEE Standards

[IEE95a], [IEE95b], [IEE96] and [IEE98]. Although PO PDUs have a somewhat

different format as compared to regular PDUs, a considerable degree of similarity

exists that allows the application of the IEEE standards to PO PDUs in order to

extract information about the type, length and timestamp of each message.

The raw data collected by the OTB logger is not directly used as input to the

simulator due to the large size of the file (265 Mb for the MR1 vignette) and to the

amounts of data stored therein, which are unnecessary for the simulation. The log is

an ASCII file containing the descriptions of all the transmitted PO PDUs. Figures

20 and 21 display samples of the raw log.

When OTB ends processing the vignette, an awk program (see Appendix C)

parses the ASCII file and collects only those PDU variables required during the

simulation (type, length and timestamp) into a summary PDU file, along with two

newly created counters. One counter represents a local PDU ID for the generating

site, and the other is a global ID from among all the participating sites.

The OTB logger does not save PDUs in strict ascending order of timestamp

within the input files. In the logged files collected from running the vignettes there

were found sequences of 40 or more PDUs bearing exactly the same timestamp, as

well as cases of PDUs stored in reverse chronological order. Due to these anomalies,

the PDU files are sorted chronologically previous to running the awk program that

assigns the local and global IDs, keeping the original relative order for records having

the same timestamp. Figure 18 depicts a general view of the steps involved in the

simulation process.

The awk parser creates a separate file for each different transmitting site found,

and names it datan.txt, where n is the site ID. Each datan.txt file contains
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Figure 18: Overview of the simulation process

summaries of all the PDUs generated by site n. Then, during the simulation, each

generator n reads in the corresponding PDU summary file datan.txt created out

of OTB logged data. A sample of the resulting files datan.txt is shown in Figure

19.

The information listed in Figure 19 is interpreted as follows from left to right:

hexadecimal timestamp, PDU length in bytes, separator “—”, decimal timestamp,

local PDU ID equivalent to the current position of the PDU within the file, PDU

type surrounded by angle brackets, global PDU ID, and the four letters S and W

already explained in Section 3.4.2.1.

In the DIS protocol timestamps are stored in 32 bits. In order to convert

timestamps into decimal, each unit of the unsigned integer value stored in the

leftmost 31 bits represents 1/(231 − 1) of an hour, giving the timestamp a resolution

of less than 0.5 nanoseconds. The rightmost bit of the timestamp is a flag that

indicates whether the time is relative to an arbitrary initial time, or absolute (UTC

time). For example, the value in the hex timestamp 0x4f690c7a corresponds to

4f690c7a/2 = 27B4863D = 666142269 units in decimal, and 666142269/(231−1) =

0.31019666 hours =: 18 : 36.707, as indicated in the sample file of Figure 19.
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0x4f690c7a 32|:18:36.707 1 <dis204 acknowledge PDU>: 41 s W W S
0x4f7ab058 32|:18:37.676 2 <dis204 acknowledge PDU>: 73 s W W S
0x4f8ca818 32|:18:38.663 3 <dis204 acknowledge PDU>: 112 s S S S
0x4ffc8a88 92|:18:44.809 4 <dis204 po_simulator_present PDU>: 310 s S S S
0x513da63a 100|:19:02.448 5 <dis204 po_objects_present PDU>: 977 s S S S
0x51752798 92|:19:05.497 6 <dis204 po_simulator_present PDU>: 1084 s W W S
0x531629f4 92|:19:28.404 7 <dis204 po_simulator_present PDU>: 1687 s S S S
0x53617074 100|:19:32.539 8 <dis204 po_objects_present PDU>: 1868 s S S S
0x548db8ba 92|:19:49.034 9 <dis204 po_simulator_present PDU>: 2365 s S S S
0x558cfbfa 100|:20:03.056 10 <dis204 po_objects_present PDU>: 2805 s S S S
0x55fe2df6 92|:20:09.274 11 <dis204 po_simulator_present PDU>: 3000 s W W S
0x57a315a2 92|:20:32.395 12 <dis204 po_simulator_present PDU>: 3717 s S S S
0x57b565ee 100|:20:33.401 13 <dis204 po_objects_present PDU>: 3768 s S S S
0x5917877a 92|:20:52.854 14 <dis204 po_simulator_present PDU>: 4393 s S S S
0x59e1a736 100|:21:03.957 15 <dis204 po_objects_present PDU>: 4721 s S S S
0x5a8738fc 92|:21:13.052 16 <dis204 po_simulator_present PDU>: 5039 s W W S
0x5c357768 92|:21:36.686 17 <dis204 po_simulator_present PDU>: 5728 s S S S
0x5c357768 100|:21:36.686 18 <dis204 po_objects_present PDU>: 5729 s S S S
0x5ca513f0 84|:21:42.817 19 <dis204 po_point PDU>: 5972 w W W W
0x5ca513f0 84|:21:42.817 20 <dis204 po_point PDU>: 5973 w W W W
0x5ca513f0 84|:21:42.817 21 <dis204 po_point PDU>: 5974 w W W W
0x5ca513f0 84|:21:42.817 22 <dis204 po_point PDU>: 5975 w S S S

Figure 19: Sample of the contents of files datan.txt

PDU lengths vary widely, as seen in the sample of Figure 19. In the studied

vignettes, the minimum PDU length found is 26 bytes, the maximum is 1368, with

an average of 211 bytes. The sample also shows the last four PDUs bearing the

same timestamp and type, which makes them compatible for bundling.

5.2.1 Example PDU 1

As a first example of a complete PDU, Figure 20 lists the ASCII equivalent of

the fields in a po variable PDU. From among all the fields, the most important

to the simulator are those containing the site identification, the length in bytes

and the timestamp. The example shows do header.object id.simulator.site =

1082, po header.length = 147 bytes, and dis header.timestamp = :01:33.432

(1 minute, 33 seconds and 432 milliseconds). The timestamp represents the time

the entity generated this PDU and put it on the output queue.
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<dis204 po_variable PDU>:
dis_header.version = 853cfb0 = 4 = 0x04
dis_header.exercise = 853cfb1 = 1 = 0x01
dis_header.kind = 853cfb2 = 250 = 0xfa
dis_header.family = 853cfb3 = 140 = 0x8c
dis_header.timestamp = 0x6a4e556 = :01:33.432 (relative)
dis_header.sizeof = 853cfb8 = 196 = 0x00c4
po_header.po_version = 853cfbc = 28 = 0x1c
po_header.po_kind = 853cfbd = 2 = 0x02
po_header.exercise_id = 853cfbe = 1 = 0x01
po_header.database_id = 853cfbf = 1 = 0x01
po_header.length = 853cfc0 = 147 = 0x0093
po_header.pdu_count = 853cfc2 = 7905 = 0x1ee1
do_header.database_sequence_number = 853cfc4 = 0 = 0x00000000
do_header.object_id.simulator.site = 853cfc8 = 1082 = 0x043a
do_header.object_id.simulator.host = 853cfca = 23825 = 0x5d11
do_header.object_id.object = 853cfcc = 685 = 0x02ad
do_header.world_state_id.simulator.site = 853cfce = 0 = 0x0000
do_header.world_state_id.simulator.host = 853cfd0 = 0 = 0x0000
do_header.world_state_id.object = 853cfd2 = 0 = 0x0000
do_header.owner.site = 853cfd4 = 1082 = 0x043a
do_header.owner.host = 853cfd6 = 23825 = 0x5d11
do_header.sequence_number = 853cfd8 = 1 = 0x0001
do_header.class = 853cfda = 11 = 0x0b
do_header.missing_from_world_state = 853cfdb = 0 = 0x00000000
reserved9 = 853cfdc = 0 = 0x00000000
variable.total_length = 853cfe0 = 132 = 0x00000084
variable.expanded_length = 853cfe4 = 7812 = 0x00001e84
variable.offset = 853cfe8 = 0 = 0x00000000
variable.length = 853cfec = 132 = 0x0084
variable.obj_class = 853cfee = 8 = 0x08
variable.data = "Mine Pallet US M75"

Figure 20: Complete PDU of type po variable

Obviously, the actual PDUs transmitted by OTB are not in ASCII code, but in

binary format. This research had no access to the binary data because all material

related to PO PDUs is classified. Therefore, some internal aspects of the PO PDU

format were assumed as being similar to the PDUs described in the IEEE standards.

For example, the type of PDU displayed in this example is po variable, as seen in

its first line. It is not displayed in the usual format field = value, but the IEEE

standard 1278.1 [IEE95a] indicates that the binary format is prefixed by a PDU

header containing its type, among other variables, and so it was assumed by the

awk parser that this first line represents a field in the header containing the PDU

type.

Other assumptions include the length and format of some variable fields, which

are undocumented in the IEEE standards and whose length in ASCII characters

differs from their length in hexadecimal representation. A C++ parser written
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specifically to compare PDUs and calculate their differences, listed in Appendix C,

assumed the hexadecimal length in this situation.

5.2.2 Example PDU 2

The second example of a short PDU is shown in Figure 21. As

before, the parameters originating id.site = 1086, header.sizeof = 32, and

header.timestamp = :00:35.003 are extracted by the awk parser and stored in

the summary file. As an observation, this is an acknowledge PDU, which does not

contain the length keyword, but the sizeof keyword.

<dis204 acknowledge PDU>:
header.version = 8576c78 = 4 = 0x04
header.exercise = 8576c79 = 1 = 0x01
header.kind = 8576c7a = 15 = 0x0f
header.family = 8576c7b = 5 = 0x05
header.timestamp = 0x27d3a76 = :00:35.003 (relative)
header.sizeof = 8576c80 = 32 = 0x0020
originating_id.site = 8576c84 = 1086 = 0x043e
originating_id.application = 8576c86 = 23825 = 0x5d11
originating_id.entity = 8576c88 = 65535 = 0xffff
receiving_id.site = 8576c8a = 1086 = 0x043e
receiving_id.application = 8576c8c = 23825 = 0x5d11
receiving_id.entity = 8576c8e = 65535 = 0xffff
ack_flag = 8576c90 = 3 = 0x0003
response_flag = 8576c92 = 0 = 0x0000
request_id = 8576c94 = 3 = 0x00000003

Figure 21: Short PDU of type acknowledge

The entries in the summary file corresponding to the PDUs shown in Figures 20

and 21 are:

1. 0x6a4e556 147 | :01:33.432 1 <dis204 po variable PDU>: 1

2. 0x27d3a76 32 | :00:35.003 122 <dis204 acknowledge PDU>: 344
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5.3 Parameters Analyzed

For each experiment, two types of analyses were performed. The first one can

be called independent or offline because it takes place before running the simulator.

The second one corresponds to the results obtained by running the simulator.

5.3.1 Independent Analysis

This analysis is subdivided into 2 categories: distribution and assignment of

PDUs, and minimum bandwidth requirements.

5.3.1.1 Distribution and Assignment of PDUs

This is a frequency distribution of all the types of PDUs involved in the

experiment, as well as the assignment of computer sites mentioned in the PDUs to

simulated generators in computer nodes. The distribution gives information about

the sites with more activity that can be taken into account for a better strategic

assignment to computer nodes.

5.3.1.2 Minimum Bandwidth Requirements

An awk program was written to merge the PDUs of all the sites in one single

stream of data sorted according to their timestamps. Then, another program

calculates the required bandwidth at specific time intervals (2 seconds) without

performing any simulation. Computing the bandwidth based on a single data stream

is justified by the fact that all PDUs are broadcasted, and so any listening site will
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have to receive the PDUs from all the generating sites as one single stream of

data. Due to traffic changes in time, different minimum instant bandwidths over

time are required. Instant bandwidth is computed as the ratio of volume of data

transmitted to the time interval allotted among consecutive PDUs. No overheads

like retransmissions, packet losses, or collisions are considered in the calculation

of the bandwidth. However, a time gap separation of 50 microseconds between

consecutive PDUs was included in accordance with the IEEE Std. 802.11 [IEE97].

Therefore, the resulting minimum bandwidth should be seen as an absolute lower

bound for the actual bandwidth. The awk script in Section C.2 of Appendix C

calculates the bandwidth for each set of PDUs.

The mathematical definition of the minimum instant bandwidth concept follows.

Let all the PDUs in the simulation be sorted in ascending order of timestamp and

numbered PDU1, . . ., PDUn. The length in bytes and the timestamp in seconds of

PDUi are represented, respectively, by Li and Ti. Let g be the minimum separating

time gap between PDUs. The minimum instant bandwidth is defined for those

time intervals of minimum length greater than or equal to S seconds, delimited by

timestamps Ti that meet some conditions. Specifically, given a pair of timestamps

Ta and Tb as close as possible to each other such that the following conditions hold:

Tb − Ta ≥ S (5.1)

Tb − Ti − (b − i)g > 0, ∀ i : a ≤ i < b (5.2)

then, the average bandwidth Bi for the time subinterval [Ti − Tb) is calculated as:

Bi =

b−1∑

j=i

8Lj

Tb − Ti − (b − i)g
(5.3)
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and the minimum instant bandwidth for the interval [Ta, Tb] is given by:

B = max
a≤ i < b

{Bi} (5.4)

It should be noted that the time interval [Ti − Tb) includes PDUi and does not

include PDUb. Equation 5.1 indicates that the time interval must have a minimum

length of S seconds, for a given constant S selected a priori. Equation 5.2 says

that the remaining time from Ti to Tb should be enough to accommodate all the

gaps between PDUs and still have some room for the transmission of bytes. The

average bandwidth for the interval [Ti − Tb) is the ratio of the total number of bits

transmitted to the remaining time in the interval once the gaps have been deducted,

as stated in Equation 5.3. Finally, given that the bandwidth for the whole interval

[Ta, Tb] is constant, it should not be less than any individual average bandwidth

Bi. Therefore, Equation 5.4 takes the maximum of all the Bi and considers it the

minimum bandwidth required.

5.3.2 Analysis of Simulation Results

This analysis is subdivided into 4 categories:

a) Slack Time Analysis. Statistics about the slack time of all the PDUs

generated at a particular site are graphed and discussed. The slack time

Tslack of a given PDU is defined as the difference between its timestamp and

the current simulator time at the moment the PDU is read from the summary

input file. In symbols, if Tstamp represents the timestamp of a PDU and

Tread represents the time when the PDU was read, then

Tslack = Tstamp − Tread (5.5)
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If the difference is positive (Tslack > 0), then the generator is ahead of

the planned schedule, otherwise it is behind it. Thus, a negative slack

time indicates that the channel bandwidth is not enough to transmit the

required PDUs without incurring in delays. If several PDUs are scheduled

for transmission at the same timestamp, then they will necessarily produce

a negative slack, no matter the bandwidth used. However, the greater the

bandwidth, the smaller the magnitude of the negative slack.

b) Travel Time Analysis. Statistics about the travel time of all the PDUs

collected at a particular sink are graphed and discussed. The travel time

is the difference between the sending time of a PDU from a computer node

generator and the arrival time to a node sink. All the transmission times,

propagation times and waiting times in router queues are part of the travel

time. If Tstamp, Tarr and Ttrav represent the release time (timestamp), the

arrival time and the travel time of a given PDU, then

Ttrav = Tarr − Tstamp (5.6)

c) Queue Length Analysis. There is a message queue at the satellite and another

at each router to store incoming PDUs pending of service. Every time a PDU

arrives to the satellite or a router, the number of other messages in the system

is counted, including the PDUs already in the queue, plus any one being

serviced. This counter along with the arrival time of the incoming PDU is

recorder in an OMNeT statistics file. When the simulation ends, a separate

program processes the file and gets the statistics about the number of messages

in that system.

d) Collision Analysis. The satellite and routers keep separate counters of

collisions received from each of the links they are connected to. The satellite is
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connected to the wireless links WSP and WGS and the routers are connected

to the LAN, WSP and WPP links (see Figure 7). Each time a collision is

detected, the corresponding counter is incremented and its new value along

with the current simulation time is recorder for future processing.

5.4 Simulation 1: Vignette With One Sender

The vignette of this first simulation produced a log file of 28 Mb of PDU data.

The simulation time spanned from 00:14.341 to 07:22.446, for a time period of 7

minutes and 08.105 seconds. A total of 5940 PDUs were generated by one single

site.

5.4.1 Independent Analysis of Logged PDUs

5.4.1.1 Analysis of PDUs and Assignment

Figure 22 shows the distribution and the relative proportion of PDUs according

to their types. All the PDUs were generated by the site identified in OTB as 1013.

During the simulation, this site was assigned to node 0 onboard plane 0. It can

be noted that entity state, po task state and transmitter PDUs are the three

most frequent types of PDUs in this simulation, which agree with observations that

have been pointed out by several authors (e.g. [Mac95], [SZB96], [BCL97], and

[HIL98]).
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<dis204 stop_freeze PDU>: 6
<dis204 start_resume PDU>: 6
<dis204 po_delete_objects PDU>: 8
<dis204 acknowledge PDU>: 12
<dis204 fire PDU>: 17
<dis204 detonation PDU>: 17
<dis204 signal PDU>: 20
<dis204 po_simulator_present PDU>: 22
<dis204 aggregate_state PDU>: 30
<dis204 po_task_frame PDU>: 31
<dis204 po_line PDU>: 74
<dis204 po_objects_present PDU>: 105
<dis204 po_fire_parameters PDU>: 115
<dis204 po_point PDU>: 140
<dis204 po_parametric_input PDU>: 186
<dis204 po_unit PDU>: 241
<dis204 emissions PDU>: 340
<dis204 po_task PDU>: 374
<dis204 transmitter PDU>: 878
<dis204 po_task_state PDU>: 1417
<dis204 entity_state PDU>: 1901
Total PDUs = 5940

Figure 22: PDU Type Distribution Generated in Simulation 1

5.4.1.2 Minimum Bandwidth Requirements

Figure 23 shows the minimum instant bandwidth required at each interval of

2 seconds. The graph is typical of a burst transmission, having instants of heavy

traffic followed by others of low usage. According to the results, all the instant

bandwidths lie in the range of 7.3 Kbps to 65 Kbps, with an average of 27 Kbps.

Therefore, a standard value of 64 Kbps in the wireless channels should be enough

to handle all the traffic in this simulation.

Samples = 206
Init time = 14.341000
Final time = 442.446000
Minimum bandwidth = 7337.8
Maximum bandwidth = 65065.5
Average bandwidth = 26907.5
Std deviation = 12630.6

Figure 23: Minimum Bandwidth Requirements
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5.4.2 Slack Time

Figure 24 shows that negative slacks are not detected. There are some, but they

are not visible at the graph scale. Occurrences of negative slacks also depend on the

node assignment of site 1013. If the site had been assigned to the ground station,

probably more negative slacks had appeared. The reason is that the generators

onboard planes are directly connected to the Ethernet bus running at 100 Mbps.

From the generator point of view, the network is very fast and it is almost always

ahead of schedule. However, the ground station is directly connected to the slow 64

Kbps wireless channel, what promotes more negative slacks.

Figure 24: Slack Time at Generator 0
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5.4.3 Travel Time

As depicted in Figure 25, the travel times of PDUs seen by the ground station

show that most PDUs took less than 0.6 seconds to arrive at the destination. The

minimum travel time is close to 0.255 seconds that correspond to the time needed

by a signal to travel from Earth to the satellite and back to Earth (38300Km × 2)

at the speed of light.

Figure 25: Travel Time as Sensed by the Ground Station

5.4.4 Queue Length

Figure 26 shows the number of messages at the router of plane 0. The maximum

value is less than 45, which is quite acceptable for a router. In Figure 27, the

satellite shows even better results with maximum queue less than 16 messages. In
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both instances, the queue usage has similar characteristics throughout the simulation

time, showing peaks of all sizes evenly distributed along the time.

Figure 26: Messages in Router 0 (plane 0)

5.4.5 Collisions

No collisions were detected. This is understandable due to the fact that only one

site is transmitting.

5.4.6 Conclusions of Simulation 1

This first simulation was based on a simple vignette. The main purpose was

really to test the simulator itself. All the wireless links were set to a bandwidth of

64 Kbps. The results are congruent with the expected values for such a simulation.
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Figure 27: Messages in the Satellite

The behavior of the PDU traffic is typical of that of a computer network using

the DIS protocol, as has been reported by other authors. For example, in [MZP94]

there are graphs of time vs. PDU/second showing similar PDU activity as in Figures

26 and 27.

It is interesting to note that the simulator calculates the PDU travel time to

the ground station with a lower bound of near 0.25 seconds, based solely on the

parameters given, as propagation time of each communication link and distance

between sites, which gives another indication of its reliability.

As a conclusion, it can be stated that the OMNeT simulator works accordingly

with the expected results for this simulation, which gives some degree of confidence

in its accuracy. The traffic is perfectly handled at 100 Mbps in the Ethernet link

and 64 Kbps in the wireless.
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From the simulation data, it can be concluded that negative slack at the

generator is negligible, the queue lengths in the routers and satellite were less than

45 and 16 messages, respectively, and collisions were not detected. Therefore,64

Kbps in the wireless channels is enough bandwidth for this simulation. It should

be noted that the conclusion agrees with the results of the independent analysis,

which gives support to the idea that the independent analysis is a valuable tool in

the bandwidth analysis of a network.

5.5 Simulation 2: Vignette with Two Senders

The vignette in this second simulation produced a log file of 22 Mb of PDU

data. The simulation time spanned from :00:35.003 to :05:50.574, for a time period

of 5 minutes and 15.571 seconds. A total of 5430 PDUs were generated by 2 sites

identified in OTB as 1082 and 1086.

5.5.1 Independent Analysis of Logged PDUs

5.5.1.1 Analysis of PDUs and Assignment

Figure 28 shows the distribution and the relative proportion of PDUs for each

type. Sites 1082 and 1086 generated 926 and 4504 PDUs (17% and 83%) respectively,

which indicates that in the vignette one site is much more active than the other.

During the simulation, site 1082 was assigned to ground station (node 24) and

site 1086 was assigned to node 0 onboard plane 0. As in the first simulation, PDUs

of types entity state and po task state are among the most frequent.
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<dis204 stop_freeze PDU>: 3
<dis204 start_resume PDU>: 3
<dis204 po_delete_objects PDU>: 7
<dis204 acknowledge PDU>: 12
<dis204 po_link PDU>: 12
<dis204 aggregate_state PDU>: 18
<dis204 fire PDU>: 24
<dis204 detonation PDU>: 24
<dis204 po_simulator_present PDU>: 26
<dis204 signal PDU>: 27
<dis204 po_parametric_input_holder PDU>:40
<dis204 po_objects_present PDU>: 52
<dis204 po_overlay PDU>: 64
<dis204 po_line PDU>: 65
<dis204 po_fire_parameters PDU>: 65
<dis204 po_point PDU>: 80
<dis204 po_task_frame PDU>: 85
<dis204 po_parametric_input PDU>: 165
<dis204 po_unit PDU>: 186
<dis204 emissions PDU>: 204
<dis204 transmitter PDU>: 547
<dis204 po_variable PDU>: 760
<dis204 po_task PDU>: 835
<dis204 entity_state PDU>: 1021
<dis204 po_task_state PDU>: 1105
Total PDUs = 5430

Figure 28: PDU Type Distribution Generated in Simulation 2

5.5.1.2 Minimum Bandwidth Requirements

Figure 29 shows a high bandwidth spike near the second 95. The reason is that

lots of PDUs are scheduled to be sent at times close to second 95. A close look

at the data shows that during the time interval [92.463000, 94.484000], 310 PDUs

totaling 957 K bits are being scheduled. This volume of data requires approximately

474 Kbps to be sent on time. After the second 100, the remaining PDUs can be

handled at 64 Kbps, as Figure 29 indicates. Because the bandwidth is considered

constant in the actual links, 64 Kpbs will be insufficient to fulfill the needs of this

second vignette.

5.5.2 Slack Time

Figure sim2:slack1 shows the slack time as seen by computer node 0 (line labeled

1) and the ground station (line labeled 2), setting the wireless bandwidth to 64 Kbps.
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Init time = 35.003 sec.
Final time = 350.574 sec.
Minimum bandwidth = 5153.6 bps
Maximum bandwidth = 477404.0 bps
Average = 32401.2 bps
Std deviation = 44953.7 bps

Figure 29: Minimum Bandwidth Requirements

It is clear that in the approximate time interval [90, 120] the ground station suffered

from high negative slacks. This is due to the impossibility to handle the data volume

at 64 Kbps. After the second 120 the ground station gets recovered from the delay.

Figure sim2:slack2 represents a zoom in of Y axis in Figure sim2:slack1 Even at

this scale, there are no visible negative slacks in plane 0, mainly due to the high

bandwidth of the LAN link.

Figure 30: Slack time to send next message at plane 0 and ground station (64 Kbps)
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Figure 31: Slack time to send next message by plane 0 (64 Kbps)

Figure sim2:slack3 shows both, the slack time at the ground station (blue) and

the slack at plane 0 (red) for a wireless bandwidth of 400 Kbps. This non standard

bandwidth was chosen based on the results of the independent analysis. As seen, the

slack at the ground station is greatly reduced but it is still negative before second

100. However, the positive slacks were almost unaffected by the bandwidth increase.

5.5.3 Travel Time

Figure 33 represents the travel time as seen by node 0 (line labeled 1) and the

ground station (line labeled 2) at 64 Kbps in the wireless channels. Both graphs are

quite similar, showing a big delay during the interval from second 90 to second 170.
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Figure 32: Slack time to send next message by plane 0 and ground station (400 Kbps)

Figure 33: Travel times at plane 0 and ground station (64 Kbps)
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Node 23 (plane 7, node 2) produces the graph shown in Figure 34, which was

drawn using lines to connect consecutive observations. The graph shows two sets of

PDUs. The PDUs coming from ground station suffer from high delays, while PDUs

coming from plane 0 have short delays. The reason is that PDUs coming from plane

0 do not wait at the satellite queue and are not affected by the propagation delay

of satellite signals.

Figure 34: Travel times at plane 7 (64 Kbps)

Figure 35 shows travel times seen by node 21 (plane 7, node 0) when the wireless

bandwidth is increased to 400 Kbps. It is more clear now that this node receives two

types of PDUs, being the satellite PDUs delayed by approximate 0.25 more seconds.
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Figure 35: Travel times at plane 7 zoomed in (400 Kbps)

5.5.4 Queue Length

Figure 36 clearly shows that at 64 Kbps in the wireless, the satellite suffers from

a big queue delay during the time interval [100, 170]. This is a strong indication

that 64 Kbps are not enough to handle the traffic at the satellite. On the other side,

the traffic at the router onboard plane 0 seems capable of handling its corresponding

traffic.

Increasing the bandwidth to 400 Kbps greatly improves the satellite queue, as

indicated in Figure 37. At 400 Kbps, the satellite maintains a queue length fewer

than 20 PDUs most of the time. The router onboard plane 0 still shows an initial

queue length of 120 messages which does not impact its performance.
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Figure 36: Comparison of queue lengths of plane 0 and satellite (64 Kbps)

Figure 37: Comparison of queue lengths of plane 0 and satellite (400 Kbps)
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5.5.5 Collisions

At 64 Kbps in the wireless channels, Figure 38 shows that some collisions were

detected in the WSP channel that connects the satellite to the planes. The other

channels do not show collision activity. The above graph represents the number of

collisions detected per second by the router at plane 1.

Figure 38: Collisions per second detected at plane 1 (64 Kbps)

Figure 39 gives the number of collisions accumulated along the time, as seen by

the router at plane 7. The maximum collision rate occurs in the range [90, 140],

totaling near 280 collisions. Afterwards, the rate evidently decreases, and at the

end of the experiment the collision counter reaches approximately 325. Considering

that the total number of PDUs sent is 5430, the collisions represent near 6% of the

total number of packets.

The current simulator does not include a special treatment for collisions,

like retransmissions using exponential backoff algorithms [Mol94] [IEE97] [FZ02].
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Figure 39: Collision Accumulation over time at plane 7 (64 Kbps)

However, the small percentage of collisions leads to conclude that a more

sophisticated simulator including exponential backoff will produce results very

similar to the ones produced by the current one.

The simulator was run setting the wireless channels to 400 Kbps. At this

bandwidth, collisions in the WSP link are significantly reduced, totaling fewer than

60 at the end of the experiment. Near the second 92 a peak of 8 collisions per second

occurs immediately decreasing to 3 or fewer collisions per second during the rest of

the simulation time.
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5.5.6 Conclusions of Simulation 2

As indicated at the beginning of the chapter, the two first simulations were used

mainly to test the logic and general behavior of the OMNeT simulator, as well as

for taking a closer look at the PDUs, their distribution and initial statistics.

As predicted in the independent analysis, 64 Kbps in the wireless channels is

insufficient bandwidth to handle traffic near the interval [90, 175] seconds. After

second 175 the traffic becomes less intense and can be handled. Based on the

independent analysis, increasing the bandwidth to 400 Kbps in wireless channels

produce much better results, with travel times less than 0.5 seconds for all packets.

Collisions were detected in the WSP link only, but at 400 Kbps, the total number is

less than 60. At 64 Kbps, the queue length was close to 750 PDUs in the satellite,

number that decreases under 30 PDUs at 400 Kbps. Assuming the worst case

length in the satellite queue, 750 PDUs of 1368 bytes each would require near 1 Mb

of memory, which does not impose a tight restriction.

5.6 Simulation 3: Vignette MR1 with Six Senders

Simulation 3, as well as the remaining ones, is based on the MR1 vignette

described in Appendix A. The log file for this simulation is 265 Mb long. The

simulation time spanned from :17:14.447 to :42:27.808, for a time period of 25

minutes and 13.361 seconds. A total of 60341 PDUs were generated by 6 sites

identified in OTB as 1519, 1526, 1529, 1532, 1533, and 1538. The simulation is not

using the bundling technique. Bundling simulations are covered in Chapter 6.
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5.6.1 Independent Analysis of Logged PDUs

5.6.1.1 Analysis of PDUs and Assignment

There are 27 different types of PDUs in the OTB simulation of the MR1 vignette.

Figure 3 shows the distribution, the volume of bytes and the relative proportion

of PDUs for each type, and Figure 40 depicts the corresponding pie charts. The

most frequent type of PDU is entity state with 28569 PDUs, (47%), followed by

po task state with 11960 PDUs, (nearly 20%).

Table 3: Types of PDUs and volume of bytes transmitted for each type
PDU Type #PDUs # Bytes % # PDUs % # Bytes

Laser 3 264 0.005 0.002
start resume 3 132 0.005 0.001
stop freeze 3 120 0.005 0.001

po task authorization 6 388 0.010 0.003
po minefield 14 5384 0.023 0.043

fire 23 2208 0.038 0.018
detonation 25 2550 0.041 0.021

acknowledge 36 1152 0.060 0.009
po delete objects 110 4216 0.182 0.034

minefield 117 42120 0.194 0.339
po message 119 69020 0.197 0.556

signal 237 19896 0.393 0.160
aggregate state 256 37888 0.424 0.305

po simulator present 370 34040 0.613 0.274
po task frame 382 87984 0.633 0.709

mines 386 396088 0.640 3.19
po point 659 55356 1.09 0.45

po objects present 682 577952 1.13 4.65
po fire parameters 713 376464 1.18 3.03

iff 851 51060 1.41 0.41
po line 912 115524 1.51 0.93

po parametric input 1196 165440 1.98 1.33
po unit 1793 1161864 2.97 9.36
po task 2274 399744 3.77 3.22

transmitter 8642 898768 14.3 7.24
po task state 11960 3052824 19.8 24.6
entity state 28569 4857328 47.3 39.1

Totals 60341 12415774 100% 100%
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Figure 40: Distribution of types and volumes of PDUs produced in the simulation
of MR1 vignette

It is interesting to note that the percentage of PDU types does not necessarily

agree with the percentage of byte volume for the same type. For example,

transmitter PDUs represent the 14.3% of the total number of PDUs, but only

the 7.24% of total byte volume, and po unit PDUs are the 2.97% of type frequency,

but the 9.36% of total byte volume.

The assignment of OTB sites to computer nodes in this simulation is as follows.

• Site 1519 ( 0): 50230 PDUs assigned to plane 0, node 0 (computer node 0)

• Site 1526 ( 3): 1056 PDUs assigned to plane 1, node 0 (computer node 3)

• Site 1529 ( 6): 483 PDUs assigned to plane 2, node 0 (computer node 6)

• Site 1532 (24): 7382 PDUs assigned to ground station (computer node 24)

• Site 1533 ( 9): 553 PDUs assigned to plane 3, node 0 (computer node 9)

• Site 1538 (12): 637 PDUs assigned to plane 4, node 0 (computer node 12)
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Site 1519 generated 50230 PDUs (83%), being it the most preponderant one. The

assignment was made such that the site with the highest rate of PDUs belongs to

an aircraft, and the second one in importance goes to the CONUS ground station.

5.6.1.2 Minimum Bandwidth Requirements

Figure 41 shows a more uniform bandwidth requirements than in previous

vignettes, but this is mostly caused by the larger number of PDUs in the vignette.

As seen, the static analysis indicates that the maximum bandwidth required is

near 256 Kbps, but the majority of the time the bandwidth required is less than 200

Kbps. With an average of near 67 Kbps, it seems that 64 Kbps would be completely

insufficient for this vignette, fact that will be acknowledge during the simulation.

Init time = 1034.447
Final time = 2549.808
Minimum bandwidth = 773.2
Maximum bandwidth = 255745.3
Average = 66756.4
Std deviation = 35082.2

Figure 41: Minimum Bandwidth Requirements in Simulation 3

5.6.2 Slack Time

Figure 42 shows the slack time for all the units (routers and ground station) at

64 Kbps in the wireless channels. The second graph was plotted by dots instead of

lines and was zoomed in to the Y axis to show that the ground station carries the
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majority of the negative slacks. This is explained by the fact that the generators

onboard the planes are directly connected to high speed Ethernet buses, while in

the ground station the generator is connected to a low speed wireless channel.

Figure 42: Slack time to send next message by different generators at 64 Kbps, and
zoom in showing details of ground station only.

Table 4 displays the percentage of packets with positive slack by site. A separate

program was used to calculate them.

Table 4: Percentage of packets with positive slack at sending sites
Site 0, positive slack frames= 39656 (78.95%), total frames sent= 50230
Site 3, positive slack frames= 519 (49.15%), total frames sent= 1056
Site 6, positive slack frames= 236 (48.86%), total frames sent= 483
Site 9, positive slack frames= 340 (61.48%), total frames sent= 553
Site 12, positive slack frames= 394 (61.85%), total frames sent= 637
Site 24, positive slack frames= 4182 (56.65%), total frames sent= 7382
Total # of PDUs delivered on time: 45327 out of 60341 = 75.11%

It calls to the attention the low percentages of positive slacks observed at airplane

nodes. At 100 Mbps in the LAN, it is expected to have positive slacks in 95% or

more of the PDUs. The percentage of negative slacks is considerable. However,

those negative slacks are not observed in Figure 42. The reason is that at 100 Mbps

in the LAN buses, the negative slacks are almost negligible to be seen in the graph,

but they are still present. The cause of negative spikes is mainly due to the fact that

OTB schedules several PDUs at exactly the same time, at least to the resolution of
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the OTB clock. These negative slacks will not completely disappear by increasing

the network bandwidth. The only way to eliminate them is by bundling and/or

rescheduling the PDUs so that they do not occur at the same time.

Figure 43 shows the effect of increasing the wireless bandwidth to 1024 Kbps

in the ground station channel. Although experiments with intermediate values of

128, 200, 256, and 512 Kpbs were carried out, it is difficult to visualize them in

one single black and white figure. Nevertheless, the consequences of a bandwidth

increase are evident: at 1024 Kbps negative spikes are still present, even though the

spike magnitude decreases. The experiments showed that for the other intermediate

bandwidths the results are in between, as expected. The more the bandwidth is

increased, the less the negative slack is detected.

Figure 43: Zoom in of slack time to send next message by ground station (1024
Kbps). Negative spikes are still observed.
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5.6.3 Travel Time

Figures 44 and 45 show the travel time of PDUs measured by the sinks at node

2 and ground station, respectively, using 64 Kbps on the wireless links. At node 2

the graph clearly shows two traces corresponding to two sources of PDUs.

Figure 44: Travel time at node 2 in plane 0 (64 Kbps)

The PDUs that take longer to arrive come from the ground station. These PDUs

had to wait on the satellite queue as well as on the router queue. On the other hand,

the PDUs coming from computers onboard the other planes had to wait on the router

queue only. This produces the two traces shown. There are no messages coming

from nodes within the same plane 0 because of the assignment given. However, if

they had been issued their trace would not be seen because the LAN at 100 Mbps

would render them near zero at the scale used. The graph was drawn using dots

instead of lines to better observe the traces.

Obviously, at 64 Kbps the travel times of most PDUs is completely unacceptable.

Some PDUs took more than 100 seconds since the time they were sent to the time
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Figure 45: Travel time at ground station (64 Kbps)

they arrived. The ground station presents a similar behavior due to the long queue

times at the satellite.

Figure 46 shows travel times measured at the ground station for bandwidths of

64 and 256 Kbps. The graph was zoomed in to the Y axis to show the details in

the neighborhood of 0 to 2 seconds. The spots at the left side having travel times

over 1 second correspond to 64 Kpbs, while the other spots that almost do not

reach the 1 second limit correspond to 256 Kpbs. It is worth noting the enormous

difference between these two bandwidths. At 256 Kbps in the wireless channels,

the travel times to the ground station are less than 1 second in the majority of

cases. Considering that the minimum travel time is about 0.25 seconds, latencies

less than 1 second can be acceptable, especially if OTB could deliver the PDUs in

a not-so-bursting mode.

At 256 Kbps Figure 46 shows many discrete positive peaks separated at regular

intervals that could be diminish by a better scheduling policy. The positive travel
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Figure 46: Zoom in of travel times at ground station (64, 256 Kps)

time spikes and the negative slack time spikes shown in Figures 42 and 43 are

correlated because the more time the sending site is behind the timestamped

schedule, the more heavy the network traffic is and the packets will have to wait

more time in router queues. Both measures are good indicators of the network

performance. If some PDUs at the spikes of negative slack could be moved to time

intervals of positive slack, the network traffic would become less bursty.

5.6.4 Queue Length

The two most important queues to analyze are the queue at the router onboard

plane 0 and the queue at the satellite, because these routers are the most heavily

loaded in the simulation. The router at plane 0 connects a high speed link of 100

Mbps to a slow link of 64/256 Kbps. Therefore, messages coming from plane 0

will wait at the router queue for a chance to be transmitted. The satellite receives
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and transmits all the messages at low speeds, which constitutes a bottleneck in the

system. The routers at other planes not heavily transmitting PDUs take packets

from a slow wireless channel and pass them to a fast Ethernet link, resulting in

almost no queue waiting time. Nevertheless, the queue at another router is shown

as a sample of the behavior of the other routers.

Figure 47 represents the number of messages in the router at node 0, using

64 Kbps in the wireless channels. The queue length becomes really unacceptable,

reaching more than 3000 messages during some periods.

Figure 47: Messages in system at plane 0 (64 Kbps)

On the contrary, Figure 48 shows that the router at plane 3 has a normal

queue with a maximum of 23 messages. The reason for the short queue is that

the corresponding node 9 transmits only 553 PDUs, which are easily handled by the

router.

Figure 49 shows that the queue at the satellite (64 Kbps) has an unacceptable

behavior with a peak of more than 2200 messages.

Figure 50 shows the effect on the queue length of the router onboard plane 0

when the bandwidth increases from 64 to 256 Kbps. As a result, the queue length
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Figure 48: Messages in system at plane 3 (64 Kbps)

Figure 49: Messages in system at satellite (64 Kbps)
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decreases to less than 50 messages in its highest peak. Therefore, the change of

speed greatly reduces the router queue.

Figure 50: Zoom in of messages in system at plane 0 (64 and 256 Kbps)

At the satellite, the change in the queue length is also noticeable, as shown in

Figure 51. At 256 Kbps, less than 25 messages are held in the satellite during the

highest peak.

5.6.5 Collisions

There are two factors that influence the way collisions are detected and analyzed

in the OMNeT simulator.

First, the simulator considers the transmission media as an ideal bus in the sense

that a wave does not become weaker by traveling long distances. As a result, two

waves coming form opposite directions can collide in the middle of the bus, but they

will continue their ways without being destroyed. Therefore, only a listener located

at the collision point can detect the collision. In other words, it is perfectly possible

for a collision to be detected at some point of the bus and not at others. Due to
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Figure 51: Zoom in of messages in system at satellite (64 and 256 Kbps)

the high propagation speed of the bus, for short distances between nodes, like in

the LAN bus or the WPP bus, this behavior is irrelevant. However, for the WSP

channel, it has to be taken into account.

Second, the bus was programmed such that a message delivered at some bus gate

is not returned back to the sending entity, even if it collided. Therefore, in order to

detect collisions, a plain listener node (sentinel) should be chosen, as the router at

plane 7 in this simulation.

Figure 52 shows the collision accumulation sensed at planes 1, 2 and 7. Planes

1 and 2 are transmitters and receivers, while plane 7 is a receiver only. A few

more than 6000 collisions were detected at 64 Kbps in plane 7, which represents

approximately 10% of the total number of PDUs. The statistics are very similar in

the three cases, but plane 7 detects more collisions because the other planes cannot

detect collisions caused by the sending of their own messages.
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Figure 52: Collision accumulation at planes 1, 2, 7 (64 Kbps)

Figure 53 shows the collisions per second in the WSP wireless channel. The

other two links are not displayed because the LAN bus has no observable collisions

and the WPP link exhibits just a few ones. The WSP channel gets most of the

collisions. At 64 Kbps, the highest rates are close to 13 collisions per second in this

channel, near the second 2100, with an average of approximately 4 collisions per

second for the whole simulation.

Simulations performed using combinations of 64, 200, 256, 512 and 1024 Kbps in

wireless channels showed that the number of collisions decrease when the bandwidth

increases, as expected. Collision accumulation statistics viewed from plane 7 are

given in Figure 54. At 256 Kbps the total number of collisions is near 3800 that

represents about 6% of all the PDUs.

5.6.6 Spike Analysis of Slack Time

Figure 55 shows a zoom in sample of the slack time at the ground station when

the model is run at 64 Kbps on wireless channels. Some negative spikes are visible
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Figure 53: Collisions per second detected at the WSP wireless channel in plane 7
(64 Kbps)

Figure 54: Collision accumulation at plane 7 during Simulation 3 (64, 256, 512, 1024
Kbps)
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at regular time intervals. Positive points indicate that the bandwidth is enough

to handle the PDUs in the neighborhood previous to the point. On the contrary,

negative spikes indicate a lack of bandwidth in the wireless channels. Those spikes

deserve more attention to understand and correct the problem. The OTB simulator

produces the negative spikes when multiple PDUs are scheduled at the same or

almost the same time. Identification of the PDUs responsible for the negative spikes

is the first step towards the study and possible modification of the OTB scheduling

policy.

Figure 55: Slack time at ground station showing negative spikes (64 Kbps)

Because the phenomenon seems to be cyclic, one initial approach to explain it

relays on the analysis of the different PDUs participating in the spike, correlating

them with actions occurring in the vignette at those times.

The sample includes the spikes captured in the time interval [1400, 1600] seconds.

This is a representative sample of spikes produced at the generators of PDUs. The
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spikes were studied at 64 Kbps. Higher rates cause a decrease in the magnitude of

the negative spikes, but the spikes are still present because they are caused mainly

by OTB scheduling policies.

The six more relevant negative spikes shown in the graph are studied in the next

paragraphs.

5.6.6.1 Spike at second 1420

Figure 56 shows the participating PDUs responsible for the negative spike,

along with a close up of the spike graph. It is worth observing that eight

po fire parameters PDUs were issued at the same time, as well as four po line

PDUs, among others.

5.6.6.2 Spike at second 1454

As with the previous spike, Figure 57 shows that at second 1454 eight

po fire parameters, four po line, five po task, and five po task state are

responsible for this spike.

The spikes at seconds 1484, 1514, 1548 and 1578 are very similar to the previous

ones, and will not be commented out.
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size timestamp PDU type
84 :23:39.536 po point
84 :23:39.536 po point
80 :23:39.883 po task state
528 :23:39.982 po fire parameters
528 :23:39.982 po fire parameters
528 :23:39.982 po fire parameters
528 :23:39.982 po fire parameters
528 :23:39.982 po fire parameters
528 :23:39.982 po fire parameters
528 :23:39.982 po fire parameters
528 :23:39.982 po fire parameters
152 :23:39.982 po line
152 :23:39.982 po line
152 :23:39.982 po line
152 :23:39.982 po line
56 :23:39.982 po task state

1272 :23:39.982 po task
80 :23:39.982 po task state
80 :23:40.540 po task state
80 :23:40.633 po task state
56 :23:40.639 po task state

Figure 56: Negative spike at second 1420 showing participating PDUs
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size timestamp PDU type
528 :24:13.263 po fire parameters
528 :24:13.263 po fire parameters
528 :24:13.263 po fire parameters
528 :24:13.263 po fire parameters
528 :24:13.263 po fire parameters
528 :24:13.263 po fire parameters
528 :24:13.263 po fire parameters
528 :24:13.263 po fire parameters
152 :24:13.263 po line
152 :24:13.263 po line
152 :24:13.263 po line
152 :24:13.263 po line
56 :24:13.263 po task state

1272 :24:13.263 po task
80 :24:13.263 po task state
80 :24:13.458 po task state
80 :24:13.574 po task
80 :24:13.574 po task
80 :24:13.574 po task
80 :24:13.574 po task
48 :24:13.574 po task state
48 :24:13.574 po task state
56 :24:14.109 po task state

Figure 57: Negative spike at second 1454 showing participating PDUs
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size timestamp PDU type
80 :24:43.226 po task state
80 :24:43.269 po task state
80 :24:43.305 po task state
528 :24:43.344 po fire parameters
528 :24:43.344 po fire parameters
528 :24:43.344 po fire parameters
528 :24:43.344 po fire parameters
528 :24:43.344 po fire parameters
528 :24:43.344 po fire parameters
528 :24:43.344 po fire parameters
528 :24:43.344 po fire parameters
152 :24:43.344 po line
152 :24:43.344 po line
152 :24:43.344 po line
152 :24:43.344 po line
56 :24:43.344 po task state

1272 :24:43.344 po task
80 :24:43.344 po task state
80 :24:43.674 po task
80 :24:43.674 po task
80 :24:43.674 po task
80 :24:43.674 po task
48 :24:43.674 po task state
48 :24:43.674 po task state
48 :24:43.674 po task state
48 :24:43.674 po task state
100 :24:43.674 po objects present
56 :24:43.890 po task state
80 :24:44.529 po task state

Figure 58: Negative spike at second 1484 showing participating PDUs
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size timestamp PDU type
648 :25:13.777 po unit
648 :25:13.777 po unit
528 :25:13.777 po fire parameters
528 :25:13.777 po fire parameters
528 :25:13.777 po fire parameters
528 :25:13.777 po fire parameters
528 :25:13.777 po fire parameters
528 :25:13.777 po fire parameters
528 :25:13.777 po fire parameters
528 :25:13.777 po fire parameters
152 :25:13.777 po line
152 :25:13.777 po line
152 :25:13.777 po line
152 :25:13.777 po line
56 :25:13.777 po task state

1272 :25:13.777 po task
80 :25:14.153 po task
48 :25:14.153 po task state
48 :25:14.153 po task state
48 :25:14.153 po task state
48 :25:14.153 po task state
100 :25:14.153 po objects present
56 :25:14.284 po task state
80 :25:14.284 po task state
80 :25:14.323 po task state
80 :25:14.349 po task state
80 :25:14.409 po task state
112 :25:15.272 po line

Figure 59: Negative spike at second 1514 showing participating PDUs
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5.6.6.3 Spike at second 1484

5.6.6.4 Spike at second 1514

5.6.6.5 Spike at second 1548

size timestamp PDU type
648 :25:47.042 po unit
648 :25:47.042 po unit
528 :25:47.042 po fire parameters
528 :25:47.042 po fire parameters
528 :25:47.042 po fire parameters
528 :25:47.042 po fire parameters
528 :25:47.042 po fire parameters
528 :25:47.042 po fire parameters
528 :25:47.042 po fire parameters
528 :25:47.042 po fire parameters
152 :25:47.042 po line
152 :25:47.042 po line
152 :25:47.042 po line
152 :25:47.042 po line
56 :25:47.042 po task state

1272 :25:47.042 po task
80 :25:47.042 po task state
80 :25:47.755 po task state
80 :25:47.820 po task state
80 :25:47.935 po task state
80 :25:48.031 po task
48 :25:48.031 po task state
48 :25:48.031 po task state
48 :25:48.031 po task state
48 :25:48.031 po task state
100 :25:48.031 po objects present
112 :25:48.031 po line
112 :25:48.031 po line
112 :25:48.031 po line
112 :25:48.031 po line
184 :25:48.031 po task
184 :25:48.031 po task
184 :25:48.031 po task
56 :25:48.080 po task state
80 :25:48.080 po task state

Figure 60: Negative spike at second 1548 showing participating PDUs

119



5.6.6.6 Spike at second 1578

size timestamp PDU type
112 :26:17.516 po line
80 :26:17.558 po task state
648 :26:17.697 po unit
648 :26:17.697 po unit
528 :26:17.697 po fire parameters
528 :26:17.697 po fire parameters
528 :26:17.697 po fire parameters
528 :26:17.697 po fire parameters
528 :26:17.697 po fire parameters
528 :26:17.697 po fire parameters
528 :26:17.697 po fire parameters
528 :26:17.697 po fire parameters
152 :26:17.697 po line
152 :26:17.697 po line
152 :26:17.697 po line
152 :26:17.697 po line
56 :26:17.697 po task state

1272 :26:17.697 po task
80 :26:17.864 po task state
80 :26:18.218 po task state
56 :26:18.254 po task state
80 :26:18.254 po task state
112 :26:18.533 po line
112 :26:18.533 po line
112 :26:18.533 po line
184 :26:18.533 po task
184 :26:18.533 po task
184 :26:18.533 po task
80 :26:18.649 po task state
80 :26:18.982 po task state

Figure 61: Negative spike at second 1578 showing participating PDUs

5.6.7 Conclusions of Simulation 3

As predicted by the independent analysis, 64 Kbps in the wireless links

is completely insufficient to handle traffic in the interval [1600, 2550] seconds.

Latencies of more than 70 and 110 seconds were detected at plane 0 for traffic

coming from other planes and the ground station, respectively. As predicted, a big
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improvement was achieved starting at 200 Kbps. Latencies less than 1 second were

almost always the rule for messages received at the ground station. At the router in

plane 0 and at the satellite, the queue lengths changed from 3400 and 2200 (max)

to less than 50 and less than 25 (max), respectively, just by changing the bandwidth

from 64 Kbps to 256 Kbps. Relatively few collisions were detected, which are not

enough to significantly change the results or conclusions. A summary of the total

number of collisions is given in Table 5.

Table 5: Total, relative percentage and average number of collisions per second in
Simulation 3

Bandwidth Collisions Percentage Frequency

64 Kbps 6320 coll. 10.5% 4.2 coll/sec

200 Kbps 4434 coll. 7.3% 2.9 coll/sec

256 Kbps 3804 coll. 6.3% 2.5 coll/sec

512 Kbps 2421 coll. 4.0% 1.6 coll/sec

1024 Kbps 1416 coll. 2.3% 0.9 coll/sec

The negative spikes in slack time studied in Simulation 3 are very similar,

including three main types of PDUs: po fire parameters, po line and

po task state PDUs. In all cases, sequences of these PDUs were scheduled exactly

at the same time, causing the spike. It seems that the main sequence of PDUs in a

negative spike is of type po fire parameters, perhaps because the entity (ground

station) is firing against some enemy at regular time intervals.

5.7 Simulation 4: Vignette MR1 Revisited

Given that site 1519 assigned to node 0 in plane 0 for Simulation 3 generates

83% of all the PDUs, it seemed interesting to assign it to the CONUS ground

station connected to the satellite via a wireless channel. The idea was suggested
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by PO STRI personnel during an update presentation. The results obtained

were certainly interesting, and leaded to the developing of the bundling algorithm

described in Section 3.4.2.

5.7.1 Independent Analysis of Logged PDUs and
Assignment

This simulation makes use of the same data set as in Simulation 3, and so the

types of PDUs, data volumes and percentages remain the same. The only difference

is that the assignment of sites 1519 and 1532 corresponding to computer 0 and

ground station was swapped. Therefore, the assignment of sites to computers in

this experiment is as follows.

Site 1532 ( 0): 7382 PDUs assigned to plane 0, node 0

Site 1526 ( 3): 1056 PDUs assigned to plane 1, node 0

Site 1529 ( 6): 483 PDUs assigned to plane 2, node 0

Site 1533 ( 9): 553 PDUs assigned to plane 3, node 0

Site 1538 (12): 637 PDUs assigned to plane 4, node 0

Site 1519 (24): 50230 PDUs assigned to ground station

The minimum bandwidth requirements are the same as in Simulation 3 and can

be found in Figure 41.
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5.7.2 Slack Time

As seen in Figure 62, the most noticeable fact is the enormous negative slack (-75

seconds) in the ground station at 64 Kbps. These results are as expected because

the ground station has to transmit a large number of PDUs through a slow bus.

Figure 62: Slack time to send next message at planes 0, 1, 2, 3, 4 and ground station
(64 Kbps)

Figure 63 shows the slack time at the ground station when the bandwidth is

set to 128 Kbps. Just by increasing the speed from 64 to 128 Kbps, the negative

slack time changes dramatically from values close to -75 seconds to values near -1.5

seconds. It is worth noting that a regular pattern of negative spikes is observed at

intervals of approximately 28 seconds.

Figure 64 is a zoom in to the Y axis of the slack time at the ground station. The

graph clearly show that most of the time the negative slack falls into the interval

[-0.4, 0]. Lots of negative spikes of all sizes can be seen in an apparent uniform

distribution during the majority of the simulation time.

The positive slack time has a different behavior. As seen, positive spikes are

not produced. The reason is that when a positive slack is detected, the simulator
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Figure 63: Slack time to send next message at ground station (128 Kbps)

Figure 64: Zoom in of slack time to send next message at ground station (256 Kbps)
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waits that time before processing the PDU, and the following PDUs are not read

yet. When the simulator is ready to process the next PDU, some time has elapsed.

Even if the second PDU has a positive slack, in the graph the points corresponding

to the two consecutive PDUs are separated at least by the waiting time, and so a

column or spike is not created.

5.7.3 Travel Time

Figure 65 shows the travel time of PDUs measured at node 0 in plane 7, using

64 Kbps in wireless links. The increasing curve comes from PDUs originated at the

ground station that waited unbounded latencies at the satellite queue. On the other

hand, the PDUs coming from nearby airplanes arrived with a negligible time delay

for the scale used.

Figure 65: Travel time at plane 7 (64 Kbps)

Increasing the wireless bandwidth to 200 Kbps or more produces an enormous

change in the travel time. Figure 66 displays travel times at 256 Kbps. All of

the plotted PDUs fall below the level of 0.5 seconds. The graph indicates that the
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PDUs belong to two different sets. The first set corresponds to PDUs sent by the

ground station. These PDUs needed 0.255 seconds to travel the earth-satellite-earth

distance plus some waiting time in satellite and router queues. The second set is

made up of PDUs comming from other airplanes. These PDUs waited in the router

queues only.

Figure 66: Zoom in of travel time at plane 7 (256 Kbps)

From the said figures, it can be concluded that the change in bandwidth from

64 Kbps to 256 Kbps is a key factor in the overall network performance, conclusion

that was already predicted by the offline independent analysis.

5.7.4 Queue Length

Figure 67 plots the queue length at the router in plane 0 for a wireless bandwidth

of 64 Kbps. The queue length is manageable, even at 64 Kbps, where the maximum

number of messages in the system is less than 80. At higher speeds the queue become

noticeable shorter.
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Figure 67: Messages in system at plane 0 (64 Kbps)

However, Figure 68 shows that at 64 Kbps the satellite queue becomes extremely

long, reaching values over 6000 messages. Also, it is seen that the change from

64 Kbps to 256 Kbps is impressive, requiring storage for 35 messages only at the

highest peak. This length is well handled and achievable, especially if the bundling

and replication algorithms proposed in Section 3.4 are implemented.

Figure 68: Messages in system at the satellite (64 and 256 Kbps)

By setting the wireless channels to a bandwidth of 1024 Kbps, Figure 69 exhibits

what can be considered as an upper bound on the performance achievable on the
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satellite queue. As observed, a satellite queue of fewer than 20 messages is very

difficult to achieve for the MR1 vignette with the current technology and algorithms.

Figure 69: Messages in system at the satellite (1024 Kbps)

5.7.5 Collisions

Figure 70 is the summary of collision accumulation as seen by the sentinel

airplane 7 at 64, 256, 512 and 1024 Kbps. At 64 Kbps the number of collisions

represent approximately 8% of the total number of PDUs, while at 256 Kbps the

percentage descends to 5%. As with simulation 3, collisions are small enough not to

cause an important change in the rest of the statistics by not implementing a more

standard treatment.
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Figure 70: Collision accumulation at plane 7 (64, 256, 512, 1024 Kbps)

5.7.6 Conclusions of Simulation 4

The assignment of site 1532 to the ground station moves the most active

computer to this CONUS station, making the bandwidth of the WGS link a key

point for network performance assessment. At 64 Kbps very negative time slacks

are produced. The reason is that the transmission time of the generator in the

ground station is limited by the slow bandwidth and cannot schedule the PDUs

as indicated by their timestamps. In other words, the slow bandwidth acts as a

contention mechanism.

Increasing the wireless bandwidth to 256 Kbps produces an enormous change in

the general performance of the system, result that was predicted by the independent

analysis.
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5.8 Simulation using Head of Line Strategy

HOL strategies are mentioned in the Ph.D. dissertation [Liu02], in the paper

[DGR01], and in the research papers [PW03] and [LS93], among many others.
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CHAPTER 6

TRAFFIC OPTIMIZATION USING PDUAlloy

The analysis of negative spikes in Section 5.6.6 induced the idea of a possible

solution to eliminate or reduce them by means of bundling the participating PDUs

into a single packet. In order to do so, the PDUs were examined in more detail,

looking for similarities and redundancies in their fields.

Each type of PDU has its own internal structure made up of fields and values of

different sizes. A study of all the logged PDUs in the MR1 vignette indicated that

if two PDUs are of the same type and length then they have identical structure, as

indicated in Section 3.4.2. This is a key point in the proposed bundling algorithm.

Another observation from the logged PDUs is the fact that OTB schedules some

sequences of consecutive PDUs using exactly the same timestamp, as in the sample

sequence shown in Figure 56. This causes a bottleneck in generators due to the

impossibility of sending several packets at the same time. In most cases, consecutive

PDUs of equal type and length differed in the contents of some few fields, giving

the possibility of merging them into a single PDU.

6.1 Independent Analysis and Assignment of PDUs

The same input data from Simulations 3 and 4 is used in Simulation 5, and so

the independent analysis is exactly the same as in those simulations, reason why it

is omitted here.
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The assignment of OTB sites to computer nodes in Simulation 5 is the same as

in Simulation 4, and can be found in Section 5.7.1.

6.2 Input Data

The summary PDU files described in Figure 19 of Section 5.2 contain 4 characters

at the end of each PDU. The characters are S standing for send, and W standing

for wait. They provide information about the action to follow after processing each

PDU. Six algorithms to predict that action are proposed and studied under this

Simulation 5. They can be classified in two groups: on-line algorithms, which decide

the next action based only on the already processed PDUs, and off-line algorithms,

which know all the past and future sequence of PDUs in advance.

In this simulation the on-line algorithms are neural-network prediction (see

details on Section 3.4.2.1), Always-Wait and Always-Send. The off-line ones are

type, type-and-length, and type-length-and-time, which have the capability of a perfect

prediction due to their knowledge of the future.

6.3 Slack Time

Figure 71 shows the slack time of the generator at the CONUS ground station

for different predictive algorithms.

The graph was created assigning 64 Kbps to all the wireless links and 100

milliseconds to the timeout period. As seen in the diagram, up to the second 1600

all of the algorithms behaved alike, but then negative slack started to build up. The

Always-Send algorithm, which is equivalent to the non-bundling algorithm used

in Simulation 4 (see Figure 62), incurred in the largest negative slack, followed
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Figure 71: Slack time at ground station for the 6 predictive strategies (64 Kbps)

by type-length-and-time. The neural network approach performed relatively well,

considering that its predictions are not perfectly accurate. The other algorithms are

among the best in this simulation, and a close-up of their performance is shown in

Figure 72.

From the graph, it can be concluded that the neural network approach could

be improved by using a better learning mechanism and/or NN architecture. The

NN algorithm predicts the PDU type based only on the time series of the past 48

PDU types. Therefore, its performance can be compared against the optimal type

algorithm, obtaining its competitive ratio (as defined in [FL02]) for the cost function

negative slack time.

Another observation from Figure 72 is that the decision of sending the current

bundle based solely on the upcoming PDU type, is as good as the one that considers

the type and the length of each PDU. Therefore, a NN approach could benefit from
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Figure 72: Comparison of negative slack for the four best algorithms

this observation by concentrating the effort in predicting the type only, instead of

the type and the length.

However, the most interesting observation comes from the fact that the

Always-Wait algorithm is almost as good as the one based on the type-and-length,

and of course, Always-Wait is the simplest of all the strategies. The reason is that

there is a high probability that the prediction based solely on the type agrees with

the prediction based on the type and length. For example, an off-line examination of

the PDUs indicated that from the 50230 PDUs sent by the CONUS ground station,

42911 (85.4 %) implied the same action (wait or send) for both algorithms.

Table 6 shows the slack time average and standard deviation for all combinations

of algorithms and bandwidths measured at the ground station. The average is

a signed number; therefore, the larger the average is, the better the algorithm

performs. The average was calculated considering all the PDUs generated during

the simulation.
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Table 6: Slack time average and standard deviation for all the studied
algorithms and bandwidth combinations measured at the ground
station

Avg: 64 Kbps 128 Kbps 256 Kbps 512 Kbps

Std:

type -0.758 -0.017 0.015 0.024

1.600 0.109 0.073 0.066

type+length -0.760 -0.018 0.015 0.024

1.601 0.110 0.073 0.066

type+length+timestamp -10.659 -0.027 0.013 0.023

11.711 0.115 0.073 0.066

always wait -0.802 -0.017 0.016 0.024

1.689 0.109 0.073 0.066

NN -1.579 -0.044 0.008 0.022

2.638 0.162 0.085 0.069

always send -26.181 -0.054 0.006 0.021

26.033 0.176 0.085 0.069
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From this table it is concluded that the Always-Send is the worst of the six

algorithms, and Always-Wait is among the best ones. Because, Always-Send

corresponds to the non-bundling option, it is inferred that the type of bundling

proposed is of advantage to the DIS protocol.

Another observation comes from the fact that at 64 and 128 Kbps, the average

slack time was negative for all the algorithms, but for 256 and above it is positive.

A negative average indicates that the corresponding bandwidth is insufficient to

handle the PDU traffic. Therefore, for the MR1 vignette, the wireless bandwidth

should be at least 256 Kbps.

6.4 Travel Time

Every time a bundle is sent, the current time (Tsend) is attached to it, allowing the

destinations to calculate the travel time Ttrav , as indicated in Equation 5.6. Figure

73 shows the travel time measured at sink 0 onboard plane 0, for the Always-Wait

strategy, using 64 and 128 Kbps in wireless links. It is clear from the graph that 64

Kbps is not enough bandwidth to handle all the traffic required by the simulation,

even with bundling. As seen, during the interval from second 2000 to second 2400

many of the PDUs took almost 40 seconds to arrive at their destinations, making the

OTB simulation useless. However, a big improvement is obtained just by duplicating

the bandwidth. At 128 Kbps, the latency was close to 0.8 seconds, as observed in

Figure 74.

Figure 74 shows that most of the PDUs take less than 0.4 seconds to reach their

destinations. It is interesting to note the large concentration of PDUs near 0.25

seconds, which is the propagation delay for satellite signals. The graph also shows
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Figure 73: Travel time for the Always-Wait strategy, at destination 0 onboard plane 0,
using 64 and 128 Kbps in wireless links

that some PDUs take less than 0.1 seconds of travel time. Those PDUs correspond

to messages sent from other airplanes without passing through the satellite.

Table 7 shows the average and standard deviation of the travel time for each

combination of algorithm and bandwidth, measured at sink 0 onboard plane 0.

Considering that approximately 83 % of the PDU traffic arriving at sink 0 comes

from the ground station via satellite, and that for those PDUs, 0.255 seconds is an

unavoidable delay, the table shows a very good behavior of the algorithms at 256

Kbps or more, giving a slight advantage to Always-Wait bundling.
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Figure 74: Close-up of travel-time at sink 0, plane 0 (128 Kbps)

Table 7: Average and standard deviation of travel time measured at sink 0

Avg: 64 Kbps 128 Kbps 256 Kbps 512 Kbps

Std:

type 9.20 0.304 0.262 0.249

13.2 0.099 0.069 0.064

type+length 9.24 0.306 0.262 0.249

13.2 0.101 0.069 0.064

always wait 9.43 0.303 0.261 0.249

13.5 0.099 0.069 0.064

NN 28.7 0.314 0.261 0.248

33.2 0.119 0.069 0.064

always send 64.0 0.333 0.263 0.251

58.0 0.153 0.062 0.057
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6.5 Queue Length

Due to the nature of the PDU traffic in the simulation, two queues to focus

attention on are the router queue onboard any aircraft, for instance airplane 0, and

the satellite queue. Figure 75 shows the satellite queue at 64 and 128 Kbps.

Figure 75: Messages in satellite at 64 and 128 Kbps showing the impact of a higher
bandwidth on its queue

It is clear from the graph that 64 Kbps is an insufficient bandwidth, causing the

satellite queue to grow unbounded. The reason for having a descent after reaching a

maximum of about 6000 messages, is that the simulation is approaching its end and

no more messages are sent from the generators. However, at 128 Kbps a significant

change in the queue length is produced, keeping it at reasonably low values.

Another observation is that at 64 Kbps the graph does not reach zero at the end.

This occurs because the queue status is reported only if another message enters the

queue. After the arrival of the last message to the queue, the messages are consumed

without being reported.
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Table 8 displays the average and standard deviation of the satellite queue length

for combinations of different algorithms and bandwidths. Again, Always-Wait seems

to be the best algorithm, closely followed by type and type-and-length.

Table 8: Average and standard deviation in the satellite queue length for combinations
of algorithm and bandwidth

Avg: 64 Kbps 128 Kbps 256 Kbps 512 Kbps

Std:

type 316.97 2.38 0.91 0.56

411.43 3.97 1.72 1.23

type+length 318.154 2.44 0.92 0.56

412.273 4.13 1.75 1.26

always wait 327.278 2.30 0.85 0.49

421.161 3.88 1.69 1.16

NN 1028.47 3.58 1.24 0.79

1045.26 6.37 2.18 1.52

always send 2962.94 5.40 1.22 0.63

2236.83 10.78 2.55 1.57

6.6 Collisions

Collision accumulation in plane 7 at different bandwidth rates is given in Figure

76. The results from the simulation indicate that at 64 Kbps the highest collision

rate measured at the router aboard airplane 7 was close to 12 collisions per second,

and this occurred during the time interval [2050, 2100] in the WSP link that connects

the satellite to the planes. At 64 Kbps, fewer than 4800 collisions were detected in all

for the Always-Send algorithm, which represents less than 8 % of the total number

of PDUs. On the other hand, at 256 Kbps the total number of collisions for the

Always-Wait algorithm was close to 2100, or 5.3 % of all the bundles.
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Figure 76: Collision accumulation at plane 7 (64, 256, 512, 1024 Kbps)

As Figure 76 shows, at 128 and 256 Kbps there is roughly a total difference of

1000 fewer collisions for the Always-Wait than for the Always-Send algorithm, which

indicates that bundling significantly reduces the number of collisions, given the same

bandwidth for both algorithms. In addition, it can be noted that as the bandwidth

increases, the number of collisions decreases, which is intuitively explained because

at higher bandwidths the packets take less transmission time, and so the probability

of a collision gets lower.

6.7 Conclusions of Simulation 5

The main conclusion of this simulation is that the type of bundling proposed in

this dissertation proved to be successful during the simulation of the MR1 vignette.

All the algorithms based on bundling performed a lot better than the non-bundling

Always-Send algorithm.
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prediction based solely on the PDU type is almost as good as the prediction based

on the type and the length, and these predictions are better than the Always-Wait

algorithm by half a second in some cases. Therefore, a NN approach could be useful

if the percentage of successful guesses is so high that outperforms the Always-Wait

algorithm.

Another conclusion is that the Always-Wait algorithm, although not optimal,

gives very good results that can be acceptable in many cases, especially if the

bandwidth is incremented. Let’s take into account that the shown results are

simulations at 64 KBps. At higher bandwidths, the difference between Always-Wait

and the perfect guessing algorithms (type, type-and-length)becomes smaller, giving

the easy-to-program Always-Wait strategy a relevant importance.

The final conclusion about the bandwidth is that 256 Kbps in wireless channels

is the minimum bandwidth for the MR1 vignette that passes all the tests (slack

time, travel time, queue length, and collisions) in an acceptable way.
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CHAPTER 7

CONCLUSIONS

There are three main sets of conclusions that can be drawn. The first set

corresponds to conclusions about the required bandwidth in the wireless channels

to carry out the OTB simulation. The second set corresponds to conclusions about

the effectiveness of the bundling techniques.

The simulation issues in this dissertation can be divided into three main

areas: re-scheduling and transmission of PDUs, replication and prediction of PDUs,

and PDU compression. In the following, each area is briefly addressed.

7.1 Scheduling

The re-scheduling and transmission of PDUs is an attempt to reduce the negative

slack spikes by transferring some of their PDUs to periods of positive slack. Not

only the po fire parameters PDUs are subject to be rescheduled, but any PDU

that involves some sort of negative slack could be reschedule. The goal is to obtain

a traffic as close as possible to a burst-free model to keep the channels busy but not

flooded.

The DIS protocol is responsible for the timestamps of the PDU packets. If many

PDUs are scheduled not only at the same microsecond, but also within a very short

time interval, the effect is similar to a negative spike. The experiments with the

OMNeT simulation showed that mixed with negative spikes there are many positive
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ones. The positive spikes indicate that the channel is not used during those intervals

and so rescheduling of the PDUs could bring a better utilization of the channel. If

a sequence of PDUs timestamped at almost the same time followed by periods of

rest can be recognized and predicted, then the scheduler could implement a type of

contention to refrain from sending those PDUs so close to each other and spread

the sending times evenly throughout the intervals of low traffic. In doing so, the

length of each PDU must be taken into account because it is proportional to the

transmission time.

The proposed research will require access to the specific formats and

characteristics of PO PDUs. Also, the implicit assumption that in OTB some PDUs

can be rescheduled and be sent in a different order without adversely affecting the

overal simulation must be corroborated. If that is the case, we propose to identify

priority levels for PDUs.

It is possible to introduce modifications in the PDU scheduling aimed at reducing

the traffic by sending just one PDU in cases where several of them are sent at the

same timestamp.

The observations pointed out in the conclusions suggest that it is possible

to introduce modifications in the PDU scheduling aimed at reducing the traffic

by sending just one PDU in cases where several of them are sent at the same

timestamp. The idea is to investigate the possibility of introducing a kind of protocol

compression to eliminate redundancy in consecutive PDUs. For instance, if several

po fire parameters PDUs are sent, only one real PDU could actually be sent,

along with some new fields indicating the number of PDUs scheduled at this time

as well as an indication of the changes to be applied in order to extract the other

PDUs from the given one.

A side effect of reducing the PDU traffic is a decrease of collisions, especially

if the PDUs are relatively long, as is the case of po fire parameters PDUs. Ten
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consecutive PDUs of this type account for 5280 bytes plus the time gaps between

frames. During the transmission time of these PDUs, the channels are heavily

occupied and any other attempt to transmit from another station over the same

channel will end up in a collision. By sending just one PDU of approximately 550

bytes will decrease the probability of having a collision.

po fire parameters PDUs can be successfully compressed under certain

conditions.

A side effect of reducing the PDU traffic is a decrease of collisions, especially

if the PDUs are relatively long, as is the case of po fire parameters PDUs. Ten

consecutive PDUs of this type account for 5280 bytes plus the time gaps between

frames. During the transmission time of these PDUs, the channels are heavily

occupied and any other attempt to transmit from another station over the same

channel will end up in a collision. By sending just one PDU of approximately 550

bytes will decrease the probability of having a collision.

The re-scheduling and transmission of PDUs is an attempt to reduce the negative

slack spikes by transferring some of their PDUs to periods of positive slack. Not

only the po fire parameters PDUs are subject to be rescheduled, but any PDU

that involves some sort of negative slack could be reschedule. to obtain a traffic as

close as possible to a burst-free model to keep the channels busy but not flooded.

The experiments with the OMNeT simulation showed that mixed with negative

spikes there are many positive ones. The positive spikes indicate that the channel

is not used during those intervals and so rescheduling of the PDUs could bring a

better utilization of the channel. If a sequence of PDUs timestamped at almost the

same time followed by periods of rest can be recognized and predicted, then the

scheduler could implement a type of contention to refrain from sending those PDUs

so close to each other and spread the sending times evenly throughout the intervals

of low traffic.

145



some PDUs can be rescheduled and be sent in a different order without adversely

affecting the overal simulation

Besides the common compression algorithms, another strategy to consider is the

concatenation of several consecutive PDUs scheduled during very short periods of

time. The time gap between packets is also a variable to consider. It is possible to

save TCP/IP headers and inter-packet time gaps by assembling together individual

PDUs into a large compact block. If the size of the largest acceptable block is

known, the problem of assembling shorter PDUs is twofold. First, a new set of

PDUs is collected and concatenated as long as the total size does not surpass the

block length. Second, while waiting for the next PDU a decision must be made

regarding the convenience of sending this block right now, or keep waiting for a

while. Here, the possibility of predicting the timestamp of the next PDU is a big

help to this decision. Some pattern recognition techniques could be applied to

predict a sequence of very close PDUs followed by a positive spike.

7.1.1 Required Bandwidth

The goal behind the development of this research was to estimate the required

bandwidth in the wireless channels for the effective communication of the OTB

modules in the flying network depicted in Figure 1. The LAN segments were

assumed Ethernet at 100 Mbps.

A vignette was prepared and run by OTB, simulating the 24 flying sites plus

the ground station. The PDU traffic generated was captured and used as input to

the OMNeT simulator, preserving the original timestamps, types and lengths. The

OMNeT simulator was run under several combinations of wireless bandwidths (64,
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128, 256, 512, 1024 Kbps) and bundling techniques (Always-Send, neural network,

type, type+length, Always-Wait).

From the results of the OMNeT simulation, it is concluded that 64 Kbps in

the wireless links are not enough to handle the PDU traffic, due to the enormous

negative slack reported in the generators (Figure 71), the big travel time latency

reported in Figure 73, and the long satellite queue shown in Figure 75. However, at

128 Kbps the scenario changes dramatically, and at 256 Kbps it gets even better.

It seems that an average of 0.26 seconds in the travel time and 2.3 messages in the

satellite queue are good indicators of performance. However, the negative average

of -0.017 seconds indicates that 128 is not really enough bandwidth. Therefore,

the conclusion is that the required bandwidth should be at least 256 Kbps in the

wireless links.

The independent analysis performed on the logged data is an important

procedure in the assessment of bandwidth because it gives a good initial insight

about the minimum instant bandwidth required at a fraction of the cost of a

complete simulation. It can be used also to identify periods of low and high network

traffic, and correlate them with actions being developed by the simulated parties for

a better understanding of the simulation behavior.

7.1.2 Effectiveness of bundling

All of the statistics presented indicate that bundling is an effective technique

for reducing the PDU traffic and better utilize the bandwidth. The reductions in

negative slack (Figures 71 and 72), travel time (Table 7), satellite queue length

(Table 8), and number of collisions (Figure 39) are all indicators in that sense.
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The replication of PDUs through bundling presented in this research differs from

other proposals [US95a, Tay95, Tay96b, Tay96a, Ful96, BCL97, PW98, WMS01] in

several ways. First, bundling takes into account the internal structure of each PDU;

only PDUs of the same type and length are put together in a bundle. Second, the

resulting bundle has a structure similar to any other PDU and can be considered

a PDU of a different type, subject to further bundling or compression technique if

desired. Third, the bundling algorithm is simple and easy to implement, as well as

the extraction of individual PDUs at the destination. Each bundle is independent

of the others and all the information needed to extract the PDUs is contained in

the same bundle. A previous basic PDU sent to the destinations containing static

values is not used in this approach.

The bandwidth analysis showed that, on the average 256 Kbps in the wireless

channels are sufficient to handle the traffic of experiments 1 and 2 corresponding to

the contracted vignette, except for the negative spikes of the slack time detected at

the sending stations.

The main cause of those negatives spikes is the scheduling of PDUs having exactly

the same timestamp. The analysis of the largest spikes showed that PDUs of type

po fire parameters are the main components of those spikes and sequences of 8 or

more PDUs are common. Each po fire parameters PDU has a length of 528 bytes.

Comparisons of samples of po fire parameters PDUs for the same spike indicated

that they are very similar, having differences related to PDU identification and

memory address of the PDU fields only. Other types of PDUs scheduled at exactly

the same timestamp have not been investigated yet, but it is quite possible that

PDUs of the same type bearing the same timestamp are very similar.

In Simulation 1 ... as predicted, 64 Kbps in the wireless links is insufficient to

handle Embedded Training traffic under a DIS-like protocol. Latencies of more than

70 and 100 seconds, respectively, were detected for traffic from simulation stations
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on other planes and at the ground station where the Opposing Force simulated

entities would be controlled. As predicted, a significant improvement was achieved

at 200 Kbps, where latencies less than 1 second were almost always the case for

messages received at the ground station.

At the router in plane 0 and at the satellite, the queue lengths changed from

3400 and 2200 (max) to less than 60 and less than 40 (max), just by changing the

bandwidth from 64 Kbps to 200 Kbps. As seen by the listener router at plane 7,

collisions are manageable, and decrease correspondingly as the bandwidth increases,

as shown in Table 9.

Table 9: Collision Accumulation, percentage and average collisions per second at
plane 7 for different bandwidths

Bandwidth Kbps collisions percentage collisions/sec

64 6300 10 % 2.5

200 4400 7.3 % 1.7

512 2300 3.8 % 0.9

1024 1300 2.1 % 0.5

In simulation 2 ... the assignment of site 1532 to the ground station moves

the leadership computer to this station, making the bandwidth of the wirelessGS

link a key point. At 64 Kbps very negative slacks are produced. This is easy to

explain. The generator inside the ground station is limited by the slow bandwidth

and cannot schedule the PDUs as indicated by their timestamps. In other words,

the slow bandwidth serves as a contention mechanism.

Increasing the wireless bandwidth to 256 Kbps produces an enormous change

in the general performance of the system. The experiments showed that the

negative spikes have a very similar PDU structure, with 3 main types of

PDUs: po fire parameters, po line and po task state PDUs.
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It seems that the sequence mainly responsible of negative spikes is of type

po fire parameters, perhaps because the entity studied (ground station) is firing

against some enemy. This hypothesis needs to be corroborated against an actual

run of the OTB vignette. If the hypothesis is corroborated, then it can be concluded

that firing activities cause those spikes.

Also, although not a universal contribution, through this research the Electrical

and Computer Engineering Department of the University of Central Florida got

familiar with the OMNeT software, which is in the public domain and provides a

quality simulation environment for C++ programmers. The development of the

simulator for handling PDUs of an OTB application is an example of OMNeT usage

that can serve as a starting basis for other projects.
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CHAPTER 8

FUTURE WORK

8.1 Future Work

Better NN predictive algorithm. Another branch of research could be based on

the prediction of the type for the upcoming PDUs. The neural network developed

in this study was very simple, having an accuracy of prediction close to 70 %. If

an improved neural network is developed, it could beat the Always-Wait strategy.

However, a careful comparison in terms of simplicity and usage of CPU time and

memory between both algorithms would be required.

Specific format of PO PDUs, not only regular PDUs, must be studied and

incorporated in the bundling strategies.

we propose to identify priority levels for PDUs. By using Head-of-Line (HOL)

queueing service strategies such that high priority PDUs are put at the front of

the queue, the critical PDUs will be scheduled on time for the consistency of the

simulation.

technique that can be used to diminish negative spikes and in general make a

better usage of the available bandwidth is related to data compression. Compression

can be applied at two levels: data compression of the PDU data, and compression

of the TCP/IP headers.

Several possibilities of future work are open. The bundling algorithm could be

extended to consider PDUs of the same type but different length as candidates to
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be included in the bundle. Also, the bundling of PDUs of different types could also

be researched as long as the resulting bundle still keeps the structure of a PDU.

The bundling strategy aimed at preserving the message structure could be

applied to other communication protocols or data streams besides DIS. For instance,

if a large database needs to be transmitted through a slow network and the

records have some sequence relationship such that repeated fields are often found in

consecutive records, the records could be bundle using the algorithms presented in

this article.

The implementation of the said PDU compression and rescheduling techniques

could be made inside OTB directly, or by appending a filter to the OTB output,

together with a de-filter module at the receiving site. The filter has the advantage of

not modifying the current OTB implementation, at a cost of less efficiency. But for

the goals of this research, it is enough to demonstrate that the proposed techniques

are reasonable and achievable.

It must be investigated whether the compression of PDUs can be done by

extending the current PDUs with new fields, or by creating a new PDU type with

the new fields, and then send it as a prefix to the PDU that will be expanded.

An additional product obtainable from the project is the development and

maintainability of UCF OMNeT++ models and logger files based on generic libraries

suitable for FCS capacity planning and requirements generation. A self-contained

executable demo is a valuable help for future presentations of the project.
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MR1 VIGNETTE
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APPENDIX A

MR1 VIGNETTE

This vignette is due to Dr. Avelino González and Dr. Michael Georgiopoulos.

A.1 Background

In 2014, twenty years of independence for the Trans-Caucasus States found

serious socio-political, ethno-religious, and economic conflict spreading throughout

the region. Azerbaijan emerged as the leading economic power through the

exploitation of Caspian and Central Asian oil reserves. Azerbaijan’s politics were

deeply divided; its citizens and Karabakh refugees demanded the government take

military action against the Armenian Karabakh that forced them to flee. The

Azerbaijani government refused to act, and refugees from the Nagorno-Karabakh

Internal Liberation Organization [NKILO], using terror and armed force to achieve

their goals, began a cross-border unconventional campaign designed to force a

confrontation between the two countries. Observing these developments, Armenia

and Iran viewed the Azerbaijani government’s instability as an opportunity to

expand their influence in the region for political gain. Armenia began massing

maneuver forces along the Azerbaijani border and repositioned mobile Theater

Ballistic Missile launchers. Both countries perceived a low risk of failure in executing

their campaign strategy and were willing to impose a military solution upon the

Azerbaijani problem.

154



In November 2014, initial reports of the Caspian Sea Peninsula crisis caused the

U.S. to take steps to improve its awareness of the developing situation. The Secretary

of Defense redirected intelligence assets to focus on the region and directed political

and military planners to formulate contingency plans for U.S. engagement in the

region. They determined an Army Objective Force Unit of Employment 2, operating

as the Army component of a joint force, would be required to accomplish U.S. goals

in the region and assigned operational control of the 15th Division air-ground task

force to USEUCOM for planning purposes. Warning orders were issued through

USEUCOM to the U.S. 15th Division air-ground task force, and supporting attack

and lift aviation assets to begin their own planning. US Army Europe (USAREUR)

and its theater support command (TSC) reviewed and updated contingency plans

and refined the sustainment preparation of the theater. The TSC issued warning

orders and created a provisional logistics/sustainment task organization called the

Area Support Group (ASG) that would support land forces employed in theater.

In late November, the Azeri Islamic Brotherhood (AIB), a coalition of

anti-government factions supported by NKILO and the Azerbaijani National Front

for Revolutionary Action (ANFRA) military forces, subverted the bulk of an Azeri

Motorized Rifle Brigade, which mutinied to realign with this faction. The brigade

seized control of most of the historically significant Icheri Sheher (Inner Town)

district in Baku. However, a desperate defense by loyal government forces managed

to secure the centers of government within the capital city. Meanwhile, two

armed clan-based factions of the Azeri Islamic Brotherhood, the Aziz and Daha,

extended their control of the eastern and western outskirts of Baku, respectively,

and intensified their efforts to overthrow the legitimate government. As a last resort,

the Azerbaijani government requested assistance from the Russian Federation to

defeat the insurgents and preclude an anticipated invasion by Armenian forces. On

15 December, Russia proposed a coalition of U.S. and Russian forces to restore
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order within Azerbaijan and stabilize the government. Two days later, the U.S.

agreed to the proposal and the two nations created a coalition force and outlined its

employment plan. The joint force commander, United States European Command

(USEUCOM), and his Russian counterpart formed a coalition staff that included a

coalition/joint theater logistics management element (C/JTLME). The C/JTLME

continued to develop plans to logistically support coalition forces employed in theater

and to determine the most efficient use of all coalition movement, sustainment, and

facilities assets.

United States European Command focused its main effort at developing the

situation and expanding the knowledge base already resident from the Operational

Net Assessment of this region. They pre-positioned incremental force packages

to establish a military presence in the region and deter any further hostilities,

establishing a C4ISR architecture, and posturing to project forces directly into

Azerbaijan and to dismantle Armenian C4ISR and fires systems. The combatant

commander deployed Special Operations Forces (SOF) into the region, adding an

additional layer of intelligence collection assets to the national-level space and

air-based assets already operating over the region. Initially, their efforts were focused

on developing the situation in the region of the beleaguered government in Baku.

But as the 15th Division matured its plans, SOF teams shifted to provide coverage

of the airfields the 15th Division planned to use as tactical points of entry for one

brigade-sized Unit of Action (UA), the 1st Brigade UAs. The 1st Brigade UA is

composed of three Battalions, the 1st, 2nd and 3rd.

A.2 General Vignette Description

This section describes the vignette in detail. It focuses on the 3rd battalion of

the 1st Brigade Unit of Action. More specifically, it focuses on the lead element of
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the 3rd battalion - the Alpha Company. This company comes upon fortified defenses

of the ANFRA forces and must destroy them to make way for the main element of

the 3rd battalion coming up behind them. This is described in this section.

A.2.1 Situation and Mission Prior to Start of Vignette

The 1st and 2nd Battalions of the 1st Brigade UA are already on the ground

before the beginning of this vignette. They have attacked the enemy forces in the

city of Baku, defeated the subverted Azer brigade that controlled the City Center

(referred to as the Icheri Sheher Brigade). Moreover, they confronted and routed

the AIB forces in the vicinity of Baku. The 1st Battalion was subsequently tasked

with pursuing the withdrawing AIB enemy forces retreating towards Agdam, and

to continue on to Agdam and occupy it. The 2nd Battalion was ordered to maintain

pressure on the Icheri Sheher Brigade in Baku to defeat it in detail.

In the meantime, 300 Km to the west, ANFRA forces, attacked across the

Armenian border, seized the city of Agdam, and continued eastward to join with the

retreating AIB forces and attempt to relieve the beleaguered Icheri Sheher Brigade

in Baku. However, surprised by the rapid defeat of their allies in Baku, the ANFRA

forces suddenly found themselves in an exposed position in the wide river valley

between Agdam and Baku. Aware that the US forces (the 1st Brigade UA) were

mounting an operation to move westward to secure Agdam and restore the border,

ANFRA forces began a delaying operation, designed to buy time for establishing a

defense of Agdam while slowing and inflicting casualties on the attacking US force.

Keys to their hopes of success were preservation of the delaying force and effective

use of target acquisition systems linked to long-range artillery systems.
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The 3rd Battalion of the 1st UA Brigade now comes into the picture in this

vignette with orders to attack and destroy the delaying forces of the ANFRA in

order to permit the 2nd battalion to complete its mission of recapturing Agdam.

The 3rd Battalion is in the midst of an airlift operation from a transfer point in

Turkey when its specific mission is given to the commander. It must land, stage the

assets, organize itself and very rapidly move to accomplish its objective. Speed in

this mission is of the essence.

A.2.2 The 1st UA Prepares for Entry Operations

The commander of the 3rd Battalion, on the way to the AOR via an airlift operation,

was given a warning order to prepare to deploy immediately upon landing, and

attack and destroy the delaying forces of the ANFRA. If successful, this would permit

the 2nd Battalion of the 1st UA Brigade to complete its mission. The commander

of the 1st UA used information from coalition/joint theater logistics management

element (C/JTLME) fused with intelligence reporting from airborne assets and SOF

teams operating in the area to select one airfield in vicinity of Baku (60 Km NW of

the city) as his planned point of entry, as shown in Figure 1.

3.3 Mounted Formation Conducts Pursuit and Exploitation

Shortly after landing in their designated entry points, the 3rd Battalion of the

1st UA reorganizes and moves towards the ANFRA forces in open rolling terrain

with some variance of complexity, such as defiles and small villages. The enemy is

a combination of conventional forces, paramilitary, and special police challenging

the UA forces with both direct military combat engagements and asymmetric

means. The 3rd Battalion moves to contact with the ANFRA forces with the intent

to maintain pressure on delaying forces, dislocate them, and force them into a
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battle while moving through open and rolling terrain so they could be destroyed

by assault. To minimize his vulnerability to the enemy’s long-range artillery

systems, the commander planned to move his battalion dispersed on multiple axes

while fighting an aggressive counter-reconnaissance effort. The result was near

autonomous operations by each company, a common operating picture enhanced by

situational awareness and networked fires ensured the force remained interdependent

and mutually supporting.

A.3 Specific Vignette for Project

As the 3rd Battalion of the 1st brigade UA advanced rapidly to meet the flank of

the delaying force, the aviation detachment identified an enemy defensive position

60 Km in advance of the 3rd Battalion’s lead elements (the Alpha company).

The position was carefully selected by ANFRA forces to protect the AIB force

withdrawing from Baku. The positions overlooked the best approaches to a river

crossing along their line of withdrawal. Knowing that the lead Company (Alpha)

would close on the reported location in just over an hour, the aviation unit used its

sensors to identify specific target locations within the enemy position. Other sensors,

mounted on unmanned aerial vehicles (UAV), were diverted from other areas to

further develop the common operational picture. Their observations revealed that

the position was well defended by a combination of dismounted infantry elements,

Draega tanks, and Garm missile launchers in hastily prepared survivability positions.

Minefields protecting the position from direct assault were still incomplete and

operators of the advanced sensors on UAVs observing the area located several

exploitable gaps and ensured they were portrayed on the common operational picture

(COP). The scenario is depicted in Figure 77.
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Figure 77: Overall View of Theater of Operations

Quickly adapting his scheme of maneuver to the developing situation, the alpha

company commander directed his reconnaissance assets to locate river crossing

sites that were beyond the line of sight of the defensive position. When one was

located north of the defensive position, the alpha company commander used his

embedded collaborative planning tools to locate an ideal engagement area on routes

the defenders would probably use as they were dislodged from their positions.

The Alpha Company commander directed the first platoon to cross north of the

river and occupy positions that allowed them to place direct fires on defending forces

as they entered the engagement area. Teamed with RAH-66 Comanches from the

UA’s aviation detachment, the 1st platoon brought the integrated fires of the UA’s

network to bear on the withdrawing forces.

The Second platoon was directed to cross the river some distance south of the

defensive position and occupy positions that forced the withdrawing enemy towards
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the engagement area. The remaining two platoons were ordered to attack the enemy

position and compel the defending forces to withdraw, enabling their defeat in detail.

Still 30 km from the enemy position, the alpha company commander reviewed the

continuously updated common operational picture (COP) for obstacles along his

intended axis of advance. While he watched, a newly identified minefield was posted

on the display. Using the same planning tools, he quickly determined new routes

for each of his platoons, directing them towards bypasses around the minefield,

using line-of-sight evaluation tools to ensure the force stayed out of the enemy’s

line-of-sight as they maneuvered around the flank of the defending forces. Figure

78 provides detail about the target defensive positions as well as the crossing points

for the 1st and 2nd platoons.

Figure 78: Details of attack on defensive positions of ANFRA

When they closed to a range of 12 km, the alpha company’s mortars began the

attack on the defensive position. Pulling pin-point targeting data from the common
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operational picture, they delivered precision munitions aimed directly at the vehicles

defiladed in the survivability positions within the enemy’s defense. Their lethal,

top-attack munitions quickly destroyed all but five vehicles.

Still too far away to directly observe the enemy positions, the Alpha Company

commander used the split screen option on his display to watch both the map

display of the common operational picture and live-video feed from the unmanned

aerial vehicles observing the enemy’s position. He watched as the five surviving

vehicles, three Draega tanks and two Garm missile launchers, left their positions

to flee towards Agdam, leaving the remaining dismounted defenders easy prey for

the mounted supported by dismounted combined arms assault that was to follow.

The icons on his common operational picture display indicated the fleeing vehicles

had taken an unanticipated route and were going to bypass the planned engagement

area. The commander quickly redirected the UAV to reconnoiter a route that his

display indicated would allow his 1st platoon to outflank the retreating vehicles while

he pursued them with his remaining two platoons.

With the reconnaissance of the UAV assuring the route was clear of obstacles,

the 1st platoon advanced rapidly and quickly overtook the fleeing enemy vehicles.

Two of the enemy tanks were destroyed with direct fire while the platoon moved

parallel to the fleeing enemy force, but the remaining three vehicles found cover

behind a low ridge that separated the two forces. Using his embedded planning

tools, the 1st platoon leader quickly identified a position in advance of the moving

forces that would give him clear shots. Accelerating to speeds of 60 Km/h, the

platoon darted in front of the enemy and was there waiting as they crested the ridge

and employed direct fire to destroy these enemy forces. With the last of the enemy

vehicles confirmed destroyed, the platoon leader ordered the platoon into a traveling

over watch formation and continued movement to the west. Figure 79 depicts the

mentioned scenario.
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Figure 79: Details of advances on the defensive positions after mortal fire

Though the remainder of the company was still beyond his direct observation,

his Common Operational Picture (COP) display assured him they were moving on

parallel routes and that he was well within the supporting range of their fires as

well as those of the battalion’s mortars. As they moved towards Agdam, embedded

logistics planning tools that had monitored the unit’s ammunition usage in the

recent engagement automatically transmitted an update to the battalion’s logistics

center. This constantly updated flow of information enabled the battalion staff to

effectively plan en-route re-supply operations that allowed the battalion to maintain

its momentum as they continued their pressure on the delaying enemy forces.

In summary, the 1st platoon overtakes and destroys the retreating tanks and

missile launchers. The 3rd and 4th platoon force the remaining dismounted enemy

forces in the defensive position to flee into the path of the 2nd platoon, ensuring their

surrender/destruction. The success in overcoming the defensive position enabled
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the main elements of the 3rd battalion (Bravo and Echo companies) to overtake the

main elements of the ANFRA delaying forces and engage them into a pitched battle,

defeating them.
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APPENDIX B

NED SOURCE CODE

This appendix contains the source code of the “.ned” files used in this simulation.

B.1 File Generator.ned

//-------------------------------------------------------------
// file: generator.ned
//-------------------------------------------------------------
simple Generator
parameters:

startTime: numeric,
fromAddr: numeric, // origin, unique ID within WAN
totalNodes: numeric; // number of nodes within WAN

// (routers not counted)
gates:

out: out;
endsimple

B.2 File Router.ned

//-------------------------------------------------------------
// file: router.ned
//-------------------------------------------------------------
simple Router
parameters:

startTime: numeric,
routerID : numeric,
nodesPerPlane: numeric,
totalNodes: numeric,
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LANposition : numeric, // Local LAN position
routerServiceTime: numeric;

gates:
in: inFromLocal; // gate #0
out: outToLocal; // gate #1
in: inFromWirelessPP; // gate #2
out: outToWirelessPP; // gate #3
in: inFromWirelessSP; // gate #4

out: outToWirelessSP; // gate #5
endsimple

B.3 File Satellite.ned

//-------------------------------------------------------------
// file: satellite.ned
//-------------------------------------------------------------
simple Satellite
parameters:
startTime: numeric,
satelliteID : numeric,
satServiceTime : numeric,
totalNodes : numeric,
WGSposition : numeric, // Position at wirelessGS
WSPposition : numeric; // Position at wirelessSP
gates:
in: inBus1; // gate #0 (wirelessGS)
out: outBus1; // gate #1 (wirelessGS)
in: inBus2; // gate #2 (wirelessSP)
out: outBus2; // gate #3 (wirelessSP)
endsimple

B.4 File Simplebus.ned

//-------------------------------------------------------------
// File: simplebus.ned
// Based on an example by Andras Varga
//-------------------------------------------------------------
// Generic bus module. Features:
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// - propagation delay modelling (proportional to distance)
// - data rate modelling
// - optional collision modeling
// - optional collision signalling (if turned off, collided
// frames are simply discarded
// - full duplex or half duplex (simplex) bus. On a full duplex
// bus, frames are assumed to propagate in one direction only
// (upstream or downstream), and transmissions of opposite
// directions don’t collide.
// - models several independent channels
//
// Usage:
// Set the parameters of the bus module and connect the stations
// to it. Each station is expected to have a "position" attribute
// which holds the station’s distance from one end of the bus.
// There should be NO data rate set for the connecting links!
//
// Frames may have "channel" and "upstream" attributes; if they
// are not present, the default values are 0 and TRUE. "upstream"
// is only significant on a full duplex bus.
//
// The cMessages sent to the bus are interpreted as the start
// of a transmission. Length of transmission is calculated from
// the frame length and the bus data rate.
//
// The cMessages send out by the bus should be interpreted as the
// _end_ of the transmission. Collision signal is an empty cMessage
// with the name "collision". simple SimpleBus
parameters:
busType: string, // Types are: LAN, WPP, WSP, WGS.

numChannels, // number of independent channels
wantCollisionModeling, // collision modeling flag
wantCollisionSignal, // "send collision signals" flag
isFullDuplex, // channel mode
delaySecPerMeter, // delay of the bus
dataRateBps, // data rate of the bus
gapTime; // minimum gap between consecutive packets.

gates:
in: in[ ];
out: out[ ];

endsimple
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B.5 File Sink.ned

//-------------------------------------------------------------
// file: Sink.ned
//-------------------------------------------------------------
simple Sink
gates:

in: in;
endsimple

B.6 File TheNet.ned

//-------------------------------------------------------------
// file: theNet.ned
//-------------------------------------------------------------
import "generator.ned";
import "simplebus.ned";
import "sink.ned";
import "router.ned";
import "satellite.ned";
// ------------ Module GroundStation -------------------------
// module GroundStation
parameters:

nodeID : numeric,
WGSposition : numeric;

gates:
out: out;
in: in;

submodules:
gen: Generator;
parameters:

startTime = ancestor startTime,
fromAddr = nodeID,
totalNodes = ancestor nodesPerPlane * ancestor numPlanes;
display: "i=gen;p=120,49;b=32,30";
sink: Sink;
display: "i=sink;p=81,49;b=32,30";

connections:
gen.out --> out;
sink.in <-- in;
display: "p=18,2;b=176,102";
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endmodule

// ---------- Module computer Node -------------------------
module Node
parameters:
nodeID : numeric,
LANposition : numeric;
gates:
out: out;
in: in;
submodules:
gen: Generator;
parameters:
startTime = ancestor startTime,
fromAddr = nodeID,
totalNodes = ancestor totalNodes;
display: "i=gen;p=120,49;b=32,30";
sink: Sink;
display: "i=sink;p=81,49;b=32,30";
connections:
gen.out --> out;
sink.in <-- in;
display: "p=18,2;b=176,102";
endmodule

// ------------------ Module Plane -------------------------
// module Plane
parameters:

planeID : numeric,
nodesPerPlane : numeric,
totalNodes : numeric,
WPPposition : numeric,
WSPposition : numeric,
routerServiceTime : numeric;

gates:
in: inFromWirelessPP;
out: outToWirelessPP;
in: inFromWirelessSP;
out: outToWirelessSP;

submodules:
router: Router;

parameters:
startTime = ancestor startTime,
routerID = planeID,
nodesPerPlane = nodesPerPlane,
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totalNodes = totalNodes,
LANposition = 10 * nodesPerPlane,
routerServiceTime = routerServiceTime;
display: "i=router;p=123,49;b=32,32";

//- - - - - - - - - - - - - - - - - - - - - - - - -
node: Node[nodesPerPlane];
parameters:

nodeID = planeID*nodesPerPlane + index,
LANposition = 10 * index;
display: "b=38,32;p=43,151,row,45;i=pc";

//- - - - - - - - - - - - - - - - - - - - - - - - -
ethernetBus: SimpleBus;
parameters:

busType = "LAN",
numChannels = 1,
wantCollisionModeling = 1,
wantCollisionSignal = 1,
isFullDuplex = 0,
delaySecPerMeter = ancestor LANdelay,
dataRateBps = ancestor LANbandwidth,
gapTime = ancestor LANgapTime;

gatesizes:
in[nodesPerPlane + 1],
out[nodesPerPlane + 1];
display: "p=88,97;b=156,10,rect";

//- - - - - - - - - - - - - - - - - - - - - - - - - - -
connections:
router.outToLocal --> ethernetBus.in[nodesPerPlane];
router.inFromLocal <-- ethernetBus.out[nodesPerPlane];
router.outToWirelessPP --> outToWirelessPP;
router.inFromWirelessPP <-- inFromWirelessPP;
router.outToWirelessSP --> outToWirelessSP;
router.inFromWirelessSP <-- inFromWirelessSP;
for i=0..nodesPerPlane-1 do
node[i].out --> ethernetBus.in[i];
node[i].in <-- ethernetBus.out[i];
endfor;
display: "p=2,2;b=168,184";
endmodule

// ----------------- Module TheNet -------------------------
module TheNet
parameters:
startTime : numeric,
nodesPerPlane : numeric,
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numPlanes : numeric,

LANgapTime : numeric,
LANbandwidth : numeric,
LANdelay : numeric,

WPPgapTime : numeric,
WPPbandwidth : numeric,
WPPdelay : numeric,

WSPgapTime : numeric,
WSPbandwidth : numeric,
WSPdelay : numeric,

WGSgapTime : numeric,
WGSbandwidth : numeric,
WGSdelay : numeric,

satServiceTime : numeric,
routerServiceTime : numeric;
submodules:
//- - - - - - - - - - - - - - - - - - - - - - - - -
plane: Plane[numPlanes];
parameters:

planeID = index,
nodesPerPlane = nodesPerPlane,
WPPposition = 100 * index,
WSPposition = 100 * index,
totalNodes = nodesPerPlane * numPlanes,
routerServiceTime = routerServiceTime;
display: "i=airplane;p=62,90,row,60;b=35,35";

//- - - - - - - - - - - - - - - - - - - - - - - - -
wirelessPP: SimpleBus;
parameters:
busType = "WPP",
numChannels = 1,
wantCollisionModeling = 1,
wantCollisionSignal = 1,
isFullDuplex = 0,
delaySecPerMeter = WPPdelay,
dataRateBps = WPPbandwidth,
gapTime = WPPgapTime;

gatesizes:
in[numPlanes],
out[numPlanes];
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display: "p=264,33;b=476,10,rect";
//- - - - - - - - - - - - - - - - - - - - - - - - -
wirelessSP: SimpleBus;
parameters:

busType = "WSP",
numChannels = 1,
wantCollisionModeling = 1,
wantCollisionSignal = 1,
isFullDuplex = 0,
delaySecPerMeter = WSPdelay,
dataRateBps = WSPbandwidth,
gapTime = WSPgapTime;

gatesizes:
in[numPlanes+1],
out[numPlanes+1];
display: "p=268,153;b=468,10,rect";

//- - - - - - - - - - - - - - - - - - - - - - - - -
wirelessGS: SimpleBus;
parameters:

busType = "WGS",
numChannels = 1,
wantCollisionModeling = 1,
wantCollisionSignal = 1,
isFullDuplex = 0,
delaySecPerMeter = WGSdelay,
dataRateBps = WGSbandwidth,
gapTime = WGSgapTime;

gatesizes:
in[2],
out[2];
display: "p=272,281;b=476,10,rect";

//- - - - - - - - - - - - - - - - - - - - - - - - -
groundStation: GroundStation;
parameters:

nodeID = nodesPerPlane * numPlanes,
WGSposition = 0;
display: "b=32,32;p=67,215,row,45;i=ground";

//- - - - - - - - - - - - - - - - - - - - - - - - -
satellite: Satellite;
parameters:

startTime = startTime,
satelliteID = 1,
satServiceTime = satServiceTime,
totalNodes = nodesPerPlane * numPlanes,
WSPposition = 38300E3, //35800 Km + 2500 Km
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WGSposition = 38300E3; //35800 Km + 2500 Km
display: "i=satellite;p=315,217;b=32,32";

//- - - - - - - - - - - - - - - - - - - - - - - - - - -
connections:
for i=0..numPlanes-1 do

plane[i].outToWirelessPP --> wirelessPP.in[i];
plane[i].inFromWirelessPP <-- wirelessPP.out[i];
plane[i].outToWirelessSP --> wirelessSP.in[i];
plane[i].inFromWirelessSP <-- wirelessSP.out[i];

endfor;
groundStation.out --> wirelessGS.in[0];
groundStation.in <-- wirelessGS.out[0];
satellite.inBus1 <-- wirelessGS.out[1];
satellite.outBus1 --> wirelessGS.in[1];
satellite.inBus2 <-- wirelessSP.out[numPlanes];
satellite.outBus2 --> wirelessSP.in[numPlanes];
display: "p=10,2;b=508,308";

endmodule

// ------------------------ OTBNet -------------------------
// Instantiates the network
network OTBNet : TheNet
parameters:

startTime = input, // First PDU timestamp in seconds
nodesPerPlane = input, // Set to 3 in this simulation
numPlanes = input, // Set to 8 in this simulation

LANgapTime = input, // Minimum gap time between frames in the LAN
LANbandwidth = input, // LAN inside planes (set to 100 Mbps)
LANdelay = input, // nanosec/meter (set to 70% light speed)

WPPgapTime = input, // Minimum gap time in the wireless PP
WPPbandwidth = input, // Wireless bandwidth Plane-to-Plane (PP)
WPPdelay = input, // nanosec/meter (light speed)

WSPgapTime = input, // Minimum gap time in the wireless SP
WSPbandwidth = input, // Wireless bandwidth Satellite-to-Plane (SP)
WSPdelay = input, // nanosec/meter (light speed)

WGSgapTime = input, // Minimum gap time in the wireless GS
WGSbandwidth = input, // Wireless bandwidth Ground-to-Satellite (GS)
WGSdelay = input, // nanosec/meter (light speed)

satServiceTime = input,
// Service time per PDU in satellite under best conditions
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routerServiceTime = input;
// Service time per PDU in routers under best conditions
endnetwork

B.7 File Omnetpp.ini

[General] network = OTBNet
ini-warnings = no
random-seed = 1
warnings = yes
snapshot-file = planes.sna
output-vector-file = planes.vec
sim-time-limit = 2550s # simulated seconds
cpu-time-limit = 20h # 20 hours of real cpu time max.
total-stack-kb = 4096 # 4 MByte, increase if necessary

[Cmdenv]
module-messages = yes
verbose-simulation = yes
display-update = 0.5s

[Tkenv]
default-run=1
use-mainwindow = yes
print-banners = yes
slowexec-delay = 300ms
update-freq-fast = 10
update-freq-express = 100
breakpoints-enabled = yes

[DisplayStrings]

[Parameters]

[Run 1]
OTBNet.startTime = 1034s
OTBNet.nodesPerPlane = 3
OTBNet.numPlanes = 8

OTBNet.LANgapTime = 50us
OTBNet.LANbandwidth = 100E6 # 100 MBps
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OTBNet.LANdelay = 4.761904762ns # nanosec/meter (70% light speed)

OTBNet.WPPgapTime = 50us
OTBNet.WPPbandwidth = 512000
OTBNet.WPPdelay = 3.333333333ns # nanosec/meter (light speed)

OTBNet.WSPgapTime = 50us
OTBNet.WSPbandwidth = 512000
OTBNet.WSPdelay = 3.333333333ns # nanosec/meter (light speed)

OTBNet.WGSgapTime = 50us
OTBNet.WGSbandwidth = 512000
OTBNet.WGSdelay = 3.333333333ns # nanosec/meter (light speed)

OTBNet.satServiceTime = 5us
OTBNet.routerServiceTime = 5us
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APPENDIX C

AWK SOURCE CODE

This appendix contains the source code of the “.awk” files used to parse and
extract data from the OTB logger files.

C.1 AWK Script for PDU Parsing

Awk program that parses the PDU file generated by OTB and creates files
“datannnn.txt” for each generator site identified as nnnn.

# Process original PDU data files
# with ID numbers added to each "<dis204" (juan.data)

BEGIN {
RS = "\n\\<|\n<";
# \n is new line, \\< is
#finally \< and matches the empty string
#at the beginning of a word.
origsite = "";
orighost = "";
origapplic = "";
sizeof = "";
time = "";
len = "";
pduName = "";
pduCount = "?";
pduId = 0;
PDUtype = "";
}

/dis204/ {$1 = "<" $1;
if (orighost == "") orighost = origapplic;
# origin = origsite orighost;
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origin = origsite;
PDUlength = (len != "" \&\& len != 0 ? len : sizeof);
if (PDUtype != "") bytes[PDUtype] = bytes[PDUtype] + PDUlength;
PDUtype = $0;
class[PDUtype]++;
if (origin != "" \&\& time != "" \&\& PDUlength != "" \&\&

PDUlength != 0)
{if (!(origin in node)) node[origin] = nodecount++;
printf "%-12s %5d | %s %5d %s %d\n",
hextime, PDUlength, time, ++counter[node[origin]],
pduName, pduId > "data" origin ".txt";
printf "%-12s %5d | %s %5d %s %d\n",
hextime, PDUlength, time, counter[node[origin]],
pduName, pduId > "allpdu.txt";

}
else print "dis204 previous to record " NR \
" has missing parts. pduCount = " pduCount \
" origin = " origin " time = " time " len = " len;
origsite = "";
orighost = "";
origapplic = "";
sizeof = "";
time = "";
len = "";
pduName = $0;
pduCount = "?";
pduId++;
}

/\.site\>/ {if (origsite == "") origsite = $5}
/\.host\>/ {if (orighost == "") orighost = $5;}
/\.application \>/ {if (origapplic == "") origapplic = $5;}
/\.length\>/ {if (len == "" || len < $5) len = $5}
/\.sizeof\>/ {if (sizeof == "" || sizeof < $5) sizeof = $5}
/\.timestamp\>/ {if (time == "") {hextime = $3; time = $5;}}
/\.pdu_count\>/ {if (pduCount == "?") pduCount = $5;}

END {
if (orighost == "") orighost = origapplic;
# origin = origsite orighost;
origin = origsite;
PDUlength = (len != "" \&\& len != 0 ? len : sizeof);
bytes[PDUtype] = bytes[PDUtype] + PDUlength;
for (i in class)
{printf "%-35s %5d : %8d\n", i, class[i], bytes[i]
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> "pduTypesCount.txt";
tot += class[i];
btot += bytes[i];
}
printf "\nTotal PDUs = %d, bytes = %d\n", tot, btot

> "pduTypesCount.txt";

if (origin != "" \&\& time != "" \&\& PDUlength != "" \&\&
PDUlength != 0)
{if (!(origin in node)) node[origin] = nodecount++;
printf "%-12s %5d | %s %5d %s %d\n",
hextime, PDUlength, time, ++counter[node[origin]],
pduName, pduId > "data" origin ".txt";
printf "%-12s %5d | %s %5d %s %d\n",
hextime, PDUlength, time, counter[node[origin]],
pduName, pduId > "allpdu.txt";
}

else print "dis204 previous to record " NR \
" has missing parts. pduCount = " pduCount \
" origin = " origin " time = " time " len = " len;
for(origin in node) {

printf "%5d %s\n", counter[node[origin]], "data" origin ".txt"
> "nodes.txt";

close("data" origin ".txt");
}
close("nodes.txt");
close("allpdu.txt");
system("sort /R nodes.txt /O nodes.txt" );
system("sort /+21 allpdu.txt /O allpdusort.txt" );
RS = "\n";
getline < "nodes.txt";
system("ren " $2 " data24.txt");
system("sort /+21 data24.txt /O data24.txt");
i = 0;
while ((getline < "nodes.txt") > 0) {
system("ren " $2 " data" i ".txt");
system("sort /+21 data" i ".txt" " /O data" i ".txt");
i+=3;
}
}
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C.2 AWK Script for Independent Analysis

This awk calculates the bandwith required to schedule sets of PDUs at time intervals
of at least 2 seconds.

BEGIN {
tsegment = 2.; # time interval of 2 seconds
gap = 0.000050; # 50 microseconds
tgaps = 0; # sum of all the gaps in this time interval
tbytes = 0; # total of bytes in this time interval
tcurr = 0; # current time within the time interval
PDUcount = 0; # number of PDUs in this time interval
firstime = "T"; # flag initially true.
printf "vector 0 \"band.awk\"
\"Minimum bandwidth requirements over time\" 1\n"
}
{
split($4, t, ":"); tsec = t[2]*60+t[3]; # timestamp in seconds
PDUcount++;
if (firstime == "T")
{
tbytes = $2;
tcurr = tsec;
tgaps = gap;
firstime = "F";
}
else {
interval = tsec - tcurr - tgaps; # current size of time interval
if (interval <= 0 || tsec - tcurr < tsegment)
{
tgaps = tgaps + gap;
tbytes = tbytes + $2;
}
else
{
bw = tbytes*8./interval;
printf "0 %f %f\n", tcurr, bw
printf "0 %f %f\n", tsec, bw
tbytes = $2;
tcurr = tsec;
tgaps = gap;
PDUcount = 1;
}
}
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}
END {
if (interval <= 0)
{tsec += tsegment;
interval = tsec - tcurr - tgaps;
}
bw = tbytes*8./interval;
printf "0 %f %f\n", tcurr, bw;
printf "0 %f %f\n", tsec, bw;
}
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APPENDIX D

SIMULATOR SOURCE CODE

This appendix contains the source code of the vignette simulator using the
OMNeT++ discrete event simulator as the engine, as well as some other auxiliary
programs used to prepare the input data and extract specific statistics from the simulator
output.

//-------------------------------------------------------------------
// file: vecstats.cpp
//-------------------------------------------------------------------

#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#include <math.h>
#define linesize 100

int main(int argc, char *argv[])
{
FILE *fd;
char line[linesize];
double min, max, sum, avg1, avg2, std, variance, area,

tInterval, minInterval, maxInterval,
t1, t2, mt1, mt2, Mt1, Mt2, val1, val2, time1, time2;

int counter;

min = DBL_MAX;
max = 0.;
sum = area = 0.;
counter = 0;
t1 = DBL_MAX;
t2 = 0.;
maxInterval = 0.;
minInterval = DBL_MAX;

if (argc < 2)
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{
printf("Usage: %s <band.vec>\n", argv[0]);
return 1;
}

if ((fd = fopen(argv[1], "r")) == NULL)
{
printf("Cannot open %s\n", argv[1]);
return 2;
}

fgets(line, linesize, fd);
printf("%s", line);

while (fscanf(fd, " %*d %lf %lf", &time1, &val1) != EOF &&
fscanf(fd, " %*d %lf %lf", &time2, &val2) != EOF )

{
counter++;
if (time1 < t1) t1 = time1;
if (time2 > t2) t2 = time2;\

if ((time2 - time1) < minInterval)
{

minInterval = time2 - time1;
mt1 = time1;
mt2 = time2;

}
if ((time2 - time1) > maxInterval)
{

maxInterval = time2 - time1;
Mt1 = time1;
Mt2 = time2;

}
if (val1 < min) min = val1;
if (val1 > max) max = val1;
sum += val1;
area += (time2-time1)* (val1+val2)/2.;

}

tInterval = t2 - t1;
avg1 = area / tInterval;
avg2 = sum / counter;
printf("Samples = %d\n", counter);
printf("Init time = %11lf\n", t1);
printf("Final time = %11lf\n", t2);
printf("Min time interval = [ %11lf, %11lf ], length = %lf\n",
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mt1, mt2, minInterval);
printf("Max time interval = [ %11lf, %11lf ], length = %lf\n",

Mt1, Mt2, maxInterval);
printf("Minimum bandwidth =%14.1lf\n", min);
printf("Maximum bandwidth =%14.1lf\n", max);
printf("Point average =%14.1lf\n", avg1);
printf("Area average =%14.1lf\n", avg2);

rewind(fd);
sum = 0.;
fgets(line, linesize, fd);
while (fscanf(fd, " %*d %lf %lf", &time1, &val1) != EOF &&

fscanf(fd, " %*d %lf %lf", &time2, &val2) != EOF )
{

sum += (val1 - avg2)* (val1 - avg2);
}
variance = sum / (counter - 1.);
std = sqrt(variance);
printf("Sample variance =%14.1lf\n", variance);
printf("Std deviation =%14.1lf\n", std);
}

//-------------------------------------------------------------------
// file: pduAnal.c
//-------------------------------------------------------------------

/*This program reads in the original PDU log file as well as the PDU
summary file corresponding to a given generator, and produces the
file "extrabyt.txt" that contains pairs of
(PDU ID, contribution in bytes of that PDU to the group)
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <assert.h>

#define true 1
#define false 0
#define MAXstring 5000
#define MAXpdus 65000
#define PDUsimilarity 0.49

int PDUcompareOK (FILE *fd1, FILE *fd2, long int p1, long int p2,
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int len1, float threshold, int *extraBytes,
int *diffLbl);

int readStr(FILE *fd, char a[], char b[], char c[], char d[]);
char buffer[MAXstring*4], buffer2[MAXstring*4];
char pdu1[MAXstring*4], pdu2[MAXstring*4];
char a1[MAXstring], b1[MAXstring], c1[MAXstring], d1[MAXstring];
char a2[MAXstring], b2[MAXstring], c2[MAXstring], d2[MAXstring];

// ------------------------------------------------------------------
int main(int argc, char *argv[]) {

FILE *fdO1, *fdO2, *fdS, *fdExtraBytes;
int moreData = 1, pduCount = 0, blockCount, sameBlock, newBlock,

i, j;
int ch, endf, len1, len2, id1, id2, extraBytes, diffLbl,

sumExtraBytes, sumDiffLbl;
unsigned int timeStamp1, timeStamp2;
long int fpos[MAXpdus], currpos;
char a[MAXstring], b[MAXstring], c[MAXstring], d[MAXstring];
char type1[50], type2[50];
double schedTimeSec1, schedTimeSec2, timeSpan,

hour_equiv = (pow(2.0, 31.0) - 1.0);
float threshold = PDUsimilarity;
if (argc != 3) {

printf("Usage: %s <file_itsec.data> <file_dataNN.txt>\n",
argv[0]);

return 1;
}
fdO1 = fopen(argv[1], "r"); // Original PDU file (the large one)
fdO2 = fopen(argv[1], "r"); // Original PDU file (the large one)

// Same file opened twice
fpos[0] = -1;
currpos = ftell(fdO1);
while ( fgets(buffer, MAXstring*4, fdO1) != NULL ) {

if (buffer[0] == ’<’) fpos[++pduCount] = currpos;
currpos = ftell(fdO1);

}
// printf ("Number of PDUs in file %s: pduCount=%d\n",
// argv[1], pduCount);

// - - - - - - - - - - - - - - - - - - - - - - - - - -
fdS = fopen(argv[2], "r"); // Summary file of PDUs.
fscanf(fdS, "%x %d %*[^<]%*s %s %*[^:]: %d",

&timeStamp2, &len2, type2, &id2);
schedTimeSec2 = (double)(timeStamp2/2) * 3600.0 / hour_equiv;
newBlock = true;
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//To store information about extra bytes.
fdExtraBytes = fopen("extrabyt.txt", "w");

while (newBlock) {
//newblock = true means not EOF yet and a new empty block is ready.

len1 = len2;
id1 = id2;
strcpy (type1, type2);
blockCount = 1;
timeSpan = 0.;
sumExtraBytes = 0;
schedTimeSec1 = schedTimeSec2;
sameBlock = true;
do {
endf = fscanf(fdS, "%x %d %*[^<]%*s %s %*[^:]: %d",

&timeStamp2, &len2, type2, &id2);
if (endf == EOF) {newBlock = false; break;}
schedTimeSec2 = (double)(timeStamp2/2) * 3600.0 / hour_equiv;
if ( len1 == len2 && strcmp(type1, type2) == 0 &&

PDUcompareOK(fdO1, fdO2, fpos[id1], fpos[id2], len1,
threshold, &extraBytes, &diffLbl) ) {

blockCount++;
sumDiffLbl += diffLbl;
sumExtraBytes += extraBytes;
timeSpan = schedTimeSec2 - schedTimeSec1;
fprintf(fdExtraBytes, "%d, %d\n", id2, extraBytes);

}
else sameBlock = false;

} while (sameBlock);
// if sameblock = false then a new block will start
// printf("PDUId: %5ld %-12s length: %4d #PDUs: %2d extraBytes: \
// %4d diffLabel: %4d timeSpan: %lf\n",
// id1, type1, len1, blockCount, sumExtraBytes, sumDiffLbl, timeSpan);
// printf("%5d, %-20s, %4d, %2d, %4d, %4d, %lf\n",
// id1, type1, len1, blockCount, sumExtraBytes, sumDiffLbl, timeSpan);

}

fclose(fdO1);
fclose(fdO2);
fclose(fdS);
fclose(fdExtraBytes);
return 0;

}

// ------------------------------------------------------------------
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int PDUcompareOK (FILE *fd1, FILE *fd2, long int p1, long int p2,
int len1, float threshold, int *extraBytes, int *diffLbl) {

int diff, diffLabel, eof1, eof2, diffFields;
float percentSimilar;
fseek(fd1, p1, SEEK_SET);
fseek(fd2, p2, SEEK_SET);
diff = 0;
diffLabel = 0;
readStr(fd1, a1, b1, c1, d1);
readStr(fd2, a2, b2, c2, d2);
assert(strncmp(a1, "dis204", 6)==0 && strncmp(a2, "dis204", 6)==0);
eof1 = readStr(fd1, a1, b1, c1, d1);
eof2 = readStr(fd2, a2, b2, c2, d2);
while (eof1 != EOF && eof2 != EOF &&

strncmp(a1, "dis204", 6) != 0 &&
strncmp(a2, "dis204", 6) != 0) {

diffFields = (strcmp(a1, a2) != 0);
if (diffFields)

diffLabel++;
if (diffFields || strcmp(c1, c2) != 0 || strcmp(d1, d2) != 0 )

diff += (d1[0]==’\0’) ? strlen(c1)/2 - 1 : strlen(d1)/2 - 1;
eof1 = readStr(fd1, a1, b1, c1, d1);
eof2 = readStr(fd2, a2, b2, c2, d2);

}
percentSimilar = (float)(len1 - diff) / (float)len1;
*extraBytes = diff;
*diffLbl = diffLabel;
return (diffLabel == 0 || percentSimilar > threshold);

}

// ----------------------------------------------------
int readStr(FILE *fd, char a[], char b[], char c[], char d[]) {

a[0] = b[0] = c[0] = d[0] = ’\0’;
if (fgets(buffer, MAXstring*4, fd) == NULL) return EOF;
if (buffer[0] == ’\n’) return !EOF;
if (buffer[0] == ’<’) { sscanf(buffer, "<%[^>]>", a);

return !EOF;
}
if (strchr(buffer, ’=’) == NULL) {

fgets(buffer2, MAXstring*4, fd);
strcat(buffer, buffer2);

}
if (strchr(buffer,’"’) != NULL)

sscanf(buffer, "%s = \"%[^\"]\" = %s", a, b, c);
else sscanf(buffer, "%s = %s = %s = %s", a, b, c, d);
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return !EOF;
}

//===================================================================

//-------------------------------------------------------------------
// file: generator.cpp
//-------------------------------------------------------------------

#include <omnetpp.h>
#include <stdio.h>

// Generator simple module class
//
class Generator : public cSimpleModule
{

// variables used
FILE *fd, *fdextra, *fdLog;
char filename[50], msgname[50], pduIniType[50], pduType[50],

firstCh, c[6], predictedAction;
char comments[200];
int commentCount, bundling;
double dataRateBps, hour_equiv, percentPosSlack;
simtime_t startTime, gapTime, transmissionTime, schedTimeSec,

slack, generatorServiceTime, blockWaitTime;
long pduIniLength, byteFrame_length, bitFrame_length, file_pos;
unsigned int eof, num_frames, numNodes, sendTime;
int pduextra[70000], extralength, pduLenIni, pduLenCurr;
int frames_sent, frame_counter, pdu_counter, positiveSlack,

my_address, toAddr, pduID;
bool firstTime, emptyBlock, blockTimedout, busy;
cMessage *readyToSend, *blockTimeout, *msg1;
cOutVector slackTime;

// member functions
Module_Class_Members(Generator,cSimpleModule,0)
virtual void initialize();
virtual void handleMessage(cMessage *msg);
virtual void finish();

private:
void PDUrecord1();
void PDUrecord2();

};
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Define_Module( Generator );

//===================================================================
void Generator::initialize()
{

commentCount = 0;
for (pduID=0; pduID<70000; pduID++)

pduextra[pduID] = 0;
fdextra = fopen("juanTgz\\juanTgz3\\extrab.txt", "r");
fdLog = fopen("juanTgz\\juanTgz4\\PDUlog.txt", "w");
int counterextra = 0;
while (fscanf(fdextra, "%d, %d", &pduID, &extralength) != EOF) {

pduextra[pduID] = extralength;
counterextra++;

}
startTime = par("startTime");
blockWaitTime = par("blockWaitTime");
generatorServiceTime = par("generatorServiceTime");
gapTime = gate("out")->toGate()->toGate()->ownerModule()

->par("gapTime");
my_address = par("fromAddr");
c[4] = ’W’; c[5] = ’S’;
bundling = par("bundling"); printf("bundling = %d\n", bundling);
if (bundling < 1 || bundling > 6 )

{printf("Error in generator %d, bundling = %d\n",
my_address, bundling);

return;}
numNodes = par("totalNodes");
dataRateBps = (double)gate("out")->toGate()->toGate()->ownerModule()

->par("dataRateBps");
printf("Generator my_address=%d, numNodes=%d startTime=%lf "

"blockWaitTime=%lf generatorServiceTime=%lf gapTime=%lf\n",
my_address, numNodes, startTime, blockWaitTime,
generatorServiceTime, gapTime);

hour_equiv = (pow(2.0, 31.0) - 1.0);
frames_sent = 0;
frame_counter = 0;
pdu_counter = 0;
positiveSlack = 0;
toAddr = -1; // all packets are broadcasted

slackTime.setName("Slack Time to Send Next Message");
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firstTime = true;
emptyBlock = true;
blockTimedout = false;
busy = false;
readyToSend = new cMessage("readyToSend");
blockTimeout = new cMessage("blockTimeout");

sprintf(filename, "juanTgz\\juanTgz4\\dataNew%d.txt", my_address);
if ((fd = fopen(filename, "r")) != NULL)
{

scheduleAt (startTime, readyToSend); // schedule first event
// printf("Generator my_address=%d scheduled readyToSend.\
Initialization completed.\n", my_address);

}
}

//===================================================================
void Generator::handleMessage(cMessage *msg)
{

if(msg == blockTimeout)
{

if (busy) {
blockTimedout = true; //block is sent at next readyToSend
return;

} // end of busy status
//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// status is idle (not busy)
msg1->setTimestamp(); // block will be sent immediately
transmissionTime = (double)msg1->length() / dataRateBps;
send(msg1,"out");
frames_sent++;
PDUrecord2();
emptyBlock = true;
blockTimedout = false; // block was just sent
busy = true;
if (eof != EOF) { // if EOF and block not empty,

// then readyToSend was not scheduled
cancelEvent(readyToSend); //remove previous (future time)

// readyToSend
}
scheduleAt(simTime() + transmissionTime + gapTime +

generatorServiceTime, readyToSend);
return;

} //end of msg == blockTimeout
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//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

// msg is not blockTimeout, should be readyToSend
if (msg == readyToSend)
{

if (blockTimedout) { //current block has priority over new PDUs
msg1->setTimestamp(); // block will be sent immediately
transmissionTime = (double)msg1->length() / dataRateBps;
send(msg1,"out");
frames_sent++;
PDUrecord2();
emptyBlock = true;
blockTimedout = false; // block was just sent
busy = true;
scheduleAt(simTime() + transmissionTime + gapTime +

generatorServiceTime, readyToSend);
return;

} //end of blockTimedout
//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

// msg is readyToSend & not blockTimedout
firstCh = getc(fd); //skips over comments indicated by

// ’%’ in first char
while (firstCh == ’#’) {

fgets(comments, 200, fd);
commentCount++;
printf("Comments # %d in %s are: %s\n",

commentCount, filename, comments);
firstCh = getc(fd);

}
ungetc(firstCh, fd);
file_pos = ftell(fd);
eof = fscanf(fd,

"%x %ld | %*s %*d <dis204 %s PDU>: %d %c %c %c %c",
&sendTime, &byteFrame_length, pduType, &pduID,
&c[0],&c[1],&c[2],&c[3]);

// c[0] is neural network (column 1)
// c[1] is type (column 2)
// c[2] is type and length (column 3)
// c[3] is type, length and timestamp (column 4)
// c[4] = W always wait
// c[5] = S always send

predictedAction = c[bundling-1];
if (eof == EOF) {

if (emptyBlock) { // end of generator simulation
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percentPosSlack = (double)positiveSlack *
100.0 / (double)pdu_counter;

printf("EOF in file %11s at time %lf, positive slack "
"frames=%6d(%5.2lf%%), total PDUs=%6d, total frames"
" built=%6d, total frames sent=%6d\n",
filename, simTime(), positiveSlack, percentPosSlack,
pdu_counter, frame_counter, frames_sent);
fclose(fdLog);

} // end of emptyBlock
else { // block is not empty

busy = false;
cancelEvent(blockTimeout);
scheduleAt(simTime(), blockTimeout);

}
return;

} // end eof == EOF
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

// msg = readyToSend & not blockTimedout & not EOF
// we read a new PDU from the summary file.

//conversion from OTB units to seconds
schedTimeSec = (double)(sendTime/2) * 3600.0 / hour_equiv;
bitFrame_length = byteFrame_length * 8;
slack = schedTimeSec - simTime();
if (firstTime) { // first time this particular PDU

// was read from the input file.
pdu_counter++;
slackTime.record(slack);
if (slack >= 0) positiveSlack++;
firstTime = false; // this particular PDU

//won’t be recorded again.
}
if (slack > 0.) {

busy = false; // we will be idle for a while
if (fseek(fd, file_pos, SEEK_SET)) perror( "Fseek failed" );
// next packet is scheduled at timestamp in PDU
scheduleAt(schedTimeSec, readyToSend);
return;

} // end of slack > 0.
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

// msg = readyToSend & not blockTimedout & not EOF & slack <= 0.
// This PDU must be grouped for replication

firstTime = true; // to record slack for next PDU.
if (emptyBlock) { //This PDU will be the first in the new block
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sprintf(msgname,"Data%d F%d T%d",
++frame_counter, my_address, toAddr);

msg1 = new cMessage(msgname);
msg1->setLength(bitFrame_length);
PDUrecord1();
strcpy(pduIniType,pduType);
pduIniLength = byteFrame_length;
if (predictedAction == ’s’ || predictedAction == ’S’)
{ // predicted action = send

msg1->setTimestamp();
transmissionTime = (double)msg1->length() / dataRateBps;
send(msg1,"out");
frames_sent++;
PDUrecord2();
busy = true;
scheduleAt(simTime() + transmissionTime + gapTime +

generatorServiceTime, readyToSend);
}
else { // predicted action = wait

scheduleAt(simTime() + blockWaitTime, blockTimeout);
busy = false;
emptyBlock = false;
scheduleAt(simTime() + generatorServiceTime, readyToSend);

}
return;

} // end of emptyBlock
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

// msg = readyToSend & not blockTimedout &
// not EOF & slack <= 0. & not emptyBlock

if ((strcmp(pduIniType,pduType)==0) &&
(pduIniLength==byteFrame_length)) { //compatible PDU

//grouping (bundling)
msg1->setLength(msg1->length()+(pduextra[pduID]*8));
PDUrecord1();
if (predictedAction == ’s’ || predictedAction == ’S’) {

msg1->setTimestamp(); // predicted action = send
transmissionTime = (double)msg1->length() / dataRateBps;
send(msg1,"out");
frames_sent++;
PDUrecord2();
cancelEvent(blockTimeout);
emptyBlock = true;
busy = true;
scheduleAt(simTime() + transmissionTime + gapTime +
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generatorServiceTime, readyToSend);
} // end of predictedAction = send
else { // predicted action = wait

busy = true;
scheduleAt(simTime() + generatorServiceTime, readyToSend);

} // end of predicted action = wait
return;

} // end of compatible PDU
// - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

// msg = readyToSend & not blockTimedout &
// not EOF & slack <= 0. & not emptyBlock & PDU not compatible

msg1->setTimestamp();
transmissionTime = (double)msg1->length() / dataRateBps;
send(msg1,"out");
frames_sent++;
PDUrecord2();
cancelEvent(blockTimeout);
sprintf(msgname,"Data%d F%d T%d",
++frame_counter, my_address, toAddr);
msg1 = new cMessage(msgname);
msg1->setLength(bitFrame_length);
PDUrecord1();
strcpy(pduIniType,pduType);
pduIniLength = byteFrame_length;
if (predictedAction == ’s’ || predictedAction == ’S’)
{ // predicted action = send

// this 1-PDU block is considered to have timedout
blockTimedout = true;

}
else { // predicted action = wait

scheduleAt(simTime() + blockWaitTime +
generatorServiceTime, blockTimeout);

} // end of predicted action = wait
busy = true;
scheduleAt(simTime() + transmissionTime + gapTime +

generatorServiceTime, readyToSend);
return; // msg = readyToSend & not EOF & slack <= 0.

} // end msg == readyToSend
//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

printf("Generator %d: Unrecognized message\n", my_address);
return;

}
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//===================================================================
void Generator::finish() {

ev << "Generator " << my_address << ": No of frames sent = "
<< frame_counter << endl;

}

//===================================================================
void Generator::PDUrecord1() {

if (my_address == 24) fprintf(fdLog, "%d ", pduID);
}

//===================================================================
void Generator::PDUrecord2() {

double t, seconds;
int minutes;
t = simTime();
minutes = (int) t/60.;
seconds = t - minutes*60.;

if (my_address == 24) {
double t, seconds;
int minutes;
t = simTime();
minutes = (int) (t/60.);
seconds = t - minutes*60.;
fprintf(fdLog, ": %lf (:%d:%.3lf) | \tframes:%d\n",

t, minutes, seconds, frames_sent);
}

}

//-------------------------------------------------------------
// file: sink.cpp
//-------------------------------------------------------------

#include <omnetpp.h>

//
// Sink simple module class
//
class Sink : public cSimpleModule
{

int my_address, from, to, collisionCounter, framesReceived,
unrecognized, wrongAddress;

double travelTime;
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cMessage *collision;
char *p;

// member functions
Module_Class_Members(Sink,cSimpleModule,0)
virtual void initialize();
virtual void handleMessage(cMessage *msg);
virtual void finish();

cDoubleHistogram *travelDist;
cOutVector travelHist;
cStdDev travelStats;

cOutVector collHistAccum;

};

Define_Module( Sink );

void Sink::initialize()
{

collisionCounter = 0;
my_address = parentModule()->par("nodeID");
collision = new cMessage("collision");
travelDist = new cDoubleHistogram(

"Travel Time Distribution at destination", 100);
travelDist->setRange(0, 100);
travelHist.setName("Travel Time History");
travelStats.setName("travel Stats");
collHistAccum.setName("Collision Accumulation");
framesReceived = 0;
unrecognized = 0;
wrongAddress = 0;

}

void Sink::handleMessage(cMessage *msg)
{

// msg == collision
if (strcmp(msg->name(), collision->name()) == 0)
{

collisionCounter++;
collHistAccum.record (collisionCounter);
delete msg;
return;

}
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p = strchr(msg->name(),’F’);

if (p == NULL)
{ ev<<"Sink["<<my_address<<"] unrecognized deleted "

<<msg->name()<<endl;
delete msg; // unrecognized message, considered an error
unrecognized++;

}
else // p != NULL, this is a regular message
sscanf(p, "F%d T%d", &from, &to);

if (to == -1 || to == my_address)
{

// ev << "Sink[" << my_address << "] Frame " << msg->name()
<<" at T = " << simTime() << endl;

travelTime = simTime() - msg->timestamp();
// travel time travelStatsistics collection
travelDist->collect (travelTime);
travelHist.record(travelTime);
travelStats.collect(travelTime);
framesReceived++;

}
else wrongAddress++;

delete msg;
}

void Sink::finish()
{

long num_samples;
double smallest, largest, mean,

standard_deviation, variance;

ev << endl << endl<< "*** Module: " << fullPath() << "***" << endl;
ev << "Total arrivals: " << travelDist->samples() << endl;
ev << "Estimation of the travel stationary \
distribution of travel time.\n";
ev << "Travel time, # of messages, estimated \
probability density function.\n";
for(int i=0; i<travelDist->cells(); ++i)
{ if(travelDist->cell(i) > 0)

{ ev << i << ":\t" << travelDist->cell(i);
ev << "\t" << travelDist->cellPDF(i) << endl;

}
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}
recordStats("Travel Time Distribution Statistics", travelDist);
ev << "Travel Time Statistics" << endl;
num_samples = travelStats.samples();
smallest = travelStats.min();
largest = travelStats.max();
mean = travelStats.mean();
standard_deviation = travelStats.stddev(),
variance = travelStats.variance();
ev << "Number of samples: " << num_samples << endl;
ev << "Smallest time: " << smallest << endl;
ev << "Largest time: " << largest << endl;
ev << "Mean value: " << mean << endl;
ev << "Standard Dev: " << standard_deviation << endl;
ev << "Variance: " << variance << endl;
printf("Sink %d: Total frames received=%d, total collisions \
detected=%d total unrecognized=%d wrong address=%d\n",

my_address, framesReceived, collisionCounter,
unrecognized, wrongAddress);

}

//-------------------------------------------------------------
// file: router.cpp
//-------------------------------------------------------------

#include <omnetpp.h>
#include <string.h>

//
// Router simple module class
//
class Router : public cSimpleModule
{

int routerID, nodesPerPlane, totalNodes;
int inf, sup;
int from, to, inGate, outGate;
// 3 communication channels.
int collisionCount[3], collisionCountNonReset[3];
double startTime, routerServiceTime, transmissionTime,

collInterval, gapTime[4], dataRate[4];
int fromLan, toLan, fromSP, toSP, fromPP, toPP; // frame counters

cQueue queue;
cMessage *sendNow, *readyToSend, *collision,

*collStatsNow, *msg1, *msg2;
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cDoubleHistogram *jobDist;
cOutVector jobsInSys;
cStdDev stat;

cDoubleHistogram *collDist[3];
cOutVector collInSys[3];

cOutVector collHistAccum;

// member functions
Module_Class_Members (Router, cSimpleModule,0)
virtual void initialize ();
virtual void finish ();
virtual void handleMessage (cMessage *msg);
void serveMessage();
int outputGate (int inGate, int from, int to);

};

Define_Module( Router );

//=============================================================
void Router::initialize()
{

int i;
startTime = par("startTime");
routerID = par("routerID");
nodesPerPlane = par("nodesPerPlane");
totalNodes = par("totalNodes");
routerServiceTime = par("routerServiceTime");

gapTime[0] = gate("outToLocal")->toGate()->ownerModule()
->par("gapTime");

gapTime[1] = gate("outToWirelessPP")->toGate()->toGate()
->ownerModule()->par("gapTime");

gapTime[2] = gate("outToWirelessSP")->toGate()->toGate()
->ownerModule()->par("gapTime");

gapTime[3] = gapTime[1] > gapTime[2] ? gapTime[1] : gapTime[2];

dataRate[0] = (double)gate("outToLocal") ->toGate()
->ownerModule()->par("dataRateBps");

dataRate[1] = (double)gate("outToWirelessPP")->toGate()->toGate()->ownerModule()
->par("dataRateBps");
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dataRate[2] = (double)gate("outToWirelessSP")->toGate()->toGate()->ownerModule()
->par("dataRateBps");

dataRate[3] = dataRate[1] < dataRate[2] ? dataRate[1] : dataRate[2];

collision = new cMessage("collision");
collStatsNow = new cMessage("collStatsNow");
readyToSend = new cMessage("readyToSend");
sendNow = new cMessage("sendNow");

inf = nodesPerPlane * routerID;
sup = inf + nodesPerPlane - 1;
// msg1 = NULL because initial state is "readyToSend"
msg1 = NULL;

jobDist = new cDoubleHistogram(
"Queue Message Distribution (router)", 100);

jobDist->setRange(0, 100);
jobsInSys.setName("Messages in System (router)");
stat.setName("stat");

{ char *titles[3] = { "Collisions at inFromLocal (Ethernet)",
"Collisions at inFromWirelessPP",
"Collisions at inFromWirelessSP" };

for (i = 0; i<3; i++)
{ collisionCount[i] = 0;

collisionCountNonReset[i] = 0;
collDist[i] = new cDoubleHistogram(titles[i], 100);
collDist[i]->setRange(0, 100);
collInSys[i].setName(titles[i]);

}
}
collHistAccum.setName("Collision Accumulation");

// count collisions in 1-second intervals
collInterval = 1.;
// frame counters set to 0
fromLan = toLan = fromSP = toSP = fromPP = toPP = 0;
// first event to request collision statistics.
scheduleAt(collInterval+startTime, collStatsNow);

}

//=================================================================
void Router::handleMessage(cMessage *msg)
{
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if (strcmp(msg->name(), collision->name()) == 0) // msg == collision
{ inGate = msg->arrivalGate()->id() /2; // inGate = 0 or 1 or 2

collisionCount[inGate]++;
collisionCountNonReset[inGate]++;
collHistAccum.record (collisionCountNonReset[0] +

collisionCountNonReset[1] +
collisionCountNonReset[2]);

delete msg;
return;

}

//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
// Statistics collection requested now
else if (msg == collStatsNow)
{ for (int i=0; i<3; i++)

{ collDist[i]->collect (collisionCount[i]);
collInSys[i].record(collisionCount[i]);

// starts a new count for the next interval
collisionCount[i] = 0;

}
scheduleAt(simTime()+collInterval, collStatsNow);
return;

}

//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
else if (msg == sendNow)
{

switch (outGate)
{

case 0:
send(msg1, "outToLocal");
toLan++;
break;

case 1:
send(msg1, "outToWirelessPP");
toPP++;
break;

case 2:
send(msg1, "outToWirelessSP");
toSP++;
break;

case 3:
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msg2 = (cMessage *) msg1->dup();
send(msg1, "outToWirelessPP");
toPP++;
send(msg2, "outToWirelessSP");
toSP++;
break;

}
}

//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
else if (msg == readyToSend) // last gapTime has elapsed
{

if ( queue.empty() ) // There are no remaining messages in queue
{

msg1 = NULL;
}

else
{

msg1 = (cMessage *) queue.pop();
// schedules a sendNow and readyToSend for msg1

serveMessage();
}

}

//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
else // msg == regular message || unrecognized
{

// to ignore messages sent to satellite from other planes
char *p = strchr(msg->name(),’F’);
sscanf(p, "F%d T%d", &from, &to);
inGate = msg->arrivalGate()->id();

// gate #4: inFromWirelessSP
if ((inGate == 4) && (from != totalNodes))
{

delete msg;
return;

}

// msg arrived while server is idle, current state is "readyToSend"
if (msg1 == NULL)

// Statistics collection: queue length was 0
{ jobDist->collect(0);

jobsInSys.record(0);
stat.collect(0.);
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msg1 = msg; //msg will be serviced immediately
serveMessage(); //schedules a sendNow and readyToSend for msg1

}

else // Arrival while server is busy
{

// n msgs in queue + 1 being serviced
jobDist->collect(queue.length()+1);
jobsInSys.record(queue.length()+1);
stat.collect(queue.length()+1.);
queue.insert( msg );

}
} // end of regular message

} // end handleMessage

//===========================================================
void Router::serveMessage()
{

char *p = strchr(msg1->name(),’F’);
if (p == NULL) // unrecognized message, considered an error
{

ev<<"Router["<<routerID<<"] unrecognized deleted "
<<msg1->name()<<endl;

delete msg1;
scheduleAt( simTime(), readyToSend );
return;

}

sscanf(p, "F%d T%d", &from, &to);
// inGate: 0/2 = 0, 2/2 = 1 or 4/2 = 2

inGate = (msg1->arrivalGate()->id()) / 2;
if (inGate==0)fromLan++;
if (inGate==1)fromPP++;
if (inGate==2)fromSP++;

// outGate = -1, 0, 1, 2, 3
outGate = outputGate(inGate, from, to);
if (outGate < 0)
{

delete msg1;
scheduleAt( simTime(), readyToSend );
return;

}
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transmissionTime = msg1->length() / dataRate[outGate];
scheduleAt( simTime() + routerServiceTime, sendNow );
scheduleAt( simTime() + routerServiceTime + transmissionTime

+ gapTime[outGate], readyToSend );

}

//========================================================
int Router::outputGate(int inGate, int from, int to)
{

switch (inGate)
{

case 0: // inFromLocal
if (to == -1) return 3; // outToWirelessSP

// and outToWirelessPP
if (to == totalNodes) return 2; // outToWirelessSP
if (to < inf || to > sup) return 1; // outToWirelessPP
return -1; // delete message
break;

case 1: // inFromWirelessPP
if (to == -1) return 0; // outToLocal

// delete, this case shoud not occur
if (to == totalNodes) return -1;
if (inf <= to && to <= sup) return 0; // outToLocal
return -1; // delete message
break;

case 2: // inFromWirelessSP
if (

(from == totalNodes) &&
((to == -1) || (inf <= to && to <= sup))

// from satellite (groundStation) to local broadcast
) return 0;

return -1; // delete message
break;

}
return -2; // unreachable code to eliminate C++ warning.

}

//=======================================================
void Router::finish()
{
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long num_samples;
double smallest, largest, mean, standard_deviation, variance;

ev << endl << endl<< "*** Module: " << fullPath() << "***" << endl;
ev << "Total arrivals:\t" << jobDist->samples() << endl;
ev << "Total collisions detected:"<<endl;
ev << "At inFromLocal: " << collisionCountNonReset[0]<<endl;
ev << "At wirelessPP: " << collisionCountNonReset[1]<<endl;
ev << "At wirelessSP: " << collisionCountNonReset[2]<<endl<<endl;

ev << "Estimation of the stationary distribution of messages \
as observed by an arrival.\n";
ev << "Queue length, # arrivals that saw n messages in queue, \
estimated probability density function.\n";
for(int i=0; i<jobDist->cells(); ++i)
{ if(jobDist->cell(i) > 0)

{ ev << i << ":\t" << jobDist->cell(i);
ev << "\t" << jobDist->cellPDF(i) << endl;

}
}
recordStats("Message Distribution Statistics", jobDist);
ev << "Queue length statistics" << endl;
num_samples = stat.samples();
smallest = stat.min();
largest = stat.max();
mean = stat.mean();
standard_deviation = stat.stddev(),
variance = stat.variance();
ev << "Number of samples: " << num_samples << endl;
ev << "Smallest queue: " << smallest << endl;
ev << "Largest queue: " << largest << endl;
ev << "Mean value: " << mean << endl;
ev << "Standar Dev: " << standard_deviation << endl;
ev << "Variance: " << variance << endl;
printf("Router %d: frames fromLan=%d, toLan=%d, fromSP=%d, \
toSP=%d, fromPP=%d, toPP=%d, in queue=%d\n",
routerID, fromLan, toLan, fromSP, toSP, fromPP,
toPP, queue.length());

}

//-------------------------------------------------------------
// file: satellite.cpp
//-------------------------------------------------------------

#include <omnetpp.h>
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#include <string.h>

//
// Satellite simple module class
//
class Satellite : public cSimpleModule
{

// arrays are of length 2 because of the 2 communication channels.
int satelliteID, totalNodes;
double startTime, satServiceTime, transmissionTime,

gapTime[2], dataRate[2];
double WSPposition, WGSposition, collInterval;
int from, to, inGate, outGate, numGate;
int collisionCount[2], collisionCountNonReset[2], byteCount,

framesToGS, framesToPlanes, framesReceivedFromGS,
framesReceivedFromSP, unrecognized;

char *p;

cQueue queue;
cMessage *sendNow, *readyToSend, *collision, *collStatsNow, *msg1;
cDoubleHistogram *jobDist, *byteDist;
cOutVector jobsInSys, bytesInSys;
cStdDev msgStat, byteStat;
cDoubleHistogram *collDist[2];
cOutVector collInSys[2];

// member functions
Module_Class_Members(Satellite, cSimpleModule,0)
virtual void initialize();
virtual void finish();
virtual void handleMessage(cMessage *msg);
void serveMessage();
int outputGate (int inGate, int from, int to);

};

Define_Module( Satellite );

//===============================================================
void Satellite::initialize()
{

int i;
startTime = par("startTime");
satServiceTime = par("satServiceTime");
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sendNow = new cMessage("sendNow");
collision = new cMessage("collision");
collStatsNow = new cMessage("collStatsNow");
readyToSend = new cMessage("readyToSend");

gapTime[0] = gate("outBus1")->toGate()->ownerModule()
->par("gapTime");

gapTime[1] = gate("outBus2")->toGate()->ownerModule()
->par("gapTime");

dataRate[0] = (double)gate("outBus1")->toGate()->ownerModule()
->par("dataRateBps");

dataRate[1] = (double)gate("outBus2")->toGate()->ownerModule()
->par("dataRateBps");

satelliteID = par("satelliteID");
// totalNodes = 3*8 = 24, but 0,...,24 = 25 nodes

totalNodes = par("totalNodes");
// WSPposition = par("WSPposition");
// WGSposition = par("WGSposition");

msg1 = NULL;

jobDist = new cDoubleHistogram(
"Queue Message Distribution (satellite)", 100);

jobDist->setRange(0, 100);
jobsInSys.setName("Messages in System (satellite)");
byteDist = new cDoubleHistogram(

"Queue Byte Distribution (satellite)", 100);
byteDist->setRange(0, 100);
bytesInSys.setName("Bytes in System (satellite)");

{ char *titles[2] = { "Collisions at wirelessGS",
"Collisions at wirelessSP" };

for (i = 0; i<2; i++)
{ collisionCount[i] = 0;

collisionCountNonReset[i] = 0;
collDist[i] = new cDoubleHistogram(titles[i], 100);
collDist[i]->setRange(0, 100);
collInSys[i].setName(titles[i]);

}
}
framesToGS = 0; // to count frames sent to Ground Station
framesToPlanes = 0;
framesReceivedFromGS = 0;
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framesReceivedFromSP = 0;
unrecognized = 0;
byteCount = 0; // counts bytes in queue.
collInterval = 1.; // count collisions in 1-second intervals

// first event to request collision statistics.
scheduleAt(collInterval+startTime, collStatsNow);

}

//==============================================================
void Satellite::handleMessage(cMessage *msg)
{

if (strcmp(msg->name(), collision->name()) == 0) //msg == collision
{

inGate = msg->arrivalGate()->id() /2; //inGate = 0 or 1
collisionCount[inGate]++;
collisionCountNonReset[inGate]++;
delete msg;
return;

}

//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
else if (msg == collStatsNow) // Statistics collection requested now
{ for (int i=0; i<2; i++)

{ collDist[i]->collect (collisionCount[i]);
collInSys[i].record(collisionCount[i]);

// starts a new count for the next interval
collisionCount[i] = 0;

}
scheduleAt(simTime()+collInterval, collStatsNow);
return;

}

//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
else if (msg == sendNow)
{

switch (outGate)
{

case 0:
send(msg1, "outBus1"); // wirelessGS
framesToGS++;
break;

case 1:
send(msg1, "outBus2"); // wirelessSP
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framesToPlanes++;
break;

}
}

//- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -
else if (msg == readyToSend) // last gapTime has elapsed
{

if ( queue.empty() ) // There are no remaining messages in queue
{

msg1 = NULL;
if (byteCount != 0)
printf("Satellite: Error, empty queue has byteCount = %d\n",

byteCount);
}

else
{

msg1 = (cMessage *) queue.pop();
// subtracts # bytes taken from the queue

byteCount -= msg1->length()/8;
// schedules a sendNow and readyToSend for msg1

serveMessage();
}

}

//- - - - - - - - - - - - - - - - - - - - - - - - - - - - -
else // msg == regular message or unrecognized
{

// msg arrived while server is idle, current state is "readyToSend"
if (msg1 == NULL)
{

// Statistics collection: queue length was 0
jobDist->collect(0);
jobsInSys.record(0);
msgStat.collect(0.);

// Statistics collection: queue length was 0
byteDist->collect(0);
bytesInSys.record(0);
byteStat.collect(0.);
msg1 = msg; // msg will be serviced immediately

// schedules a sendNow and readyToSend for msg1
serveMessage();

}
else // Arrival while server is busy
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{
// n msgs in queue + 1 being serviced

jobDist->collect(queue.length()+1);
jobsInSys.record(queue.length()+1);
msgStat.collect(queue.length()+1.);

// accumulates # bytes in new message
byteCount += msg->length()/8;

// n msgs in queue + 1 being serviced
byteDist->collect(byteCount);
bytesInSys.record(byteCount);
byteStat.collect(byteCount);
queue.insert( msg );

}
} // end of regular message

} // end handleMessage

//===========================================================
void Satellite::serveMessage()
{

char *p = strchr(msg1->name(),’F’);
if (p == NULL) // unrecognized message, considered an error
{

ev<<"Satellite: unrecognized message deleted "<<endl;
delete msg1;
unrecognized++;
scheduleAt( simTime(), readyToSend );
return;

}

sscanf(p, "F%d T%d", &from, &to);
inGate = (msg1->arrivalGate()->id()) / 2; //inGate: 0/2=0, 2/2=1
if (inGate==0) framesReceivedFromGS++;
else framesReceivedFromSP++;
outGate = outputGate(inGate, from, to); // outGate = -1, 0, 1
if (outGate < 0)
{

delete msg1;
unrecognized++;
scheduleAt( simTime(), readyToSend );
return;

}

transmissionTime = msg1->length() / dataRate[outGate];
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scheduleAt( simTime() + satServiceTime, sendNow );
scheduleAt( simTime() + satServiceTime + transmissionTime +

gapTime[outGate], readyToSend );

}

//============================================================
int Satellite::outputGate(int inGate, int from, int to)
{

switch (inGate)
{

case 0: // inBus1 (wirelessGS)
if (to < totalNodes) return 1; // WirelessSP
return -1; // delete message
break;

case 1: // inBus2 (wirelessSP)
if (to == -1 || to == totalNodes)

return 0; // inBus1 wirelessGS
return -1; // delete message
break;

}

return -2; // unreachable code to eliminate C++ warning.
}

//=======================================================
void Satellite::finish()
{

long num_samples;
double smallest, largest, mean, standard_deviation, variance;

ev << endl << endl<< "*** Module: " << fullPath()
<< "***" << endl;

ev << "Total arrivals:\t" << jobDist->samples() << endl;
ev << "Total collisions detected:"<<endl;
ev << "At wirelessGS: " << collisionCountNonReset[0]

<<endl;
ev << "At wirelessSP: " << collisionCountNonReset[1]

<<endl<<endl;
ev << "Estimation of the stationary distribution of \
messages as observed by an arrival.\n";
ev << "Queue length, # arrivals that saw n messages in \

213



queue, estimated probability density function.\n";
for(int i=0; i<jobDist->cells(); ++i)
{ if(jobDist->cell(i) > 0)

{ ev << i << ":\t" << jobDist->cell(i);
ev << "\t" << jobDist->cellPDF(i) << endl;

}
}
recordStats("Message Distribution Statistics", jobDist);
ev << "Queue length statistics" << endl;
num_samples = msgStat.samples();
smallest = msgStat.min();
largest = msgStat.max();
mean = msgStat.mean();
standard_deviation = msgStat.stddev(),
variance = msgStat.variance();
ev << "Number of samples: " << num_samples << endl;
ev << "Smallest queue: " << smallest << endl;
ev << "Largest queue: " << largest << endl;
ev << "Mean value: " << mean << endl;
ev << "Standar Dev: " << standard_deviation << endl;
ev << "Variance: " << variance << endl;
printf("Satellite: total frames received from GS=%d, \
sent to SP=%d\n",

framesReceivedFromGS, framesToPlanes);
printf("Satellite: received from SP=%d, sent to GS=%d, \
unrecognized=%d, in queue=%d\n",
framesReceivedFromSP, framesToGS, unrecognized, queue.length());

}

//-------------------------------------------------------------
// File: simplebus.cc
// Based on an example by Andras Varga, author of OMNeT++.
//-------------------------------------------------------------

#include <assert.h>
#include <omnetpp.h>

#define MAX_NUM_TAPS 50

class SimpleBus : public cSimpleModule
{

struct sTransmission
{

int tap, channel;
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bool upstream;
bool isCollision;
simtime_t busyStart, busyEnd;
cMessage *endEvent;
cMessage *frame;

};

int prueba;
Module_Class_Members(SimpleBus,cSimpleModule,0);
virtual void initialize();
virtual void handleMessage(cMessage *msg);

cMessage *createMessage();
sTransmission *createTransmission();
void recycleMessage(cMessage *msg);
void recycleTransmission(sTransmission *tr);

private:
int numTaps;
int numChannels;

bool wantCollisionModeling;
bool wantCollisionSignal;
bool isFullDuplex;
double delaySecPerMeter;
double dataRateBps;

char busTypePosition[20];
double tapPositions[MAX_NUM_TAPS];
cArray tapStates;

cHead recycledMessages;
cLinkedList recycledTransmissions;

};

Define_Module(SimpleBus);

void SimpleBus::initialize()
{

// get parameters
// collision modeling flag

wantCollisionModeling = par("wantCollisionModeling");
// "send collision signals" flag

wantCollisionSignal = par("wantCollisionSignal");
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// number of independent channels
numChannels = par("numChannels");

// channel mode
isFullDuplex = par("isFullDuplex");

// delay of the bus
delaySecPerMeter = par("delaySecPerMeter");

// data rate of the bus
dataRateBps = par("dataRateBps");
strcpy(busTypePosition, par("busType").stringValue());
strcat(busTypePosition, "position");

// busTypePosition = LANposition, WPPposition, WSPposition,
// or WGSposition

// query the number of taps and the their positions (in meters)
numTaps = gate("out")->size();
assert(numTaps < MAX_NUM_TAPS);
for (int k=0; k<numTaps; k++)
{

tapPositions[k] = gate("out",k)->toGate()->ownerModule()
->par(busTypePosition);

}

// create linked lists that will hold channel states at taps
// (sTransmission structs)
tapStates.setName("tapStates");
for (int i=0; i<numTaps; i++)
{

for (int j=0; j<numChannels; j++)
{

char listname[64];
sprintf(listname,"tap%dchannel%d",i,j);
cLinkedList *list = new cLinkedList(listname);
tapStates.addAt(i*numChannels+j, list);

}
}

recycledMessages.setName("recycledMessages");
recycledTransmissions.setName("recycledTransmissions");

}

cMessage *SimpleBus::createMessage()
{

return new cMessage;
}
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SimpleBus::sTransmission *SimpleBus::createTransmission()
{

return new sTransmission;
}

void SimpleBus::recycleMessage(cMessage *msg)
{

delete msg;
}

void SimpleBus::recycleTransmission(sTransmission *tr)
{

delete tr;
}

void SimpleBus::handleMessage(cMessage *msg)
{

cMessage *msg_new;

// is msg a frame to be transmitted on the bus?
if (!msg->isSelfMessage())
{

// get position where packet dropped in
double packetPos = tapPositions[msg->arrivalGate()->index()];

// get channel and direction of packet
int channel = 0;
if (msg->findPar("channel")>=0)

channel = msg->par("channel");
bool upstream = true;
if (msg->findPar("upstream")>=0)

upstream = msg->par("upstream");

// duration of packet transmission
double duration = msg->length() / dataRateBps;

// check for collisions and schedule events at different taps
for (int tap=0; tap<numTaps; tap++)
{

// frame doesn’t reach originating tap (J.V.)
// if channel is full duplex, frames propagate in only one
// direction, so maybe this frame won’t reach this tap at all

if ((packetPos == tapPositions[tap]) || isFullDuplex &&
((upstream && packetPos>tapPositions[tap]) ||
(!upstream && packetPos<tapPositions[tap])))
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continue;

// determine when frame head and tail will reach this tap
double distance = fabs(packetPos-tapPositions[tap]);
double delay = distance * delaySecPerMeter;

simtime_t start = simTime() + delay;
simtime_t end = start + duration;

#ifdef WANT_DEBUG
ev << "Start receive " << msg->name() << " at tap "
<< tap << " at T = " << start << endl;
ev << "Complete receive " << msg->name() << "at tap "
<< tap << " at T = " << end << endl;

#endif

bool hasCollision = false;
sTransmission *collisionTr = NULL;
cLinkedList *list =

(cLinkedList *)tapStates[tap*numChannels+channel];

// if needed, do collision resolution at tap[tap]
if (wantCollisionModeling)
{

for (cLinkedListIterator i(*list); !i.end(); i++)
{

sTransmission *tr = (sTransmission *) i();

// does frame overlap with this transmission?
if (channel==tr->channel && (!isFullDuplex ||

upstream==tr->upstream) &&
end>tr->busyStart && start<tr->busyEnd)

{
// this is a collision; if we already had one, merge this transmission
// structure into the one already holding the collision, and discard
// this transmission struct.

if (hasCollision && tr!=collisionTr)
{

// extend (start,end) interval
if (start>tr->busyStart)

start = tr->busyStart;
if (end<tr->busyEnd)

end = tr->busyEnd;

// recycle this transmission
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recycleMessage(cancelEvent(tr->endEvent));
if (tr->frame)

delete tr->frame;
list->remove(tr);
recycleTransmission(tr);

// adjust collisionTr afterwards...
tr = collisionTr;

}
else
{

// set collision flags
hasCollision = true;
collisionTr = tr;
tr->isCollision = true;

// if this transmission collided, don’t need frame any more
if (tr->frame)
{

delete tr->frame;
tr->frame = NULL;

}
}

// adjust start and end times and reschedule events
if (tr->busyStart > start)

tr->busyStart = start;
else

start = tr->busyStart;

if (tr->busyEnd < end)
{

tr->busyEnd = end;
scheduleAt(end, cancelEvent(tr->endEvent));

}
else

end = tr->busyEnd;

#ifdef WANT_DEBUG
ev << "*****CONTENT OF STRANSMISSION STRUCT AT TAP " << tap

<< " ******" << endl;
ev << "channel = " << tr->channel << endl;
ev << "tap = " << tr->tap << endl;
ev << "busyStart = " << tr->busyStart << endl;
ev << "busyEnd = " << tr->busyEnd << endl;
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ev << "***************************************************" << endl;
#endif

}
}

}

// if no collision, add transmission structure and schedule
// associated events

if (!hasCollision)
{

// create and fill in transmission structure
sTransmission *tr = createTransmission();
tr->tap = tap;
tr->channel = channel;
tr->upstream = upstream;
tr->isCollision = false;
tr->busyStart = start;
tr->busyEnd = end;
tr->frame = (cMessage *) msg->dup();

// schedule event at end of transmission
tr->endEvent = createMessage();
char msgName[64];
sprintf(msgName,"tap%dchannel%d-e",tap,channel);
tr->endEvent->setName(msgName);
tr->endEvent->setContextPointer(tr);
scheduleAt(end, tr->endEvent);

// add to list
list->insertHead(tr);

}
}
// don’t need original frame any more
delete msg;

}

else // msg->isSelfMessage() is true
{

// this is a scheduled message, obtain associated
// transmission structure

sTransmission *tr = (sTransmission *)msg->contextPointer();
assert(msg==tr->endEvent);

// remove transmission structure from list
cLinkedList *list = (cLinkedList *) tapStates[tr->
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tap*numChannels+tr->channel];
list->remove(tr);

// send frame or collision signal on the corresponding tap
//this section changed so that collisions can be monitored

if (tr->isCollision)
{

ev << "a collision signal output" << endl;
if (wantCollisionSignal)
{

msg_new= new cMessage("collision");
msg_new->setKind(1);
send(msg_new,"out",tr->tap);
ev<<busTypePosition[0]<<busTypePosition[1]<<
busTypePosition[2]<<"bus:"<<simTime()<<" THE MESSAGE "<<
msg->name()<<" caused a collision"<<endl;

}
}
else
{

// ev << "a signal output" << endl;
msg_new=tr->frame;
msg_new->setKind(2);
send(msg_new, "out", tr->tap);

}
recycleTransmission(tr);
recycleMessage(msg);

}

}
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