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ABSTRACT 

Intrinsic evolution of reconfigurable hardware is sought to solve computational problems 

using the intrinsic processing behavior of System-on-Chip (SoC) platforms. SoC devices combine 

capabilities of analog and digital embedded components within a reconfigurable fabric under 

software control. A new technique is developed for these fabrics that leverages the digital 

resources’ enhanced accuracy and signal refinement capability to improve circuit performance of 

the analog resources’ which are providing low power processing and high computation rates. In 

particular, Differential Digital Correction (DDC) is developed utilizing an error metric computed 

from the evolved analog circuit to reconfigure the digital fabric thereby enhancing precision of 

analog computations. The approach developed herein, Cascaded Digital Refinement (CaDR), 

explores a multi-level strategy of utilizing DDC for refining intrinsic evolution of analog 

computational circuits to construct building blocks, known as Constituent Functional Blocks 

(CFBs). The CFBs are developed in a cascaded sequence followed by digital evolution of higher-

level control of these CFBs to build the final solution for the larger circuit at-hand. One such 

platform, Cypress PSoC-5LP was utilized to realize solutions to ordinary differential equations by 

first evolving various powers of the independent variable followed by that of their combinations 

to emulate mathematical series-based solutions for the desired range of values. This is shown to 

enhance accuracy and precision while incurring lower computational energy and time overheads. 

The fitness function for each CFB being evolved is different from the fitness function that is 

defined for the overall problem.   
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CHAPTER ONE: INTRODUCTION 

Technology scaling and the criticality of issues like power wall and dark silicon as 

elaborated in [1] are magnified in pure digital frameworks for computation, thereby compromising 

the enhancement in computational efficiency otherwise sought and expected. One viable candidate 

to navigate through this labyrinth of deeply interconnected problems is the emerging field of 

cooperative analog-digital computations which leverages the complementary benefits of both as 

demonstrated successfully in the signal processing domain in [2]. Design of analog circuits to 

perform computations, though attractive, is highly non-trivial and is fraught with issues of 

scalability and flexibility to perform a wide range of computations with added noise issues. They 

however handle continuous ranges very cost-effectively and interface well with real world data. 

Pure digital design on the other hand is very systematic and offers great computational versatility 

and robustness, but is prohibitively costly and complex to handle continuous data ranges and 

requires lot of conversions to interface well with real world data.  

 

Significance and Context of the Work 

While analog and digital computations have their own pros and cons, it is distinctly visible 

that these are complementary as well and can be exploited intelligently if present and available for 

reconfiguration, ideally on the same platform with complete interconnection of both types of 

resources. PSoC 5LP is one platform that offers reconfigurable analog and digital fabrics at a low 

cost for developing low power applications. Though it doesn’t offer much interconnection between 
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every unit of the analog and digital fabrics, respectively, it does offer reconfigurable resources in 

both domains under the software control of a single embedded ARM Cortex-M3 core. However, 

due to the limited memory and silicon availability on chip, their reconfigurable use for bigger and 

complex applications is limited especially by parallelizability of processes. In spite of these 

limitations, this platform provides an impressive variety of resources considering its cost and 

ability to emulate general purpose computations.  

 

Figure 1: Paradigm of Analog – Digital Computations [35] 

Motivation 

Evolutionary algorithms (EAs) are a well-known bio-inspired meta-heuristic to find 

solutions to complex multi-objective problems especially where the fitness function being 

evaluated for quality of solutions is multi-modal and a population of good solutions is desired as 

[3] elaborates. Genetic Algorithm (GA) in particular, are a very popular class of EAs that mimic 
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Darwinian evolution and the process of natural selection to pick candidate solutions from 

populations of configurations. As [3] explains, GA’s implicit parallelism and the uncanny ability 

of finding building blocks inspire one to think of new ways to solve problems that differ from the 

tried and tested classical approaches which tend to incur more computational costs in many 

settings. One main characteristic of solutions developed by GAs is the inherent approximations 

that make them suitable for the application at hand to the desired degree without compromising on 

accuracy where necessary. The paradigm of approximate circuit synthesis as outlined in [4], 

introduces the notion of a very effective practical tool of functional approximation to achieve 

objectives of lower computational overheads. Also, intrinsic evolution helps exploit device 

properties beyond simulations and design abstractions and assumptions otherwise used which 

often face risk of violation in practical circuits as the pioneering work in [5] elaborates. Though 

[5] predicts limited applications such as signal processing for intrinsic evolution, it could possibly 

be applied to a broader range of scenarios and inspire better approaches to perform computations. 

These qualities encouraged the cascaded approach developed herein, which starts by evolving 

building blocks to the solution at hand with desired levels of tunable accuracies, followed by the 

process of combining them appropriately, all intrinsically on chip.  

Platform and Resources 

To develop techniques for intrinsic evolution of the digital fabric to improve upon the 

outputs of the analog fabric, a clear understanding of PSoC’s capabilities and limitations is 

necessary. The following section outlines the same for PSoC 5LP System-on-Chip platform. 
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The major systems interoperating in PSoC 5LP devices are the Digital System, Analog 

System, Memory System, CPU System, Program/Debug Section, Clocking System, and Power 

Management System. These systems are equipped with the following features as listed in the PSoC 

architecture TRM [6]: 

 ARM Cortex-M3 CPU with a nested vectored interrupt controller and a high-performance 

DMA controller 

 Several types of memory elements including SRAM, flash, and EEPROM 

 System integration features, such as clocking, a feature rich power system, and versatile 

programmable inputs and outputs 

 Digital system that includes configurable universal digital blocks (UDBs) and specific 

function peripherals, such as CAN and USB 

 Analog subsystem that includes configurable switched capacitor (SC) and continuous time 

(CT) blocks, up to 20-bit Delta Sigma converters, 8-bit DACs that can be configured for 

12-bit operation, more than one SAR ADC, comparators, PGAs, and more 

 Programming and debug system through JTAG, serial wire debug (SWD), and single wire 

viewer (SWV) 

PSoC’s Reconfigurable Digital Fabric 

PSoC’s digital fabric consists of PLDs or programmable logic devices organized in pairs 

inside the universal digital blocks or UDBs which can all be interconnected with one another in a 

desired fashion and hence constituting a reconfigurable digital fabric. There are 24 UDBs or 48 
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PLDs in total. The routing is not easily reconfigurable programmatically, involving too many 

register writes for each configuration and in the absence of clear documentation or support, routing 

is practically fixed based on the schematic configuration at boot time by the IDE. In addition to 

combinational logic, PSoC 5LP also has sequential logic in each UDB consisting of ALU, 

registers, FIFO and comparators. However, the datapath isn’t very flexible to support dynamic 

reconfiguration and is hence not explored in this work. 

Contributions of Thesis 

1. A novel refinement technique implemented with a small amount of digital logic and 

memory to improve the accuracy of computations performed by analog circuits 

significantly. 

2. Reducing chromosome lengths and introducing a new paradigm of piecewise evolution in 

cascaded stages followed by higher level evolution for control of these pieces. 

3. An exploration in the mathematical decomposition and techniques of approximation of 

functions using variations of Laurent and Puiseux series to develop newer and better 

adjustments that can improve accuracy of calculations with available resources 

significantly. 

Organization of Thesis 

This thesis is organized into eight chapters. First the significance and context of this 

thesis is enumerated upon, motivation explained and the platform and resources used in building 

this work is described in the introductory chapter. Next, related works are explored, paradigms of 
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multi-stage and piecewise evolution introduced and the rationale behind choice of mode of 

crossover, mutation implementation and elitism and selection procedures are justified based on 

literature in this chapter on literature review. In chapter 3, the Programmable System on Chip 

platform (PSoC) and the resources available on it for dynamic reconfiguration are explored. In 

Chapter 4, Differential Digital Correction (DDC) technique developed to evolve various powers 

of x is elaborated on. In Chapter 5, the Coefficient Prediction (CP) technique developed to 

predict coefficients of various powers of x evolved in DDC is elaborated on. In chapter 6, the 

Cascaded Digital Refinement (CaDR) technique is reviewed and the nature of solutions obtained 

is discussed to improve on the scheme. In Chapter 7, Results of the work done are summarized, 

starting with comparison with other works, evolution of various powers of x using DDC and 

their use in CPGA to evolve solutions to sine and cosine of x. The coefficients obtained are also 

discussed. In Chapter 8, Conclusions about the significance of results, improvements and 

suggestions for future work and use of Built in Self-Test (BIST) based fitness functions to 

improve system reliability are discussed.  
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Figure 2: Organization of Thesis 
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CHAPTER TWO: LITERATURE REVIEW 

Related Works 

A variety of Evolutionary Algorithms (EAs) have been used to realize novel electronic 

circuit designs intrinsically on reconfigurable fabrics.  Numerous innovative works have 

contributed to the literature of which only a few are highlighted in Table 1 relating to analog and 

hybrid analog-digital domains.  For example, Koza et al. demonstrated an approach to automatic 

synthesis of analog circuits using Genetic Programming (GP) which included crossover and 

lowpass filters at various frequencies, an amplifier, a source identification circuit, a CC (cube-

root), a time-optimal controller circuit, a voltage reference circuit, and a temperature-sensing 

circuit, all extrinsically using DC sweeps for fitness evaluation [16]. Mydlowec and others 

followed the path of Koza, evolving other CCs extrinsically [17, 18], in some cases using multiple 

time domain simulations to improve robustness.  

 

Figure 3: Collection of Related Works [35] 

Keymeulen et al. demonstrated intrinsic EHW on Field Programmable Analog Arrays 

(FPAAs) for population-based and fitness-based evolution of fault-tolerant analog circuits [30].  
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Later, Streeter et al. [29] also showed that GP was able to iteratively evolve circuits that could be 

attached to computational circuits to refine their performance. In [26] EAs were used to evolve 

four analog CCs as well as two digital circuits using analog components. In [23] swarming 

algorithms such as PSO were used to evolve analog circuit sizing.  Recently, Cornforth et al. 

evolved non-linear circuits by utilizing a strategic fitness evaluation scheme without necessarily 

optimizing them for area. They were able to show that a variety of stimuli can extrinsically evolve 

nonlinear analog circuits, which conform to randomly generated black-box circuits, demonstrating 

the strength of the method. 

While several previous works in analog CC design using EAs have involved simulation, 

recent Programmable System on Chip (PSoC) devices providing reconfigurable analog fabric, 

digital logic, and ARM cores enable new capabilities.  Analog fabrics allow rapid evolution, but 

are limited by precision and/or accuracy, which may be refined with evolved digital circuits. The 

ARM core on the PSoC allows on-chip execution of EAs such as the GAs developed herein. 

The work done by Shin and Hitoshi [32] describes the paradigm of multi-stage evolution 

to increase evolutionary pressure to manage circuit area more efficiently. This work also shows 

the advantages of using multi-stage evolution with regards to power, memory usage and better 

conformation to stringent accuracy requirements. Every succeeding stage of evolution leverages 

the results of the previous stage to evolve solutions that satisfy more strict accuracy and quality 

requirements than the previous stages, thereby supporting the fact that evolution in stages is 

desirable for design of complex circuits. This supports the idea of cascaded evolution stage 

followed by coefficient prediction developed herein. 
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Work done by Kazadi, et.al [33], on the other hand explores piecewise evolution to evolve 

pieces of a circuit in discrete functional stages and breakdown of the problem into independent 

output units. They have shown that piecewise evolution that involves relatively random breakdown 

of a problem into independent units doesn’t guarantee any improvements over overall evolution 

of the whole circuit as one piece. However, their work also mentions, “What would seem to be the 

correct line of future work in this area would be the investigation of viable ways of breaking down 

complex problems into simple connected parts”. Hence, for problems where it is possible to 

achieve breakdown into simple connected stages, the paradigm of piecewise evolution is feasible. 

In the approach developed herein, it is mathematically shown that such breakdown is achieved for 

any mathematical function and hence the idea of cascaded evolution of powers of x followed by 

their combination is expected to be advantageous and better than the evolution of the complete 

solution function directly using all resources in one single stage. Additional reasons for using a 

flavor of piecewise evolution in multiple stages are the memory and fabric constraints which 

encourage this approach taken here.  

Evolutionary Algorithms 

Evolutionary algorithms rely on the building block hypothesis and questions about 

granularity of the building blocks used to build the candidate solutions are of prime importance 

when designing the chromosome representation and GA for the problem at hand. The most 

important considerations in the design of GAs are the genetic representation, fitness function and 

its complexity, selection scheme for the crossover function, mutation rate and adaptability of its 

rates and functionality to overcome stasis.   
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Various selection schemes are suggested for the crossover function. Selection schemes that 

favor crossover only among the fitter individuals result in premature convergence and though 

suitable for evolution in small search spaces, it is quite ill-behaved for larger search spaces. This 

was verified in this work, by starting with the evolution of 2:4 decoders which would converge to 

a decent solution (12 out of 16 outputs correct) within the first 100 generations and not improve at 

all owing to excessive presence of certain genes only, whereby at least one other important gene 

was always discarded in the selection process. Fitness proportional selection scheme is better and 

selects individuals for crossover with probability proportional to their respective fitness. This 

approach too suffers from some inadequacies. The work done by Annie S. Wu, et.al [12] elaborates 

on the commonly used selection schemes for crossover and introduces a fitness uniform selection 

scheme which preserves fitness diversity across generations and hence virtually guarantees good 

solutions with a well regulated convergence rate. This approach though, excellent for non-

deceptive problems, doesn’t perform well for deceptive problems. Tournament selection [34] is 

one popular scheme which is capable of producing good solutions with optimal convergence rates. 

In this work, as it is difficult to identify if the problem is deceptive or not, a variation of binary 

tournament selection with ideas inspired by fitness uniform selection scheme have been used. 

With regards to fitness functions, the major drawback is with the complexity of evaluation 

and hence several approaches to tackle these problems have been presented. The paper by Haddow 

[11] provides an overview of the field of Evolvable Hardware (EHW) and pinpoints to the divide 

and conquer strategy that aims at simplifying the fitness evaluation space. Modularization and 

development of fitness functions on its basis are able to overcome scalability challenges in EHW 
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to a very good extent, but determining modularity and determining fitness functions for the genes 

desirable to be retained is a highly involved and almost always a non-trivial task. This work ensures 

modularity and utilizes individual fitness functions for the same to ensure simplification of the 

computation process to enhance computational accuracy.  

Royal Road functions [8] and experiments on them [9, 13] have revealed that, in general, 

it is best to combine building blocks that represent the finest granularity available for manipulation 

than coarser blocks owing to the fact that premature convergence has a very high probability of 

occurring in the latter. This is found to be essential in preserving genetic diversity as identified in 

[13] for fixed populations begin evolved. Thus, in order to determine series expansion to 

approximate a solution function, it is desirable to determine coefficients for each power of the 

independent variable being combined, separately than to attempt to find coefficients for groups of 

these terms. Thus, in this work, the coefficient prediction algorithm attempts to find coefficients 

for each power in consideration and combines them to obtain a decent approximation of the 

solution function. The coefficients are weights and CaDR may be viewed as a GA handling weights 

and develops on some of the ideas presented in [22] on weighted GA for multi-objective 

optimization.    
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CHAPTER THREE: PROGRAMMABLE SYSTEM ON CHIP 

PLD Architecture 

 

Figure 4: Simplified PSoC PLD Architecture adopted from [6] 

Each PLD consists of an AND array with 12 input terms (IT) producing 8 product terms 

(PT) and an OR array that can programmatically access the 8 PTs to produce 4 output terms 

accessible either as combinational or registered outputs based on configuration written into each 

of the macro-cells (MCs) that control the nature of the output. This architecture is referred to as 

12C4, where 12 stands for the number of input terms, C indicates that the PTs are constant and are 

accessible to the OR array and 4 indicates the number of output terms emerging from the OR array. 

Each input term in the AND array may be asserted as true or complement input, thereby 

contributing to the corresponding product in that fashion. Each term in the OR array may or may 

not be asserted, thereby allowing different logic combinations based on product terms arriving 

from the AND array. 
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Macrocell Architecture 

The outputs produced by the logic combinations in AND and OR arrays appear in 

macrocells that have carry in and carry out signals and provisions for XOR feedback, set/reset 

select, true or inverted registered output and output bypass that can be configured to have 

combinational or registered outputs. Configuring Macrocells to produce pure combinational 

outputs requires setting constant to logic 0 (this produces the output from the OR gate as is) and 

the output bypass for the macrocell under consideration to logic 1 (this multiplexes out the 

combinational output only).  

Experimental Configuration 

LUT instantiation and wiring 

 

Figure 5: Schematic showing instantiated resources and connections 
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PSoC has no LUTs in hardware and the LUTs instantiated in the schematic are 

implemented in the PLDs. As illustrated in the above figure, a bus of pins maybe created anywhere 

in the schematic to connect input and output pins to different LUTs in the schematic as desired. 

This can be done only in the beginning, while boot-loading the code to the PSoC device though. 

The total number of LUTs that can instantiated for use is limited by the design space available in 

the schematic editor.  

 

Force Directives – Pins 

 

Figure 6: Design Wide Resources file showing pin assignment 

For the simple design shown in the schematic in figure 5, specifying pin usage and is done 

as in the figure 6.  For each pin used in the schematic, its placement may be directed in the .cydwr 

file which is also configured for many other components that may be used. 
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Forcing resource utilization and implementation of LUTs in the PLD space 

Placement directives, such as force directives may be used to force placement of LUT 

implementation to any specific PLD, which is analogous to the PROHIBIT command in the Xilinx 

User Constraint File [7]. Thus, through register writes, the logic function of each LUT 

implemented in each PLD is reconfigured in runtime. Hence logic configurability of each PLD is 

achieved through code eventually.  

LUTs in the schematic are implemented in the PLDs. The number of input signals/bits 

available to each LUT in the schematic is restricted to a maximum of 5 by the IDE. The number 

of output signals/bits that can be forced out of a single LUT is 8. Each PLD however, only produces 

4 output bits. In order to force the implementation of a LUT (instantiated in the schematic), the 

output bits of the LUT need to be placed in the PLD of interest, 4 at a time for each PLD. This is 

done by using the ForceSignal directive to place the corresponding output signal names to the PLD 

of interest. This imposes the restriction that each PLD can only accept 5 input bits and produce 4 

output bits, since each LUT has an input width of only 5 bits. Hence, in the design, each LUT with 

4 output bits maps to a single PLD. UDBs are identified by a pair of indices which indicate the 
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row and column number of the UDB in the following ordering grid:

 

Figure 7: UDB mapping scheme within PSoC build files adopted from [36] 

The above chart indicates how UDBs are indexed in PSoC. There are two banks of UDBs 

available on PSoC – bank 0 and bank 1. Each UDB has a corresponding row and column number 

as indicated above, that uniquely identifies it irrespective of bank number. Each such UDB has 

two PLDs that are indicated by A and B. The general syntax is thus U(row_number, 

column_number)PLD_index, where PLD_index could be A or B depending on whether PLD 0 or 

PLD 1 is being referenced. Thus, for instance, if we are to reference PLD 0 (or A) of UDB 0, it 

would be written as U(2, 5)A. This information is used in forcing signals that arrive as outputs of 

LUTs to specific PLDs. In order to do so, the correct signal name is to be obtained from the report 

file generated when the project is built. Thus when attempting to find the signal name (also called 
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signal alias in the report), the project with a single LUT in the schematic is built without forcing 

directives. This randomly places the signals across different PLDs in the fabric. From the report 

file, the signal alias name is identified and then used for forcing corresponding signals. The general 

format of a signal alias is as follows: 

\LUT_x:tmp__LUT_x_reg_y\. Here x represents the number(/name) of the LUT as it 

appears in the schematic when instantiated and y represents the output bit/signal number arriving 

from that LUT. To force a signal to a particular PLD, two components are necessary– signal/alias 

name, UDB and PLD index obtained by referring to the chart above and following the referencing 

rule as detailed above. In addition to these, the force signal directive is to be chosen from the 

dropdown to force one output’s placement in a specific PLD of choice. The following example 

shows how forcing is done for LUT_1 instantiated in the schematic: 

 

 

Figure 8: Design Wide Resources file showing force directives for PLD placement 
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In order to add additional PLDs with the restrictions as mentioned above it is required to 

extend these placement directives, to all the PLDs of interest, keeping in mind the placement of all 

pins instantiated in the schematic and the way they are interconnected in the schematic as well. 

Following a similar procedure, the signal names are identified and are forced to the corresponding 

PLDs of interest.  

Constraints in Digital Configuration of 1 PLD: 

Several constraints were encountered in the configuration of a single PLD of a specific 

UDB which implemented a single LUT placed in the schematic. The major constraints were as 

follows: 

Number of input terms that can simultaneously enter a PLD 

Only 5 inputs could be fed to a single LUT and use of force directives wasn’t able to 

achieve placement of inputs to a PLD, but only the placement of output signals to a specific PLD. 

Thus, only the corresponding input signals would arrive at the input end of the PLD. Though, there 

are 12 inputs available in a PLD, when placement is forced by the user, only as many inputs as an 

LUT supports can be accommodated in a PLD. This gives a constraint of being able to support 

only 5 input terms out of the 12 input terms available in the PLD architecture.  

Selection of input lines used by the PLD in implementing the LUT 

The input lines that are actually used by the PLD are randomly chosen out of the 12 input 

lines available to the PLD at design time, i.e. when the boot-loader programs the PSoC device. 
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This constraint is made more severe by the fact that the other input lines are in high Z state and 

hence if one of those lines are asserted in the OR array, then the corresponding output from the 

macrocell is also in high Z state. Thus, in order to avoid driving outputs to high Z state, the actual 

input lines initialized for use by the schematic need to be identified after the schematic 

configuration is built from the boot loaded code. These input lines are referred to as active lines 

and custom code was developed to identify these active lines by searching in the address space 

corresponding to the PLD(s) being used. 

 

Storing the configuration:  

PSoC’s g++ compiler doesn’t support Boolean type variable and hence several bit 

manipulation and type conversion operations had to be performed, to carefully extract out 

configuration from each register and store the same in the chromosome for that individual.  

 

Writing back configurations to the chromosomes: 

Following the problem with inactive input lines and their potential to drive output to high 

Z state if asserted, reconfiguration of the PLD also involves writing only to the active lines 

identified. This restriction is limited only to the AND array, while the OR array has no such 

restrictions when 4 output terms are derived from the same. It has to be noted that if there are fewer 

product terms than 8 arriving at each line of the OR array, the other product terms if asserted later 

can result in high Z output for that line. Thus special care is taken to evolve the whole PLD with 
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non-coding sequences participating in evolution, but only the configuration of the active lines 

being written back in both arrays. This constraint provides an opportunity to test the effect of 

evolution of introns and their effect in convergence of the overall GA as and when required. 

 

Writing back configuration to the corresponding registers:  

Owing to the limitations of g++ compiler and the possibility of driving outputs to high 

impedance, writing back configuration to the registers, involved bit manipulations and type 

conversions and writing only if the corresponding active line were asserted in the chromosome.   
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CHAPTER FOUR: DIFFERENTIAL DIGITAL CORRECTION 

Differential Digital Correction Technique 

 

Figure 9: DDC and Self-Scling GA schematic for analog-digital evolution [35] 

The solutions obtained from analog evolution can rapidly approximate the desired 

solutions, although their accuracy is limited and susceptible to imprecision. The results of the 

analog stage are obtained and written to files. These files are then included in DDC code as header 

files for subsequent digital evolution. The Differential Digital Correction (DDC) technique selects 

a correction factor for each test input from a Normalized Error Array (NEA), which contains 

fractions of the maximum analog error. In order to build the NEA, the deviations of the analog 

outputs from the oracle are obtained and compared to obtain the maximum deviation or the 

maximum analog error. Following this, the NEA is constructed by generating fractions of the 

maximum analog error upto 256 levels with positive and negative correction factors adjusted to be 

able to provide correction to the case corresponding to maximum error as well, as shown below: 
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for (i=0;i<256;i++){ 

        if (i < 128) 

            NEA[i] = -((float)(127-i)/127.0) * 

winner.maxDeviation; 

        else 

            NEA[i] = ((float)(i-127)/128.0) * 

winner.maxDeviation; 

    } 

 

This DDC utilizes correction factors quantized to 256 levels and hence evolves PLDs to 

produce an 8-bit mapping for the 256 test inputs to reduce the error at each test point to the best 

possible extent. The DDC fitness is evaluated as follows: 

 

𝑓𝑜𝑟 𝑖:= 0 𝑡𝑜 255 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠 += 𝑜𝑟𝑎𝑐𝑙𝑒[𝑖]−𝑜𝑢𝑡𝑎𝑛𝑎𝑙𝑜𝑔[𝑖]−𝑁𝐸𝐴 [𝐷] 

 

The NEA containing correction factor elements called normalized differences is indexed 

by the instantaneous 8-bit output D, to realize the 8-bit output mapped to one of the 256 values 

which provides a correction factor of proportional magnitude. The D values so obtained are stored 

as the LUT configurations corresponding to the test inputs for which they appear. The fitness 

function thus represents cumulative error which is minimized through a GA which intrinsically 

evolves the digital fabric. 

Representation Scheme and Chromosome Structure: 

In order to evolve a single PLD, its configuration bits are encoded into a chromosome 

which genetic operators can act upon. The configuration bits consist of the following: active lines, 

AND array parameters and OR array parameters. Input lines that are active, i.e. not in high 
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impedance state, in the actual implementation are determined from the register configuration 

immediately after booting and are marked as active lines; other lines cannot be written. There are 

12 input lines for the AND array and four output lines for the OR array.  

Active Lines:  

            Input lines that are active in the actual implementation are determined from the 

register configuration immediately after booting and are marked as active lines. There are 12 input 

lines for the AND array and 4 output lines for the OR array. Hence we have a total of 16 active 

lines depending on the usage of resources determined from the schematic at the time of booting. 

Active lines are copied as is for all individuals generated for a particular PLD and remain, for all 

practical purposes, a constant gene of the chromosome. 

 

Figure 10: Example of selection of active lines by IDE for logic implementation. Adopted from [6] 
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AND array parameters:  

For each input line that is active, the input bit can be asserted as true or complement input 

in each of the product terms that will be calculated for each column in the array. There are 12 input 

lines with 8 columns each corresponding to the 8 product terms. For each column corresponding 

to an input line, the bit being considered can be asserted as true (0) or complement (1) and are 

encoded only for active lines in the same fashion in the chromosome. In order to encode the 

configuration, the configurations of the active input lines alone are to be recorded and hence up to 

eight such 32-bit integers store the configuration from the corresponding registers for two PLDs 

constituting a Universal Digital Block (UDB) in the fabric.  

Initially, the bits of every input line in the AND array were considered and encoded for 

evolution. This resulted in larger evolution times with more time and resources being spent on 

introns or unexpressed genes. Additionally it also posed a greater risk of performing erroneous 

register writes. This process was found to be wasteful and hence introns were pruned out in 

encoding and subsequently in evolution. The current structure for evolution contains only the 

extrons and is hence much less resource and time intensive.  

OR array parameters:  

Like the AND array, for the OR array, each of the product terms arriving from the AND 

array may be asserted (1) or not asserted (0) and is encoded likewise in the chromosome. We have 

four such 16-bit integers that store the configuration from the corresponding registers. Hence we 

have an array containing 32 values for the OR array. 

The chromosome for each PLD is encoded as a structure with three arrays: AL (active 
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lines), AND array parameters and OR array parameters representing configuration bits as 

described above and effectively describing contents of one UDB. 

 

Figure 11: Chromosome representation for each UDB evolved in DDC 

DDC Genetic Algorithm 

Generation of random individuals and the population size: 

Individuals with the chromosome structure described above are randomly generated 

initially. The configuration of each of these individuals is programmed and the output is tested 

against various inputs applied to the board to evaluate fitness. The elite individuals are chosen for 

crossover with other individuals and their crossover probabilities are assigned based on their 

fitness. With regards to successful generation of random individuals, it was realized that seeding 

the random number generator appropriately was an important step. Seeding very often or too less 

often resulted in poor randomness and hence in the diversity of the populations in the initial or 

subsequent generations, accordingly as the case was observed to be. Also, a population of 

sufficiently large size was necessary to ensure that the search space was large enough not to lead 

the GA to a local extremum. Various population sizes were attempted given the memory 

limitations of the fabric. A population size of 80 was deemed suitable for evolution. 
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Elitism and selection of individuals for crossover: 

An elitism of 2 is implemented where the two best fit individuals don’t undergo mutation 

but have a high chance of crossing over with other individuals. In order to select individuals for 

crossover, binary tournament selection is implemented. Two adjacent individuals in the population 

array are checked for their fitness and the fitter one is chosen and stored in a separate array 

containing winners of the tournament in every such pair of individuals compared.  

Crossover: 

The crossover operation is performed separately in each iteration for the AND arrays and 

OR arrays owing to their inherent functional differences. Crossover operation entails choosing a 

random crossover point (single point crossover) and copying the configuration bits from one end 

to the crossover point, respectively from each parent to generate the configuration bit-stream for 

the offspring. Crossover points were chosen to be at the boundaries between the eight 32 bit 

numbers in the AND array and the boundaries between four 16 bit numbers in the OR array 

respectively. Tournament selection is done with a tournament size of two and constitute 40 of the 

total 80 individuals per generation. Single-point crossover is then performed between one of these 

40 fitter individuals and another individual randomly chosen from the whole population. The 

individuals so generated replace a fraction of the individuals in the population, while the remainder 

are from the fitter half of the population selected by binary tournament selection. The fraction of 

individuals that would be replaced with new individuals is a parameter tunable at the beginning of 

evolution. The fittest individual is marked to be preserved intact while other individuals undergo 

mutation.  
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Various schemes have been attempted for crossover. The first (and very ineffective 

scheme) involved choosing a class of elite individuals –fittest, second, third and fourth fittest 

individuals- and preforming crossover only between them to generate 6 new individuals which 

would replace the other 6. This resulted in a lack of genetic diversity and very quick convergence 

to a solution that wouldn’t improve any further owing to very similar genes.  

To improve performance, the crossover pattern was modified to pick the fittest and the 

second and perform crossover with probabilities of 100% and 50% and with a probability of 30% 

with the rest. This resulted in a slight increase in performance, but wasn’t encouraging enough. 

The probabilities of crossover were then modified to 10%, 10% and 80% respectively for the 

crossover with the fittest, second and the rest, respectively. Again, the performance improved but 

only marginally.  

The probabilities of crossover were modified to see improvements in performance and 

justifiably, a proportional search scheme was chosen for implementation. This scheme assigns a 

fixed probability of crossover for each individual based on its relative fitness value among all 

individuals. The probability of being chosen for crossover is essentially the ratio of the fitness of 

that individual to the maximum possible fitness that can be achieved. Individuals so chosen 

produce new individuals whose fitness is evaluated and subsequent replacement of less fit 

individuals in the older generation occurs. New individuals so generated replace the older 

individuals while the fittest and the second fittest individuals of each generation are retained. This 

approach resulted in good improvements in performance. 
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Considering the success of the proportional search scheme above and the need for fitness 

diversity while still finding the problem of evolution not entirely classifiable as non-deceptive, the 

fitness uniform selection scheme as discussed in Dr. Wu’s work [12] couldn’t be adopted as is. 

Tournament selection was selected to offer better fitness diversity, while the scheme for 

replacement of individuals involving maintaining all or a fraction of the fitter individuals selected 

in the tournament tries to emulate the advantages of the proportional search scheme and possibly 

overcoming the problem if deception where it appears. Maintenance of an elitism of 2 helped with 

debugging and code development, especially when concerns of losing the best individual appeared.  

Mutation: 

Mutation is implemented as a simple bit flip with a finite probability of occurring at any 

position on the chromosome. All but the two most elite individuals undergo simple bit flip 

mutation with a default mutation rate of 0.1% per bit in the chromosome. In order to deal with a 

potential stasis condition several schemes were attempted. The mutation rate was ramped up by 1 

(or a small increment) percent every few hundred iterations in a fixed fashion. The number of 

iterations after which the rise occurred was tuned to determine a suitable empirical number, but 

this approach failed to produce good results for all the different circuits being evolved. Unusually 

high mutation rates were also used in hopes of improving the performance.  

Mutation rate was observed to be a crucial factor in the performance of the DDCGA with 

adaptive mutation being very useful in overcoming stasis. Other mutation altering strategies 

discussed before weren’t as effective in improving performance. A condition of stasis is detected 

and reported if the best fitness achieved hasn’t changed in 50 iterations using a single control bit. 
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The difference between average fitness and best fitness achieved is compared and encoded 

likewise in the stasis information to decide whether mutation should be enabled at the default rate 

or at an incremented rate, where increments in steps of 0.01 improved performance.  Faster rates 

destroyed good solutions and slower rates couldn’t help maintain enough diversity to search for 

better solutions. 

Improving performance of the GA and overcoming stasis conditions:  

In order to improve the performance of the GA, initially parameters were tuned using 

different crossover parameters. Choosing boundaries that match with the chromosome structure 

better proved to be beneficial. Also, choosing a random point for crossover instead of a fixed point 

on the chromosome helped improve the search space. Initially, evolution was attempted with 

crossover at mid-point only. This was followed by attempts within a fixed set of points. These 

experiments produced poor results as the genetic diversity was severely restricted. Completely 

random crossover points with no strictly defined boundaries were then attempted and it was 

noticed that good solutions disappeared very soon after their appearance owing to extreme 

variations. A fair balance was achieved when crossover boundaries matched with the chromosome 

definitions introducing randomness within reasonable limits.  

One other technique to add to genetic diversity involved creating and introducing some 

random individuals into the gene pool after a few hundred iterations when a potential stasis like 

situation was expected. This helped improve the randomness and hence the search space in some 

cases. Unlike mutation, however, the randomness introduced by addition of new individuals easily 

went beyond control when more than 2 individuals were introduced at a high frequency (less than 
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50 generations). Very controlled addition of a single random individual resulted in performance 

mostly at par with the case where such an addition weren’t being made. Like in the case of 

mutation, it is expected that performance could improve if addition of random individuals were 

performed on demand with an adaptive flavor to resemble what is popularly called hyper mutation. 

This approach is still under investigation.  

Evolving individuals by building chromosomes only form the extrons resulted in quicker 

evolution times and gave better scope for scalability and extension to multi-PLD chromosome. 

Evolution with active lines alone results in better utilization of memory and is largely used. 

Evolution with introns is attempted as an additional exercise to study their benefits.  

 PLD allocation and utilization:  

Differential Digital Correction GA (DDCGA) reconfigures the digital fabric. The DDCGA 

evolves four PLDs of two chromosome sets per individual: one each for the AND and OR arrays, 

and one set of individuals for each pair of four PLDs, given constraints of the digital fabric. Use 

of fewer PLDs was found to provide insufficient resources for evolution, while the use of a larger 

number of PLDs didn’t produce better results than with 4 PLDs. Also, considering the memory 

constraints of PSoC, parallel evolution of more PLDs introduced issues with randomness and loss 

of tractability owing to insufficient memory to have a sufficiently large population for all PLDs to 

evolve, thereby resulting in a drop in performance once the population size was affected by the 

resource allocation for all PLDs for each step in evolution. 
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Cascaded DDC: 

Following the success of DDC in evolving powers of x such as square, cube, square root 

and cube root, a few other powers of x were evolved too. These included the analog computational 

circuits for fourth root and fourth powers of x which were then refined by DDC. Circuits to 

compute zeroth and first powers of x were trivial and required very short evolution times to obtain 

corresponding analog computation circuits, followed by short DDC stages to refine them. Thus, 

different powers of x starting from fourth root through fourth power of x were evolved in a 

cascaded fashion, one following the other and the arrays containing the outputs of each of these 

stages were stored separately for the coefficient prediction stage to act on the same.  
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CHAPTER FIVE: COEFFICIENT PREDICTION 

Coefficient Prediction Technique 

Following the cascaded DDC stage, the coefficient prediction (CP) stage attempts to 

predict coefficients of the evolved circuits that can be combined through addition to approximate 

the available range of functional values of the independent variable, x, to best represent the 

composite function in terms of the independent variable. Coefficients are randomly assigned 

initially to each of the eight powers of the independent variable, evolved by cascaded stages of 

DDC starting from the most accurate to the least accurate power (smallest to largest). The 

coefficient prediction phase first performs range scaling of the computed oracle by dividing all the 

values in it by a scaling factor that is determined from overflow considerations in calculations 

involving multiplication of the largest coefficient assignable and the largest value of biggest power 

of x used and the sum of all such products for all powers of x that would not result in an overflow 

in the results computed. Once range scaling is performed, CPGA randomly initializes a population 

with random coefficients for each power of x and performs fitness evaluations, selects good 

individuals, performs single-point crossover at a randomly determined point to exchange genetic 

material followed by mutation to evolve a suitable set of coefficients that act as weights in 

combining different powers of x to produce functions that approximate the solution function as 

closely as possible given the number of iterations after which it is terminated. The chromosome 

for x^0 function is trivial and hence in order to reduce overall evolution time, it isn’t evolved, but 

the values are directly written to the corresponding array.   
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Coefficient Prediction Genetic Representation 

Chromosome Structure: 

The chromosome is a simple array of 8 floating point numbers, each of which is within the 

range determined after range scaling. Bitwise manipulations of the chromosome aren’t performed 

from code in any step in the CPGA. Each chromosome is equivalent to set of coefficients for all 

the data points for all powers of x. The following is the chromosome for one individual: 

 

Figure 12: Chromosome representation for coefficients evolved in CP 

The chromosome and the corresponding correlations between the coefficients and various 

powers of x are as indicated above. Each of the coefficients C0 through C7 in the above 

chromosome is within the scaled range obtained after performing range scaling. 

Coefficient Prediction Genetic Algorithm 

CPGA Algorithm Flow 

Range Scaling: 

 Determine largest value of the largest power of x from cascaded DDC 

 Determine the range of values for each coefficient being evolved from the following 

relation: 

 C_range*A_largest*8 = range( float32) 

 Or C_range = range(float32)/(A_largest*8) 

 

Initialize Population: 

 Randomly pick values using rand()%C_range for all the coefficients C0, C1, C2, C3, C4, 

C5, C6, C7 
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 Initialize 80 individuals or more with randomly chosen coefficients 

Dynamic Range Adaptation: 

 Check if best fit individual has a total error greater than 100 

 Halve C_largest and re-initialize population with new coefficients in smaller range except 

first 10 individuals 

 Continue narrowing search space by reducing C_largest till a comfortable range is found 

 Range forcing: Further narrow range by halving C_largest for half the population after 

error goal is achieved  

 

Fitness Evaluation: 

 Store the values of {oracle[i]-(output[i]-NEA[D_array[i]]} in a separate array called  

results _DDC_C0 for x^(1/4) and likewise for other powers: results _DDC_C1, results 

_DDC_C2, results _DDC_C3, results _DDC_C4, results _DDC_C5, results _DDC_C6, 

results _DDC_C7 for C1 through C7 as well respectively 

 Multiply C0* results _DDC_C0 and store in array S0 

 Multiply C1* results _DDC_C1 and store in array S1 

 Multiply C2* results _DDC_C2 and store in array S2 

 Multiply C3* results _DDC_C3 and store in array S3 

 Multiply C4* results _DDC_C4 and store in array S4 

 Multiply C5* results _DDC_C5 and store in array S5 

 Multiply C6* results _DDC_C6 and store in array S6 

 Multiply C7* results _DDC_C7 and store in array S7 

 Add S0+S1+S2+S3+S4+S5+S6+S7 = ΣS 

 Error = S- ΣS 

 Fitness = sum(Error) 

 

Crossover: 

 Select elite 2 

 Binary tournament selection  

 Single point crossover with tunable number of individuals to be replaced in the 

population and fitter individuals pool as in DDC 

 

Mutation: 

 With probability of mutation Pm, add rand(-1, 1) (is this the best way to mutate them??) 

to each gene of the chromosome 

 Leave out elite 2 unaltered 

 

Continue GA: 

 When stasis is detected adapt mutation rates 

 Introduce hypermutation as introduction of random individuals if necessary on demand to 

improve genetic diversity 
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Terminate and Present Solution: 

 Terminate when maximum number of iterations is reached (or if the fitness goal is 

achieved) 

 Print coefficients and error of the best fit individual obtained 

Range Scaling 

As in indicated in algorithm flow above, the coefficients C0 through C7 are all floating 

point numbers. However, each is multiplied by the corresponding power of x to calculate the 

solution at every test point. Consider the following calculation of the solution at a test point i: 

 

Sol[i] = C0*x^(1/4)[i] + C1*x^(1/3)[i] + C2*x^(1/2)[i] + C3 + 

C4*x^[i] + C5*x^2[i] + C6*x^3[i] + C7*x^4[i] 

 

For the above calculation at a test point i, it is seen that the sum of products must be a value 

within the range of Sol[i], which is a 32 bit floating point number. In order to ensure that all 

coefficients have the same scaled range for easy scalability of the final solution obtained, the 

scaling factor, A_largest is determined by dividing overall range of values of float32 by 

8*x^4[255]. Coefficients are randomly picked within this scaled range to initialize the population 

for evolution.  

Generation of random individuals and the population size: 

Individuals with the chromosome structure described above are randomly generated 

initially. The configuration of each of these individuals is programmed and the output is tested 

against various inputs applied to the board to evaluate fitness. The elite individuals are chosen for 

crossover with other individuals and their crossover probabilities are assigned based on their 
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fitness. With regards to successful generation of random individuals, it was realized that seeding 

the random number generator appropriately was an important step. Seeding very often or too less 

often resulted in poor randomness and hence in the diversity of the populations in the initial or 

subsequent generations, accordingly as the case was observed to be. Also, a population of 

sufficiently large size was necessary to ensure that the search space was large enough not to lead 

the GA to a local extremum. Various population sizes were attempted given the memory 

limitations of the fabric. A population size of 80 was deemed suitable for evolution. 

Dynamic Range Adaptation: 

When arbitrarily large coefficients are chosen for evolution, the total error is observed to 

be arbitrarily large as well and the search space in this case is too large for a GA to be able to 

navigate through in a fixed number of generations. Mutations and crossovers aren’t sufficient to 

sufficiently alter the coefficients to be able to reduce the search space and obtain fitter 

individuals. Thus a technique to dynamically alter the range of coefficients defining the 

chromosome is used. Every iteration where the total error is larger than 100, the range of the 

coefficients chosen for all but the first ten individuals is halved. Crossover and mutation are then 

performed. This results in production of fitter individuals or otherwise depending on the nature 

and characteristics of the solution function. Range adaptation reduces the range of exploration of 

coefficients to a more likely range for all powers of x involved. Range forcing is also attempted 

when the total error is less than 100, in which case the coefficients of a quarter of the individuals 

is halved. Range forcing hasn’t been able to produce significant results for sin(x) but may 



38 

 

produce better results for other functions. Dynamic range adaptation is essential in order to 

ensure meaningful evolution of coefficients and spans the first few iterations in CPGA. 

Elitism and selection of individuals for crossover: 

An elitism of 2 is implemented where the two best fit individuals don’t undergo mutation 

but have a high chance of crossing over with other individuals. In order to select individuals for 

crossover, binary tournament selection is implemented. Two adjacent individuals in the population 

array are checked for their fitness and the fitter one is chosen and stored in a separate array 

containing winners of the tournament in every such pair of individuals compared.  

Crossover: 

The crossover operation is performed by choosing a random crossover point between two 

of the eight coefficients in the chromosome. Crossover operation entails choosing a random 

crossover point (single point crossover) and copying the configuration bits from one end to the 

crossover point, respectively from each parent to generate the coefficients defining the offspring. 

Tournament selection is done with a tournament size of two and constitute 40 of the total 80 

individuals per generation. Single-point crossover is then performed between one of these 40 fitter 

individuals and another individual randomly chosen from the whole population. The individuals 

so generated replace a fraction of the individuals in the population, while the remainder are from 

the fitter half of the population selected by binary tournament selection. The fraction of individuals 

that would be replaced with new individuals is a parameter tunable at the beginning of evolution. 

The fittest individual is marked to be preserved intact while other individuals undergo mutation.  
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Following the success of tournament selection for DDC and for reasons concerning 

deceptiveness of the problem at hand and offering fitter individuals a higher chance to pass on 

their genes, as discussed in the crossover section of DDC, binary tournament selection was chosen 

for implementation. 

Mutation: 

Mutation is implemented in two flavors. The first and more prevalent flavor (also called 

normal flavor here) in the population is the addition or subtraction of a small random number 

generated between -4 and 4. All but the two most elite individuals undergo this form of mutation 

with a default mutation rate of 0.1% per bit in the chromosome. In order to deal with a potential 

stasis condition, the mutation rate was ramped up at a rate of 0.01% every iteration when under 

stasis, but the effects weren’t significant with respect to evolution of better solutions. In order to 

consider the possibility of a sign flip and its effect on the solution, a small number of individuals 

were randomly chosen from the population and a sign flip was performed for each coefficient of 

the chosen individual with the same probability of 0.1%. This flavor of mutation was less prevalent 

in the population and the number of individuals chosen for sign flip mutation was fixed at a 

maximum of 10.   

Mutation rate was observed to be a crucial factor in the performance of the CPGA with 

adaptive mutation being very useful in overcoming stasis. Other mutation altering strategies 

discussed before weren’t as effective in improving performance. A condition of stasis is detected 

and reported if the best fitness achieved hasn’t changed in 50 iterations using a single control bit. 

The difference between average fitness and best fitness achieved is compared and encoded 
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likewise in the stasis information to decide whether mutation should be enabled at the default rate 

or at an incremented rate, where increments in steps of 0.01 improved performance.  Faster rates 

destroyed good solutions and slower rates couldn’t help maintain enough diversity to search for 

better solutions.  

Improving performance of the GA and overcoming stasis conditions: 

In order to improve performance first different crossover boundaries were experimented 

with. Choosing boundaries that match with the chromosome structure better proved to be 

beneficial. Next, in order to pull the GA out of local minima for total error, the implementation of 

the first flavor or the normal flavor of mutation was changed based on stasis information. When 

stasis was detected, the size of the numbers added to or subtracted from the coefficient under 

consideration was ramped by proportional to the number of iterations of the GA elapsed. The 

increase in size was managed within a small range to prevent the GA from entering into a state of 

random search. 

Scaling back to original range 

Following the evolution of the final solution to the problem, the best fit individual’s 

coefficients needn’t be multiplied by the scaling factor, 8*A_largest, where A_largest is the 

biggest term in the largest power of x evolved. The coefficients were observed to be fairly small 

for most test functions attempted. The final solution contains the coefficients most closely 

approximating the solution function for the differential equation at hand.  
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CHAPTER SIX: CASCADED DIGITAL REFINEMENT 

 

Figure 13: CaDR scheme for solving approximating solution function to a DE 

Cascaded Digital Refinement (CaDR) technique essentially uses DDC technique in a 

cascaded succession, on the analog evolved solution, to evolve the powers of the independent 

variable, x, that would be used to approximate the solution of the ordinary differential equation 

whose solution is also a function of the independent variable x, by combining them with 

appropriate coefficients which are determined by the Coefficient Prediction GA (CPGA). DDC 

and CP together constitute the CaDR technique to numerically approximate the best solution to a 

given ODE with a known solution. The underlying assumption is that mathematical power series 

expansions such as Taylor series hold for any function of the independent variable x that is 

continuous and differentiable at very point. Though power series expansions typically use integral 

powers of x, it is conjectured here that use of fractional powers of x along with integral powers of 
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x and predicting coefficients for all of them using CPGA would result in better solution to the ODE 

than mere integral or fractional powers of the independent variable alone. Given the accuracy with 

which DDC evolves different powers of x, it was noted that smaller powers of x were more 

accurately evolved owing to the precision inherently available from the analog section which the 

DDC further improves upon. This motivates use of fractional powers of x (less than 1) alone, but 

this conjecture isn’t verified to produce closer approximations to the power series expansion of a 

function than complete use of integral powers alone. It is understandable that several more terms 

would be required to produce a decent approximation of the solution function of the ODE, when 

more fractional powers are in use, especially as for higher values of the independent variable x. 

Thus, in order to reduce error arising both due to the inherent error in larger integral powers of x 

evolved and also to reduce the possible errors for higher values of x when evolved using fractional 

powers alone, a suitable compromise between the two is attempted to produce maximum possible 

accuracy of CaDR, where the accuracy of CP stage is expected to depend on that of the building 

blocks produced in the cascaded DDC stages.  

Evolving fractional powers from fourth root to square root of x followed by integral powers 

from square to fourth power of x via DDC is proposed for the first stage, namely cascaded DDC 

stage of CaDR. The circuit configurations to produce zeroth power of x is trivial and hence known. 

The second stage of CaDR, namely CP stage is expected to evolve coefficients of the powers of x 

considered, that would approximate the solution function to the ODE to the desired level of 

accuracy. To approximate the solution function with combinations of powers of x mentioned 

above, 8 different coefficients need to be determined. In order to proceed with the same, CP stage 
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first considers issues of data overflow and hence implements range scaling to ensure that the 

coefficients may be randomly initialized within appropriate value ranges, to be able to combine 

these powers with the weights of their coefficients and to ensure that the respective errors of each 

individual in the population may be evaluated against the oracle. Once initialized, CPGA performs 

binary tournament selection, crossover between one individual from the fitter half and the other 

randomly selected from the population.  Mutation operation is then performed on these individuals 

with suitable probabilities and fitness/error evaluation at each of the 256 data points starting from 

0 and incremented in steps of 0.016 for the independent variable x are performed. The best two 

individuals of each generation are retained without undergoing mutation and the number of 

individuals to be replaced after crossover is a tunable parameter. Once the termination condition 

is reached, the coefficients of the best fit individual are taken, scaled back to the original size and 

the solution function is evaluated against the originally computed oracle to determine performance 

error.  

CaDR essentially emulates one possible Puiseux series expansion of a mathematical 

function of the independent variable x involving the powers discussed above. At the end of CPGA, 

the coefficients for the best fit individual produced by CPGA are printed out. These coefficients 

point to the possible combinations of evolved powers of x with varying degrees of error in each of 

them. Thus CaDR solves a multi-objective optimization problem of determining an appropriate set 

of weights that can be used to combine results of approximate computations of the mathematical 

building blocks to compute arbitrarily complex functions. It is interesting to note that a 

combination of integral and fractional powers of independent variable may be used to compute its 
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higher powers. Also, several mathematical functions may be constructed using CaDR and their 

results stored and used to compute more complex functions involving them and integral and 

possibly fractional powers.  

 

 

Figure 14: Coefficients evolved to approximate fifth power of x 

Figure 15: Coefficients evolved to approximate fourth power of x 

CaDR can also be used to improve upon the accuracy of powers of x evolved by DDC by 

combining small fractions of the other powers evolved. As shown in figure 15, the coefficient for 

the fourth power is close to 1, but owing to the error in the DDC stage, other powers of x are also 

involved. The performance of CPGA for the fourth power compares to that for evolution through 
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DDC without hypermutation. Though, this approach may not guarantee better solutions for smaller 

powers of x, it performed notably to produce results for a few larger powers of x such as the fifth 

power. As shown in figure 14, the coefficients to approximate the fifth power of x are largely 

combinations of second, third and fourth powers respectively.  

Several interesting observations can be made about the mathematical nature of the 

coefficients produced to approximate the solution. They are automatically identified and differ 

depending on the accuracy of the powers of x involved but largely indicate the approximate values 

needed to approximate a given function with a limited number of powers of x. CPGA was 

performed only for 500 iterations. With further evolution it may be possible to approximate an 

arbitrary function to an arbitrary degree of accuracy. The coefficients predicted by CaDR can serve 

as mathematical tools to study the nature of Puiseux series expansions of known functions to begin 

with. With further investigation, it may be possible to develop formulas or algorithms to predict 

coefficients to compute a given arbitrary function with various approximate powers of x.  

CaDR, being capable of developing solutions to several functions can be used to store 

values of computed functions. With addition of extra coefficients and an increase in the size of the 

chromosome for CPGA, these computed results may also be assigned weights and combined with 

other powers of x to enable possible quicker and more accurate computation of bigger functions 

of x as the case may be. The powers of x evolved needn’t be consecutive powers of x. Though, 

mathematically convergence of such series may not be guaranteed, several possible combinations 

exist and may be explored to develop better techniques to build computing techniques to best 

exploit available resources and computing power adaptively and achieve desired performance. In 
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this sense, multiple cascaded runs of DDC and CP can be used to produce better digital refinement 

of solution. Thus cascaded digital refinement technique can be recursive in application to achieve 

desired objectives of accuracy and ability to perform more mathematically involved computations. 

The possibilities in this direction are limited by the ability to produce accurate formulations of 

different building blocks.  
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CHAPTER SEVEN: RESULTS 

Several parameters affected the performance of the GAs developed in CaDR. The most 

important factors that affected GA performance were population size, crossover technique and 

number of individuals replaced every generation, initial mutation rate, rate of increment of 

mutation rate and it’s responsiveness to stasis condition when detected, introduction of random 

individuals and the seeds used for generation of initial population and for choosing crossover point.  

Figure 16: Collection of comparative performance of DDC against previous works [35] 

Compared to the results of the previous works in Figure 16, the square-root and cube-root 

CCs evolved with SSGA achieved an average error of 30mV and 23mV, respectively, and 

performed better than Koza et al. The square-root CC evolved in this paper performed marginally 
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better than Mydlowee et al. [26], with an average error of 20mV, but the square CC did not 

outperform. All test cases performed worse than in [18], but considering their work evolved CCs 

extrinsically without device constraints, this is understandable. It is interesting to note that DDC 

improved accuracy of all circuits to various degrees. The greatest reduction in average error was 

seen for the cube circuit where a reduction from 1160mV to 732mV yielded a 36.89 percent 

reduction in error on average. Likewise, DDC improved accuracy by reducing average error in 

square, square root and cube-root CCs by 28.57, 10.67 and 16.3 percent respectively, on average. 

Some general trends were observed with regards to error reduction by DDC. For all CCs, the error 

reduction was larger when SSGA performance was worse than average, thus providing for a 

stabilizing effect to maintain accuracy within reasonable bounds. Performance for individual cases 

depended on error distribution of SSGA output. As shown in Figure 17, SSGA evolves four islands 

of populations in parallel to produce a best fit individual with a total error of 296.3. The DDC then 

evolves the digital fabric to correct errors and reduce it to 169.48. As far as the authors are aware, 

this is the first realization of intrinsic evolution of analog CCs on a commercial PSoC device 

utilizing a compact fabric of 4 SC op-amp Blocks rather than an unlimited number of resistors and 

BJTs. With an addition of only four PLDs, significant accuracy improvements were also achieved. 

Figure 17: Evolution of cube circuit and its refinement using DDC 
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To save evolution time, the results of analog evolution of each circuit were stored in 

separate header files which were then included individually as DDC was used to refine them one 

after the other in a cascaded fashion. The results for fourth root, cube root, square root, square, 

cube and fourth power circuits are as indicated in figures 18 through 29. Evolution was 

performed for 1000 iterations in DDC and the scale in all these figures is Generation*2/3. In 

order to obtain the best performance for each of these circuits, a few parameters required change, 

while the style and flavor of mutation remained largely the same. Hypermutation in DDC is 

implemented as the introduction of one random individual every few hundred generations of 

evolution. Hypermutation rate is defined in this context as the interval in terms of the number of 

generations when a random individual is introduced to the population pool. Hypermutation rates 

of 100, 200 and 300 were largely experimented with occasional use of 150 and other rates for 

better results for individual circuits evolved in DDC. From the trends observed in the CCs 

evolved for computations of various powers of x, it is seen that larger powers of x tend to have 

bigger errors in computation owing to the larger errors and correspondingly larger maximum 

deviation propagated from the analog stage. Individual analyses of each of the evolved circuits 

are presented.  

Figure 18: DDC Evolution of Fourth Root circuit without hypermutation 
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Figure 19: Best case DDC evolution of Fourth Root circuit with a hypermutation rate of 300 

Fourth root circuit’s digital evolution phase is as presented in Figure 18 without 

hypermutation and Figure 19 for the best case evolved with a hypermutation rate of 300, 

respectively. Analog evolution phase ends with a total error of 6.734 as compared to the oracle 

computed. DDC then refines this circuit to produce configuration of PLDs that reduce the total 

error to 4.649 in the first case and to 4.059 in the second, thus enhancing the accuracy of 

computation by 31% and 39% respectively, for the fourth root case. The effect of hypermutation 

is significantly visible in the evolution of fourth root circuit as can be seen in the difference in 

total error for fourth root circuit with the best case hypermutation rate of 300 over the other case. 

More frequent hypermutations resulted in poorer performance. The effects of multiple 

introducing multiple individuals for hypermutation can be explored.  

Figure 20: DDC Evolution of Cube Root circuit without hypermutation 
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Figure 21: Best case DDC evolution of Cube Root circuit with a hypermutation rate of 300 

Cube root circuit’s digital evolution phase is as presented in Figure 20 without 

hypermutation and Figure 21 for the best case evolved with a hypermutation rate of 300, 

respectively. Analog evolution phase ends with a total error of 5.984 as compared to the oracle 

computed. DDC then refines this circuit to produce configuration of PLDs that reduce the total 

error to 5.582 in the first case and to 5.247 in the second, thus enhancing the accuracy of 

computation by 6.7% and 12.3% respectively, for the cube root case. The effect of 

hypermutation is significantly visible in the evolution of cube root circuit as can be seen in the 

difference in total error for cube root circuit with the best case hypermutation rate of 300 over 

the other case. More frequent hypermutations resulted in a decrease in performance. However, 

other rates close to 300 may improve performance. 

 

Figure 22: DDC Evolution of Square Root circuit without hypermutation 
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Figure 23: Best case DDC evolution of Square Root circuit with a hypermutation rate of 200 

Square root circuit’s digital evolution phase is as presented in Figure 22 without 

hypermutation and Figure 23 for the best case evolved with a hypermutation rate of 200, 

respectively. Interestingly slower hypermutation rates like 300 or above resulted in identical 

performance to the case without hypermutation. Analog evolution phase ends with a total error 

of 8.137 as compared to the oracle computed. DDC then refines this circuit to produce 

configuration of PLDs that reduce the total error to 6.703 in the first case and to 7.475 in the 

second, thus enhancing the accuracy of computation by 17.6% and 8.1% respectively, for the 

square root case. The effect of hypermutation is significantly visible in the evolution of square 

root circuit as can be seen in the difference in total error for square root circuit with the best case 

hypermutation rate of 200 over the other case. More frequent hypermutations resulted in a 

decrease in performance. However, other rates between 250 and 300 may improve performance  
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Figure 24: DDC Evolution of First Power circuit without hypermutation 

First power circuit’s digital evolution phase is as presented in Figure 24. Analog 

evolution phase ends with a total error of 180.614 as compared to the oracle computed. DDC 

then refines this circuit to produce configuration of PLDs that reduce the total error to 18.155, 

thus enhancing the accuracy of computation by a whopping 89.9%for this case. The reason for 

such difference is the difference in treatment of the problem as viewed by the analog and digital 

fabrics respectively. It is observed that the performance of this circuit is almost identical for all 

hypermutation rates used and is a trivial evolution case for digital fabric. Also zeroth power of x, 

being trivial is not evolved through DDC as it doesn’t warrant the need for the same.  

 

Figure 25: DDC Evolution of Square circuit without hypermutation 

Square circuit’s digital evolution phase is as presented in Figure 25 without 

hypermutation. The best evolved case with hypermutation was the one with a rate of 200 and its 
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performance matched very closely to the above case at 26.876. Interestingly slower 

hypermutation rates like 300 or faster ones like 100 resulted in poorer performance to the 200 

rate case which was marginally worse than the case without hypermutation. Analog evolution 

phase ends with a total error of 35.233 as compared to the oracle computed. DDC then refines 

this circuit to produce configuration of PLDs that reduce the total error to 26.574, thus enhancing 

the accuracy of computation by 24.6% for the square case. The effect of hypermutation is visible 

in the evolution of squar circuit as can be seen in the difference in total error for square circuit 

with the best case hypermutation rate of 200 over the other cases. Other rates of hypermutation 

between 150 and 250 may improve performance  

 

Figure 26: DDC Evolution of Cube circuit without hypermutation  

Figure 27: DDC evolution of Cube circuit with a hypermutation rate of 200  
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 Cube circuit’s digital evolution phase is as presented in Figure 26 without hypermutation 

and as in Figure 27 for a better evolution case with a hypermutation rate of 200. The best 

evolved case with hypermutation was the one with a rate of 150 and its performance came close 

to the case with a rate of 200 at a total error of 161.82. Interestingly slower hypermutation rates 

like 300 or higher resulted in poorer performance. Also hypermutation rates faster than 100 

degraded performance by a bit but still managing to perform better than the case without 

hypermutation. Analog evolution phase ends with a total error of 296.306 as compared to the 

oracle computed. DDC then refines this circuit to produce configuration of PLDs that reduce the 

total error to 196.851 and 166.953, thus enhancing the accuracy of computation by 33.5% and 

43.6% respectively, for the cube case. The effect of hypermutation is visible in the evolution of 

cube circuit as can be seen in the difference in total error for cube circuit with the best case 

hypermutation rate of 150 over the other cases. Other rates of hypermutation between 100 and 

200 are expected to performance. 

Figure 28: DDC Evolution of Fourth Power circuit without hypermutation 
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Figure 29: DDC evolution of Fourth Power circuit with a hypermutation rate of 100 

Fourth power circuit’s digital evolution phase is as presented in Figure 28 without 

hypermutation and as in Figure 29 for the best evolution case with a hypermutation rate of 100. 

Performance notably increased for faster hypermutation rates than 150 and slower hypermutation 

rates like 300 or higher resulted in poorer performance. Also hypermutation rates faster than 100 

seemed to improve performance by a bit but rates as fast as 50 degraded performance. Analog 

evolution phase ends with a total error of 1696.815 as compared to the oracle computed. DDC 

then refines this circuit to produce configuration of PLDs that reduce the total error to 1552.985 

and 1299.830 respectively, thus enhancing the accuracy of computation by 8.4% and 23.3% 

respectively, for the fourth power case. The effect of hypermutation is best visible in the 

evolution of fourth power circuit as can be seen in the difference in total error for fourth power 

circuit with and without hypermutation. Other rates of hypermutation less than 150 need to be 

explored to find better performing solutions  

Overall certain trends are clearly visible in the evolution of individual powers of x using 

DDC. Faster hypermutation helps with evolution of larger powers and slower hypermutation or 

the lack of it helps with evolution of smaller powers of x. Further exploration of various 

hypermutation rates would be necessary to ascertain the best performance ranges for other 
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intermediate powers of x some of which have been developed in this work. Work on other 

fractional powers of x greater than 1 is being pursued and offers richer possibilities with regards 

to Puiseux series expansions of functions and possible enhancements in accuracy when used in 

concert with CPGA.  

To save evolution time, the results of DDC for each circuit were stored in separate header 

files which were then included together for CPGA to use the same to predict their coefficients. 

The functions, sin(x) and cos(x) were chosen as the test functions and CPGA predicted 

coefficients to combine the fourth root, cube root, square root, zeroth power, first power, square, 

cube and fourth power circuits to approximate the functions sin(x) and cos(x) in separate runs. 

Results for evolution of these coefficients are as indicated in figures 30 through 34. Evolution 

was performed for 500 iterations in CP and the scale in all these figures is Generation*3. In order 

to obtain the best performance for each of these circuits, a few parameters required change, while 

the style and flavor of mutation remained largely the same. Range forcing essentially 

implemented dynamic range adaptation technique of reducing the range of coefficients to half 

the previous range even when the total error is less than 100. For the functions sin(x) and cos(x) 

attempted, this was unable to produce better results. Hence dynamic range adaptation alone was 

used with adaptive mutation techniques used in their respective flavors as discussed in CPGA. 
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Figure 30: CPGA evolution of coefficients for sin(x) without range forcing 

The result of evolution of coefficients for sin(x) without range forcing is as shown in 

figure 30. First range scaling is performed and hence a steep slope is observed in fitness curve. 

The largest value allowed for each coefficient was found to be in the range of 60000 and 

correspondingly the smallest was in the range of -60000. Each coefficient is initialized to a value 

falling within the bracket mentioned. In every following iteration, the bracket was halved down 

and all but the first 10 individuals were reinitialized to random values, if the best fit individual in 

the previous bracket had a total error greater than 100. This was continued till a suitable range 

for coefficients was detected and the total error for the best fit case was small enough to continue 

evolution. Starting from a random search space with a huge total error (>10000000), CPGA 

reduced the total error to 78.950 in 500 generations. 

 

Figure 31: CPGA evolution of coefficients for sin(x) with range forcing for error<100 
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When range forcing was done for the case of error smaller than 100, the performance was 

as observed in figure 31. Range forcing forced the bracket of coefficients for half the population 

to half the previous bracket when CPGA first produced a set of coefficients that could reduce the 

error to just below 100. The reason for poorer performance is that a good set of individuals for 

evolution is removed by range forcing and hence the remaining individuals aren’t able to 

produce better solutions with limited diversity in the desired range. As discussed before, 

dynamic range adaptation first halved the bracket from (-60000, 60000) till the fitness reached 

100 and then continued reduction of bracket for a half the population instead. The coefficients so 

predicted resulted in a total error of 85.588 after evolution through 500 generations. 

 

Figure 32: CPGA evolution of coefficients for cos(x) without range forcing 

Evolution for cos(x) is as shown in figure 32. Following the failure of range forcing to 

produce better results for sin(x), range forcing wasn’t attempted for this case. It is interesting to 

note that the performance of CPGA to predict coefficients for sin(x) is better than the same for 

cos(x). CPGA was employed with no changes to mutation rates and flavor and this resulted in 

prediction of coefficients that reduced the fitness from more than 10000000 in a random search 

space to 112.886 in 500 generations. 
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Figure 33: Coefficients evolved to approximate sine of x 

 

Figure 34: Coefficients evolved to approximate cosine of x 

The coefficients evolved for sine and cosine of x are as shown in figures 33 and 34 

respectively. For sine of x it is seen that the fourth root is the major contributor in approximating 

the function. Likewise for cosine of x it is seen that cube and the fourth power of x are the major 

contributors.  

Evolution of coefficients for random polynomials involving upto fifth power of x and 

combination of powers of x and sine or cosine of x were also attempted. It was observed that 

dynamic range adaptation required modifications in implementation to allow CPGA to explore a 

certain bracket well enough before narrowing down to a smaller bracket. Also, the accuracy of 

the individual powers of x evolved by DDC had a significant impact on accuracy. In order to 
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improve the performance of CaDR, smaller and more accurate powers need to be evolved 

through DDC and implementation of CPGA needs tuning to prevent premature narrowing of the 

search space when predicting coefficients. Dynamic storage of newly computed results and 

variable size chromosome for CPGA could result in better accuracy for bigger computational 

circuits. This, however is bound by the runtime memory and on-board RAM available at the 

platform’s disposal. 

  



62 

 

CHAPTER EIGHT: CONCLUSION AND FUTURE WORKS 

CaDR - a multilevel strategy to evolve solution functions of differential equations by 

combining various powers of the independent variable to produce power series expansion is 

developed herein. CaDR considers overflow issues and performs range scaling to predict solutions 

within appropriate range of values represented as 32 bit floating point numbers. This work builds 

on the SCALER technique built in [35], a two-method approach to scale, translate, and refine 

evolved analog computational circuits using evolved digital resources. Once analog computational 

circuits are evolved, DDC then evolves a precise digital error compensation circuit to compensate 

for analog aberrations while extending its accuracy and precision.  To effect the same in a cascaded 

fashion, without heavy memory overheads, the outputs from the evolved analog circuits are stored 

in header files that are then included in the code for the implementation of CaDR to produce the 

final solution. To demonstrate the CaDR approach, a simple differential equation, namely dy/dx = 

cos(x) was defined as the problem to be solved, whose solution, namely sin(x) was pre-computed 

and used as the oracle against which evolution of solution function was done. CP was successfully 

able to predict coefficients for the eight powers, fourth root through fourth power of the 

independent variable to approximate the sine and cosine functions of the independent variable.to 

a reasonable level of accuracy. The novel hybrid analog-digital design that is evolved leverages 

the relative advantages of both circuit domains. 

The precision of DDC can further be improved by using values that can satisfy a 16-bit 

mapping instead of the 8-bit mapping used here. Alternatively, an approach to intrinsically 
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generate potentially faster or perhaps energy-conserving hybrid analog-digital computational 

circuits for repetitive scientific or restricted energy applications is being investigated. 

As an extension to the above work done to compute solution to a simple differential 

equation, computations of solutions to more complex higher order, ordinary differential equations 

may be performed by effecting appropriate range scaling and utilization of solutions of simpler 

functions with higher level coefficient prediction algorithms that can combine them to quickly 

yield the desired solution. CaDR can be utilized to generate a library/suite of commonly used 

mathematical functions such as trigonometric functions which can then be combined with various 

powers of x with adaptive coefficient prediction GA. Mathematically speaking, CaDR attempts to 

produce a truncated Puiseux series or generalized form of power series with fractional exponents 

to approximate functions. A natural extension is to evolve various fractional powers of x using 

cascaded DDC and then using CP to predict coefficients and thereby develop expansions that can 

calculate solution functions more accurately. Also, CaDR could benefit by evolution of solutions 

using a larger series than the 8 powers of x used in this work. Accuracy concerns determine the 

effectiveness of such extensions.  

Reliable Evolution Control through Periodic BIST Based Fitness Adjustments 

In the face of increasingly adaptive hardware with longer evolution times and/or adaptation 

conditions, more energy efficient, less time and resource intensive, online self-testing mechanisms 

are necessary to ensure that evolution is controlled to achieve best results while remaining alert to 

the possibility of failures both during and after evolution. 
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As an extension to the work done in CaDR, EvolBIST – a technique to ensure reliability in 

evolution time with periodic insertion of online BIST functions in the fitness function of the main 

operational GA to evolve circuits that are failure-aware both during and after evolution is 

proposed. Typical reliability check mechanisms employ BIST functions to fully evolved circuits 

and use modular redundancy to maintain performance. EvolBIST proposes a mechanism for slow 

evolution of redundant resources which are periodically written with the best fit configuration 

obtained from the main GA. Redundant resources are picked from well spread out areas of the 

fabric to ensure that this pool has a very small probability of being affected by the same type of 

faults  as other resources.  Their outputs are compared to that of the main circuit during the first 

step of BIST and presence/absence of fault is immediately identified in the main circuit by a 

mismatch condition. If no fault is identified, the redundant resource pool starts evolution, while 

BIST is done on the main circuit. In order to perform BIST, the configuration store of the redundant 

resources is updated with those of the last step in evolution for the main circuit, before BIST. When 

the redundant circuit has evolved to a level where a decent level of performance is deliverable, 

subsequent BIST runs on the main circuit are accompanied by maintenance of performance by the 

redundant circuit through muxes, which are assumed to be golden. While there are no faults, both 

the main and redundant circuits continue evolution at their respective rates and perform BIST 

alternately keeping the performance at desired levels. If under fault, BIST is performed to identify 

the faulty resource while redundant resource pool is in standby till the faulty element in the main 

circuit is identified and swapped with the corresponding resource from the redundant pool. The 
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faulty element is then evolved with the redundant resources at the slower rate demarcated for the 

redundant pool.  

After evolution is complete, fault information from this redundant pool is used to enhance 

BIST of working elements. This also gives an opportunity to detect multiple faults after evolution, 

as information about faults that have occurred at evolution time is then available. If further 

adaptation of the main circuit or its parts is necessary, EvolBIST ensures that evolution proceeds 

with available information about fault propagation in the resources and also gives an opportunity 

to re-use faulty resources to avoid performance degradation beyond a certain level.  
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APPENDIX A: SAMPLE DDC EVOLUTION CODE 
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Sample code illustrating the DDC evolution of cube circuit: 

/* ======================================== 

 * 

 * Copyright YOUR COMPANY, THE YEAR 

 * All Rights Reserved 

 * UNPUBLISHED, LICENSED SOFTWARE. 

 * 

 * CONFIDENTIAL AND PROPRIETARY INFORMATION 

 * WHICH IS THE PROPERTY OF Vignesh Thangavel. 

 * 

 * ======================================== 

  */ 

 

 

//#include <root_fourth.h> 

//#include <cubert.h> 

//#include <sqrt.h> 

//#include <root_third.h> 

//#include <square.h> 

#include <cube.h> 

//#include <x4.h> 

//#include <x5.h> 

//#include <x6.h> 

//#include <x7.h> 

//#include <x8.h> 

//#include <oracle.h> 

 

 

//#define start_seed 27 

#define start_seed 4 

#include <ga_def.h> 

#include <project.h> 

#include <stdio.h> 

#include <time.h> 

#include <stdlib.h> 

#include <math.h> 

#include <LCD.h> 

#include <UART_1.h> 

#define BEGIN_DET_IT 0x40010000 

#define BEGIN_DET_ORT 0x40010030 

#define END_DET_ITORT 0x40010038 

#define BEGIN_DET_IT2 0x40010280 

#define BEGIN_DET_ORT2 0x400102B0 

#define END_DET_ITORT2 0x400102B8 

 

//#define BEGIN_DET_IT3 0x40010200 

//#define BEGIN_DET_ORT3 0x40010230 

//#define END_DET_ITORT3 0x40010238 

#define BEGIN_DET_IT3 0x40010400 

#define BEGIN_DET_ORT3 0x40010430 
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#define END_DET_ITORT3 0x40010438 

 

//#define BEGIN_DET_IT4 0x40010080 

//#define BEGIN_DET_ORT4 0x400100B0 

//#define END_DET_ITORT4 0x400100B8 

#define BEGIN_DET_IT4 0x40010680 

#define BEGIN_DET_ORT4 0x400106B0 

#define END_DET_ITORT4 0x400106B8 

 

#define N_digi 80 

#define G 1500 //1500 fits in one screen 

 

/*******GradMut 0 means we start with 0.1% and 1 means we start with 

0.01%****/ 

 

#define N3_init 1 //square (also cube) circuit - 1, square (and cube)root - 1 

or 2, start with upto 10 for GradMut 1 

#define N4_init 1 //square (also cube) circuit - 1, square (and cube)root - 1 

or 2, start with upto 10 for GradMut 1 

#define N3_incr 0.1 //square circuit (also cube) - 0.1 with GradMut 0, square 

(and cube)root - 1 or 2 with GradMut 1?? 

#define N4_incr 0.1 //square circuit (also cube)- 0.1 with GradMut 0, square 

(and cube)root - 1 or 2 with GradMut 1?? 

#define Ulim 1000   //square circuit(also cube) - 50, square (and cube)root - 

1 or 2 

#define Llim 50   //square circuit (also cube) - 10, square (and cube)root 

- 1 or 2 

#define GradMut 0 //if 0 mutation rate increments by 0.1 every time, but 

actually changes probability only when it is a whole number [rand()%1000] and 

if 1, mutation rate increments in gradual smaller steps rand()%10000 

#define Xovertype 1 //if 0, fixed tournament with replacement of half the 

individuals and if 1, random tournaments of 2 

#define N_repl 70 //better to change if Xovertype is 1, but it can be changed 

even otherwise to see if there are better results 

struct ClsIndividual{ 

 uint16 active_lines; 

 uint32 IN_PT[8]; 

 uint16 ORT_PT[4]; 

}; 

struct ClsIndividual Individuals[N_digi], Individuals2[N_digi], 

new_individual, new_individual2, fitter_indi[N_digi/2], 

fitter_indi2[N_digi/2]; 

 

struct ClsIndividual fittest_indi, fittest_indi2, fresh_indi, fresh_indi2; 

 

struct ClsIndividual *Individualsp; 

struct ClsIndividual *Individuals1p; 

struct ClsIndividual *indp1; 

struct ClsIndividual *ind1p1; 

struct ClsIndividual *indp2; 

struct ClsIndividual *ind1p2; 

struct ClsIndividual *new_individualp; 
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struct ClsIndividual *new_individual2p; 

int main() 

{ 

//    goldenIndividual* bestAnalog = AGA_DDA(400,100,20); 

// CyPins_ClearPin(Pin_6_0); 

// CyPins_ClearPin(Pin_7_0); 

// CyPins_ClearPin(Pin_8_0); 

// CyPins_ClearPin(Pin_9_0); 

// CyPins_ClearPin(Pin_10_0); 

// CyPins_ClearPin(Pin_11_0); 

// CyPins_ClearPin(Pin_12_0); 

// CyPins_ClearPin(Pin_13_0); 

  

 UART_1_Start(); 

 char string[80]; 

 LCD_Start(); 

 LCD_WriteControl(LCD_CLEAR_DISPLAY ); 

 /* Place your initialization/startup code here (e.g. MyInst_Start()) */ 

  

    /* CyGlobalIntEnable; */ /* Uncomment this line to enable global 

interrupts. */ 

  

 /***************************************************PHASE 1: detection 

of logic used****************************************************/ 

 //LCD_PrintString("P1 "); 

 uint32 i=0, j=0, temp=0; 

 uint16 const_reg=0, bypass=0, bypass2=0, const_reg2=0, iteration1 = 0, 

temp1=0;  

 uint8  stasis = 0, pos_array[8] = {0}, y_array[256] = {0}, x=0, m=0, 

zf=0, z=0, z1=0, z2=0, y=0, r=0, D=0, out[8] = {0}, N1=100, N2=1, c2 = 0, 

c3=0, c4=0, c5=0, D_array[256] = {0}; 

 uint32 iteration = 0, it_max=0; 

 float32 fitness[N_digi]={0}, fitness_avg = 0, fitness_max_prev = 1000, 

fitness_max[2]={20000, 20000}, fitness_last=0, fit_t_max=1000, c1=0,  c = 0, 

difference[256] = {0}, tot_diff=0, tot_oracle=0, net_diff=0, N3=0, N4=0; 

 for(i=0; i<8; i++) {pos_array[i] = 1<<i;} 

// for(i=0; i<256; i++){y_array[i] = 255-i;} 

 Individualsp = &Individuals[0]; 

 for(i=BEGIN_DET_IT, j=0; i<BEGIN_DET_ORT; i += 4, j++) 

     {temp = CY_GET_REG32(i); 

 if(temp == 0) 

 {Individualsp->active_lines += 0*(1<<j);} 

 else 

 {Individualsp->active_lines += 1*(1<<j); 

 Individualsp->IN_PT[m] = temp; 

 m++;} 

 } 

  

 temp=0; m=0; 

 for(i=BEGIN_DET_ORT; i<END_DET_ITORT; i +=2, j++) 

 {temp1 = CY_GET_REG16(i); 

  if(temp1 == 0) 
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 {Individualsp->active_lines += 0*(1<<j);} 

 else  

 {Individualsp->active_lines += 1*(1<<j); 

 Individualsp->ORT_PT[m] = temp1; 

 m++;} 

 } 

  

 const_reg = CY_GET_REG16(CYREG_B0_P0_U0_MC_CFG_CEN_CONST); 

 bypass = CY_GET_REG16(CYREG_B0_P0_U0_MC_CFG_BYPASS); 

  

// sprintf(string, "%x %x %x %x %x %x %x %x %x %x %x %x %x\n\n\r", 

Individuals[0].IN_PT[0], Individuals[0].IN_PT[1], Individuals[0].IN_PT[2], 

Individuals[0].IN_PT[3], Individuals[0].IN_PT[4], Individuals[0].IN_PT[5], 

Individuals[0].IN_PT[6], Individuals[0].IN_PT[7], Individuals[0].ORT_PT[0], 

Individuals[0].ORT_PT[1], Individuals[0].ORT_PT[2], Individuals[0].ORT_PT[3], 

Individuals[0].active_lines); 

// UART_1_PutString(string); 

  

 temp=0; temp1=0; m=0; 

  

 

 Individualsp = &Individuals2[0]; 

 for(i=BEGIN_DET_IT2, j=0; i<BEGIN_DET_ORT2; i += 4, j++) 

     {temp = CY_GET_REG32(i); 

 if(temp == 0) 

 {Individualsp->active_lines += 0*(1<<j);} 

 else 

 {Individualsp->active_lines += 1*(1<<j); 

 Individualsp->IN_PT[m] = temp; 

 m++;} 

 } 

  

 temp=0; m=0; 

 for(i=BEGIN_DET_ORT2; i<END_DET_ITORT2; i +=2, j++) 

 {temp1 = CY_GET_REG16(i); 

  if(temp1 == 0) 

 {Individualsp->active_lines += 0*(1<<j);} 

 else  

 {Individualsp->active_lines += 1*(1<<j); 

 Individualsp->ORT_PT[m] = temp1; 

 m++;} 

 } 

  

 const_reg2 = CY_GET_REG16(CYREG_B0_P1_U1_MC_CFG_CEN_CONST); 

 bypass2 = CY_GET_REG16(CYREG_B0_P1_U1_MC_CFG_BYPASS); 

// sprintf(string, "%x %x %x %x %x %x %x %x %x %x %x %x %x\n\n\r", 

Individuals2[0].IN_PT[0], Individuals2[0].IN_PT[1], Individuals2[0].IN_PT[2], 

Individuals2[0].IN_PT[3], Individuals2[0].IN_PT[4], Individuals2[0].IN_PT[5], 

Individuals2[0].IN_PT[6], Individuals2[0].IN_PT[7], 

Individuals2[0].ORT_PT[0], Individuals2[0].ORT_PT[1], 

Individuals2[0].ORT_PT[2], Individuals2[0].ORT_PT[3], 

Individuals2[0].active_lines); 
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// UART_1_PutString(string); 

 temp1=0; m=0; 

 //temp=0; 

  

   temp1=0; m=0; 

 temp=0; 

  

 Individualsp = &fresh_indi; 

 for(i=BEGIN_DET_IT3, j=0; i<BEGIN_DET_ORT3; i += 4, j++) 

     {temp = CY_GET_REG32(i); 

 if(temp == 0) 

 {Individualsp->active_lines += 0*(1<<j);} 

 else 

 {Individualsp->active_lines += 1*(1<<j); 

 Individualsp->IN_PT[m] = temp; 

 m++;} 

 } 

  

 temp=0; m=0; 

 for(i=BEGIN_DET_ORT3; i<END_DET_ITORT3; i +=2, j++) 

 {temp1 = CY_GET_REG16(i); 

  if(temp1 == 0) 

 {Individualsp->active_lines += 0*(1<<j);} 

 else  

 {Individualsp->active_lines += 1*(1<<j); 

 Individualsp->ORT_PT[m] = temp1; 

 m++;} 

 } 

 temp1=0; m=0; 

 temp=0; 

  

 Individualsp = &fresh_indi2; 

 for(i=BEGIN_DET_IT4, j=0; i<BEGIN_DET_ORT4; i += 4, j++) 

     {temp = CY_GET_REG32(i); 

 if(temp == 0) 

 {Individualsp->active_lines += 0*(1<<j);} 

 else 

 {Individualsp->active_lines += 1*(1<<j); 

 Individualsp->IN_PT[m] = temp; 

 m++;} 

 } 

  

 temp=0; m=0; 

 for(i=BEGIN_DET_ORT4; i<END_DET_ITORT4; i +=2, j++) 

 {temp1 = CY_GET_REG16(i); 

  if(temp1 == 0) 

 {Individualsp->active_lines += 0*(1<<j);} 

 else  

 {Individualsp->active_lines += 1*(1<<j); 

 Individualsp->ORT_PT[m] = temp1; 

 m++;} 

 } 
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 /*********************PHASE 2: Invoke GA to act on the entire PLD 

***************************/ 

 /*******************************create 

individuals***************************/ 

 //LCD_PrintString("P2 "); 

 srand(start_seed%65535); 

 

 for(z = 1; z < N_digi; z++) 

 {Individualsp = &Individuals[z]; 

 Individuals1p = &Individuals2[z]; 

 Individuals[z] = Individuals[0]; //ensures that the active lines are 

copied as is 

 Individuals2[z] = Individuals2[0]; 

 for(m=0; m<8; m++) 

 { 

 for(y = 0; y < 32; y++) 

 { 

 //srand((rand()%65535)); 

 r = rand()%2; //generate a random number - 0 or 1 

 Individualsp->IN_PT[m] += r*(1<<(y)); 

 r = rand()%2; //generate a random number - 0 or 1 

 Individuals1p->IN_PT[m] += r*(1<<(y)); 

 } 

 } 

 for(m=0; m<4; m++) 

 {for(y=0; y < 16; y++) 

 { 

// if(!(((Individuals[0].ORT_PT[m]>>y)&1)==0) && 

(((Individuals[0].ORT_PT[m]>>(y+1))&1)==0) && 

(((Individuals[0].ORT_PT[m]>>(y+2))&1)==0) && 

(((Individuals[0].ORT_PT[m]>>(y+3))&1)==0)) 

// { 

 //srand((rand()%65535)); 

 r = rand()%2; 

 Individualsp->ORT_PT[m] += r*(1<<(y)); 

 r = rand()%2;  

 Individuals1p->ORT_PT[m] += r*(1<<(y)); 

// } 

 } 

 } 

// sprintf(string, "%x %x %x %x %x %x %x %x %x %x %x %x %x\n\r", 

Individualsp->IN_PT[0], Individualsp->IN_PT[1], Individualsp->IN_PT[2], 

Individualsp->IN_PT[3], Individualsp->IN_PT[4], Individualsp->IN_PT[5], 

Individualsp->IN_PT[6], Individualsp->IN_PT[7], Individualsp->ORT_PT[0], 

Individualsp->ORT_PT[1], Individualsp->ORT_PT[2], Individualsp->ORT_PT[3], 

Individualsp->active_lines); 

// UART_1_PutString(string); 

 } 
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 /****************************writing back the configuration to 

corresponding registers and fitness calculation*************************/ 

 m=0; 

 while(fitness_max[0] > 0.5 && iteration1 != G) 

 { 

  srand(labs(rand()+iteration1)%65535); 

  for(z=0; z<N_digi; z++) 

  { m=0; 

  Individualsp = &Individuals[z]; 

  for(j=0, i=BEGIN_DET_IT; i<BEGIN_DET_ORT; j++, i += 4) 

  {if((((Individualsp->active_lines)>>j)&1) != 0) 

  {CY_SET_REG32(i, Individualsp->IN_PT[m]); 

  m++; 

  } 

  } 

  m=0; 

  for(i=BEGIN_DET_ORT, j=12; i<END_DET_ITORT; j++, i += 2) 

  {if((((Individualsp->active_lines)>>j)&1) != 0) 

  {CY_SET_REG16(i, Individualsp->ORT_PT[m]); 

  m++;} 

  } 

 

  m=0; 

  Individuals1p = &Individuals2[z]; 

  for(j=0, i=BEGIN_DET_IT2; i<BEGIN_DET_ORT2; j++, i += 4) 

  {if((((Individuals1p->active_lines)>>j)&1) != 0) 

  {CY_SET_REG32(i, Individuals1p->IN_PT[m]); 

  m++; 

  } 

  } 

  m=0; 

  for(i=BEGIN_DET_ORT2, j=12; i<END_DET_ITORT2; j++, i += 2) 

  {if((((Individuals1p->active_lines)>>j)&1) != 0) 

  {CY_SET_REG16(i, Individuals1p->ORT_PT[m]); 

  m++;} 

  } 

  m=0; 

   

   

  /****fitness calcuation***/ 

 CY_SET_REG16(CYREG_B0_P0_U0_MC_CFG_BYPASS, 0x0055);  

 CY_SET_REG16(CYREG_B0_P0_U0_MC_CFG_CEN_CONST, 0x0000); 

 CY_SET_REG16(CYREG_B0_P1_U1_MC_CFG_BYPASS, 0x0055);  

 CY_SET_REG16(CYREG_B0_P1_U1_MC_CFG_CEN_CONST, 0x0000); 

  

 //CyDelay(250); 

 D=0; 

 for(i=0; i< 255; i++) 

 {for(m=0; m<8; m++) 

 {switch(m) 

 { 

 case 0: 
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 if(((i>>m)&1) == 1) {CyPins_SetPin(Pin_1_0);} 

 else {CyPins_ClearPin(Pin_1_0);} 

 break; 

 case 1: 

 if(((i>>m)&1) == 1) {CyPins_SetPin(Pin_1_1);} 

 else {CyPins_ClearPin(Pin_1_1);} 

 break; 

 case 2: 

 if(((i>>m)&1) == 1) {CyPins_SetPin(Pin_1_2);} 

 else {CyPins_ClearPin(Pin_1_2);} 

 break; 

 case 3: 

 if(((i>>m)&1) == 1) {CyPins_SetPin(Pin_1_3);} 

 else {CyPins_ClearPin(Pin_1_3);} 

 break; 

 case 4: 

 if(((i>>m)&1) == 1) {CyPins_SetPin(Pin_2_0);} 

 else {CyPins_ClearPin(Pin_2_0);} 

 break; 

 case 5: 

 if(((i>>m)&1) == 1) {CyPins_SetPin(Pin_2_1);} 

 else {CyPins_ClearPin(Pin_2_1);} 

 break; 

 case 6: 

 if(((i>>m)&1) == 1) {CyPins_SetPin(Pin_2_2);} 

 else {CyPins_ClearPin(Pin_2_2);} 

 break; 

 case 7: 

 if(((i>>m)&1) == 1) {CyPins_SetPin(Pin_2_3);} 

 else {CyPins_ClearPin(Pin_2_3);} 

 break; 

 } 

 } 

 out[0] = CyPins_ReadPin(Pin_3_0); 

 out[1] = CyPins_ReadPin(Pin_3_1); 

 out[2] = CyPins_ReadPin(Pin_3_2); 

 out[3] = CyPins_ReadPin(Pin_3_3); 

 out[4] = CyPins_ReadPin(Pin_4_0); 

 out[5] = CyPins_ReadPin(Pin_4_1); 

 out[6] = CyPins_ReadPin(Pin_4_2); 

 out[7] = CyPins_ReadPin(Pin_4_3); 

 D=0; 

 for(m=0; m<8; m++) 

 {if(out[m] == 16) {out[m] = 1;} 

  D += out[m]*pos_array[m];} 

 //D = D/16; 

 difference[i] = fabsf(outputs[i] - norm_diff[D]); 

     

// if(z==0){if(iteration==0){sprintf(string, "%d %f %f %f\n\r", D, 

bestAnalog->norm_diff[D], bestAnalog->outputs[i], bestAnalog->oracle[i]); 

// UART_1_PutString(string);} 

// } 



75 

 

 fitness[z] += fabsf(oracle[i] - (difference[i])); 

 D=0;} 

 iteration++;}  

  tot_oracle =0; tot_diff =0; 

//  for(i=0; i<256; i++){sprintf(string, "difference vs oracle %f 

%f\n", difference[i], bestAnalog->oracle[i]); 

//  UART_1_PutString(string); 

//  tot_oracle += bestAnalog->oracle[i]; 

//  tot_diff += difference[i];} 

//  sprintf(string, "net fitness %f sum of oracle %f sum of 

differences %f\n", fabsf(tot_oracle - tot_diff), tot_oracle, tot_diff); 

//  UART_1_PutString(string); 

  fitness_avg = 0; 

 for(z=0; z<N_digi; z++) 

 {  

  if(fitness[z] < fitness_max[0]) 

  { 

  Individuals[1] = Individuals[0]; 

  Individuals[0] = Individuals[z]; 

  Individuals2[1] = Individuals2[0]; 

  Individuals2[0] = Individuals2[z]; 

  fitness_max[1] = fitness_max[0]; 

        fitness_max[0] = fitness[z]; 

  } 

  else if(fitness[z] == fitness_max[0]){} 

  else if(fitness[z] > fitness_max[0]  && fitness[z] <= 

fitness_max[1]) 

  {fitness_max[1] = fitness[z]; 

  Individuals[1] = Individuals[z]; 

  Individuals2[1] = Individuals2[z]; 

  } 

  fitness_avg = fitness_avg +fitness[z]; 

 } 

 if(iteration1%50 == 0){ 

 if(fitness_max[0] == fitness_max_prev) 

 {stasis = 1;} 

 else {stasis = 0;} 

 fitness_max_prev = fitness_max[0];} 

 

 c = fitness_max[0]; 

 LCD_WriteControl(LCD_CLEAR_DISPLAY ); 

 LCD_PrintString("M_F "); 

 LCD_PrintNumber(c); 

 LCD_PrintString(" G "); 

 LCD_PrintNumber(iteration1); 

 fitness_avg = fitness_avg/N_digi; 

 LCD_Position(1,0); 

 LCD_PrintNumber(fitness_avg); 

 sprintf(string, "%f, %f, %f, %f\n\r",  fitness_max[1], fitness[0], 

fitness_avg, c); 

 UART_1_PutString(string); 

 if(iteration1 == 0) {LCD_WriteControl(LCD_CLEAR_DISPLAY ); 
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  c = fitness[0]; 

 LCD_PrintNumber(c); 

 CyDelay(1000); 

 } 

 if(fitness[z] > 1 || iteration1 < G) {it_max = iteration1;} 



  

 /******************************crossover***************************/ 

 //crossover between each pair of the elites chosen for crossover 

 //crossover at half point 

 //individuals 0 and 1 

  j=0; 

  N1 = rand()%8; 

  N2 = rand()%4; 

  z2=2; 

  m=0; 

  fit_t_max=1000; 

   

  for(c4=1,c5=1; c4<40; c4++, c5++) 

  {for(c3=c4*2; c3<(c4+1)*2; c3++) 

  {if(fitness[c3]<fit_t_max) 

  {fit_t_max = fitness[c3]; 

  Individualsp = &Individuals[c3]; 

  Individuals1p = &Individuals2[c3];} 

  } 

  fitter_indi[c5] = *Individualsp; 

  fitter_indi2[c5] = *Individuals1p; 

  fit_t_max=1000;} 

   

  fitter_indi[0] = Individuals[0]; 

  fitter_indi2[0] = Individuals2[0]; 

   

  if(iteration1%200 == 0) 

 { for(z = 1; z < N_digi; z++) 

 {Individualsp = &Individuals[z]; 

 Individuals1p = &Individuals2[z]; 

 Individuals[z] = Individuals[0]; //ensures that the active lines are 

copied as is 

 Individuals2[z] = Individuals2[0]; 

 for(m=0; m<8; m++) 

 { 

 for(y = 0; y < 32; y++) 

 { 

 //srand((rand()%65535)); 

 r = rand()%2; //generate a random number - 0 or 1 

 Individualsp->IN_PT[m] = 0; 

 Individualsp->IN_PT[m] += r*(1<<(y)); 

 r = rand()%2; //generate a random number - 0 or 1 

 Individuals1p->IN_PT[m] = 0; 

 Individuals1p->IN_PT[m] += r*(1<<(y)); 

 } 

 } 
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 for(m=0; m<4; m++) 

 {for(y=0; y < 16; y++) 

 { 

// if(!(((Individuals[0].ORT_PT[m]>>y)&1)==0) && 

(((Individuals[0].ORT_PT[m]>>(y+1))&1)==0) && 

(((Individuals[0].ORT_PT[m]>>(y+2))&1)==0) && 

(((Individuals[0].ORT_PT[m]>>(y+3))&1)==0)) 

// { 

 //srand((rand()%65535)); 

 r = rand()%2; 

 Individualsp->ORT_PT[m] = 0; 

 Individualsp->ORT_PT[m] += r*(1<<(y)); 

 r = rand()%2;  

 Individuals1p->ORT_PT[m] = 0; 

 Individuals1p->ORT_PT[m] += r*(1<<(y)); 

// } 

 } 

 } 

// sprintf(string, "%x %x %x %x %x %x %x %x %x %x %x %x %x\n\r", 

Individualsp->IN_PT[0], Individualsp->IN_PT[1], Individualsp->IN_PT[2], 

Individualsp->IN_PT[3], Individualsp->IN_PT[4], Individualsp->IN_PT[5], 

Individualsp->IN_PT[6], Individualsp->IN_PT[7], Individualsp->ORT_PT[0], 

Individualsp->ORT_PT[1], Individualsp->ORT_PT[2], Individualsp->ORT_PT[3], 

Individualsp->active_lines); 

// UART_1_PutString(string); 

 } 

 } 

   

  z2=N_digi-N_repl; z=0; 

  while(z2<N_digi) 

  {if (Xovertype == 1){zf = rand()%(N_digi/2)+1;} 

  if (Xovertype == 0){zf = z;} 

  indp1 = &fitter_indi[zf]; 

  ind1p1 = &fitter_indi2[zf]; 

  z1 = rand()%N_digi+1; 

  indp2 = &Individuals[z1]; 

  ind1p2 = &Individuals2[z1]; 

  if((indp1->IN_PT != indp2->IN_PT || indp1->ORT_PT != indp2-

>ORT_PT) || (ind1p1->IN_PT != ind1p2->IN_PT || ind1p1->ORT_PT != ind1p2-

>ORT_PT)) 

  {indp2 = &Individuals[z1]; 

  ind1p2 = &Individuals2[z1];} 

  else{z1++; 

  indp2 = &Individuals[z1]; 

  ind1p2 = &Individuals2[z1];} 

   new_individual.active_lines = Individuals[0].active_lines; 

//to copy the active lines as is 

   new_individual2.active_lines = 

Individuals2[0].active_lines; 

   new_individualp = &new_individual;  

   new_individual2p = &new_individual2; 

   j=0; 
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   for(c2=0; c2<N1; c2++){new_individualp->IN_PT[c2] = indp1-

>IN_PT[c2]; 

   new_individual2p->IN_PT[c2] = ind1p1->IN_PT[c2];} 

   j=0; 

   for(c2=N1; c2<8; c2++){new_individualp->IN_PT[c2] = indp2-

>IN_PT[c2]; 

   new_individual2p->IN_PT[c2] = ind1p2->IN_PT[c2];} 

 

   j=0; c2=0; 

 

   for(c2=0; c2<N2; c2++){new_individualp->ORT_PT[c2] = indp1-

>ORT_PT[c2]; 

   new_individual2p->ORT_PT[c2] = ind1p1->ORT_PT[c2];} 

 

   j=0; 

    

   for(c2=N2; c2<4; c2++){new_individualp->ORT_PT[c2] = indp2-

>ORT_PT[c2]; 

   new_individual2p->ORT_PT[c2] = ind1p2->ORT_PT[c2];} 

   Individuals[z2] = *new_individualp; 

   Individuals2[z2] = *new_individual2p; 

   z2++; z++; 

   m=0; 

  } 

   

  for(z=2; z<N_digi-N_repl; z++){Individuals[z] = fitter_indi[z]; 

  Individuals2[z] = fitter_indi2[z];} 

 

  m=0; 

 /**************check these out**************/ 

 //crossover at boundaries of IT_PT or ORT_PT 

 //crossover at random point 

 //UART_PutArray(Individuals[fittest[0]].IN_PT[i],1); 

 /*****************************mutation*******************************/ 

 // mutation on New Indidivual 

 m=0; j=0; 

 //srand((rand()%65535)); 

 if(fitness_max[0] > 0 || iteration1 < G) 

 {for(z=2; z<N_digi; z++) 

 {Individualsp = &Individuals[z]; 

 Individuals1p = &Individuals2[z]; 

 N3=N3_init; N4=N4_init; 

 if(fitness_avg-fitness_max[0]>Ulim && stasis==0){N3=0; N4=0;} 

 if(fitness_avg-fitness_max[0]<Llim && stasis==1){N3+=N3_incr; 

N4+=N4_incr;} 

 for(m=0; m<8; m++) 

 {for(i=0; i<32; i++) 

 { 

 if(GradMut == 0) {x=rand()%1000;} 

 if(GradMut == 1) {x=rand()%10000;} 

 j=1<<i; 
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 if(x<N3){if(((Individualsp->IN_PT[m]>>i)&1)==1){Individualsp->IN_PT[m] 

-= j;} 

 else if(((Individualsp->IN_PT[m]>>i)&1)==0){Individualsp->IN_PT[m] 

+=j;} 

 if(((Individuals1p->IN_PT[m]>>i)&1)==1){Individuals1p->IN_PT[m] -= j;} 

 else if(((Individuals1p->IN_PT[m]>>i)&1)==0){Individuals1p->IN_PT[m] 

+=j;}} 

 } 

 } 

 for(m=0; m<4; m++) 

 {for(i=0; i<16; i++) 

 { 

 if(GradMut == 0) {x=rand()%1000;} 

 if(GradMut == 1) {x=rand()%10000;} 

 j=1<<i; 

 if(x<N4){if(((Individualsp->ORT_PT[m]>>i)&1)==1){Individualsp-

>ORT_PT[m] -= j;} 

 else if(((Individualsp->ORT_PT[m]>>i)&1)==0){Individualsp->ORT_PT[m] 

+=j;} 

 if(((Individuals1p->ORT_PT[m]>>i)&1)==1){Individuals1p->ORT_PT[m] -= 

j;} 

 else if(((Individuals1p->ORT_PT[m]>>i)&1)==0){Individuals1p->ORT_PT[m] 

+=j;}} 

 } 

 } 

 } 

 } 

 for(z=0; z<N_digi; z++) {fitness[z] = 0;  

 //Individualsp = &Individuals[z]; 

// if(iteration1%10==0 || iteration1==1 || iteration1==2){sprintf(string, 

"%x %x %x %x %x %x %x %x %x %x %x %x %x\n\r", Individualsp->IN_PT[0], 

Individualsp->IN_PT[1], Individualsp->IN_PT[2], Individualsp->IN_PT[3], 

Individualsp->IN_PT[4], Individualsp->IN_PT[5], Individualsp->IN_PT[6], 

Individualsp->IN_PT[7], Individualsp->ORT_PT[0], Individualsp->ORT_PT[1], 

Individualsp->ORT_PT[2], Individualsp->ORT_PT[3], Individualsp-

>active_lines); 

// UART_1_PutString(string);} 

 } 

  

 iteration1++; 

 } 

// for(i=0; i<256; i++){sprintf(string, "difference vs oracle %f %f\n", 

difference[i], bestAnalog->oracle[i]); 

// UART_1_PutString(string);} 

 /*****************PHASE 3: Writing back the configuration to the 

registers - storing successful configurations in SRAM for each completed GA 

run*********************/ 

  m=0; 

  Individualsp = &Individuals[0]; 

  Individuals1p = &Individuals2[0]; 

  for(j=0, i=BEGIN_DET_IT; i<BEGIN_DET_ORT; j++, i += 4) 

  {if((((Individualsp->active_lines)>>j)&1) != 0) 



80 

 

  {CY_SET_REG32(i, Individualsp->IN_PT[m]); 

  m++;} 

  } 

  m=0; 

  for(i=BEGIN_DET_ORT, j=12; i<END_DET_ITORT; j++, i += 2) 

  {if((((Individualsp->active_lines)>>j)&1) != 0) 

  {CY_SET_REG16(i, Individualsp->ORT_PT[m]); 

  m++;} 

  } 

  m=0; 

   

  CY_SET_REG16(CYREG_B0_P0_U0_MC_CFG_BYPASS, 0x0055);  

  CY_SET_REG16(CYREG_B0_P0_U0_MC_CFG_CEN_CONST, 0x0000); 

  for(j=0, i=BEGIN_DET_IT2; i<BEGIN_DET_ORT2; j++, i += 4) 

  {if((((Individuals1p->active_lines)>>j)&1) != 0) 

  {CY_SET_REG32(i, Individuals1p->IN_PT[m]); 

  m++;} 

  } 

  m=0; 

  for(i=BEGIN_DET_ORT2, j=12; i<END_DET_ITORT2; j++, i += 2) 

  {if((((Individuals1p->active_lines)>>j)&1) != 0) 

  {CY_SET_REG16(i, Individuals1p->ORT_PT[m]); 

  m++;} 

  } 

  m=0; 

 CY_SET_REG16(CYREG_B0_P1_U1_MC_CFG_BYPASS, 0x0055);  

 CY_SET_REG16(CYREG_B0_P1_U1_MC_CFG_CEN_CONST, 0x0000); 

 //Output final configuration to the UART and for storing away in the 

computer 

 /* Place your application code here. */ 

  /******testing*******/ 

 fitness_last=0; D=0; 

 for(i=0; i< 255; i++) 

 {for(m=0; m< 8; m++) 

 {switch(m){ 

 case(0): 

 {if (((i>>m)&1) == 1) {CyPins_SetPin(Pin_1_0);} 

 else {CyPins_ClearPin(Pin_1_0);} 

 break;} 

 case(1): 

 {if(((i>>m)&1) == 1) {CyPins_SetPin(Pin_1_1);} 

 else {CyPins_ClearPin(Pin_1_1);} 

 break;} 

 case(2): 

 {if(((i>>m)&1) == 1) {CyPins_SetPin(Pin_1_2);} 

 else {CyPins_ClearPin(Pin_1_2);} 

 break;} 

 case(3): 

 {if(((i>>m)&1) == 1) {CyPins_SetPin(Pin_1_3);} 

 else {CyPins_ClearPin(Pin_1_3);} 

 break;} 

 case(4): 



81 

 

 {if(((i>>m)&1) == 1) {CyPins_SetPin(Pin_2_0);} 

 else {CyPins_ClearPin(Pin_2_0);} 

 break;} 

 case(5): 

 {if(((i>>m)&1) == 1) {CyPins_SetPin(Pin_2_1);} 

 else {CyPins_ClearPin(Pin_2_1);} 

 break;} 

 case(6): 

 {if(((i>>m)&1) == 1) {CyPins_SetPin(Pin_2_2);} 

 else {CyPins_ClearPin(Pin_2_2);} 

 break;} 

 case(7): 

 {if(((i>>m)&1) == 1) {CyPins_SetPin(Pin_2_3);} 

 else {CyPins_ClearPin(Pin_2_3);} 

 break;} 

 } 

 } 

 out[0] = CyPins_ReadPin(Pin_3_0); 

 out[1] = CyPins_ReadPin(Pin_3_1); 

 out[2] = CyPins_ReadPin(Pin_3_2); 

 out[3] = CyPins_ReadPin(Pin_3_3); 

 out[4] = CyPins_ReadPin(Pin_4_0); 

 out[5] = CyPins_ReadPin(Pin_4_1); 

 out[6] = CyPins_ReadPin(Pin_4_2); 

 out[7] = CyPins_ReadPin(Pin_4_3); 

 D=0; 

 for(m=0; m<8; m++) 

 {if(out[m]!=0){out[m] = 1;} 

 D += (out[m])*pos_array[m];} 

    D_array[i] = D; 

// if(y_array[i] > (i - D)) 

// {fitness_last += (y_array[i] - (i - D));} 

// else {fitness_last += ((i - D) - y_array[i]);} 

 fitness_last += fabsf(oracle[i] - (outputs[i] - norm_diff[D])); 

 D=0;} 

 /******testing*******/ 

  //c3 = fitness_max[3], 

 LCD_WriteControl(LCD_CLEAR_DISPLAY );; 

 LCD_PrintString(" "); 

 LCD_PrintNumber(c); 

 LCD_PrintString(" "); 

 LCD_PrintNumber(c1); 

 LCD_PrintString(" "); 

 LCD_PrintNumber(it_max); 

 CyDelay(1000); 

 LCD_PrintNumber(fitness_last); 

 CyDelay(1000); 

 sprintf(string, "Max fitness %f Generations %ld Average fitness 

%f\n\r", fitness_last, it_max, fitness_avg); 

 UART_1_PutString(string); 

 //UART_1_Stop(); 

 //LCD_PrintString("Phase 3 "); 
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    float32 averageError_analog, averageError_digital, totalError_analog, 

totalError_digital; 

// for(;;) 

// { 

         

//        for(i=0; i<255; i++){ 

//            sprintf(string,"%f,%f\n\r", outputs[i], outputs[i] - 

norm_diff[D_array[i]]); 

//            UART_1_PutString(string); 

//        } 

//        averageError_analog = 0; 

//        totalError_analog = 0; 

//        for(i=0;i<255;i++){ 

//            totalError_analog += fabs(outputs[i] - oracle[i]); 

//        } 

//        averageError_analog = totalError_analog/255; 

//         

//        averageError_digital = 0; 

//        totalError_digital = 0; 

//        for(i=0;i<255;i++){ 

//            totalError_digital += fabs(oracle[i] - (outputs[i] - 

norm_diff[D_array[i]])); 

//        } 

//        averageError_digital = totalError_digital/255; 

   

  uint32 analog_fitness, digital_fitness, AvgA_fit, AvgD_fit, 

max_dev; 

  for(i=0; i<256; i++){ 

 sprintf(string, "%f %d %f\n\r", oracle[i], D_array[i], outputs[i]-

norm_diff[D_array[i]]); 

 UART_1_PutString(string); 

 analog_fitness += fabsf(oracle[i] - outputs[i]); 

 digital_fitness += fabsf(oracle[i] - (outputs[i] - 

norm_diff[D_array[i]])); 

 difference[i] = fabsf(oracle[i] - (outputs[i] -

norm_diff[D_array[i]]));} 

 AvgA_fit = analog_fitness/256; AvgD_fit = digital_fitness/256; 

 for(i=0; i<255; i++) {if(difference[i]>max_dev) {max_dev = 

difference[i];}} 

 sprintf(string, "max deviation: %f\n", max_dev); 

 UART_1_PutString(string); 

 sprintf(string, "Analog: %f Digital:%f Average_Analog:%f 

Average_Digital:%f % Imp_overall %f % Imp_average %f\n\r", analog_fitness, 

digital_fitness, AvgA_fit, AvgD_fit, ((analog_fitness - 

digital_fitness)/analog_fitness)*100, ((AvgA_fit - AvgD_fit)/AvgA_fit)*100); 

 UART_1_PutString(string); 

// CyPins_SetPin(Pin_6_0); 

// CyPins_SetPin(Pin_7_0); 

// CyPins_SetPin(Pin_8_0); 

// CyPins_SetPin(Pin_9_0); 

// CyPins_SetPin(Pin_10_0); 

// CyPins_SetPin(Pin_11_0); 
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// CyPins_SetPin(Pin_12_0); 

//     } 

    return 0; 

} 

 

/* [] END OF FILE */ 
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APPENDIX B: SAMPLE CPGA CODE  
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/* ======================================== 

 * 

 * Copyright YOUR COMPANY, THE YEAR 

 * All Rights Reserved 

 * UNPUBLISHED, LICENSED SOFTWARE. 

 * 

 * CONFIDENTIAL AND PROPRIETARY INFORMATION 

 * WHICH IS THE PROPERTY OF Vignesh Thangavel. 

 * 

 * ======================================== 

*/ 

//#include <project.h> 

#include <root_fourth.h> 

#include <root_third.h> 

#include <sqrt.h> 

#include <x.h> 

#include <x2.h> 

#include <x3.h> 

#include <x4.h> 

 

//#include <ga_def.h> 

#include <stdio.h> 

#include <stdlib.h> 

#include <math.h> 

#include <LCD.h> 

#include <UART_1.h> 

 

#define N_digi 80 

#define start_seed 50 

#define G 500 //1500 fits in one screen 

 

#define N3_init 1  

#define N3_incr 0.1  

#define Ulim 1000 

#define Llim 50    

#define GradMut 0  

#define Xovertype 1  

#define N_repl 60  

 

struct CPGAIndividual{ 

 float coeff[8]; 

}; 

struct CPGAIndividual Individuals[N_digi], new_individual, 

fitter_indi[N_digi/2], fittest_indi, fresh_indi; 

struct CPGAIndividual *Individualsp; 

struct CPGAIndividual *indp1; 

struct CPGAIndividual *indp2; 

struct CPGAIndividual *new_individualp; 

//struct CPGAIndividual *Individuals1p; 

//struct CPGAIndividual *ind1p1; 

//struct CPGAIndividual *ind1p2; 

//struct CPGAIndividual *new_individual2p; 
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float A_largest, C_largest, C_largest_new;  

int main() 

{ uint32 i=0, j=0; 

 uint16 iteration1 = 0;  

 uint8  stasis = 0, x=0, m=0, zf=0, z=0, z1=0, z2=0, N1=100, c2 = 0; 

 uint8 c3=0, c4=0, c5=0, sel_indi=0; 

 float fitness[N_digi]={0}, fitness_avg = 0, fitness_max_prev = 1000, 

fitness_max[2]={2000000000, 20000000000}, fitness_last=0, fit_t_max=1000; 

 float c = 0, difference[256] = {0}, N3=0, oracle_CPGA[256]={0}, 

result[256] = {0}; 

 float DDC_zero[256] = {1}; 

 float fitness_max_prev_1=0, avg_fitness_prev=2000000000; 

// float32 resultf = 0; 

  

 /*********Range Scaling***************/ 

 A_largest = 277.102600; 

 C_largest = 0x7F7FFFF/(8*A_largest); 

  

 /**********Initialize I/O and compute oracle*************/ 

 UART_1_Start(); 

 char string [100]; 

 LCD_Start(); 

 LCD_WriteControl(LCD_CLEAR_DISPLAY ); 

 srand(start_seed); 

 for(i=0; i<256; i++) 

 { 

// oracle_CPGA[i] = oracle_cube[i]; 

 oracle_CPGA[i] = (float)sin((double)oracle_first[i]); 

 } 

 sprintf(string, "A_largest :%f C_largest %f oracle_fourth[255] 

:%f\n\r", A_largest, C_largest, oracle_fourth[255]); 

 UART_1_PutString(string); 

 

 Individualsp = &Individuals[0]; 

 for(j=0; j<8; j++) 

 {Individualsp->coeff[j] = 0;} 

 sprintf(string, "Individual 0: %f\n\r", Individualsp->coeff[j]); 

 UART_1_PutString(string); 

//  

// sprintf(string, "Individual 0: %f\n\r", Individualsp->coeff[j]); 

// UART_1_PutString(string); 

 /*******Random Initialization of Individuals*******/ 

  

 for(z=1; z<N_digi; z++) 

 { for(j=0; j<8; j++) 

  {Individualsp = &Individuals[z]; 

  Individualsp->coeff[j] = 

(((float)rand()/(float)(RAND_MAX))*(2*C_largest))-(C_largest); 

  } 

 } 

 C_largest_new = C_largest; 
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 sprintf(string, "random number update: %f\n\r", 

Individuals[1].coeff[5]); 

 UART_1_PutString(string); 

  

 /********Fitness Evaluation of Individuals********/ 

m=0; 

while(fitness_max[0] > 0.5 && iteration1 != G) 

{ 

 for(z=0; z<N_digi; z++) 

 {Individualsp = &Individuals[z]; 

 for(i=0; i<256; i++){result[i] = 0;} 

  for(j=0; j< 8; j++) 

  {switch(j){ 

   case(0): 

   { for(i=0; i<256; i++) 

    {result[i] += Individualsp-

>coeff[j]*DDC_fourthrt[i];} //done 

//     sprintf(string, "result %lu : %f\n\r", i, 

result[i]); 

//     UART_1_PutString(string); 

   break;} 

   case(1): 

   { for(i=0; i<256; i++) 

    {result[i] += Individualsp->coeff[j]*DDC_cubert[i];} 

//done 

//     sprintf(string, "result %lu : %f\n\r", i, 

result[i]); 

//     UART_1_PutString(string); 

   break;} 

   case(2): 

   { for(i=0; i<256; i++) 

    {result[i] += Individualsp->coeff[j]*DDC_sqrt[i];} 

//done 

//     sprintf(string, "result %lu : %f\n\r", i, 

result[i]); 

//     UART_1_PutString(string); 

   break;} 

   case(3): 

   { for(i=0; i<256; i++) 

    {result[i] += Individualsp->coeff[j]*DDC_zero[i];} 

//done 

//    sprintf(string, "result %lu : %f\n\r", i, result[i]); 

//     UART_1_PutString(string); 

   break;} 

   case(4): 

   { for(i=0; i<256; i++) 

    {result[i] += Individualsp->coeff[j]*DDC_one[i];} 

//done 

//    sprintf(string, "result %lu : %f\n\r", i, result[i]); 

//     UART_1_PutString(string); 

   break;} 

   case(5): 
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   { for(i=0; i<256; i++) 

    {result[i] += Individualsp->coeff[j]*DDC_sq[i];} 

//done 

//    sprintf(string, "result %lu : %f\n\r", i, result[i]); 

//     UART_1_PutString(string); 

   break;} 

   case(6): 

   { for(i=0; i<256; i++) 

    {result[i] += Individualsp->coeff[j]*DDC_cube[i];} 

//done 

//    sprintf(string, "result %lu : %f\n\r", i, result[i]); 

//     UART_1_PutString(string); 

   break;} 

   case(7): 

   { for(i=0; i<256; i++) 

    {result[i] += Individualsp->coeff[j]*DDC_fourth[i];} 

//done 

//    sprintf(string, "result %lu : %f\n\r", i, result[i]); 

//     UART_1_PutString(string); 

   break;} 

   } 

  } 

  for(i=0; i<256; i++)  

  {fitness[z] += fabsf(oracle_CPGA[i] - result[i]);} 

//  sprintf(string, "fitness %d : %f\n\r", z, fitness[z]); 

//  UART_1_PutString(string); 

 } 

  

 /*****************Elitism and selection of fitter 

individuals****************/ 

 fitness_avg = 0; 

 for(z=0; z<N_digi; z++) 

 {  

  if(fitness[z] < fitness_max[0]) 

  { 

  Individuals[1] = Individuals[0]; 

  Individuals[0] = Individuals[z]; 

  fitness_max[1] = fitness_max[0]; 

        fitness_max[0] = fitness[z]; 

  } 

  else if(fitness[z] == fitness_max[0]){} 

  else if(fitness[z] > fitness_max[0]  && fitness[z] <= 

fitness_max[1]) 

  {fitness_max[1] = fitness[z]; 

  Individuals[1] = Individuals[z]; 

  } 

  fitness_avg = fitness_avg +fitness[z]; 

 } 

 if(iteration1%50 == 0){ 

 if(fitness_max[0] == fitness_max_prev) 

 {stasis = 1;} 

 else {stasis = 0;} 
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 fitness_max_prev = fitness_max[0];} 

  

// if(iteration1%5 == 0){ 

//  if(avg_fitness_prev > fitness_avg) 

//  {fitness_max_prev_1 = fitness_max[0];} 

// } 

//  

// avg_fitness_prev = fitness_avg; 

 /**************Print stuff****************/ 

 c = fitness_max[0]; 

 if(c>100) { 

  C_largest_new = C_largest_new/2; 

  for(z=10; z<N_digi; z++) 

 { for(j=0; j<8; j++) 

  {Individualsp = &Individuals[z]; 

  Individualsp->coeff[j] = 

(((float)rand()/(float)(RAND_MAX))*(2*C_largest_new))-(C_largest_new); 

  } 

 } 

 } 

  

// if(c>10 && c<100) { 

//  C_largest_new = C_largest_new/2; 

//  for(z=(3*N_digi)/4; z<N_digi; z++) 

// { for(j=0; j<8; j++) 

//  {Individualsp = &Individuals[z]; 

//  Individualsp->coeff[j] = 

(((float)rand()/(float)(RAND_MAX))*(2*C_largest_new))-(C_largest_new); 

//  } 

// } 

// } 

  

 if(c<20) { 

  C_largest_new = C_largest_new/2; 

  for(z=N_digi-10; z<N_digi; z++) 

 { for(j=0; j<8; j++) 

  {Individualsp = &Individuals[z]; 

  Individualsp->coeff[j] = 

(((float)rand()/(float)(RAND_MAX))*(2*C_largest_new))-(C_largest_new); 

  } 

 } 

 } 

   

 LCD_WriteControl(LCD_CLEAR_DISPLAY ); 

 LCD_PrintString("M_F "); 

 LCD_PrintNumber(c); 

 LCD_PrintString(" G "); 

 LCD_PrintNumber(iteration1); 

 fitness_avg = fitness_avg/N_digi; 

 LCD_Position(1,0); 

 LCD_PrintNumber(fitness_avg); 
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 sprintf(string, "%f, %f, %f, %f\n\r", fitness_max[1], fitness[0], 

fitness_avg, c); 

 UART_1_PutString(string); 

 if(iteration1 == 0) {LCD_WriteControl(LCD_CLEAR_DISPLAY ); 

  c = fitness[0]; 

 LCD_PrintNumber(c); 

 CyDelay(1000); 

 } 

// if(fitness[z] > 1 || iteration1 < G) {it_max = iteration1;} 

  

 /*****************Crossover****************/ 

 j=0; 

  N1 = rand()%8; 

  z2=2; 

  m=0; 

  fit_t_max=1000; 

   

  for(c4=1,c5=1; c4<40; c4++, c5++) 

  {for(c3=c4*2; c3<(c4+1)*2; c3++) 

  {if(fitness[c3]<fit_t_max) 

  {fit_t_max = fitness[c3]; 

  Individualsp = &Individuals[c3];} 

  } 

  fitter_indi[c5] = *Individualsp; 

  fit_t_max=1000;} 

   

  fitter_indi[0] = Individuals[0]; 

   

  z2=N_digi-N_repl; z=0; 

  while(z2<N_digi) 

  {if (Xovertype == 1){zf = rand()%(N_digi/2)+1;} 

  if (Xovertype == 0){zf = z;} 

  indp1 = &fitter_indi[zf]; 

  z1 = rand()%N_digi+1; 

  indp2 = &Individuals[z1]; 

  if(indp1->coeff != indp2->coeff) 

  {indp2 = &Individuals[z1];} 

  else{z1++; 

  indp2 = &Individuals[z1];} 

   new_individualp = &new_individual;  

   j=0; 

   for(c2=0; c2<N1; c2++){new_individualp->coeff[c2] = indp1-

>coeff[c2];} 

   j=0; 

   for(c2=N1; c2<8; c2++){new_individualp->coeff[c2] = indp2-

>coeff[c2];} 

 

   j=0; c2=0; 

   Individuals[z2] = *new_individualp; 

   z2++; z++; 

   m=0; 

  } 
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  for(z=2; z<N_digi-N_repl; z++){Individuals[z] = fitter_indi[z];} 

   

 /*****************Mutation*****************/ 

  m=0; j=0; 

 //srand((rand()%65535)); 

 if(fitness_max[0] > 0 || iteration1 < G) 

 {for(z=2; z<N_digi; z++) 

 {Individualsp = &Individuals[z]; 

 N3=N3_init;  

 if(fitness_avg-fitness_max[0]>Ulim && stasis==0){N3=0;} 

 else if(fitness_avg-fitness_max[0]<Llim && stasis==1){N3+=N3_incr;} 

 else if(fitness_avg-fitness_max[0]>Ulim && stasis==1){N3+=N3_incr;} 

 for(m=0; m<8; m++) 

 { 

 if(GradMut == 0) {x=rand()%1000;} 

 if(GradMut == 1) {x=rand()%10000;} 

// j=1<<i; 

 if(x<N3){if(stasis==0){Individualsp->coeff[j] += 

(((float)rand()/(float)(RAND_MAX))*8)-4;} 

 if(stasis==1){Individualsp->coeff[j] += 

(((float)rand()/(float)(RAND_MAX))*(8+((iteration1)/50)))-

(4+((iteration1)/50));} 

 } 

 } 

 } 

 for(i=0; i<10; i++) 

 {sel_indi = rand()%N_digi; 

 if(sel_indi !=0 && sel_indi !=1) 

 {Individualsp = &Individuals[sel_indi]; 

 for(j=0; j<8; j++)  

 {x=rand()%1000; 

 if(x<N3) {Individualsp->coeff[j] = (Individualsp->coeff[j])*(-1);} 

 } 

 } 

 } 

 } 

  

 for(z=0; z<N_digi; z++) {fitness[z] = 0;} 

  

 iteration1++; 

} 

 /*****Add a small random number to the existing value and do sign bit 

flip mutation for a very few individuals - upto 5*******/ 

  

  /*****************Final fitness evlatuation and 

error*******************/ 

 Individualsp = &Individuals[0]; 

 for(i=0; i<256; i++){result[i] = 0;} 

  for(j=0; j< 8; j++) 

  {switch(j){ 

   case(0): 
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   { for(i=0; i<256; i++) 

    {result[i] += Individualsp-

>coeff[j]*DDC_fourthrt[i];} 

   break;} 

   case(1): 

   { for(i=0; i<256; i++) 

    {result[i] += Individualsp->coeff[j]*DDC_cubert[i];} 

   break;} 

   case(2): 

   { for(i=0; i<256; i++) 

    {result[i] += Individualsp->coeff[j]*DDC_sqrt[i];} 

   break;} 

   case(3): 

   { for(i=0; i<256; i++) 

    {result[i] += Individualsp->coeff[j]*DDC_zero[i];} 

   break;} 

   case(4): 

   { for(i=0; i<256; i++) 

    {result[i] += Individualsp->coeff[j]*DDC_one[i];} 

//done 

   break;} 

   case(5): 

   { for(i=0; i<256; i++) 

    {result[i] += Individualsp->coeff[j]*DDC_sq[i];} 

   break;} 

   case(6): 

   { for(i=0; i<256; i++) 

    {result[i] += Individualsp->coeff[j]*DDC_cube[i];} 

//done 

   break;} 

   case(7): 

   { for(i=0; i<256; i++) 

    {result[i] += Individualsp->coeff[j]*DDC_fourth[i];} 

   break;} 

   } 

  } 

  for(i=0; i<256; i++)  

  {fitness_last += fabsf(oracle_CPGA[i] - result[i]);} 

  

  sprintf(string, "best fitness acheived: %f\n", fitness_last); 

  UART_1_PutString(string); 

  sprintf(string, "chromosome of best individual:\nx^1/4: 

%f\nx^1/3: %f\nx^1/2: %f\nx^0: %f\nx: %f\nx^2: %f\nx^3: %f\nx^4: %f\n\r", 

Individuals[0].coeff[0], Individuals[0].coeff[1], Individuals[0].coeff[2], 

Individuals[0].coeff[3], Individuals[0].coeff[4], Individuals[0].coeff[5], 

Individuals[0].coeff[6], Individuals[0].coeff[7]); 

  UART_1_PutString(string); 

 uint32 digital_fitness=0, AvgD_fit=0, max_dev=0; 

 for(i=0; i<256; i++) {if(difference[i]>max_dev) {max_dev = 

difference[i];}} 

 sprintf(string, "max deviation: %d\n", (int)max_dev); 

 UART_1_PutString(string); 
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 sprintf(string, "Digital:%f Average_Digital:%f \n\r", 

(double)digital_fitness, (double)AvgD_fit); 

 UART_1_PutString(string); 

  

 return 0; 

} 

 

/* [] END OF FILE */  
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