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A B S T R A C T

Efficient detection o f execution termination is essential for optimizing throughput of 

multithreaded parallel computer architectures. In particular, an ensemble of processing 

elements (PEs) is said to have reached termination o f  processing upon completion o f each 

interval of concurrent activity. Points at which synchronization occur are referred to as 

synchronization barriers. The design objective is to minimize the amount o f overhead 

required to enforce completion o f each barrier prior to the resumption of subsequent 

processing.

This dissertation begins by developing a novel taxonomy for termination detection 

techniques based on thread allocation strategy and degree of processor reactivation 

support. A capability class hierarchy ranging from Static-Binding Idle-Tasking to 

Dynamic-Binding Any-Tasking is derived as a result o f  the taxonomy. Together they assist 

significantly in identification of properties which facilitate algorithm assessment and 

refinement. A message, bit, time, and space optimality analysis indicates that as few as 

(E-N) additional messages can be utilized to realize dynamic binding rather than static
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binding of threads on N  PEs with E  reporting events. These results are assessed against 

those for the CV, LTD, Credit, and Tiered algorithms to demonstrate the corresponding 

time and space performance which are achievable in practice.

The Tiered Detection Algorithm is shown to approach practical efficiency limits and 

is further refined in terms of its global invariant across non-serializable message 

communication channels. By attaching the level o f thread nesting to thread consumption 

and production counts, it prevents false termination hazards. Its advantage in detection 

delay is revealed in average and worst cases over CV and LTD algorithms concerning the 

traversal of processor hierarchy and implementation performance o f the Credit 

Algorithm.

The Tiered algorithm is then extended to a hardware-based approach, which is 

shown to be time and wire-efficient. The Distributed-Sum Bit-Comparison (DSBC) logic 

developed is capable o f supporting dynamic allocation of tasks for multithreaded 

execution on shared-memory, message-passing, and/or single-chip multiprocessors. For a 

system of N  PEs, a single instance of global logic and N  instances of local logic 

interconnected by 3N  wires are shown to provide direct support to the compiler and 

programmer for any arbitrary number of barriers. DSBC detection time upon completion 

of the last task is shown to scale linearly in terms of the number o f active barriers in the
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system. Comparison to Wired-NOR hardware and shared-Iock software approaches 

demonstrate reduced barrier detection time, decreased inter-PE wiring requirements, and 

increased functionality. Finally, a version is designed using Null Convention Logic to 

provide a delay-insensitive alternative implementation that eliminates race conditions and 

timing considerations in distributed environments.
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C H A PTER  1

INTRO DUCTIO N

Efficient barrier synchronization and termination detection techniques are essen­

tial for optimizing throughput in multiple processor architectures. An ensemble of 

processing elements (PEs) is said to be synchronized, or to have reached a  quiescent 

state [9], upon completion of each interval of concurrent activity. Points at which 

synchronization occur are referred to as a barriers [20] [21] [18]. The design objective 

is to minimize the overhead required to enforce completion of each barrier prior to 

the resumption of subsequent processing.

1.1 T h e B arrier S yn ch ron ization  P roblem

Figurel.l shows a code fragment containing three statements, labeled SI. S2. and 

S3, which invokes three distinct processes labeled PI, P2. and P3. Let I(S) and O(S) 

denote the set of input and output variables, respectively, of statem ent S. Statements

cobegin;
Si: x := P l(a );
S2: y:=P2(b);

coend; <= “B a rr ie r” (point at which interprocess synchronization must occur) 
S3: P 3 (x ,y );

Figure 1.1: Parallelizable Code Fragment Requiring Synchronization

1
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Si and S2 have no input, output, nor control dependencies, and hence by Bernstein’s 

conditions [19]:

/(si) n o(S2) = i(S2) n o(si) = o(si) n o(S2) = 0

An empty intersection implies th a t S i and S2 can be executed simultaneously on 

separate processors. On the other hand, statem ent S3 can only be executed correctly 

after both Si and S2 have term inated since:

I  (S3) D O (S l) =  {x} and I  (S3) f | 0 (S2 )  =  {y}

The barrier which corresponds to the completion of the concurrent processing, 

which must occur before S3 is initiated, is indicated by the coend statem ent shown in 

Figure 1. The processing tasks between barriers are executed by multiple Processing 

Elements (PE’s) within the machine. P E ’s may execute these tasks simultaneously 

without impacting correctness, but only if the barriers are properly enforced. Since 

some barriers may only involve a subset of the processes or resources in the system, 

those which actually take part in a specific barrier are delineated as participating 

tasks or participating PEs. accordingly.

1.2 S ignificance o f  S yn ch ron ization  and Q u iescen ce D etectio n

Parallel and distributed processing techniques frequently offer cost-effective ways 

to boost throughput.[8][52][47] As networking technology m atures and environments 

such as the Internet rapidly expand, distributed computing is an effective method to 

fully utilize the available resources to increase throughput [3] [1] [2]. Synchronization 

is a fundamental issue to both parallel and distributed computation. Its performance 

effects the overall performance the parallel and distributed multiprocessor systems 

profoundly since any idle processor in the system cannot proceed to  execute the next

2
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procedure before the synchronization has been completed. Even if the  processors can 

be reactivated to process tasks of another application to utilize the processing cycles, 

overheads are incurred. An ineffective termination detection scheme will exchange 

more messages which congest the  communication channels and effect the transmis­

sion of messages required by the underlying computation. Therefore the quiescence 

detection process plays an im portant role in parallel and distributed computing.

1.3 A p p lica tio n -D riv en  S ynchron ization  R eq u irem en ts

Characteristics which influence selection of a barrier mechanism include the ap­

plication’s task granularity between barriers, number of simultaneous barriers, and 

task creation/allocation strategy.

1.3 .1  G ranularity  o f  th e  A p p lica tion  Tasks

Task granularity refers to the number and relative complexity of the operations 

within each concurrent process. The coarseness or fineness of granularity determines 

the interval of productive execution between barriers. As the tasks requiring syn­

chronization become increasingly fine-grained, the relative impact of synchronization 

overhead on processing throughput becomes magnified. Thus, frequently synchro­

nized applications are less able to  tolerate the latency at which barriers are detected 

and may require hardware solutions to the synchronization problem.

1.3 .2  D egree  o f  T h read  C oncurrency

Singly-threaded, applications require at most one barrier at any instant while multi­

threaded applications may take advantage of concurrent barriers which are active 

simultaneously. For example, in a  multi-user environment, each user’s job involves

3
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tasks contributing towards distinct barriers. Since there are no data  dependencies 

between tasks from different users, these tasks could be executed simultaneously if 

the synchronization mechanism could distinguish between barrier signals. Likewise, 

single-user applications may also contain multiple sets of tasks contributing to a 

different active barrier for each of its threads.

1.3.3  A priori K n ow led ge o f  P E  P artic ip a tion

Knowledge of whether a PE will participate in a barrier may not be readily avail­

able at compile-time. Applications in which the number of participating tasks and /or 

their processor binding can be determined prior to execution are said to exhibit pro­

cedural task creation. On the other hand, applications which dynamically select the 

P E ’s which will participate in the barrier and /o r generate new processes based on 

run-time conditions are capable of adaptive task creation. Applications requiring syn­

chronization support for adaptive process creation include Remote Procedure Calls, 

recursive algorithms, and dynamic search strategies.

Additionally, adaptive process creation may create a launch-in-transit hazard. 

This refers to the situation when all processors are idle, yet a message is in tran­

sit from one PE to another that will launch a new task or subprocess upon arrival 

at its destination. While all processors appear to be idle, the barrier is not actu­

ally reached. Launch-in-transit messages can be difficult to track, yet their proper 

accounting is vital for enforcing the barrier and ensuring correctness of program exe­

cution. Launch-in-transit hazards can arise on distributed-memory architectures such 

the iPSC hypercube, nCUBE, and others where the synchronization technique lacks 

a global snapshot of processor activity.

4
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1.4 A rch itectu re-D riven  Synchronization  R eq u irem en ts

Each phase of the synchronization algorithm must accommodate the primary ar­

chitectural features of the target machine such as its communication mechanism, level 

of hardware support for synchronization, and various machine-specific parameters.

1.4.1 In terprocessor C om m unication  S tra teg y

Since shared-memory architectures provide a common region of the address space 

which can be accessed by multiple P E ’s, applicable barrier techniques involve the 

use of global synchronization variables. The design objectives involve minimizing 

contention for access to these variables. On the other hand, distributed memory 

machines must exchange synchronization messages through the machine’s intercon­

nection network. Thus, design objectives for distributed-memory synchronization 

schemes involve minimizing message traffic, transit times, and computational over­

head required to process these messages.

1.4.2 M achine-Specific  C onfiguration P aram eters

Irregardless of whether a shared or distributed memory model is used, quantities 

such as the ratio of computation-to-communication speed can be determining factors 

in the applicability of a barrier technique. For instance, a synchronization algorithm 

may be applicable to a distributed- memory architecture, but the relative cost of 

communication on a particular machine may make certain approaches intractable. 

Similarly, the number of PE ’s in the machine, PE interrupt support, and spinlock 

availability will influence which barrier approaches are appropriate.

5
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DynamicStatic

Idle- Sam e- Different- Any-
Tasking Tasking Tasking Tasking
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Idle- Sam e- Different- Any-
Tasking Tasking Tasking Tasking

OBIT DBST DBDT DBATSBDT SBAT

Figure 1.2: Classification Scheme based on Functionality of Barrier

1.4.3 A va ila b ility  o f  B arrier H ardw are

The use of dedicated hardware to enforce barriers can significantly reduce syn­

chronization latencies. The hardware design issues involve minimizing the logic re­

quirements per PE and reducing interprocessor wiring complexity, while optimizing 

flexibility. Use of dedicated barrier hardware can be prohibitive except in new machine 

designs since many commercial systems offer little hardware support and retrofitting 

may sacrifice the application's portability.

1.5 T axonom y o f  T erm in ation  D etec tio n  T echniques

1.5.1 C ap ab ility  C ategories

After extensive studying of various barrier synchronization mechanisms, we pro­

pose the novel categorization of them  as in Figure 1.2 based on their features. First 

they are grossly classified as static-binding and dynamic-binding according to the way

6
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in which they allocate PEs and schedule processes. Only mechanisms which can 

both allocate PEs and schedule processes dynamically are categorized as dynamic- 

binding. Although some approaches schedule processes dynamically, they fulfill the 

tasks on fixed tree of PEs: hence they are still classified as static-binding. The bar­

rier synchronization mechanisms are further classified as idle-tasking, same-tasking, 

different-tasking, and any-tasking under each binding scheme based on how they be­

have after they enter the barrier. If all joining PEs cannot be reactivated for other 

tasks after they enter the barrier, the mechanism is classified as idle-tasking capable. 

If joining PEs can be reactivated for other tasks in the same barrier after they enter 

the barrier, the mechanism is classified as same-tasking capable. If joining PEs can 

only be reactivated for other tasks in other barriers after they enter the barrier, the 

mechanism is classified as different-tasking capable. If joining PEs can be reacti­

vated for other tasks in either the same barrier or other barrier after they enter the 

barrier, the mechanism is classified as any-tasking capable. Combined with binding 

calassification, there are eight categories for barrier synchronization mechanisms.

1.5.2 C lass H ierarch y

Figure 1.3 shows a hierarchy of capabilities for the barrier classes defined in the 

previous section. In particular, class A is said to subsume class B if the mechanisms 

in class A can perform the operations of those in class B. For example, a technique 

in the DBAT class can correctly execute any synchronization operation supported 

by any other class. Therefore, the DBAT class subsumes all other classes. If one 

can realize DBAT class capability with a cost and efficiency comparable to any other 

class, then he will have provided a general technique for the barrier synchronization 

problem.

7
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Figure 1.3: Hierarchy of Barrier Classes
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1.6 O rgan ization  o f  th e  D isserta tion

A novel capability taxonomy of termination detection algorithms along with a 

capability class hierarchy resulting from it are proposed in Chapter 1 to facilitate the 

analysis of thirteen popular termination detection algorithms which are introduced 

and investigated in Chapter 2. The classification assists in identifying the capability of 

existing termination detection techniques and helps to shape the requirements for an 

optimal algorithm. Next, the optimality of termination detection algorithms is stud­

ied and derived in Chapter 3 by refining existing lower bound of message complexity 

in termination detection algorithms. A new lower bound of termination detection 

algorithms is proposed as a result of the optimality analysis, which also serves as the 

ultimate goal of our approaches for new termination detection algorithms. A software 

approach referred to as the Tiered Algorithm is designed and presented in Chapter 

4 following integration of our refinements along with the advantageous features ex­

tracted from the examination of other efficient termination detection algorithms. Its 

performance is shown to approach practical efficiency through comparison with three 

major algorithms which are intended to be optimal in terms of message complexity. 

An extension of the same fundamental concept is realized by hardware approach in 

Chapter 5. The advantages of the Distributed-Sum Bit-Comparison Logic are re­

vealed by contrasting its performance with those of a software scheme and another 

major hardware design. A delay-insensitive version of the DSBC Logic, which elimi­

nates timing concerns, is also developed with NULL Convention Logic technique. In 

Chapter 6. conclusion is summarized and a direction for future work is outlined.

9
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CH A PTER  2

PREVIO US W ORK

2.1 O verview

The term ination detection issue in parallel and distributed computations has been 

extensively researched in the  past and many termination detection algorithms have 

been proposed, both in software and hardware. Major designs in the literature are 

introduced and classified according to the capability category proposed in previous 

Chapter in the following sections. The evolution of termination detection techniques 

is implicitly covered and sheds a light to the requirements of an optimal term ination 

detection algorithm.

2.2 S ta tic -B in d in g  Id le-T asking C apable T echniques

2.2 .1  B u tter fly  B arrier

The Butterfly Barrier [20] [21] [18] [6] is an approach to barrier synchronization 

which is free of hot spots and incurs a delay which grows logarithmically with the 

number of processors. This technique builds upon a two-processor synchronization 

kernel which is illustrated in Figure 2.1. Statement S i guarantee that each processor 

will not continue to S2 until the other processor has completed S4 from the previous

10
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P I P2
SI: w hile(/0  ^  0); Si: w h ile(/l ^  0);
S2: fO =  1; S2: / l  =  1;
S3: w h ile (/l ^  1); S3: w hile(/0 ^  1);
S4: / I  =  0; S4: fO =  0;

Figure 2.1: 2-Process Butterfly Barrier

barrier. This prevents a race condition which can occur in the  presence of very short 

code segments or with processors which are subject to program  interruption. S2 

signals entry of the barrier code to the other processor. In S3, the processor waits 

until S2 has been executed by the other processor. Finally, S4 is used re-initialize the 

flags / 0  and / I  for the next barrier.

The author proposed using this two-processor Butterfly lock to synchronize three 

or more processors using the structure shown in Figure 2.2. Multiple instances of the 

two processor lock are employed to prevent any processor from proceeding beyond 

the barrier until all processors have reached the barrier. This structure can be readily 

expanded to synchronize 2l or more processors where i > 1. If the number of proces­

sors is not a power of 2. then it is possible to circumvent this restriction by having 

processors in the network stand-in for missing processors.

Note that this barrier synchronization technique does not rely on accessing a 

shared variable common to all processors. Each flag modified by a single process is 

polled by only one other process. However, it is im portant to  consider the location 

of the set of synchronization flags used. If all of the flags are stored in a region 

of memory which requires shared hardware for access (i.e. buffers, busses, memory 

devices, etc.) then a contention problem may still occur. This barrier detection 

method is classified as SBIT. The technique is static-binding because it must embed 

the barrier synchronization codes in each process; tha t means each process has to be

11
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Figure 2.2: Butterfly Barrier Expanded to Support Multiple Processors

known in advance. It is classified as idle-tasking since all PEs reaching the barrier 

code shown in Figure 2.1 must wait at S3 for the paired PE to execute S2.

2.2 .2  U -cu b e  T ree A lgorith m

The U-cube Tree Algorithm [23] is designed for the wormhole-routed [39] hy­

percube multicomputers by taking advantage of the feature that message latency is 

almost insensitive to the distance between the source and destination nodes in worm­

hole routing. Therefore it may not be efficient if implemented on other interconnection 

network. The algorithm uses a barrier processor to do termination detection, which 

can be a joining PE or a dedicated processor. The algorithm takes part in both the 

distribution phase, in which the barrier processor either broadcast or multicast the 

message to all the joining PEs, and the reduction phase, in which the joining PEs re­

port to the barrier processor for termination detection. The algorithm first organizes 

the joining PEs as a dimension-ordered chain which will be explained shortly. In the 

distribution phase, the barrier processor unicasts to one of the joining PE first, then

12
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every PE which has received a message unicasts the message to one of the PEs which 

have not received messages yet in the following steps until all joining PEs receive a 

message. It requires exactly k = [lg(m +  1)] steps. The reason for using dimension- 

ordered chain is to guarantee that the paths followed by concurrent messages in the 

U-cube tree do not go through any common channel. The dimension-ordered chain is 

formed by the three following definitions [23]. Let crn_i(x)<Tn_2(x ) . . .  a0(x) represent 

the binary address of a node.

D efin ition  1 The binary relation “dimension order, ” denoted <<*. is defined between 

two nodes x  and y as follows: x  <<* y i f  and only i f  either x  =  y or there exists a j  

such that crj(x) < <7j(y) and crfx) =  crfy) for all i, 0 <  i <  1.

D efin ition  2 A sequence {dj, d2, d3, . . . .  dm) is a dimension-ordered chain i f  and only 

if all the elements are distinct and the sequence is dimension-ordered, that is, i f  di <<* 

dj for all i . j ,  such that 1 < i < j  < m.

D efin ition  3 A sequence {dL, d2. d3,  dm) is called a d0-relative dimension-ordered

chain i f  and only i f  {do 0  d\, do ©  do, -. -, do ©  dm}, is a dimension-ordered chain.

The U-cube Tree Algorithm is shown in Figure 2.3. An example based on (11010)- 

relative dimension-ordered sequence {01110. 01000, 11100, 11011, 00001. 01101} is 

given in Figure 2.4. In the reduction phase, the algorithm just use a reverse U-cube 

Tree. This algorithm is classified as SBIT. It is static-binding because it needs to 

know the joining PEs to arrange the dimension-ordered sequence before it starts. It 

is idle-tasking since all PEs have to wait for the barrier processor for new messages.

13
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Algorithm : T he U -c u b e  Tree A lgorithm

Input :<f0-relative cube ordered address {d/e/ t »d-ieft+h • - • • dLnght} • 
where d/e/ £ is the  local address.

O utput: Send fig {right — l e f t  + 1)] messages
Procedure:
begin

p =  \\g{right — l e f t  -I- 1)] messages 
w hile{p > 0} do

center = l e f t  +
D — {(̂ .center, dcenter-r 1* • - • • d-nght};
Send a message to node ^center with the address field D; 
right =  center — 1; 
p = p -  1:

endw hile
end:

Figure 2.3: U-cube Tree Algorithm [23]

[1]

011011110011010 00001110110100001110

11010-relative chain

00000 10100 10010  00110  00001  

diXOR 11010

Source Node

11011  10111

D estination Node

Figure 2.4: Example for U-cube Tree Algorithm

14
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P ro c e d u re  start;
(* performed by the root node when it decides to 
detect term ination of the underlying computation *)

beg in
mystate «— DT;

for each outgoing network link In do  
b e g in

color In;
Send a warning  message on In

e n d
end;

P ro c e d u re  receive.warning;
(* performed when a node p. receives a warning  message from its neighbor q

beg in
color the incoming link (q.p ); 
if (mystate < >  DT) th e n  

b eg in
m ystate <— DT; 
fo r  each outgoing link In do 

b eg in
color In;
Send a w arning  message on In

en d
e n d

end:

Figure 2.5: Procedures used in CV Algorithm [10]

15
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P ro c e d u re  send_message(g : neighbor);
(* performed when a node p wants to send a message to its neighbor q *) 

beg in
Push TO{q) on the stack: 
send the actual message to node q

end:

P ro c e d u re  receive_message(y : neighbor);
(* performed when a node x receives a  message
from its neighbor neighbor y on the link (y , x) that was colored by x*) 

begin
receive message from y on the link (y , x) 
if  (link (y, x) has been colored by x) th e n  

push F R O M (y)  on the stack
end:

Figure 2.6: Procedures used in CV Algorithm [10]

2.3 S ta tic -B in d in g  Sam e-T asking C apable T echniques

2.3.1 C V  A lgorith m

The procedures used in the CV algorithm [10] are given in Figures 2.5 to 2.7. The 

CV algorithm first organizes all the participating processors as a logical spanning tree 

of PEs. It can start after the underlying computation starts. When the CV algorithm 

starts, it first flushes every links in the spanning tree to take care of messages sent 

before the algorithm starts: then the root node changes its state  to DT (detecting 

termination) and sends a warning message to each of its children and color the link 

at the same time. In turn, the warning messages are passed through links connected 

to all its child nodes until all the participating nodes are notified of the detecting 

termination decision. The CV algorithm maintains a stack in each PE to keep track 

of sending and received activities on each PE. When a node becomes idle, it examines

16
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P ro c e d u re  stack_cleanup:

b eg in
w hile  (top entry on stack is not of the form “T O ()” ) do 

b e g in
pop the entry on the top of stack; 
let the entry be FRO M (q): 
send a rem ove.entry  message to q:

e n d
end;

P ro c e d u re  idle;
(* performed as soon as the node becomes idle *) 

beg in
stack_cleanup

end:

P ro c e d u re  receive_remove_entry(y : neighbor);
(* performed when a node x  receives a rem ove-entry  message from its neighbor 

beg in
scan the stack and delete the first entry of the form TO(y): 
if idle th e n  

stack.cleanup
end:

Figure 2.7: Procedures used in CV Algorithm [10]

17
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its stack from the top. For every received entry, it sends the remove-entry message 

to the sender and erase the entry'- from its stack. It repeats this until it encounters 

a sending entry. This procedure is defined as stack.cleanup. When a node receives 

a remove.entry message, it scans its stack and deletes the sending entry related to 

this message and repeats the stack.cleanup procedure as previously described if it is 

in idle status. A node sends a terminate message to its parent when it is idle, its 

stack is empty, each of its incoming links is colored, and it has received the term inate 

message from each of its children. When the root node meets the requirements to 

report term inate message, it declares the termination.

The CV algorithm  is classified as SBST. It is treated  as static-binding because it 

is performed on a  fixed spanning tree of PEs formed before its execution. The CV 

algorithm, as originally defined, supports only processor reactivation for the same 

barrier; hence it is classified as same-tasking.

2.3.2 LTD A lg o r ith m

The LTD algorithm [12] [13] is an improvement over the CV algorithm. Its algo­

rithm for all PEs is given in Figure 2.8. The two procedures used in the algorithm are 

given in Figure 2.9. Like the CV algorithm, it organizes participating processors as 

a spanning tree of PEs first and it can start after the underlying computation starts. 

When the root decides to sta rt the algorithm, it changes to DT (detecting termina­

tion) status and sends a start message to each of its children. In turn, its children 

send start messages to their own children until all participating processors are notified 

of the root's decision. Each PE maintains four variables, namely irij, out,, modei .and 

parenti, to apply message counting to decide whether all the messages sent by it have 

been finished. The integer array, m ^l-.n], is used to  keep track of the messages which 

are received from PE  1 to n  and have not been finished. The number of messages

18
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A l:(U pon sending a basic message to pj) 
outl := outl -+- 1;

A2:(Upon receiving a basic message from Pj) 
irii\j) :=  im \j] +  1;
if  (parenti = NULL) A (i ^  1) then parents := j ;

A3:(Upon deciding to switch to DT mode) /*  for p\ */
or (Upon receiving a ST A R T  message) /*  for p,. 2 <  i < n * /
modex :=  DT;
for each child Pj of Pi do

send a S T A R T  message to Pj; 
end for
if (pi is idle) th en

ca ll respond..minor(i): 
ca ll respond.m ajor(i): 

end for

A4:(Upon receiving a F IN IS H E D (k ) from Pj
outx :=  outi — k\
if (modei =  DT) A (pt is idle) then ca ll respondjm ajor{i):

A5:(Upon turning idle) 
if (modei =  DT) th en  

ca ll respondjm inor(i); 
ca ll respondjm ajor(i); 

end if

Figure 2.8: Algorithm for p*, 1 <  i < n, in LTD Algorithm [12]
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P ro c e d u re  respondjm inor{i : in teger) 
beg in

for each j  ^  parenti with in t[j] ^  0 do 
send a F IN IS H E D  (in* [;']) to p f
in i \ j]  :=

end  for;
end;

P ro c e d u re  respondjm ajor(i : in teger) 
beg in

if (outl = 0) th e n
if  (z =  1) t h e n  report termination 
e lse

send a F IN IS H E D  (in* [parenti]) to parentx 
ini\parentt] :=  0: 
parenti '■= NULL; 

e n d  if; 
end  if;

end;

Figure 2.9: Procedures used in LTD Algorithm [12]

sent by j  to z is stored in in x\j\. The integer, outi, records the  number of unfinished

messages sent by PE z itself. The Boolean variable, modei, shows the status of the

processor (DT or NDT). The pointer which indicates where the most recent major

message came from is stored in p a r e n t A major message is the message which is

received when the processor is idle and has finished all the messages which it sent

to other processors, otherwise the received message is defined as a minor message.

Whenever a node turns idle, it calls procedures respond-minor and respondjmajor to

detect termination. W hat procedure respond-minor does is to  send one F IN IS H (k )

message to each non-parent node which has sent it messages to inform them of the

number of messages which it has finished for them, where k  means the toted number

of messages which it has finished for a specific node before turning idle. This is the
%

largest improvement over the CV algorithm. It uses one FINISH(k) message instead

20
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Parent field Child field

Group ID +X -X +Y -Y +X -X +Y -Y Node Type
Group ID +X -X +Y -Y +X -X +Y -Y Node Type

•

Group ID +X -X +Y -Y +X -X +Y -Y Node Type

Status Register Set 

Child field

Group ID P +X -X +Y -Y Message
Group ID P +X -X +Y -Y Message

j

Group ID P +x -X +Y -Y Message

Working Register Set

Figure 2.10: Status and Working Registers

of k remove.entry messages as in the CV algorithm to save (k  — 1) messages. As for 

the procedure respondjmajor . it checks if all the sent messages have been finished 

and sends one F IN IS H (k )  message to parent node if all the messages sent by it are 

finished. After the root turns idle and finds out tha t all the messages it sent out are 

finished, it concludes the termination. It is classified as SBST with the same rationale 

for the CV algorithm.

2 .4  S ta tic -B in d in g  D ifferent-T ask ing C ap ab le T echniques

2.4 .1  C o llec t iv e  S ynchron ization  Tree

The Collective Synchronization (CS) Tree algorithm [29] implements on 2D mesh 

networks. A CS tree is built on joining PEs before the algorithm begins. The CS
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tree is a logic tree which is rooted at the central node of the joining PEs and links 

all member nodes together. In short, a CS tree is built by dividing the joining PEs 

into four quadrants according to their positions in the 2D mesh network and finding 

the central node as the root. Then it initialize the routers to set up the CS tree 

in hardware. To record the parent-child relationship in the CS tree, the routers use 

two sets of centralized registers, namely status and em working registers, which are 

shown in Figure 2.10 [29]. each status register contains two fields, parent and child, 

and each has four bits (+X . -X. +Y, -Y). A ” 1” in any bit in a field indicates that 

the parent or child node can be reached through the corresponding port. The node 

type indicates the role of the node in the CS tree, which can be the central node, a 

leaf, an internal node, or an intermediate node. The working sta tus is used to record 

whether the message from the local processor (P field) or child nodes (child field) has 

arrived. Both registers for the same barrier are identified by the Group ID. hence the 

CS Tree algorithm can implement on different barriers simultaneously by applying 

different group ID. The operations of all nodes in the algorithm are summarized in 

Table 2.1. In general, the leaf nodes reports to their parents after they finish their 

tasks; the internal and intermediate nodes wait for messages from all their children 

and the local processor before they report to their parents; the central node declares 

the completion of the barrier after it receives messages from all its children. The 

CS Tree algorithm is classified as SBDT. It is static-binding because it must know 

the joining PEs a-priori to build the CS Tree. It employs different register sets for 

different barriers hence it has different-tasking ability.

2.4 .2  F etch -an d -A d d

The Fetch-and-Add (F & A) primitive [19] [45] is a hardware feature which allows 

a PE to indivisibly read and increment a counting variable stored in shared memory.
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N ode T y p e O pera tions

Leaf R A 1: Receive a Rmsg from local processor and forward it through the port 
specified in SReg[PF].

Internal

RBI:Receive a Rmsg (perhaps from local processor) and set the bit 
corresponding to its input port in WReg. If SReg[CF]^ WReg[CF] or 
WReg[P] is not set. then discard the message and go to RBI.
RB2:Fonvard the message through the port specified in SReg[PF].
RB3:Reset WReg.

Central
R C l:Sam e as RBI.
RC2:Reset WReg and notify local processor.

Intermediate

RDlrReceive a Rmsg and set the bit corresponding to its input port in 
WReg[CF]. If SReg[CF]^ WReg[CF], then discard the message and go to 
RD1.
RD2:Sam e as RB2.
R D 3: Reset WReg.

Table 2.1: Operations in the Router for CS Tree [29]

num .at-barrier =  F&A(counter, 1); 
if  {num-at-barrier < num-expected.)

w h il e (e x it- fla g  = =  0);
else

{sequential code}; 
ex i t . f lag  =  1;

endif;

Figure 2.11: Fetch and Add Barrier Code
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If the number of processes converging on a barrier is known a-priori, a  counting 

variable can be used to detect the barrier . An example of the code executing on the 

converging processes is shown in Figure 2.11. As each processor reaches the point in 

its operation where synchronization is required, it increments and tests the counting 

variable using an F & A instruction. W hen a process detects that the counting 

variable has reached the expected final value, the barrier has been reached. Both 

counter and exit^flag are initialized to zero prior to executing the barrier code. Note 

that the process which detects the barrier (the last converging process to reach the 

barrier) can execute sequential code, since the else portion of the i f  statem ent can 

be executed by a process only if all other converging processes are in a busy-wait 

condition testing the exit_flag. The use of this primitive for barrier synchronization 

can result in significant hot spots due to contention for bo th  the counting variable 

and the exit-flag. The detection latency encountered when using the F & A primitive 

is determined by the access time of the counting variable and the test for the terminal 

count by the last PE reaching the barrier. This synchronization method is SBIT per 

se because joining PEs must be known in advance and all bu t the last PE reaching 

the barrier code shown in Figure 2.11 must wait for the exit_flag to be set. However 

concurrent barriers can be accommodated by duplicating the barrier code on multiple 

sets of PEs, each using a different counting variable. Thus a PE can be reactivated 

for a different barrier. Therefore we classified it as SBDT to show that most SBIT 

techniques can be easily upgraded to SBDT techniques.

2.5 S ta tic -B in d in g  A ny-T ask ing C apable T echniques

So far we have not discovered any SBAT mechanism in literature. However, some 

mechanisms in other category can easily be adapted to SBAT capability. For example, 

both CV and LTD algorithms can be extended to be SBAT capable by attaching
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P roc 0  P roc 1 P roc 2 P roc 3  P roc 4

Figure 2.12: Simple AND Gate Barrier

barrier ID to each message; then multiple barriers can be executed simultaneously 

without ambiguity.

2.6 D y n a m ic-B in d in g  Id le-T ask in g  C apable T echn iques

2.6 .1  A N D  G a te  B arrier

Ghose and Cheng propose a simple AND gate hardware barrier [24] as shown in 

Figure 2.12. Each processor notifies of its arrival at the barrier by setting a local 

latch. This figure shows a 5 processor synchronization circuit. The block containing 

the symbol is a latch set by the processor when the barrier has been reached by the 

processor. The ou tpu t of all of the latches are AND-ed together, generating a global 

reset signal to all latches. It is classified as DBIT. It is dynamic-binding because it 

does not need to know the participating PE s in advance. It is idle-tasking because 

every joining PE has to wait for the global reset signal after it has reached the  barrier.
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Figure 2.13: NAND Tree in TTL-PAPERS

2.6 .2  T T L -P A P E R S

The TTL.PA PERS [28] [40] [41] is a simple TTL hardware implementation of PA­

PERS (Purdue’s Adapter for Parallel Execution and Rapid Synchronization) [30]. It 

is plugged into the parallel ports of all personal computers in the cluster. Conceptu­

ally the TTL-PAPERS employs a AND tree to detect whether every PE has reached 

the barrier. However there are two serious problems with AND tree in asynchronous 

barrier. 1. A PE with a small task for the first barrier may reset its signal before all 

other PEs signal for completion of the first barrier. They end with waiting for a signal 

which is gone. 2. A PE which finishes the first barrier faster may set the signal high 

again before other PEs clear their signals for the first barrier. The TTL-PAPERS 

adopts the two NAND trees and a one-bit register design as in Figure 2.13 to handle 

the two problems. To solve the first one, it adds the one-bit register. When all PEs 

signal completion of a barrier, the output of the first NAND tree set the register to 

one; then every PE can test RDY to know whether the barrier has been reached. To 

solve the second problem, it adds a second NAND tree. Any PE sets signal 50 after

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Signaling C ondition Value Subm itted
The processor does not want to delete from nor insert into the 
shared queue. 0
The processor inserts an element into the shared queue. -1
The processor deletes an element from the shared queue. 0
The interface processor fails to delete an element from the 
shared queue. +1
PE is idle. +1

Table 2.2: SAV Value Returned by PEs

it clears the signed S i .  When all the PEs set its SO, the output of the second NAND 

tree reset the register. Any PE can enter the next barrier after it senses the RDY is 

zero. The TTL -PAPERS is classified as DBIT. The fact that it does not need to know 

the joining PEs makes it dynamic-binding. However every PE has to be committed 

to the barrier makes it idle-tasking capable.

2.7 D yn a m ic-B in d in g  Sam e-Tasking C apable T echniques

2.7.1 S im u ltan eou s A ccess Variable

The Simultaneous Access Variable (SAV) [22] technique is a simultaneous access 

design which provides idle processor reactivation and termination detection capa­

bilities for the shared-memory architecture. The basic idea is: The SAV algorithm 

organizes PEs as a binary tree and uses a shared queue to store spawned tasks. The 

values sent to the SAV by every PE under different situations are tabulated in Ta­

ble 2.2. Every PE  keeps track the accumulated SAV of the subtree which is rooted 

at itself and reports it to its parent.The SAV acts like a counter which counts the 

difference of the idle PEs and the tasks inserted into the shared job queue. If the 

value of SAV is greater than zero, there axe more idle PEs than the tasks inserted 

to the queue; otherwise there are more spawned tasks than available idle PEs. The
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U[ <- Ur <- 0:
R  <— +  Rr\
case

Ri > 0 and /£*.>():
U <— min(Up. R);
Ui <- I f  x C/|:
C/r <- 1% x (/|;

Ri > 0 and Zlr < 0:
Ui <— min(Up — /&, i?;);

Ri < 0 and > 0:
Ur <— min(Up — Ri, R r);

endcase
R<r- R - U p: 
send R  to parent; 
send Ui to left child: 
send Ur to right child;

Figure 2.14: SAV Algorithm [22]
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term ination is reached when the accumulated SAV at the root equals the number 

of the PEs in the system. The PEs at odd and even levels execute alternately and 

the algorithm for each active PE is listed in Figure 2.14. Each PE maintains four 

sets of registers, each consisting of R  and U registers. Three sets of registers are for 

information received from or intended for the left child, the right child, and parent 

respectively and they are denoted by the subscripts of I, r. and p respectively. The 

remaining set is for its own use. When a PE which is a left child sends R  to its parent, 

the parent stores it in Rp, otherwise it is stored in Rr- On the other hand, the value 

received from the parent node is stored in Up. The value of Up is the number of tasks 

sent by its parent which may be consumed in this subtree and Up > 0. Every PE 

processes according to cases based on the values of Ri and Rr. When Ri > 0 and 

Rr > 0, which means both child subtrees have more idle PEs than  spawned tasks, 

tasks from its parent are shared among two children proportionally. If R  < Up. only 

R  of Up are shared: the rest are used by its parent. If R t > 0 and Rr < 0. which 

means left child subtree has more idle PEs and right child subtree has more tasks 

to be consumed, the excess tasks from the right child subtree and the parent can be 

dispatched to the left child subtree. The case Ri < 0  and Rr > 0 is symmetric to the 

previous case. W hen both child subtrees have more tasks than  idle PEs. i.e. when 

Ri < 0 and Rr <  0. the excess tasks from both child subtrees together with the tasks 

from the parent are dispatched to its parent. W hen R  < 0 at the  root, there axe still 

tasks to be consumed. When R  > 0 a t the root, there are more idle PEs than the 

tasks to be consumed. When R  at the root equals the number of PEs in the system, 

which means all PEs are idle, the term ination has been reached. The SAV algorithm 

is classified as DBST. It is dynamic-binding because the joining PEs do not have to 

be known in advance. It is same-tasking because PEs can only be reactivated for the 

same barrier.
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2.7.2  T he C ou n tin g  A lgorith m

The Counting Algorithm  [31] is a two-phase distributed termination detection al­

gorithm. The pseudo codes for both phases are listed in Figure 2.15. A copy of the 

algorithm runs on every PE. All participating PEs are organized as a spanning tree. 

Every PE keeps track of the created and processed tasks locally with the variables 

nc and np respectively and maintains the accumulated counts of the created and pro­

cessed tasks of the subtree rooted at itself with the variables Nc and N p respectively. 

In phase 1. each leaf PE sends the idle message with Nc and Np initialized to nc 

and nprespectively after it turns idle. The idle message signifies that each PE in the 

subtree below has been idie at least once since the last idle message: in contrary to 

the activity message in phase 2. which is merely a report of creation and processing 

activities. As for the other PEs. they update the local Nc and Np by adding the N c 

and Np sent from their children with the idle message. After receiving idle messages 

from all its children, a PE sends an idle message with N c and Np, updated with nc 

and np respectively, to its parent when it turns idle. W hen the root node has received 

idle messages from all children and turns idle, it compares Nc and Np. If they match, 

enters phase 2 because there is a very good chance tha t the termination has been 

reached. If not. restart phase 1. In phase 2, every PE sends up an activity message 

containing new values of Nc and Np. These activity messages are assembled in the 

same way as in the phase 1. When the root has received activity messages from all 

children, it compares the old and new values of Nc and Np. If they are the same, it 

means that there has been no new activities. The root declares termination of the 

barrier: otherwise restarts phase 1. The Counting Algorithm is classified as DBST. 

It is dynamic-binding because the joining PEs do not have to be known a-priori. It 

is same-tasking capable because PEs can only be reactivated to the same barrier.
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Phase 1()

Nc =  0 :N P = 0:
wait until (RecdMsgsFromChildren()): 
add to local N c and N p the values received from children, 
wait until (IdleQ);/* wait until this PE has no activation messages */ 
Nc =  N c -F nc; Np =  Np + rip', 
if (RootSpanTree()) 

if (Ne ?  Np)
Broadcast message to begin Phase 1 

else
N °ld = Nc; N°ld =  Np
Broadcast message to begin Phase 2

else
Send message with N c and Np to Parent in Spanning Tree

}

Phase 2()
{

Nc = 0; Np = 0;
wait until (RecdMsgsFromChildren());
add to local N c and l\’p the values received from children.
wait until (Idle());
:VC =  Nc +  nc; Np = Np + rip\ 
if (RootSpanTree())

if (N°ld = =  Nc AND N°ld == Np)
Report Quiescence 

else
Broadcast message to begin Phase 1

else
Send message with N c and Np to Parent in Spanning Tree

}
CreateMessage(){nc +  +}
ProcessMessage(){np -1-}

Figure 2.15: Counting Algorithm [31]
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Barrier 0
Banter 1
Barrier 2
Banter 3

C ontro l V ec to r M onito r V ec to r. C on tro l V ec to r M onitor V e c to r .

Processor # 0  Processor #1

Figure 2.16: Wired NOR Barrier

2.8 D y n a m ic-B in d in g  D ifferent-T ask ing C ap ab le T echniques

2.8 .1  W ired -N O R  B arrier

The W ired-NOR Barrier is a distributed and hardwired barrier architecture which 

supports both intracluster and intercluster synchronization [26] [25]. An example 

supporting 4 barriers with 2 PEs is shown in Figure 2.16. The description for general 

case follows. There are m  barrier wires and each supports an independent barrier at 

the same time. Physically every barrier wire is connected to  n  PEs, where n  is the 

size of the system or cluster. Each PE i , where 1 <  i < n, uses a control vector X i =  

(X ,j, X i 2, - • •, Xt'Tn) and a m onitor vectorYi =  (V .̂i, Yi.2 , • • •. Yi.m) for synchronization 

control. These vectors are m apped into the shared memory or distributed to special 

registers in each processor board. Thus, they are program accessible from each PE. 

Each barrier wire, labeled as j  for 1 <  j  <  m, is connected to n NPN bipolar
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transistors [50]. associated with n  PEs separately. Changing a view point, every 

PE contains m  transistors tied to m  barrier wires. At each PE i, the base of each 

transistor is connected to  a control bit Xij ;  the collector of the same transistor is 

monitored by a  monitor bit Ytj .  When a barrier exists, the corresponding barrier 

wire is pulled up to the high voltage. Any PE sets its corresponding control bit X l Tn 

when it enters the barrier. That makes the associated transistor closed and pulls 

down the voltage the barrier wire. A PE resets its corresponding control bit when it 

finishes its job for the barrier. A barrier line will be pulled high again only when all 

transistors connected to it are reset low, which will be sensed by the monitor bit. That 

performs the wired-NOR logic and also means the barrier is terminated. The Wired- 

NOR barrier architecture is classified as DBDT. It is dynamic-binding because the 

participating PEs do not have to be known in advance. It is different-tasking because 

PEs can only be reactivated to different tasks.

2.8 .2  B arrier S yn ch ron iza tion  R eg ister  H ardw are

A hardware for supporting barrier synchronization in parallel loops [27] is proposed 

by Beckmann and Polychonopoulus. The single barrier version supporting N  PEs is 

shown in Figure 2.17. The R  register contains a bit for each PE. As a PE completes 

the loops required to reach the barrier it clears its bit in the R register. The zero 

detect logic, which is a iV-input NOR gate, determines when all bits in the R register 

are clear. The B R {Barrier Register) is used as a single flag to inform all the  PEs 

of the term ination of the barrier. The £?/?.£7V(Barrier Clear Enable Register), which 

is ANDed together with the output of the zero detect logic, enables the autom atic 

clear of the BR when all the R bits are 0. The mechanism of this design works as: 

Initially, BR=1 and R[1..N] and BREN are all 0. Every PE sets its R bit to 1 when 

it enters the barrier and resets its R bit after it finishes its loops for the barrier.
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Proc 3Proc 2

Zero detect logic

BR
BREN

clear

Proc NProc 1

Figure 2.17: Single Barrier Register Hardware [27]
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| Proc 3! Proc 2

RtegWer
( 1 . 1 ) (1.N)

(2.N)(2 .2 )(2 . 1 )
(3.1) (3.N)

(N.3)(N.1) (N.N)

Bren
clear,

Proc NProcl

Barrier C lear 
Detect Logic

Figure 2.18: Multiple Barrier Register Hardware [27]
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The PE dispatched the last iteration sets the BREN to 1 to enable the detecting 

of term ination before executing its loops. After all PEs finish their jobs and reset 

their corresponding R bits, the BREN and the output of the zero detect logic triggers 

the clear of the BR. which in turn  clears all PEs for next barrier. The multiple 

barrier version ju st duplicates the single barrier version and is shown in Figure 2.18. 

The Barrier Synchronization Register Hardware is classified as DBDT. It is dynamic- 

binding because it support arbitrary nested loops [27]. It is different-tasking capable 

because each PE can be reactivated for different tasks.

2.9 D y n a m ic -B in d in g  A ny-T ask ing  C ap ab le  T echniques

2.9.1 C red it A lgorith m

The Credit Algorithm [9] is a global quiescence detection algorithm based on a  

very simple principle. There are some variants which are not necessarily better than  

the original design, hence only the original design is described. When the underlying 

computation begins, the controller which can be on either a dedicated PE or any PE  

distributes a credit of to tal value 1 to all processes. These processes either distribute 

part of their credit share to the new processes spawned by them or return the credit 

share to the controller when they finish or become passive as described in the original 

paper. The controller declares termination when it regains all the credit. To ensure 

the credit distribution, the algorithm follows the rules:

1. When a process becomes passive it transm its its credit share to the controller.

2. When an activating message with credit share C  arrives at an active process, 

C  is transm itted  to  the controller.
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3. When an activation message with credit share C  arrives at a passive process. C  

is transferred to  the activated process.

4. When an active process with credit share C  sends an activation message, the 

process keeps and the message gets the other half.

Although not mentioned in the original paper, the Credit Algorithm can easily 

support multiple barriers by attaching barrier IDs to each credit share. Hence it is 

classified as DBAT. By the simple principle of credit distribution and the fact that no 

restrictions exist, obviously the Credit Algorithm is dynamic-binding and any-tasking 

capable.

2.10 S u m m ary

Thirteen m ajor term ination detection algorithms are examined in this Chapter. 

They are classified by the capability category proposed in the previous Chapter. 

Their individual capability level can be recognized by matching their classification to 

the hierarchy of term ination detection capability class in Figure 1.3. Therefore less 

capable algorithms can be compared with the more capable algorithms and differences 

among them can be clearly identified to make substantial improvements.
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C H APTER 3

OPTIM ALITY ANALYSIS OF TERM INATION  

DETECTION TECHNIQUES

When it comes to find the optimality for termination detection algorithm or an­

alyze their performance, traditionally researchers focus on message complexity. It is 

because determining the transit time of messages across the network is usually not 

as practical as the theoretical value. Moreover, messages may not arrive in the or­

der as they were sent out. The concept that increased message traffic causes more 

performance degradation is correct in this aspect. However, pursuing the least mes­

sage complexity only does not necessarily ensure the optimal performance as will be 

shown in the following research. The message delivery architecture and mechanism 

should also be taken into consideration to provide the optimal overall performance. 

Especially the messages travel inside local PEs and through the network should be 

clearly identified to accomplish the optimal performance because there is significant 

difference in the overhead to transmit both kinds of messages. The notation which 

will be used in the performance analysis is tabulated in Table 3.1.
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N otation M eaning
Epoch duration of processing which occurs between barriers

N to ta l number of physical processing elements (PEs) in the parallel 
machine

N ' number of distinct PEs actively processing tasks during an epoch, 
where 0 <  N ' < N

E to ta l number of events which happen in an epoch
Mi number of internal notifications incurred in event i
T to ta l number of logical tasks created during an epoch
D maximum depth of task nesting levels during an epoch
L links between physical processing elements

tsend. message transit time
■iProtocol

checkup time required for termination criterion checkup of specific protocol

Table 3.1: Notation used in Performance Analysis

3.1 B asis

Chandy and Misra established a lower bound of message complexity of T  for 

termination detection algorithm sfllj. They built a distributed environment model 

and used induction to prove that any termination detection algorithm needs to send 

out at least as many messages as the underlying com putation messages to detect 

the completed barrier. This matches the intuition th a t every process involved in a 

barrier in a  parallel program needs to send out a t least one message to let other 

processes know its status. Hence T  processes initiated by T  underlying computation 

messages need a t least T  control messages to make other processes understand its 

status. Theoretically, the optimal value of messages required to detect termination 

of a barrier in a  parallel program with T  processes or messages involved is T. That 

can only happen in a unique case for the dynamic-binding termination detection 

algorithms as shown in Figure 3.1. In particular, all processes send out one message 

directly to the centralized control process. However, the time required for detection
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is expected to be very lengthy and much longer than the theoretical value because of 

the network traffic caused by so many messages. In practice, it is difficult to achieve 

the optimal performance bound. Although the same case and an additional case as 

shown in Figure 3.2 apply to the static-binding termination detection algorithms, 

the latter will be proved inferior to other case later. Therefore optim ality for overall 

performance will be further explored in the following sections.

3.2 P re lim in a ry  A n a lysis

The analysis of Chandy and Misra is based on the individual processes. Therefore 

the overhead of transm itting a message in their model is uniform. However in real- 

world parallel and distributed systems, the overhead for delivering an message inside 

a local node, which is designated as internal message, is much less than  that of 

delivering an message out of the local node and across the network, which is designated 

as external message. Hence internal control messages and external control messages 

should be clearly identified to  determine optimal overall performance. As a rule 

of thumb, opting for as many internal messages, rather than external messages, as 

possible will achieve more performance gain.

Assume the tim e to  deliver control messages in our models is uniform. Consider 

first the case with the least control messages required; i.e., T  control messages sent 

for T  underlying com putation messages. There are T  processes generated by the 

T  underlying com putation messages. Every process sends out one message after it 

finishes its job. We hereby define the decision process as the process in charge of 

determination of term ination. For a static-binding algorithm, the most fundamental 

form which can be achieved is: every process sends out one external control message to 

the centralized decision process. This case is designated as case A and shown in Figure 

3.1. For simplicity of analysis, the decision process is assumed to  be allocated to an
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dedicated PE other than  the working PEs in all cases. Apparently, the performance 

will suffer because all messages are external messages with much higher overhead. 

An intuitive thought to solve the shortcoming is to send out all control messages as 

internal instead of external. However, it is implausible since the information for all 

processes dispatched to  the same PE cannot be transm itted out of the PE. There is no 

way that the decision process knows the status of all the other processes. Because of 

the characteristic of static-binding, the distributed locations of all processes are known 

a-priori. Taking advantage of this fact, one compromising solution can be offered. All 

processes reside at the same PE except one still send out one internal control message 

to other processes after they complete, in linear order. The last process in the chain 

sends out an external message to the decision process after it terminates. This case 

is designated as case B and shown in Figure 3.2. Any design which lies in between 

case A and case B has performance in between those extremes. This is because it 

always has less external messages than case A while having more external control 

messages than case B. We conclude that case B corresponds to the optimal case for 

the static-binding term ination detection algorithms under these conditions. It will be 

compared with other case later.

For the dynamic-binding algorithms, the first case considered is the same as case A 

in the static-binding category. Due to the characteristic of dynamic-binding, there is 

no way to know how many processes will be created at each PE in advance. Therefore, 

the predecessor chain as in case B cannot be built because no process can be identified 

as the last one. If no process can be assigned the task to send the external control 

message to the decision process, the status of the processes at the local PE wouid 

not be learned by the decision process. Case B cannot occur in the dynamic-binding 

termination detection algorithms; neither does any situation in between case A and
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Flow of 
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Figure 3.1: Case A for Optimality Analysis

PE0
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Control Process

Flow of 
Control Message

Figure 3.2: Case B for Optimality Analysis
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Figure 3.3: Case C for Optim ality Analysis

case B because of the same rationale. Only case A is plausible. However, the perfor­

mance limitations of case A are expected as previously stated.

3.3  A n alysis o f  O p tim ality  C ases

Since the only case for the dynamic-binding termination detection algorithms 

using only T  control messages precipitates performance limitations in practice, let us 

try  to adapt the control messages to improve the overall performance. Returning to 

the general rule of applying as many internal control messages as possible can provide 

an approach. In particular, let every process send out an internal control message to 

let others know its status. However, some local agent processes need to be adopted 

to take the responsibility of counting processes dispatched to its domain by collecting 

status information from all processes in its domain and sending one external control 

message to report the status summary to the decision process. The performance 

depends on how many such agent processes are necessary. Because every process can
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Figure 3.4: Case D for Optimality Analysis

transm it internal control message inside the boundary of a local PE. one local agent 

process for each PE is necessary and sufficient. Namely, the new better scheme needs 

(T  +  N r) control messages, where N ' is the number of participating PEs in the system 

other than the dedicated PE where the decision process resides. Basically there are 

two options to implement this case. One is similar to case B and is shown in Figure 

3.3. Every process at a node sends an internal control message to another process to 

form an information chain with the last process in the chain sending one message to 

the local agent process. The local agent process sends an external control message to 

the decision process after it receives the message from the last process. This case is 

designated as case C. Another option is illustrated in Figure 3.4. Every process at the 

same PE sends out one internal control message directly to its local agent process after 

it finishes its job. Since the local agent process keeps account of processes dispatched 

to the node, the local agent process will send an external control message to the 

decision process after it senses tha t all processes at the node are completed. This
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case is designated as case D. Considering the detection delay, the time required to 

detect termination after the last processes in the barrier ends, case D is more efficient 

than case C. Because every process in case D reports directly to the local agent 

process, the local agent process can report to the decision process immediately after 

it receives the control message from the last finished process at its node. However, 

in case C the local agent process can report to the decision process only after it 

receives the control message from the last process in the information chain. If the 

last finished process happens not to be the last process in the information chain, 

the local agent process has to wait longer for the information to pass through the 

information chain. Apparently case D incurs less detection delay than case C under 

many scenarios. Thus, a lower bound for a practical implementation of tradeoffs 

yields message complexity for dynamic-binding termination is (T  + N ') under these 

conditions. More details will be investigated later.

3.4 O p tim ality  for S ta tic -B in d in g  C ategory

Now it is possible to re-examine whether case D is better than case B for static- 

binding termination detection algorithms. In case D. no m atter where the last finished 

process is located, it sends out an internal control message to its local agent process 

and the local agent process in turn  transm its an external message to the decision 

process to let it determine termination. T hat is to say, the detection delay after the 

last process ends always takes the overhead of delivering one internal and one external 

control messages. Yet in case B, although it requires same number of control messages, 

its detection delay varies with the locations of the few last finished processes. The 

best and only situation of case B which can outperform case D is when the last 

completed process is located at the end of one predecessor chain and external control 

messages from all PEs except the one which the last finished processes resides have
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been sent out before the last process is done. This unlikely situation beats case D 

only by the overhead of delivering one internal message. The only case which matches 

the performance of case D is when the external control messages from all PEs except 

the one which the last finished processes resides have been sent out before the last 

process is done. Meanwhile, the last completed process is located at the second from 

the end of one information chain. This is also less likely to occur than other scenarios 

in general. Even the fact that the last finished process is located at the end of one 

information chain cannot guarantee that the  detection delay is only the overhead of 

one external control message delivery. Because the process completed just before the 

last process could be at the first position of a long information chain and the traversing 

of the information chain might end later th an  the last process finishes. All the other 

cases are worse than those of case D. All the performance improvements are gained 

by adding N ' additional messages. Recognizing the fact that typically T  ;§> N ' and 

the extra messages are all internal messages with less overhead, the little increased 

message complexity is worthwhile. We can conclude that the optimal case for static- 

binding termination detection algorithms is depicted by case D. Theorem 1 follows 

directly from these findings.

T h o e re m  1 When taking into account tradeoffs between internal and external mes­

sages, the lower bound for message complexity o f static-binding termination detection 

algorithms is given by min(7\ N ').

3.5 O p tim ality  for D y n a m ic-B in d in g  C ategory

The analysis for dynamic-binding term ination detection algorithms can be sim­

ilarly refined. The previously established lower bound of (T  +  N ')  is based on the 

foundation that each PE requires one local agent process to report its status. To be
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the most efficient, a dynamic-binding termination detection algorithm should sup­

port processor re-activation to fully utilize the available PEs and improve overall 

performance. The local agent process must report to the decision process once the 

local PE becomes idle because there is no way to know whether more processes will 

be dispatched to the local PE  without incurring more notification messages. These 

extra messages will not only increase message complexity, but also deteriorate the 

overall performance since they are all external control messages. If any PE is re­

activated. then its local agent process needs to report one additional message for this 

re-activation event after the local PE turns idle again. Therefore, the overall number 

of control messages for ail the local agent processes to report can be tightened to E. 

the number of events, rather th an  N '. the number of participating PEs in the system. 

Theorem 2 follows directly from these results.

T h o e re m  2 When taking into account tradeoffs between internal and external mes­

sages, the lower bound for message complexity of dynamic-binding termination detec­

tion algorithms is given by min(T. E ) .
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CH A PTER  4

TIERED DETECTION ALGORITHM

In this chapter we propose a software-based distributed termination detection al­

gorithm. the Tiered Detection Algorithm [32] [16], which solves the spawn-in-transit 

problem by applying a global invariant without introducing significant overhead dur­

ing termination detection.

4.1  O verview

The basic idea of the Tiered Algorithm is described below. A node is designated 

as the centralized controller to keep track of the global status. Every participating PE 

reports the amounts of the locally consumed and locally produced tasks at each level 

of process nesting to the controller whenever it becomes idle. The controller updates 

the records it keeps accordingly. After all P E ’s have turned idle and reported, the 

controller determines whether the global consumption count and production count 

a t each level of nesting match. If they do, then the controller announces global 

termination. Otherwise, it waits for the next round of checking. Obviously, the 

reporting action is processor-centered, contrary to process-centered, to reduce message 

traffic as suggested in Chapter 3. The controller can m aintain the difference of the 

amounts of the consumed tasks and the produced tasks. No difference between these
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quantities means tha t all spawned tasks are consumed, hence no tasks are in transit 

and the global termination is reached. However, at least one scenario can induce 

false termination detection if level of thread nesting is not considered. It is described 

below.

Assume a two processor system for simplicity. After the parallel program has 

executed for a while, the current status sensed by the controller is: P E\ is busy 

with the only task spawned to it while P E 2 is idle. The difference of the amounts 

of the consumed and produced tasks known by the controller is one which means 

one spawned task is unfinished. Then the task at P E \ spawns a task to P E 2. P E 2 

processes the task which in turn  spawns a task back to P E\. Before PE? finishes its 

job and reports to the controller. PE\ completes the tasks and report “consumed = 

2. produced = P  to the controller. The controller will erroneously declare false global 

termination based on the fact th a t all PE’s are idle and the consumed and produced 

tasks match in amount while P E 2 is still processing.

To remedy the false detection issue, task hierarchy information is required along 

with the consumption count and production count. For example in the false ter­

mination detection scenario, if the two consumed tasks are distinguished as in the 

kth level and (k +  2)th level respectively and the produced task as in the (k  -I- l ) t* 

level, they will not be accounted together as to  precipitate erroneous detection. The 

process creation message of the underlying computation will carry the level number 

information. Every PE needs to keep track of the consumption count and production 

count for each level of the logical tree of the process. The PE reports these to the 

controller whenever it turns idle. When the controller checks for termination, if the 

amount of the consumed tasks for each level equals the amount of tasks spawned by its 

parent level, then the global termination has been achieved. The detailed algorithm 

is described in the following sections.
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Procedure: Receive. TaskSpawn.Message( I : level number)
begin

Update local activity table accordingly;
end

P ro c e d u re  Finish.A . Task(I: level number) 
beg in

Update local activity table accordingly;
end

P ro c e d u re  UponAdLle 
beg in

Report non-zero difference in local activity table to controller;
end

Figure 4.1: Operation of the Processing Element in Tiered Detection Algorithm

4.2 O p eration  o f  th e  P ro cess in g  E lem en t

The algorithm for the local PE is given in Figure 4.1. Every PE needs to maintain 

an activity table as shown in Figure 4.2a. which records the local consumption count 

and production count for each level. The consumption count stands for the number of 

tasks which are consumed for any specific level at this local PE. Likewise, the produc­

tion count means the number of tasks spawned by any specific level at the local PE. 

One relationship employed with the production count is that the tasks dispatched by 

the kth level are also the tasks created on the (A: -i- l ) t/, level. Since we are really inter­

ested in whether the amount of tasks spawned to a specific level matches the amount 

of tasks consumed at the same level, it is sufficient to maintain the difference of the 

two amounts for each level. Furthermore, the number of quantities communicated 

are reduced. Hence we will maintain a one-dimension array as shown in Figure 4.2b 

for the difference of the local consumption count and production count for each level, 

which is still referred to as the activity table to reflect its function. Whenever a
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Level
Consumption
Count

Production 1 
Count

0 0 4
i

1 4 6

2 6 8

i

(D -l) 5 7

D 7 0 :
i

(a)Theoretical

Figure 4.2: Activity Table

DIFF(l)

DIFF(2)

DIFF(D -l)

DIFF(D)

(b) Implementation
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creation message is received by a PE. the procedure Receive. TaskSpawn.Message is 

called to update the local activity table in accordance to the level number accompa­

nying the creation message, i.e. increment the number in the corresponding cell by 

one. Likewise, the procedure Finish^A.Task is called whenever a task is completed 

at a PE to refresh the local activity table according to the level number which the 

finished task belongs, i.e. decrement the number in the corresponding cell by one. 

The consumption count and production count are kept current by the execution of 

the procedures Receive_TaskSpawn_Message and the Finish_A_Task. After the PE 

finishes all the tasks in its execution queue and turns idle, the procedure Uponddle 

is activated to report the difference of the amounts of the consumed tasks and pro­

duced tasks for each level to the controller. To reduce network traffic, only levels 

with nonzero value are reported. After reporting, any PE can be reactivated by the 

creation message of the underlying computation.

4.3 O p eration  o f  th e  C ontroller

The algorithm for the controller is given in Figure 4.3. The controller maintains 

a ledger table to keep track of the global consumption count and production count by 

the information reported by all PE 's. For the same rationale as for the activity table 

for a PE. a one-dimension array serves as a ledger table well, i.e. we m aintain only the 

difference of the consumption count and production count for each level. Whenever 

a PE reports to the controller, the controller calls the procedure Receive.Report to 

respond. It updates the ledger table according to the information sent in by the 

reporting PE. T hat is, increase or decrease the number in the corresponding level cell 

of the ledger table by the amount reported. Then it checks the ledger table. If values 

of the differences in all cells of the ledger table are equal to zeroes, which means 

all tasks spawned to all levels are consumed; then the global term ination has been
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Procedure Receive-Report(r: report)
begin

Update ledger and idle table accordingly; 
If( Check-Ledger)
T h e n

declare g lo b a l te rm in a tio n  
E n d  if;

end

P ro c e d u re  Check.Ledger 
begin

Check ledger table to determine if consumption 
and production counts of every level match;
I f  yes. report T R U E  
else report FA L SE  
e n d  if;

end

Figure 4.3: Operation of the Controller in Tiered Detection Algorithm

reached. If the value of any cell in the ledger table is not zero, which means that 

there are messages still in transit, then the controller exits the procedure and waits 

for the next report.

4.4 P erform an ce A nalysis and C om parison

In this chapter, the performance of the Tiered Detection Algorithm is analyzed 

and compared against the other three of the more effective termination detection 

algorithms which can be found in literature, namely Credit Algorithm , CV Algorithm, 

and LTD Algorithm. The performance of the Tiered Detection Algorithm and the 

LTD Algorithm depend greatly on the mapping of tasks in an epoch.

However, determining scenarios used for mapping does not produce deterministic 

results [14] [17] [15] [48] [4]. For example, when same batch of tasks and same algorithm

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



are applied to different distributed systems w ith different processing speed component 

nodes, mapping outcomes differ. The fact makes it difficult to do absolute quantitative 

analysis. Hence we will apply different approaches where appropriate to do relative 

quantitative analysis. Four aspects of performance will be analyzed; namely message 

complexity, bit complexity, detection delay, and space complexity [43] [5].

4 .4 .1  N o ta tio n  and  A ssu m p tio n s

The notation used in the analysis of these distributed termination detection algo­

rithm s is the same as tabulated in Table 3.1.

The following assumptions are extensively used in the analysis of these algorithms. 

We state them here to prevent ambiguity and redundant explanation in the future. 

The mapping of a distributed application plays a  decisive role for the performance 

of some term ination detection algorithms. For the comparisons to be made in the 

following sections, all the mapping cases for the four algorithms in the same category 

comparison are the same. T hat is. the mappings of tasks to physical PEs are the 

same for all algorithms no m atter how they are mapped logically in each algorithm.

In the four algorithms to be analyzed, each of them  needs to attach some in­

formation to the initializing messages of the underlying computation. The Tiered 

Algorithm attaches level number, the Credit Algorithm attaches credit, the CV Algo­

rithm  attaches PE  ID, and the LTD Algorithm attaches PE ID. Since the information 

are appended to the existing messages and do not incur new messages, those mes­

sages will not be accounted for. We count only the new messages generated by the 

termination detection algorithms.
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PEi

(a) Tiered Algorithm (b) Credit Algorithm

PE 1

PE 2
PE i

PEN

(c) CV Algorithm (d) LTD Algorithm

Figure 4.4: Messages Sent After the PE turns Idle
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4.4.2 M essage C om p lex ity

Message complexity accounts for the number of messages required to detect termi­

nation. As stated in C hapter 3. the overhead of delivering external messages is much 

larger than that of internal notifications. Therefore, we should focus on the total 

number of external messages required for an algorithm instead of overall messages 

required because it is the number of external messages tha t dominates the perfor­

mance of a term ination detection algorithm. As mentioned in the beginning part of 

this section, the mapping of tasks in a distributed application is nondeterministic; the 

combination of mappings is large. Therefore we need to use an event-based approach 

to make a relative comparison. Event is defined here as the process that tasks are 

allocated to a  specific PE. all tasks are executed by the PE, and the PE turns idle. 

A distributed application is achieved by execution of its component events. In the 

Tiered Algorithm, when an event on a specific PE ends, the PE needs to send one 

external message to the controller as seen in Figure 4.4. However before that happens, 

every task existing in this single event must send one internal notification to notify 

the local agent process of its completion. Let M* denote the number of internal noti­

fications in event i. Eventually Mi = T  internal notifications are required for T  

tasks in the epoch. Since there are E  events in the epoch, E  external messages are 

required. Overall. (T  -F E) messages are required by the Tiered Detection Algorithm. 

In the Credit Algorithm, each task sends one external message to the controller after 

it is finished. In any event, the number of external messages sent to the controller 

is as many as the number of tasks in the event as shown in Figure 4.4b. Since these 

external messages are sent directly to the centralized controller process, there is no 

need to adopt local agent processes nor are internal notifications necessary. Hence 

the overall number of messages required by the Credit Algorithm is still T. However 

its performance would not be optimal because of the heavy network traffic caused by
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the external messages. In the CV Algorithm as shown in Figure 4.4c, every task in an 

event needs to  send a external rem ove-entry  message to its sender; the total is A/, for 

event i. In whole, Mi =  T  external rem ove.entry  messages are generated. The 

PE where the event resides needs to send a term inate  message to  its logical parent, 

(N  — 1) external messages are required for (N  — 1) child PEs. However, (Ar — 1) 

messages instead of (E  — 1) messages are needed here not because it requires less 

messages than  other algorithms, but that the CV Algorithm does not support PE 

reactivation. Combined with 2L  external messages to build the logical tree of PE. 

(2L + T  + N  — 1) external messages are needed for the CV Algorithm. Because a child 

PE is required to send a term inate  message to its parent PE after it becomes idle, ap­

parently every task in an event needs to send one internal notification to let the local 

agent process know of its completion so that the local agent process knows when to 

send out the term inate  message. The number of these internal notifications amounts 

to T  for T  tasks in the epoch. Since the LTD Algorithm is an improvement over the 

CV Algorithm, it usually needs less external messages than the CV Algorithm does. 

The number of messages required depends on the mapping of the tasks. As shown in 

Figure 4.4d. some tasks are spawned by the same PE, the event needs to report to 

the spawning PE with only one F I N I S H  message instead of several messages as in 

the CV Algorithm. This is also the largest improvement over the CV Algorithm. In 

the worst case, every task in any event is spawned by different PE; the performance 

is degraded to  the level of the CV Algorithm, i.e., Mi — 1 =  (T  — 1) external 

FINISH  messages are generated. In the best case, the performance matches that of 

the Tiered Algorithm; i.e.. every task in an event are spawned by the same PE, there­

fore only one external message is reported by the event to the spawning PE. Finally 

(E  — 1) FIN ISH  messages are required for E  events except for the event happening 

on the root node of the tree of PE. Counting the (N  — 1) external messages required
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Algorithm External Messages Internal Notifications Total Messages

Tiered
Algorithm E T E  + T

Credit
Algorithm T 0 T

CV Algorithm (2 L + T + N -  1) T (2L + 2T + N  -  1)

LTD Algorithm from ( N + E - 2 )  
to  ( N + T - 2 ) T

from 
( N  + T + E - 2 )  

to
( N + 2 T -  2)

Table 4.1: Comparison of Message Complexity

to inform the D T status, the best case generates ( N  + E  — 2) external messages while 

the worst case generates ( N  + T  — 2) external messages. As for the internal notifica­

tion. every task  needs to inform its local agent process of its completion so th a t the 

local agent process senses that the local PE is idle and sends out FINISH  messages 

to its parent node and /o r other PEs. The required number of internal notifications 

amounts to T  no m atter in what case. The overall number of messages required by 

the LTD Algorithm ranges from (T  + N  + E  — 2) to (2T  -I- N  — 2). Those results are 

summarized in Table 4.1.

The Tiered Detection Algorithm performs best with the same number of messages 

as the number of events in the epoch. The Credit Algorithm needs the number of 

messages as many of number of tasks. The CV Algorithm needs more than  the 

number of tasks. The LTD Algorithm’s performance lies in between.
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Level 2

Level 1

Level 3

Level 4

Level T
(a) Extreme Dispatching Case 1

Level 1

i Level 2 Level 2 Level 2Level 2

(b) Extreme Dispatching C ase  2

i Level 1 Level 1Level 1Level 1

(c) Extreme Dispatching C ase  3

Figure 4.5: Extreme Dispatching Patterns for Tiered Detection Algorithm
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4.4 .3  B it  C om p lex ity

Bit complexity accounts for the number of bits of the messages required to perform 

termination detection. In the Tiered Algorithm, every report consists of two fields, 

namely level number and difference of the production count and consumption count 

in the matching level. The maximum level number of an epoch with T  tasks is T  

when all tasks are dispatched to different levels; as shown in Figure 4.5a. Hence 

fig T] bits are required. The maximum difference which can be contained in one level 

of an epoch with T  tasks is (T  — 1). That happens when the only task spawned by 

the controller spawns all the remaining (T — 1) tasks to the second level as shown in 

Figure 4.5b. When only the first level task is dispatched to a PE as an event, the PE 

needs to report the difference of (T — 1) for level 2. We still count that flgT] bits are 

required for the difference field for simplicity. Therefore a basic report unit requires 

2 flgT] bits. The worst case happens when all tasks are dispatched to different levels 

of the logical tree and are physically allocated to the PE ?s in a way that no two 

tasks in adjacent levels are dispatched to the same PE, same as the case shown in 

Figure 4.5a. In that case, the PE needs to report “one consumed and one spawned” 

for every finished task because no two tasks from adjacent levels are dispatched to 

a same PE; eventually 2T  basic report units are required to cover the T  finished 

tasks. The worst case takes 4T flgT ] bits. The best case happens when all tasks 

are dispatched to the first level, as shown in Figure 4.5c. Since all tasks are in the 

first level, all tasks dispatched to the same event take only one basic report unit to 

report the amount consumed. Finally, E  basic report units are required to cover all 

consumed tasks dispatched to the E  events. The best case takes 2T flgT ] bits.

In the Credit Algorithm, the capacity of the message needs to accommodate the 

extreme case when all tasks are dispatched to different levels as shown in Figure 4.6. 

As the algorithm uses a local integer variable CREDIT to stand for the value of
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CREDIT-1 CREDIT-2

CREDIT-2

CREDIT-3

•  •  • CREDIT-2

CREDIT-3

CREDIT-5

CREDIT-T-l

 i ___
CREDIT-T

Figure 4.6: Extreme Dispatching for Credit Algorithm

2 - c r e d i t  fig 7 "] bits are sufficient to represent the smallest credit share. Since the 

messages required are T  as stated in previous section, T flgX ’] bits are required in an 

epoch. In the CV Algorithm, the message needs to identify the identification of the 

PE which it comes from and what kind of message it is; hence we assume the message 

consists of two fields: PE  ID and message ID. There are N  PEs joining the operation: 

fig Â ] bits are sufficient to represent all the PEs. There are only three kinds of 

messages in the algorithm; two bits are sufficient to identify them. The CV Algorithm 

needs ( 2 L + T  + N  — 1) messages in any case; hence (2L  + T  +  N  — l)(flg  N] +2) bits 

are necessary. As for the LTD Algorithm, two fields are sufficient: message ID and 

amount. There are only two kinds of messages in the algorithm; one bit is enough. 

The amount field which represent the messages being reported by the F I N I S H ( n ), 

needs fig T~\ bits because the greatest possible number of messages being reported is 

T.  Hence the bits required by the LTD Algorithm ranges from ( E + N — l)(flgT ] +1) 

to (T + N  — l) ( f lg T ]  +  1). The results are summarized in Table 4.2.
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Algorithm Best Case Worst Case Complexity

Tiered
Algorithm 2£rigTl 4T R gT l O (T lgT )

Credit
Algorithm T R gT l T R gT l © (T lgT )

CV Algorithm (2L +  T  +  N -  l )x  
(|lg AT|+2)

(2L + T  + N  — 1) x
(rig a h +  2)

© (Tig N)

LTD Algorithm ( E + N  - l ) x  
(Rg7l+1)

(T + N -  l ) x
(RgTl+1)

O (T lgT )

Table 4.2: Comparison of Message Bit Complexity-

Looking a t the  complexity of bit in Table 4.2, we can find that the Credit Algo­

rithm performs the  worst with a complexity of © (T lgT ). This indicates that it always 

needs (T lg T ) bits. The CV Algorithm is slightly better than  the Credit Algorithm 

with a complexity of (T ig N),  however it still always needs (T ig  V) bits. The Tiered 

and LTD Algorithms are better than the other two with a complexity of O (T lgT ), 

which means th a t chances are that they need less than (T lg T ) bits. Comparing the 

best and worst cases of the Tiered and the LTD Algorithms, we can further find that 

the LTD Algorithm usually needs less bits than the Tiered Algorithm.

4.4 .4  D e te c t io n  D elay

Detection delay accounts for the interval between when the last task ends and the 

controller or the root node concludes global termination. Two new kinds of notation 

are introduced for these quantities. Although the time necessary to send a message 

across the network depends on the state of the network and is usually variable, we
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Figure 4.7: Dispatching for the Worst cases of CV and LTD Algorithms

always designate it as tsend. The procedure which every algorithm uses to check global 

termination is different and takes different amounts of time; we designate to

represent the tim e taken by the execution of each checkup procedure for a given 

protocol. In the Tiered Algorithm, in all cases, after the last task ends the resided 

PE sends a report to the controller: the controller checks up the status and concludes 

global termination. The detection delay is (t send +  ^hTdtp)- The quantity tQ*dctp 

is bounded as follows. tadd +  tcompare <  < T  • tadd + D ■ tcompare- In the

Credit Algorithm, same as the Tiered Algorithm, the resided PE sends a  report to 

the controller after the last task ends; the controller executes checkup procedure and 

concludes global termination. The detection delay is (tsend +  t^ecfrup)- For ĉheckup- 

the credits are kept in a set [9].

As for the CV Algorithm, the detection delay is variable and depends on the 

location of the last task in the physical tree of PE. The worst case happens when 

tasks are dispatched as shown in Figure 4.7, i.e. only one task to each of the first 

(N  — 1) PEs and the rest to the last PE in the tree of PEs, and the last ending task
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resides in the last PE. After the last task ends, the last PE needs to send (T  — N  + 1 ) 

rem ove.entry  messages serially first, which takes (T  — N  -F 1 )£3eTU<; then it checks 

its status up and sends term inate  to its parent. Its parent also checks up its status 

and sends term inate  to its own parent. This process goes on on every PE except 

the root PE of the physical tree, which takes (N  — l ) ( t ^ eckup +  tsen(i). Receiving the 

term inate  message from its child, the root PE checks up the status and concludes 

global termination, which takes t ^ eckup. Summing up, the detection delay for the 

worst case is ('T tsend +  A /'t^dtup). The best case happens when the last ending task 

residing in the root PE. The root PE checks up the status and concludes global 

termination. The detection delay is t%£ckup. In the LTD Algorithm, the situation is 

very similar to th a t of the CV Algorithm and also depends on where the last ending 

task is located. The worst case happens when the tasks are dispatched as in Figure 4.7 

and the last ending task resides in the last PE. The scenario is slightly different from 

that of the worst case of the CV Algorithm: Same as the CV Algorithm, only one task 

is dispatched to each of the first (JV — 1) PEs, the rest to the last PE in the tree of PEs. 

However every PE ’s major message comes from its parent in the physical tree of PEs. 

After the last task ends, the last PE in the tree sends one F I N I S H Q  message to each 

of the ( N — 1) PEs above it. which takes ( N  — 1 )tsend- Since the PE above the last PE 

sent the major message to the last PE. the last F I N I S H { )  message from the last PE 

is sent to its physical parent as in Figure 4.7. After receiving the message, the second 

PE from the last checks up its status and sends a F I N I S H Q  message to its own 

parent, which takes {tcheckup +  tsend)- AH the PEs above the last PE in the hierarchy 

except the root PE  take the same action. T hat takes (N  — 2)(t%fedcup +  tsend). The 

root PE only checks up its status and declares global termination, which takes only 

tcheckup- Summing up, the detection delay for the worst case of the LTD Algorithm 

is (2N  -  3)tsend +  (N  — 1 )£^Sbip. The best case happens when the last ending task
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Algorithm Best Case W orst Case Complexity

Tiered
Algorithm (tsend +  d̂iecJcup) (tsend +  t j£ Sfĉ p) ©(1)

Credit
Algorithm (^send +  t̂ hecJcup) (tsend +  £^dt£p) ©(1)

CV Algorithm t CVcheckup (T  tsend + 0( T)

LTD Algorithm t LTD L checkup
(2 N  3) tsend 

+ (N  — l)t%je%eup O( N)

Table 4.3: Comparison of Detection Delay Complexity

resides in the root PE. After the last task ends, the root PE  checks up its status and 

concludes global termination, which takes only The results are summarized

in Table 4.3.

Apparently both the Tiered and the Credit Algorithms performs the best with 

a complexity of 0(1). The CV Algorithm has the worst performance. The LTD 

Algorithm lies in between the other three algorithms.

4.4 .5  S p ace C om p lex ity

The space complexity accounts for the memory space required by the mechanism 

of each algorithm. We assume th a t all four algorithms use fixed memory allocation 

instead of dynamic memory allocation to save the execution overhead. In the Tiered 

Algorithm, the controller needs to maintain the ledger table while every PE needs to 

maintain an activity table. For the ledger table, we reserve T  record space in the table 

for possible T  levels in the worst case. Because the index of the record in the table 

can serve as the level number implicitly, there is no need to  set a field for the level

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



number; the difference field is enough. The largest possible number for the difference 

is (T  — 1), hence figT] bits are sufficient for one record. Eventually T\\gT~\ bits 

are required for the ledger table. As the ledger table and the activity table are the 

same thing. JVTpgT] bits axe needed for N  tables at N  PEs. Finally (N  + l)T [lg T l 

bits are required for the Tiered Algorithm. In the Credit Algorithm, in order to 

avoid underflow problems and process exponents practically, the Credit algorithm 

proposes a debts bookkeeping technique. It lets K  = C R  for each task and maintains 

a D E B T S  set, which contains K  for every active task. Whenever a task becomes 

passive and returns its credit share, the controller deducts it from the D E B T S  set. 

When D E B T S  becomes empty, term ination is concluded. The controller needs space 

to maintain the set. The worst case is the same as Figure 4.6; when all T  tasks are 

active and the largest K  =  T. Therefore it needs T flgT ] bits to accommodate the 

worst case. As for the CV Algorithm, every processor maintains a stack to record 

sending and receiving activities. The stack must be big enough to accommodate 

(T  — N + 1) records which are fig N~\ bits wide each in the worst case tha t all the other 

(N  — 1) processors send the remaining messages in the epoch aside from the messages 

spawning them to the same processor. The space required is N ( T —V-f-1) fig N ] bits in 

total fro N  PEs. Hence the space complexity is O(NTl ogN) .  In the LTD Algorithm, 

every node has to maintain four variables. The first, ini, needs (N  — l)flg T ] bits. 

The second, out,, needs flgT1] bits. The third, modei, needs I bit. The last, parents, 

needs fig N~\ bits. The total is (V flgT ] +  [lg N] +  1) bits for each PE. Hence N  joining 

PEs need Ar(Ar[lgT] +  fig Ar] +  1) bits. The results are summarized in Table 4.4.

The Tiered Algorithm requires the most space. The CV Algorithm needs slightly 

less space than it. The Credit and the LTD Algorithms requires much less space than 

the other two. The Credit Algorithm needs only ^  of the bits required by the Tiered
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Algorithm Space Required Complexity

Tiered Algorithm (jV -H )7 T lg 7 l e ( N T \ g T )

Credit Algorithm r  [ig 31 © (T lgT )

CV Algorithm N ( T  — N  + 1) [lg N] S { N T \ g N )

LTD Algorithm N( N[ l gT]  +  fig AT| +  1) ©(JVlgT)

Table 4.4: Comparison of Aggregate Space Complexity

Algorithm. The LTD performs the best with only ^ of the bits needed by the Tiered 

Algorithm.

4.5 Softw are D esign  O p tim ization s

The Tiered Detection Algorithms is more efficient than the other three algorithms 

in message complexity, bit complexity, and detection latency respects. Its advantages 

are gained by some optimizations in software design which cannot be recognized by the 

performance analysis alone. First, the scheme adopts to report the global invariance 

of equal production count and consumption count, which eliminates the necessity to 

understand other P E s’ status. That saves either the inquiry messages to other nodes 

or the informing messages from other nodes. Attaching level number to each task 

provides the controller a way to uniquely recognize production count and consump­

tion count without false detection. The two factors makes it possible that any local 

node needs only to report to the controller without communicating with other nodes, 

which greatly reduces the costly external messages. The choice of processor-centered
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reporting activities further cuts the number of required reporting messages than  that 

of process-centered reporting. All those makes the Tiered Detection Algorithm con­

form to the practically optimal message complexity as predicted in the optimality 

analysis. The adoption of production count and consumption count with attached 

level numbers also helps in minimizing detection latency. Since that makes the last 

finished task able to report directly to controller without traveling through the logical 

tree structure as in the CV Algorithm and LTD Algorithm. The practice of applying 

the difference of production count and consumption count instead of individual pro­

duction count and consumption count cuts the bit complexity almost in half. That 

effectively reduces the bit requirement.

4.6 S um m ary

Judging from the previous performance analysis, the Tiered Detection Algorithm 

outperforms the other three algorithms in message complexity, bit complexity, and 

detection latency by a tradeoff in space complexity. The former three factors dominate 

the performance of a termination detection algorithm while the latter factor is merely 

a cost factor. The cost difference is negligible with the fact tha t RAMs are very 

cheap and affordable. Therefore, the Tiered Detection Algorithm proves to be a high 

performance termination detection algorithm in terms of software-based approaches.
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C H A PTER  5

D ISTR IBU TED -SU M  BIT-COM PARISON

LOGIC

5.1  O verview

The Distributed Sum Bit Comparison (DSBC) logic configuration for a system 

with n  PEs is shown in Figure 5.1. It consists one instance of the  Global Logic which 

can reside at either an independent node or any one local node, and n  instances of the 

Local Logic, one at each node. The Global Logic configurat ion consists of a Responder 

Count Encoder . a Decision Module, and Global Control signal source. Each Local 

Logic configuration is comprised of a Summation Module, a dual-port random-access 

memory (RAM), and a Reporting and Recording Module. The Local Logic at each 

node keeps a ledger of the task count produced or consumed by each thread on a 

single PE. The value is stored in the dual-port RAM. The Global Logic will demand 

the local task counts from the Local Logic units and performs a summation of local 

counts to evaluate if the present snapshot of all PEs in the system satisfies the barrier 

criterion for having an equal number of produced and consumed tasks.[32] The result 

will be sent back to each Local Logic configuration by a 1-bit signal. Each Local Logic 

configuration will respond depending on the result by either storing the completed
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Figure 5.1: Basic Layout

barrier number into a First-In First-Out (FIFO) register or skipping to inspect the 

next barrier.

5.2 O p eration a l C oncept

Each PE  notifies its own Local Logic whenever it produces or consumes a task. 

The Local Logic then makes adjustments to the local cumulative task count of the 

related barrier, which is stored in a dual-port RAM. Hence it is referred to as a  

“Distributed Summation” method. A value of 1 is added to the task count before 

each task is produced, while a value of 1 is deducted from the task count after each 

task is consumed. There are m  words in the dual-port RAM to record task counts 

for m  distinctive barriers to accommodate multithreading.
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Since a dual-port RAM is adopted, the Global Logic can inspect the local task 

counts without interfering with the simultaneous adjustments to the local task counts 

by the PEs. The Global Logic broadcasts requests to each PE. demanding the local 

task count for a specified barrier. Each PE responds with its own local task count 

for the designated barrier. The Global Logic sums them up to obtain the global 

task count and determine if the barrier has been reached. If the global task count 

equals zero, indicating that the barrier has been reached, it signals each PE to record 

the finished barrier number in its own FIFO queue. If not zero, it signals each 

PE to load the task count for the next barrier to be examined. The Global Logic 

keeps inspecting the global task counts for consecutive barriers in a round-robin style, 

independent of other events. When it inspects each task count, the Global Logic sums 

up and examines the count bit-by-bit starting from the least significant bit. Hence, 

the design is referred to as a "Bit-Comparisonr method. If any bit of the stun is one. 

which means that the task count is not zero; the task count word for the next barrier 

will immediately be fetched and checked. If the bit is not one. then the next bit of 

the current count will be fetched and checked. There are two reasons to do so:

1. The data  lines between the global hardware and each local hardware can be 

reduced to be minimal instead of full width of the task count.

2. Considering the fact that it takes some time to process the spawned tasks, it 

is not necessarily inferior to the practice of comparing all bits simultaneously 

with getting negative results for most of the time.

Each PE decides when to examine the FIFO queue of finished barriers which enables 

the FIFO queue to output a value. The FIFO queue signals the PE only when it is 

empty, which means all barriers have been reached.
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P ro c e d u re  DSBCQ;

p a rb e g in  /* Summation Module*/
adjust task count according to the request of local PEs; 
continue; 

p a re n d

p a rb e g in  /*Bit-Com parison Module*/ 
case

0< BCM_countl <  (full_range-l): /*check the sinn of all task counts bit by bit* / 
if  decision = =  0 /* the sum of this bit is zero*/

BCM_countl+-F; 
fetch next bit: 

e lse  /* th e  sum of this bit is not zero*/ 
reset BCM.counterl; 
fetch next word;

BCM .countl = =  full-range: /*check the last bit of the sum of all task counts*/
if  decision = =  0 /*all the bits of the sum are zeroes, the barrier is reached*/ 

reset BCM_counterl: 
fetch next word;
write current barrier ID in FIFO; 

e lse  /* th e  sum of the last bit is not zero*/ 
reset BCM .counterl; 
fetch next word:

endcase
continue:

p a re n d

Figure 5.2: DSBC Algorithm
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5.3 H ardw are C o m p on en ts

The functionality of the hardware components is specified in Figure 5.2.

5.3.1 L ocal L ogic  

Sum m ation M odule A lgorithm

The operations of the Summation Module are subject to the inputs from the local 

PE. The four possible activities and the design of the summation module are shown 

in Figure 5.3. W hen the input is 00. no action is required. When the input is 01. 

which means tha t a task will be produced by the PE, it reads the current task count 

from the dual-port RAM. adds one to the count, and stores the result in the latch. 

When the input is 10. which means tha t a task is consumed by the PE. it reads the 

current task count from the dual-port RAM, deducts one from the count, and stores 

the result in the latch. The operation of deducting one is executed by adding a value 

of negative one as a two’s complement number, for example, adding 1111 to  a 4-bit 

number. The inputs of 01 and 10 must be followed by the input of 11. which enables 

writing the result in the latch back to the dual-port RAM.

R eporting and R ecording M odule A lgorithm

The layout of the Reporting and Recording (R k  R) module is schemed in Fig­

ure 5.4. The R k  R module consists of two major components, namely Parallel-In 

Serial Out (PISO) register and FIFO register. The PISO register loads the task count 

in parallel and outputs the binary representation of the count serially while the DSBC 

logic is inspecting the task count. The FIFO queue is used to  store the completed 

barrier numbers. It is driven by the result from the Global Logic.
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Figure 5.3: Summation Module
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FIFO: first In, first out queue

DFF: delay flip-flop 
CNT: counter 
OE: output enable 
EM: empty 
WE: write enable

From PE i To PE j To busPISO: parallel in, serial out register
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\ CNT1 <-f
zero

To Global Logic From Global Logic

Reporting and 
Recording Module

Global
Control

Figure 5.4: Reporting and Recording Module
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The operation of the  R & R module is driven and synchronized by the Global 

Control signal. The sequences are controlled by the counter CNT1 as shown in 

Figure 5.4. A second counter, labeled CNT2, maintains the barrier number to be 

inspected next and serves as the completed barrier number provider if the current 

barrier is found to be completed. When the cycle begins, it loads the task count 

of the barrier identified by CNT2 from the Dual-Port RAM into the PISO register. 

The PISO register outpu ts one bit at a time starting from the least significant bit 

to the global hardware. If the result from the decision module is zero, which means 

more bits need to be checked to determine termination then the next bit in the PISO 

register is fed to the Global Logic. If the result is non-zero then the barrier is not yet 

reached The Global Control will then start a  new cycle with next task count word for 

the next barrier. If all of the resulting bits are zero for the entire word, then the sum 

of all the local task counts is zero which implies that the barrier has been finished, 

the control writes the current barrier ID into the FIFO queue and begins a new cycle 

for the next barrier.

5.3.2 G lobal L ogic  

R esponder C ount E ncoder

The Responder Count Encoder is used to sum up the single-bit indicator lines 

from all PEs and ou tpu t the sum in a binary encoded format. An adder-tree as 

shown in Figure5.5(a) serves this purpose. The levels in the adder-tree depends on 

the number of the supported PEs. A 4-bit full adder with fast carry design, as shown 

in Figure5.5(b), is a direct way to extend this to a multiple-bit full adder without 

introducing significant gate delays. Therefore support for more PEs only slightly 

increases the propagation delays.
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Figure 5.5: Responder Count Encoder 
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D ecision M odule

The Decision Module adds the sum from the Responder Count Encoder to the 

carry output from the previous bit. if any exists; then it extracts the least significant 

bit (LSB) to indicate the decision by using the Line Reducer. The reason for adopting 

the LSB to indicate the decision is that if the sum is an odd number as its LSB value 

is 1. Obviously the barrier is not reached under this scenario. The su m s LSB is zero 

if the count is either zero or an even number. Under this circumstance, we need to 

check further to the next bit to decide whether the barrier has been achieved. At 

the same time the Decision Module also directs the result from the adder to the Shift 

Right Function, which can be implemented by just relabeling each bit as the next less 

significant bit. It stores this quotient into the latch to be used as the carry for the 

next bit, however the carry will be cleared if the decision is one since the carry does 

not apply to the next barrier.
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Figure 5.7: Procedure Applied by DSBC Logic to Detect Completed Barrier

5.4 P erform ance A n a ly sis

In this section, we first analyze the time for termination detection with the DSBC 

logic, denoted Tq sbc■ Then its performance is compared with a software-based Test- 

and-Set algorithm [34] and the Wired-NOR logic [26] in both performance and fea­

tures.

5.4 .1  D e tec tio n  T im e

The procedures for a  completed barrier to be detected by the DSBC logic can 

be decomposed as shown in Figure 5.7. First, the local task counts for the current 

barrier are written into the dual-port RAM after the barrier has been reached. Then 

it must wait its turn  to be checked, requiring time Twait. Once it occurs, the barrier 

can be determined to be completed serially in time Tword• In particular, all bits of
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the word instead of just partial bits are checked, and stored in the latch in front of 

the FIFO queue. The barrier number is immediately written into the FIFO register 

after the next cycle begins requiring time Tfifo • Thus, this defines the DSBC logic 

timing as given by Eq.( 5.1).

TdSBC =  TfiAM +  Twait + TWOrd +  TfIFO

=  TrAAi + T wait + q ■ Tbt^chk + Tfifo  (5-1)

where q =  £ -Fur. and 2£ is the maximum number of task counts supported by each 

PE and w denotes the additional bits generated by the carry operations.

For physically distributed computing system, we can estimate DSBC performance 

using discrete ICs and their datasheets collected from several semiconductor makers. 

First, the writing time to the dual-port RAM. Tram , is about 30 ns, since 2 cycles are 

required a t 10 ns each to read the current count and then write back the incremented 

count, and 10 ns to perform the addition. The writing time to the FIFO queue. 

Tfif o • is 12ns. The waiting time, Twait, is variable and will be analyzed below. The 

time needed for one barrier-checkup cycle. Tword, ranges from 1 to q bit-checkup times, 

Tbtuchk- depending on the status of these bits. For a completed barrier, all bits of the 

global task counts are zero; hence every bits will be checked to decide whether the 

barrier is reached. Thus, Tword. =  q-Tbt^hk as given in Eq. 5.1. The bit-checkup time 

can be estim ated by summing up the propagation delays of the gates along the major 

datapath  of the DSBC logic. However the depth of the adder tree in the Responder 

Count Encoder increases as the number of supported PEs grows. Therefore a new 

notation T ^ ^ k ,  where n  is the number of PEs in the system, is introduced to identify
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the different time delays. Using 7400-series components, the bit-checkup cycle time 

for DSBC logic supporting 256 PEs, T ^ hle, is 190 ns or less.

As the DSBC logic relies upon an instantaneous snapshot of the system state, 

the maximum propagation delays dictate 190 ns cycle time to ensure da ta  in­

tegrity. Because synchronization behaviour of parallel applications can vary widely, 

a probability-based estimate of the typical number of bit-checkup cycles in a bar­

rier cycle provides a fair and equiprobable estimation. The calculation using of the 

arithmetic-geometric series is given in Eq. 5.2.

V Z o rd  =  {~2 ' 1 +  22 ' 2   h  2 q - i  ' ~  +  2 ^ 1  ' ' ^W-cWb ( 5 ‘2 )

The first parameter in each term except the last term  is the probability to finally 

get a value of 1 from bits to be checked after having i values of zero in a row. The 

second parameter is the number of checkup cycles to  be accounted for, which ranges 

from 1 to q. Take the second term for example, the probability of having the value 

of one after having one value of zero is |  |  =  ( I )2. T hat situation results two bit- 

checkup cycles because the first value of zero makes checking the next bit necessary: 

however the fact that the second value is one clears the need to check next bit. The 

probability for the last term includes those of both value zero and one because t 

bits are checked regardless of if the value is zero or one. The rearrangement and 

summation of the series in Eq. 5.2 allows it to be expressed as Eq. 5.3.

TS7d =  {2 -  ( j ) ’ - 2 • <7 +  ( i ) ’ - 1 • (2? -  1)} • 7 2 ^  (5.3)

Assume that in the dual-port RAM m  words are utilized, implying support for m  

barriers. The best case happens when the current barrier completes while the previous 

barrier is being checked. The next barrier-checkup cycle will detect the termination
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without waiting, hence Twait = 0. The worst case occurs when the barrier is completed 

while the current barrier is being checked. The termination of current barrier cannot 

be detected immediately because the previous task count snapshot is being checked, 

therefore it has to wait for (m — 1) barrier-checkup cycles before it can be checked 

again. Likewise, an equiprobable analysis provides a fair estimation of the typical wait 

time. The previous evaluation of the typical number of the bit-checkup cycles in a 

barrier-checkup cycle. should serve the purpose well also. Hence the calculation

can be performed as:

Vhait — '-CH------ 1-1-------- F — • (m -  1)} •m m  m
(m  -  1)    . 'T 'n2 ’ w ord

=  (m — 1){1 —(!)•-■  ■, +  (!)« . (2 , - 1 ) }  T S ^  (5.4)

The expected value for barrier detection time using DSBC logic can be obtained 

by substituting Eq. 5.4 into Eq. 5.1. The derivation can found in any mathematical 

handbook of formulas, such as [7].

Tdsbc = Tram  +  T£ait + -I- TFIFO

=  T r AM  +  { i m  ~  1)[1 —  ’  9 +  ^  ~  ^  +  Tu_chk

+TFrFo  (5-5)

Thus, TqSBC scales linearly with respect to m  and is independent or at most only 

weakly dependent on lg n.
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5.4 .2  C om p arison s o f  P erform ance an d  F eatu res

Based on Eq. 5.5 and information from [34] [26]. the detection times for four 

approaches are plotted in Figure 5.8. Curves are shown for DSBC logic supporting 

16 barriers. DSBC logic supporting 32 barriers, W ired-NOR logic replicated for an 

arbitrary number of barriers, and a Test-and-Set software-based scheme [45]. The 

three hardware-based schemes outperform the software-based scheme in termination 

detection, as the number of PEs increases. The ratio of benefit increases superlinearly 

from 10-fold for 20 PEs to 1000-fold for 512 PEs. Both W ired-NOR logic and DSBC 

logic have nearly constant detection times in the respective ranges of the number of 

PEs. Their detection times increase slightly above some specific PE  numbers because 

new levels of propagation delay are added. In particular, to accommodate more PEs. 

additional levels of adders are required for the DSBC logic, and a new repeater board 

is required for the Wired-NOR logic configuration. Theoretically, the detection time of 

the W ired-NOR logic is independent of the number of supported barriers, m: however 

it is restricted to 16 with current technology [26]. Although the detection time of the 

DSBC logic increases as m increases, the version of the DSBC logic supporting 16 

barriers takes less detection time than the W ired-NOR logic while the version of the 

DSBC logic supporting 32 barriers needs slightly more time than the Wired-NOR 

logic. The problem can also be easily remedied by duplicating the DSBC logic. Since 

the DSBC logic works independently of the local PEs, more sets of them can be 

implemented and execute in parallel without degrading the performance of the local 

PEs. The only drawback is the line complexity is increased. However each DSBC 

logic requires only 3n lines, where n is the number of PE of the system, between its 

local hardware and global hardware while the W ired-NOR logic requires m  ■ n  lines. 

Therefore the DSBC logic still can perform better with less line complexity.
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There are additional features of the DSBC logic which are not revealed by the de­

tection time comparison. The W ired-NOR logic supports only one task dispatched to 

each PE; that is effective for computations that are statically-scheduled and allocated 

at compile time. The DSBC logic can support execution of multiple tasks dispatched 

to each PE that contribute to the same barrier dynamically at run time; that makes it 

suitable for all kinds of applications. DSBC also provides adaptability, since the only 

interaction between the local PE and the DSBC logic is the writing into the dual-port 

RAM and reading the FIFO register of the Local Hardware of the DSBC logic, which 

is distributed to tha t node. T hat fact makes both applications on message-passing 

architectures [49] [44] and applications on shared-memory architectures [49] [44] easy 

to adapt to the DSBC logic methods. Actually, DSBC logic blends aspects of both 

synchronization approaches, message-passing and shared-memory. In the DSBC logic 

approach, the PE places an encoded message in the dual-port RAM to indicate pro­

ducing or consuming of a task; the action is similar to that of the message-passing 

architectures. However, the fact th a t the completed barrier number is stored in the 

local FIFO register and waits to be inspected acts somewhat like the behaviour of a 

shared-memory approach. Both the operating system and the compiler can readily 

adopt the DSBC logic because multithreaded synchronization can be implemented by 

simply accessing specific memory locations.

5.5 D elay -In sen sitive  D esig n

Delay-insensitive circuits [35] can eliminate time dependencies in digital logic cir­

cuits because of its clockless design. All concerns about timing, for example clock 

skew, can be cleared since they are completely insensitive to the propagation delays 

among its gates. That fact is also potential to improve the performance of their 

Boolean logic counterparts if properly designed. Null Convention Logic (NCL) [35]
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is the first technique able to economically implement the delay-insensitive circuits. 

In the following sections, NCL is introduced and a delay-insensitive DSBC logic is 

developed utilizing NCL components.

5.5.1 N u ll C on ven tion  L og ic

Traditional Boolean logic is not symbolically complete because it needs the as­

sistance of other control components [33], such as clocks, to coordinate the gates in 

order to get valid results. NCL implements different approaches to accomplish a sym­

bolically complete logic without clocks. NCL can utilize dual-rail encoding for each 

Boolean variable instead of low and high voltages on a single rail as in the traditional 

Boolean logic. The high voltage in a wire represents the validity of the data or DATA 

while the low voltage means invalidity of da ta  or NULL. Thus the arrival of the data 

wavefront can be clearly identified by existence of DATA or NULL. Since each wire in 

NCL can only express the validity or invalidity of a d a ta  value, unlike that each wire 

in traditional Boolean logic can express two values, namely 0 and 1; threshold gates 

[36] are utilized to sense how many DATA values are present. A threshold gate will 

assert DATA when sufficient or more DATA values are input. A 5 input/threshold 

3 gate is shown in Figure 5.10. Threshold gates with hysteresis axe required to syn­

chronize the DATA or NULL wavefronts. A threshold gate with hysteresis is actually 

a threshold gate with weighted feedback of (threshold-1) as shown in Figure 5.11. 

It acts somewhat similarly to a latch in  a clocked logic. It asserts DATA only after 

required DATA values arrive and DATA keeps being asserted until all input DATA 

values transform into NULL because of the weighted feedback. Thus, the DATA or 

NULL wavefronts can be synchronized. The NCL asynchronous register as shown in 

Figure 5.12 provides means to control the flow of the DATA or NULL wavefronts. 

A combinational network can be realized with NCL pipelines as shown in Figure
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Figure 5.10: 5 Input/Threshold 3 gate [35]

Figure 5.11: Threshold Gate with Weighted Feedback of (Threshold-1) [35]

5.13 while a sequential network can be implemented with NCL with the arrangement 

shown in Figure 5.14. W ith those building blocks, virtually any device can be built 

with NCL and functions as its Boolean logic counterpart, only without help of the 

clock.

5.5 .2  N C L  V ersion  D S B C  Logic

The DSBC Logic adopting NCL components is designed here. The basic layout 

is sketched in Figure 5.15. For simplicity, full ranks of wires, i.e. DATA 0 and DATA 

1, are shown as one wire in all NCL diagrams. Since the summation module plays no 

important role in the performance issue, only the Reporting and Recording Module,
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Responder Count Encoder, and Decision Module are implemented with NCL. Also for 

sake of simplicity, some logic and gates still adopt traditional Boolean logic symbols 

while they are fully implementable with NCL.

NCL R ep ortin g  and R ecording M odule Encoder

The NCL Version Reporting and Recording Module layout is identical to the 

original Reporting and Recording Module except NCL registers are inserted among 

gates to mediate the flow of DATA and NULL wavefronts. Since the  dual-port RAM 

is not a NCL, the interface between it and the NCL R & R Module needs converters 

to transform DATA values. A delay device is also required in parallel with the Dual-
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port RAM to ensure th a t the output data  of it is synchronized with the DATA front. 

The NCL Version Reporting and Recording Module is shown in Figure 5.16.

NCL Version R esponder C ount Encoder

The layout of NCL Version Responder Count Encoder is also identical to the 

original Responder Count Encoder except one NCL register is inserted to mediate 

the flow of DATA and NULL wavefronts from Reporting and Recording Module and 

to the Decision Module. All adders in the Responder Count Encoder are implemented 

with NCL version gates. The NCL Version Responder Count Encoder is shown in 

Figure 5.17.

NCL Version D ecision  M odule

The NCL Version Decision Module is shown in Figure 5.18. It is also identical to 

the original Decision Module except Always-1 logic is added to generate the required 

DATA to actuate Counter 1 in the NCL Reporting and Recording Module because 

there is no clock in the NCL version DSBC Logic. The latch in the original design 

can be replaced by a NCL register with the NCL sequential network arrangement of 

control wires and a Reset logic to perform the original clear function.

5.6 Sum m ary

In this chapter, we have introduced hardware support for termination detection 

capable of supporting multithreading. It supports dynamic allocation of multiple bar­

riers and multiple tasks per barrier while remaining scalable in time and space com­

plexity. Through theoretical analysis and calculations, DSBC is shown to outperform 

existing termination detection hardware while providing additional capability. The 

speedup of the DSBC logic supporting 16 barriers over a Test-and-Set software-based
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scheme is 29-fold for a 20-processor system to 3,008-fold for a 512-processor system. 

With consideration of the number of barriers supported and the number of tasks al­

located to each PE. DSBC logic can be advantageously applied. Because of the low 

line complexity, even the DSBC logic configuration provided here can be duplicated 

to boost overall performance of the parallel application being executed by inspecting 

more barriers at the same time. The clockless logic version[?] intended to cut the 

propagation delays with the NULL Convention Logic has also been designed to give 

another practical alternative where interconnection delays are significant.

The software interface to the DSBC logic consists of writing to the dual-port RAM 

and reading the FIFO register. T hat relieves the compiler and the programmer of 

all activities except for accessing certain memories. The fact that the task count is 

distributed in the memories of each PE and each PE needs to check its local FIFO 

register resembles a distributed shared-memory lock access. Meanwhile, the practice 

of summing local task counts and returning the identified completed barrier number 

back to each node resembles message-passing synchronization protocols. Those char­

acteristics encourage adaptability of both the message-passing and shared-memory' 

applications to adopting DSBC logic.
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C H A P T E R  6

CONCLUSION

6.1 S u m m ary

The performance of term ination detection is fundamental to  the throughput of 

the parallel and distributed applications. An optimal term ination detection algo­

rithm  should be sought to keep the detection overhead minimized in order to reduce 

the impact to the underlying computation. In this dissertation, we proposed a capa­

bility taxonomy of the term ination detection techniques in parallel and distributed 

com putation. The classification is based on the characteristics of process allocation 

and degree of processor reactivation support. There are eight classes in the taxonomy, 

namely SBIT, SBST, SBDT, SBAT. DBIT, DBST, DBDT. and DBAT. A capability 

class hierarchy is formed as a result of the taxonomy. The classification along with 

hierarchy facilitate the recognition of the  capability class of any existing termination 

detection algorithm. Any advantage or lim itation of it can be easily identified, which 

will provide valuable experience in the design course of a new algorithm.

T hirteen popular termination detection algorithms in literature were then intro­

duced and carefully studied. Their strong points were identified while their limitations 

were analyzed. The knowledge contributes valuable guidelines for what to include and 

what to avoid during the implementation of a termination detection technique. An
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optimality analysis was performed to find the optimum which serves as the ultimate 

design goal of termination detection techniques. Traditionally the quest for an opti­

mal algorithm is focused on the message complexity concerned with the high overhead 

of message transmission in communication channels. A lower bound of T  messages for 

T  tasks in a barrier was established [11]. However the difference of the overhead for 

delivering external messages and internal messages is ignored. Therefore, we started 

the optimality research by identifying the difference of delivery overhead between the 

internal notifications and external messages. The lower bound of T  appears to make 

network traffic unnecessarily large under our investigation. T hat fact inevitably will 

effect the underlying computation. We presented new lower bounds for static-binding 

and dynamic-binding termination detection techniques after making tradeoff and ex­

amining relevant performance deviations. The new lower bound for a static-binding 

algorithm is m in(T.N) .  The new lower bound for a dynamic-binding algorithm is 

min(T. E).

W ith the guidelines and specific goal collected from the previous study, we refined 

the Tiered Detection Algorithm, which is a software-based approach supporting dy­

namic allocation of multithreaded processes and classified as DBAT class. The key 

point that was learned from other algorithms and applied on the Tiered Detection Al­

gorithm is the implementation of a global invariant. This invariant, equal production 

count and consumption count in each level of the task dispatching tree, allows our 

design to detect the barrier without explicitly obtaining the status of all processing 

elements, and to detect spawn messages in transit in communication channels with­

out reading the status of the network. This attribute combined with the processor- 

centered signaling approach and the manner of reporting only after the local node 

becomes idle significantly reduce the number of external messages required. The per­

formance of Tiered Detection Algorithm is compared with those of three other more
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efficient algorithms, namely Credit Algorithm, CV Algorithm, and LTD Algorithm. 

In message complexity aspect, although Credit Algorithm requires the least messages, 

they are all external messages which will cause heavy network traffic and make overall 

performance suffer. The Tiered Algorithm needs only E  external messages plus T  

internal messages just as anticipated. The other two algorithms demand more than 

E  external messages in addition to T  internal notifications. In bit complexity, the 

requirement for each algorithm varies with each individual case; none has significant 

advantage over others and all bit requirements are around the order of T l g T .  As the 

bandwidth of most networks is more than sufficient for these algorithms, there will 

not be noteworthy difference. In the network protocol which adopts the fixed-length 

packet, it is hardly an issue since the capacity of the packets are much more than each 

message requests. Tiered Detection Algorithms excels in detection latency with only 

one step necessary. Credit Algorithm requires one step theoretically while practical 

overhead could be large. The other two algorithms both have to transmit the status 

report through the hierarchy of their logical trees of processing elements. The space 

complexity is actually a cost factor rather than  performance factor. Recognizing 

the fact that the space requirement of Tiered Detection Algorithm is merely several 

KBytes although larger than those of the other three algorithms, that introduces no 

concern either. The fact that Tiered Detection Algorithm outperforms others in crit­

ical fields while making tradeoff in negligible aspects makes it a promising practical 

choice.

The global invariant implemented in Tiered Detection Algorithm was extended 

and utilized to  develop another hardware-based approach, the Distributed-Sum Bit- 

Comparison (DSBC) Logic. It supports dynamic allocation of multithreaded pro­

cesses on shared-memory [44], message-passing [44], and /or single-chip multiproces­

sors. The invariant property employed in DSBC Logic is that the instantaneous task
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consumption count equals the instantaneous task production count upon barrier com­

pletion. The independently working DSBC Logic cyclically collects and examines the 

task counts stored by the local nodes in the dual-port RAMs for each barrier with­

out interfering their execution. The performance of DSBC Logic through theoretical 

analysis and calculations is compared with that of W ired-NOR Logic, a hardware- 

based approach impressive for its low detection latency, and Test-and-Set scheme, a 

software-based approach. The performance analysis reveals that the hardware-based 

schemes outperform software-based scheme superlinearly as the number of PE in­

creases. The ratio of benefit ranges from about 10-fold for 20 PEs to about 1000-fold 

for 512 PEs. The DSBC Logic supporting 16 barriers takes less detection time than 

Wired-NOR Logic while the DSBC Logic supporting 32 barriers requires slightly more 

time than W ired-NOR Logic. However. Wired-NOR Logic is limited to support 16 

barriers with current technology because of its high wire complexity of B  ■ N.  The 

DSBC Logic owns larger freedom of supporting more barriers with its modest wire re­

quirement of 3N.  It can even be duplicated to m ultiply the throughput because of its 

low wire complexity. A new version of DSBC Logic adopting Null Convention Logic, 

a symbolically complete logic, was designed to supply a delay-insensitive alternative 

which eliminates all timing concerns and can potentially improve the performance if 

properly designed.

6.2 F uture W ork

The execution of both the Tiered Detection Algorithm and DSBC Logic depends 

on reliable message delivery and error-free PE execution. Thus, the termination 

detection mechanism may malfunction if any node fails to  function normally. There­

fore, fault-tolerance capability [46] [51] [17] [48] would be beneficial if integrated into 

both designs. The improvements can be applied on the Tiered Detection Algorithm
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through encoding mechanisms to  save reporting transmission bits and information 

storage requirements on the controller and local nodes. As for DSBC Logic, although 

a NCL version has been developed, the NCL implementation can be optimized in 

both layout and NCL components used. A critical phenomenon observed during the 

development of this dissertation is the need for globally-accepted benchmarks for 

evaluating term ination detection algorithms. In particular, a parallel and distributed 

application benchmark would assist significantly in validating evaluation of termina­

tion detection algorithms in practice and in relevant implementation optimizations.
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