
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films
the text directly from the original or copy submitted. Thus, some thesis and
dissertation copies are in typewriter face, while others may be from any type of
computer printer.

The quality of this reproduction is dependent upon the quality of the
copy subm itted. Broken or indistinct print, colored or poor quality illustrations
and photographs, print bleedthrough, substandard margins, and improper
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript
and there are missing pages, these will be noted. Also, if unauthorized
copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand comer and continuing
from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9” black and white
photographic prints are available for any photographs or illustrations appearing
in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

HIGH PERFORMANCE TERMINATION DETECTION TECHNIQUES
SUPPORTING MULTITHREADED EXECUTION

by

YILI TSENG
B.S.M.E. National Taiwan University, Republic o f China, 1985

M.S. University of Florida, 1990
M.S. University o f Central Florida, 1995

A dissertation submitted in partial fulfillment of the requirements
for the degree o f

Doctor of Philosophy
in the School o f Electrical Engineering and Computer Science

in the College of Engineering and Computer Science
at the University of Central Florida

Orlando, Florida

Fall Term
2000

Major Professor: Ronald F. DeMara

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

UMI Number 9990651

_ ___ __<gi

UMI
UMI Microform9990651

Copyright 2001 by Bell & Howell Information and Learning Company.
All rights reserved. This microform edition is protected against

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company
300 North Zeeb Road

P.O. Box 1346
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

©2000 Yili Tseng

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A B S T R A C T

Efficient detection o f execution termination is essential for optimizing throughput of

multithreaded parallel computer architectures. In particular, an ensemble of processing

elements (PEs) is said to have reached termination o f processing upon completion o f each

interval of concurrent activity. Points at which synchronization occur are referred to as

synchronization barriers. The design objective is to minimize the amount o f overhead

required to enforce completion o f each barrier prior to the resumption of subsequent

processing.

This dissertation begins by developing a novel taxonomy for termination detection

techniques based on thread allocation strategy and degree of processor reactivation

support. A capability class hierarchy ranging from Static-Binding Idle-Tasking to

Dynamic-Binding Any-Tasking is derived as a result o f the taxonomy. Together they assist

significantly in identification of properties which facilitate algorithm assessment and

refinement. A message, bit, time, and space optimality analysis indicates that as few as

(E-N) additional messages can be utilized to realize dynamic binding rather than static

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

binding of threads on N PEs with E reporting events. These results are assessed against

those for the CV, LTD, Credit, and Tiered algorithms to demonstrate the corresponding

time and space performance which are achievable in practice.

The Tiered Detection Algorithm is shown to approach practical efficiency limits and

is further refined in terms of its global invariant across non-serializable message

communication channels. By attaching the level o f thread nesting to thread consumption

and production counts, it prevents false termination hazards. Its advantage in detection

delay is revealed in average and worst cases over CV and LTD algorithms concerning the

traversal of processor hierarchy and implementation performance o f the Credit

Algorithm.

The Tiered algorithm is then extended to a hardware-based approach, which is

shown to be time and wire-efficient. The Distributed-Sum Bit-Comparison (DSBC) logic

developed is capable o f supporting dynamic allocation of tasks for multithreaded

execution on shared-memory, message-passing, and/or single-chip multiprocessors. For a

system of N PEs, a single instance of global logic and N instances of local logic

interconnected by 3N wires are shown to provide direct support to the compiler and

programmer for any arbitrary number of barriers. DSBC detection time upon completion

of the last task is shown to scale linearly in terms of the number o f active barriers in the

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

system. Comparison to Wired-NOR hardware and shared-Iock software approaches

demonstrate reduced barrier detection time, decreased inter-PE wiring requirements, and

increased functionality. Finally, a version is designed using Null Convention Logic to

provide a delay-insensitive alternative implementation that eliminates race conditions and

timing considerations in distributed environments.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Dedicated to my father and mother,

Mr. Pao-Tung Tseng and Mrs. Hsueh-Ju Liu

I td iZ J Z

V!

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A C K N O W L E D G M E N T S

First, I would like to appreciate my parents, Mr. Pao-Tung Tseng and Mrs. Hsueh-Ju

Liu. Without their love and financial support dining the course of my pursuit o f the Ph.D.

degree, there will be no existence of this dissertation. I will make them proud of this son

by my future contribution to this universe.

Next, I want to acknowledge my advisor, Dr. Ronald. F. DeMara. His

considerateness and supportive personality gave me a precious opportunity to tackle my

health problem before working on the academic research. Not every advisor owns this

noble character and that proves to be more valuable than the academic ability is. His

master style instruction gave me the greatest freedom to challenge myself and explore the

unknown space of knowledge while his insight provided a clear direction. It is not only

beneficial but also pleasant to practice researching under his instruction. I will reward

him by my future achievements.

I also would like to express my gratitude to an unsung heroine, my wife, Chyong-Ru.

I appreciate her support and companion through the ordeal o f my work toward the Ph.D.

degree. My unusual experience is not worth mentioning to others, however it provides

useful practice to both o f us, which will benefit the rest o f our life. The adversity and

adversary in the past turned out to be stepping stones rather than obstacles in the road.

The success o f my elder brother and sister-in-law, Drs. Yi-Ping Tseng and Huei-Chu

vii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Liao inspired my desire to explore more knowledge. Their encouragements keep me

motivated in difficult times. They will always be my role models.

As for the roles of my sons, David and Daniel, the usual scenario in a dissertation’s

acknowledgments is “ I appreciate my sons’ cooperation by going to bed at 9 P.M.

everyday so that I have time to finish my research. ”. Since that never applies to them, I

have made the following decision. If they want their names to be inscribed in any

dissertation, they have to write their own!

j f c S - f r - N N i •

VfpLTTft ’ & & & & & & & • A
JBfib •

°

• &£.JtoAA#4LSjMS|i;S !

$nh °

ftfr# • 4 - ^ i f ’

& A • - t o A f t f l & ■ * ■ £ 4 = # L & - M H T # ± I f r * . • 1 & 4 r l * & « « f c ^ & ^ d b ^ i t !

viii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

TABLE OF CONTENTS

LIST OF F IG U R E S xii

LIST OF TABLES xiii

1 IN T R O D U C T IO N 1
1.1 The Barrier Synchronization P ro b le m ... 1
1.2 Significance of Synchronization and Quiescence D etection 2
1.3 Application-Driven Synchronization R equirem ents.................................. 3

1.3.1 Granularity of the Application T a s k s .. 3
1.3.2 Degree of Thread Concurrency... 3
1.3.3 Apriori Knowledge of PE P a r tic ip a tio n ... 4

1.4 Architecture-Driven Synchronization R e q u ire m e n ts 5
1.4.1 Interprocessor Communication S tra teg y ... 5
1.4.2 Machine-Specific Configuration P aram ete rs 5
1.4.3 Availability of Barrier H ardw are .. 6

1.5 Taxonomy of Termination Detection T ech n iq u es..................................... 6
1.5.1 Capability C ategories.. 6
1.5.2 Class H ie ra rch y ... 7

1.6 Organization of the D isserta tion ... 9

2 P R E V IO U S W O R K 10
2.1 Overview.. 10
2.2 Static-Binding Idle-Tasking Capable T ech n iq u es..................................... 10

2.2.1 Butterfly B a r r i e r .. 10
2.2.2 U-cube Tree A lgo rithm .. 12

2.3 Static-Binding Same-Tasking Capable T ech n iq u es 16
2.3.1 CV A lgorithm ... 16
2.3.2 LTD A lg o rith m .. 18

2.4 Static-Binding DifFerent-Tasking Capable T ec h n iq u e s 21
2.4.1 Collective Synchronization T r e e .. 21
2.4.2 Fetch-and-Add .. 22

2.5 Static-Binding Any-Tasking Capable T echniques..................................... 24
2.6 Dynamic-Binding Idle-Tasking Capable T ec h n iq u e s 25

2.6.1 AND Gate B a r r i e r ... 25

ix

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.6.2 TTL.PAPERS ... 26
2.7 Dynamic-Binding Same-Tasking Capable T e c h n iq u e s 27

2.7.1 Simultaneous Access V a r ia b le ... 27
2.7.2 The Counting A lg o rith m .. 30

2.8 Dynamic-Binding Different-Tasking Capable Techniques....................... 32
2.8.1 W ired-NOR B arrie r... 32
2.8.2 Barrier Synchronization Register H ardw are.................................. 33

2.9 Dynamic-Binding Any-Tasking Capable T echn iques.............................. 36
2.9.1 Credit A lg o rith m .. 36

2.10 Summary .. 37

3 O P T IM A X IT Y A N A LY SIS O F T E R M IN A T IO N D E T E C T IO N T EC H ­
N IQ U E S 38
3.1 B a s is .. 39
3.2 Preliminary A n a ly s is .. 40
3.3 Analysis of Optimality C ases .. 43
3.4 Optimality for Static-Binding C a te g o ry .. 45
3.5 Optimality for Dynamic-Binding C a te g o ry .. 46

4 T IE R E D D E T E C T IO N A L G O R IT H M 48
4.1 Overview... 48
4.2 Operation of the Processing E le m e n t .. 50
4.3 Operation of the Controller .. 52
4.4 Performance Analysis and C o m p a r iso n .. 53

4.4.1 Notation and A ssum ptions... 54
4.4.2 Message C o m p le x ity ... 56
4.4.3 Bit C o m p le x ity ... 60
4.4.4 Detection D e lay ... 62
4.4.5 Space C om plexity .. 65

4.5 Software Design O ptim izations... 67
4.6 Summary ... 68

5 D IS T R IB U T E D -S U M B IT -C O M P A R ISO N LOGIC 69
5.1 Overview... 69
5.2 Operational C o n c e p t .. 70
5.3 Hardware C o m p o n en ts .. 73

5.3.1 Local L o g ic .. 73
5.3.2 Global L ogic.. 76

5.4 Performance A nalysis.. 79
5.4.1 Detection T im e ... 79
5.4.2 Comparisons of Performance and F e a tu re s 83

5.5 Delay-Insensitive D e s ig n ... 86
5.5.1 Null Convention L o g ic .. 87

x

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.5.2 NCL Version DSBC L o g ic .. 92
5.6 S u m m a r y .. 97

6 CO N C LU SIO N 98
6.1 S u m m a ry .. 98
6.2 Future W ork ... 101

LIST OF R E FE R E N C E S 103

xi

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF TABLES

.1 Operations in the Router for CS Tree [29] 23

.2 SAV Value Returned by P E s .. 27

3.1 Notation used in Performance A n a ly s is .. 39

4.1 Comparison of Message C om plex ity .. 58
4.2 Comparison of Message Bit C om plexity ... 62
4.3 Comparison of Detection Delay Complexity ... 65
4.4 Comparison of Aggregate Space C o m p le x ity ... 67

xii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF FIGURES

1.1 Parallelizable Code Fragment Requiring S y n ch ro n iza tio n 1
1.2 Classification Scheme based on Functionality of B a r r ie r 6
1.3 Hierarchy of Barrier C la s s e s .. 8

2.1 2-Process Butterfly B a rrie r... 11
2.2 Butterfly Barrier Expanded to Support Multiple P rocessors............... 12
2.3 U-cube Tree Algorithm [23] 14
2.4 Example for U-cube Tree A lgorithm ... 14
2.5 Procedures used in CV Algorithm [10] 15
2.6 Procedures used in CV Algorithm [10] 16
2.7 Procedures used in CV Algorithm [10] 17
2.8 Algorithm for P i , l < i < n, in LTD Algorithm [12] 19
2.9 Procedures used in LTD Algorithm [12].. 20
2.10 S tatus and Working R e g is te rs ... 21
2.11 Fetch and Add Barrier C o d e .. 23
2.12 Simple AND Gate B a r r i e r ... 25
2.13 NAND Tree in T T L _P A P E R S ... 26
2.14 SAV Algorithm [2 2].. 28
2.15 Counting Algorithm [3 1] .. 31
2.16 W ired NOR B a rrie r.. 32
2.17 Single Barrier Register Hardware [2 7] ... 34
2.18 Multiple Barrier Register Hardware [27].. 35

3.1 Case A for Optimality A n a ly s is ... 42
3.2 Case B for Optimality A n a ly s is ... 42
3.3 Case C for Optimality A n a ly s is ... 43
3.4 Case D for Optimality A n a ly s is ... 44

4.1 Operation of the Processing Element in Tiered Detection Algorithm . 50
4.2 Activity T a b le .. 51
4.3 Operation of the Controller in Tiered Detection A lg o r i th m 53
4.4 Messages Sent After the PE turns I d l e .. 55
4.5 Extreme Dispatching Patterns for Tiered Detection Algorithm 59
4.6 Extreme Dispatching for Credit A lg o rith m ... 61
4.7 Dispatching for the Worst cases of CV and LTD A lg o r i th m s 63

xiii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.1 Basic Layout ... 70
5.2 DSBC A lg o r ith m .. 72
5.3 Summation M o d u le .. 74
5.4 Reporting and Recording M o d u le .. 75
5.5 Responder Count E n c o d e r ... 77
5.6 Decision Module .. 78
5.7 Procedure Applied by DSBC Logic to Detect Completed Barrier . . . 79
5.8 Detection Time C o m p ariso n .. 84
5.9 Interconnection Requirement C om parison.. 85
5.10 5 Input/Threshold 3 gate [3 5] .. 88
5.11 Threshold Gate with Weighted Feedback of (Threshold-1) [35] 88
5.12 Null Convention Logic Register [3 5] .. 89
5.13 NCL Combinational Network [3 5] .. 90
5.14 NCL Sequential Network [35] 91
5.15 NCL Version DSBC Logic Basic L ay o u t.. 92
5.16 NCL Version Reporting and Recording Module 94
5.17 NCL Version Responder Count Encoder .. 95
5.18 NCL Version Decision M o d u le .. 96

xiv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PTER 1

INTRO DUCTIO N

Efficient barrier synchronization and termination detection techniques are essen­

tial for optimizing throughput in multiple processor architectures. An ensemble of

processing elements (PEs) is said to be synchronized, or to have reached a quiescent

state [9], upon completion of each interval of concurrent activity. Points at which

synchronization occur are referred to as a barriers [20] [21] [18]. The design objective

is to minimize the overhead required to enforce completion of each barrier prior to

the resumption of subsequent processing.

1.1 T h e B arrier S yn ch ron ization P roblem

Figurel.l shows a code fragment containing three statements, labeled SI. S2. and

S3, which invokes three distinct processes labeled PI, P2. and P3. Let I(S) and O(S)

denote the set of input and output variables, respectively, of statem ent S. Statements

cobegin;
Si: x := P l(a);
S2: y:=P2(b);

coend; <= “B a rr ie r” (point at which interprocess synchronization must occur)
S3: P 3 (x ,y);

Figure 1.1: Parallelizable Code Fragment Requiring Synchronization

1

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Si and S2 have no input, output, nor control dependencies, and hence by Bernstein’s

conditions [19]:

/(si) n o(S2) = i(S2) n o(si) = o(si) n o(S2) = 0

An empty intersection implies th a t S i and S2 can be executed simultaneously on

separate processors. On the other hand, statem ent S3 can only be executed correctly

after both Si and S2 have term inated since:

I (S3) D O (S l) = {x} and I (S3) f | 0 (S2) = {y}

The barrier which corresponds to the completion of the concurrent processing,

which must occur before S3 is initiated, is indicated by the coend statem ent shown in

Figure 1. The processing tasks between barriers are executed by multiple Processing

Elements (PE’s) within the machine. P E ’s may execute these tasks simultaneously

without impacting correctness, but only if the barriers are properly enforced. Since

some barriers may only involve a subset of the processes or resources in the system,

those which actually take part in a specific barrier are delineated as participating

tasks or participating PEs. accordingly.

1.2 S ignificance o f S yn ch ron ization and Q u iescen ce D etectio n

Parallel and distributed processing techniques frequently offer cost-effective ways

to boost throughput.[8][52][47] As networking technology m atures and environments

such as the Internet rapidly expand, distributed computing is an effective method to

fully utilize the available resources to increase throughput [3] [1] [2]. Synchronization

is a fundamental issue to both parallel and distributed computation. Its performance

effects the overall performance the parallel and distributed multiprocessor systems

profoundly since any idle processor in the system cannot proceed to execute the next

2

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

procedure before the synchronization has been completed. Even if the processors can

be reactivated to process tasks of another application to utilize the processing cycles,

overheads are incurred. An ineffective termination detection scheme will exchange

more messages which congest the communication channels and effect the transmis­

sion of messages required by the underlying computation. Therefore the quiescence

detection process plays an im portant role in parallel and distributed computing.

1.3 A p p lica tio n -D riv en S ynchron ization R eq u irem en ts

Characteristics which influence selection of a barrier mechanism include the ap­

plication’s task granularity between barriers, number of simultaneous barriers, and

task creation/allocation strategy.

1.3 .1 G ranularity o f th e A p p lica tion Tasks

Task granularity refers to the number and relative complexity of the operations

within each concurrent process. The coarseness or fineness of granularity determines

the interval of productive execution between barriers. As the tasks requiring syn­

chronization become increasingly fine-grained, the relative impact of synchronization

overhead on processing throughput becomes magnified. Thus, frequently synchro­

nized applications are less able to tolerate the latency at which barriers are detected

and may require hardware solutions to the synchronization problem.

1.3 .2 D egree o f T h read C oncurrency

Singly-threaded, applications require at most one barrier at any instant while multi­

threaded applications may take advantage of concurrent barriers which are active

simultaneously. For example, in a multi-user environment, each user’s job involves

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tasks contributing towards distinct barriers. Since there are no data dependencies

between tasks from different users, these tasks could be executed simultaneously if

the synchronization mechanism could distinguish between barrier signals. Likewise,

single-user applications may also contain multiple sets of tasks contributing to a

different active barrier for each of its threads.

1.3.3 A priori K n ow led ge o f P E P artic ip a tion

Knowledge of whether a PE will participate in a barrier may not be readily avail­

able at compile-time. Applications in which the number of participating tasks and /or

their processor binding can be determined prior to execution are said to exhibit pro­

cedural task creation. On the other hand, applications which dynamically select the

P E ’s which will participate in the barrier and /o r generate new processes based on

run-time conditions are capable of adaptive task creation. Applications requiring syn­

chronization support for adaptive process creation include Remote Procedure Calls,

recursive algorithms, and dynamic search strategies.

Additionally, adaptive process creation may create a launch-in-transit hazard.

This refers to the situation when all processors are idle, yet a message is in tran­

sit from one PE to another that will launch a new task or subprocess upon arrival

at its destination. While all processors appear to be idle, the barrier is not actu­

ally reached. Launch-in-transit messages can be difficult to track, yet their proper

accounting is vital for enforcing the barrier and ensuring correctness of program exe­

cution. Launch-in-transit hazards can arise on distributed-memory architectures such

the iPSC hypercube, nCUBE, and others where the synchronization technique lacks

a global snapshot of processor activity.

4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.4 A rch itectu re-D riven Synchronization R eq u irem en ts

Each phase of the synchronization algorithm must accommodate the primary ar­

chitectural features of the target machine such as its communication mechanism, level

of hardware support for synchronization, and various machine-specific parameters.

1.4.1 In terprocessor C om m unication S tra teg y

Since shared-memory architectures provide a common region of the address space

which can be accessed by multiple P E ’s, applicable barrier techniques involve the

use of global synchronization variables. The design objectives involve minimizing

contention for access to these variables. On the other hand, distributed memory

machines must exchange synchronization messages through the machine’s intercon­

nection network. Thus, design objectives for distributed-memory synchronization

schemes involve minimizing message traffic, transit times, and computational over­

head required to process these messages.

1.4.2 M achine-Specific C onfiguration P aram eters

Irregardless of whether a shared or distributed memory model is used, quantities

such as the ratio of computation-to-communication speed can be determining factors

in the applicability of a barrier technique. For instance, a synchronization algorithm

may be applicable to a distributed- memory architecture, but the relative cost of

communication on a particular machine may make certain approaches intractable.

Similarly, the number of PE ’s in the machine, PE interrupt support, and spinlock

availability will influence which barrier approaches are appropriate.

5

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Termination
Detection
Mechanisms

DynamicStatic

Idle- Sam e- Different- Any-
Tasking Tasking Tasking Tasking

SBIT SBST

Idle- Sam e- Different- Any-
Tasking Tasking Tasking Tasking

OBIT DBST DBDT DBATSBDT SBAT

Figure 1.2: Classification Scheme based on Functionality of Barrier

1.4.3 A va ila b ility o f B arrier H ardw are

The use of dedicated hardware to enforce barriers can significantly reduce syn­

chronization latencies. The hardware design issues involve minimizing the logic re­

quirements per PE and reducing interprocessor wiring complexity, while optimizing

flexibility. Use of dedicated barrier hardware can be prohibitive except in new machine

designs since many commercial systems offer little hardware support and retrofitting

may sacrifice the application's portability.

1.5 T axonom y o f T erm in ation D etec tio n T echniques

1.5.1 C ap ab ility C ategories

After extensive studying of various barrier synchronization mechanisms, we pro­

pose the novel categorization of them as in Figure 1.2 based on their features. First

they are grossly classified as static-binding and dynamic-binding according to the way

6

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

in which they allocate PEs and schedule processes. Only mechanisms which can

both allocate PEs and schedule processes dynamically are categorized as dynamic-

binding. Although some approaches schedule processes dynamically, they fulfill the

tasks on fixed tree of PEs: hence they are still classified as static-binding. The bar­

rier synchronization mechanisms are further classified as idle-tasking, same-tasking,

different-tasking, and any-tasking under each binding scheme based on how they be­

have after they enter the barrier. If all joining PEs cannot be reactivated for other

tasks after they enter the barrier, the mechanism is classified as idle-tasking capable.

If joining PEs can be reactivated for other tasks in the same barrier after they enter

the barrier, the mechanism is classified as same-tasking capable. If joining PEs can

only be reactivated for other tasks in other barriers after they enter the barrier, the

mechanism is classified as different-tasking capable. If joining PEs can be reacti­

vated for other tasks in either the same barrier or other barrier after they enter the

barrier, the mechanism is classified as any-tasking capable. Combined with binding

calassification, there are eight categories for barrier synchronization mechanisms.

1.5.2 C lass H ierarch y

Figure 1.3 shows a hierarchy of capabilities for the barrier classes defined in the

previous section. In particular, class A is said to subsume class B if the mechanisms

in class A can perform the operations of those in class B. For example, a technique

in the DBAT class can correctly execute any synchronization operation supported

by any other class. Therefore, the DBAT class subsumes all other classes. If one

can realize DBAT class capability with a cost and efficiency comparable to any other

class, then he will have provided a general technique for the barrier synchronization

problem.

7

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DBATMore C ap ab le

SB AT

DBST DBDT

SBST SBDTDBIT

A su b su m e s BL e ss C a p a b le
SBIT

Figure 1.3: Hierarchy of Barrier Classes

8

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

1.6 O rgan ization o f th e D isserta tion

A novel capability taxonomy of termination detection algorithms along with a

capability class hierarchy resulting from it are proposed in Chapter 1 to facilitate the

analysis of thirteen popular termination detection algorithms which are introduced

and investigated in Chapter 2. The classification assists in identifying the capability of

existing termination detection techniques and helps to shape the requirements for an

optimal algorithm. Next, the optimality of termination detection algorithms is stud­

ied and derived in Chapter 3 by refining existing lower bound of message complexity

in termination detection algorithms. A new lower bound of termination detection

algorithms is proposed as a result of the optimality analysis, which also serves as the

ultimate goal of our approaches for new termination detection algorithms. A software

approach referred to as the Tiered Algorithm is designed and presented in Chapter

4 following integration of our refinements along with the advantageous features ex­

tracted from the examination of other efficient termination detection algorithms. Its

performance is shown to approach practical efficiency through comparison with three

major algorithms which are intended to be optimal in terms of message complexity.

An extension of the same fundamental concept is realized by hardware approach in

Chapter 5. The advantages of the Distributed-Sum Bit-Comparison Logic are re­

vealed by contrasting its performance with those of a software scheme and another

major hardware design. A delay-insensitive version of the DSBC Logic, which elimi­

nates timing concerns, is also developed with NULL Convention Logic technique. In

Chapter 6. conclusion is summarized and a direction for future work is outlined.

9

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH A PTER 2

PREVIO US W ORK

2.1 O verview

The term ination detection issue in parallel and distributed computations has been

extensively researched in the past and many termination detection algorithms have

been proposed, both in software and hardware. Major designs in the literature are

introduced and classified according to the capability category proposed in previous

Chapter in the following sections. The evolution of termination detection techniques

is implicitly covered and sheds a light to the requirements of an optimal term ination

detection algorithm.

2.2 S ta tic -B in d in g Id le-T asking C apable T echniques

2.2 .1 B u tter fly B arrier

The Butterfly Barrier [20] [21] [18] [6] is an approach to barrier synchronization

which is free of hot spots and incurs a delay which grows logarithmically with the

number of processors. This technique builds upon a two-processor synchronization

kernel which is illustrated in Figure 2.1. Statement S i guarantee that each processor

will not continue to S2 until the other processor has completed S4 from the previous

10

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P I P2
SI: w hile(/0 ^ 0); Si: w h ile(/l ^ 0);
S2: fO = 1; S2: / l = 1;
S3: w h ile (/l ^ 1); S3: w hile(/0 ^ 1);
S4: / I = 0; S4: fO = 0;

Figure 2.1: 2-Process Butterfly Barrier

barrier. This prevents a race condition which can occur in the presence of very short

code segments or with processors which are subject to program interruption. S2

signals entry of the barrier code to the other processor. In S3, the processor waits

until S2 has been executed by the other processor. Finally, S4 is used re-initialize the

flags / 0 and / I for the next barrier.

The author proposed using this two-processor Butterfly lock to synchronize three

or more processors using the structure shown in Figure 2.2. Multiple instances of the

two processor lock are employed to prevent any processor from proceeding beyond

the barrier until all processors have reached the barrier. This structure can be readily

expanded to synchronize 2l or more processors where i > 1. If the number of proces­

sors is not a power of 2. then it is possible to circumvent this restriction by having

processors in the network stand-in for missing processors.

Note that this barrier synchronization technique does not rely on accessing a

shared variable common to all processors. Each flag modified by a single process is

polled by only one other process. However, it is im portant to consider the location

of the set of synchronization flags used. If all of the flags are stored in a region

of memory which requires shared hardware for access (i.e. buffers, busses, memory

devices, etc.) then a contention problem may still occur. This barrier detection

method is classified as SBIT. The technique is static-binding because it must embed

the barrier synchronization codes in each process; tha t means each process has to be

11

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

time

PE O —

PE

f

* r *\ f \ /
X \

/ V \
- r - y) -

\ ' / '

PE. O -T -? — V '' * * a — '— * b
x / / \ Indicates PE, is signalling its
/ \ / ' arrival a t the barrier to PE, by

PE (^) — l— $------- i— *------------► setting flag f,.

Figure 2.2: Butterfly Barrier Expanded to Support Multiple Processors

known in advance. It is classified as idle-tasking since all PEs reaching the barrier

code shown in Figure 2.1 must wait at S3 for the paired PE to execute S2.

2.2 .2 U -cu b e T ree A lgorith m

The U-cube Tree Algorithm [23] is designed for the wormhole-routed [39] hy­

percube multicomputers by taking advantage of the feature that message latency is

almost insensitive to the distance between the source and destination nodes in worm­

hole routing. Therefore it may not be efficient if implemented on other interconnection

network. The algorithm uses a barrier processor to do termination detection, which

can be a joining PE or a dedicated processor. The algorithm takes part in both the

distribution phase, in which the barrier processor either broadcast or multicast the

message to all the joining PEs, and the reduction phase, in which the joining PEs re­

port to the barrier processor for termination detection. The algorithm first organizes

the joining PEs as a dimension-ordered chain which will be explained shortly. In the

distribution phase, the barrier processor unicasts to one of the joining PE first, then

12

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

every PE which has received a message unicasts the message to one of the PEs which

have not received messages yet in the following steps until all joining PEs receive a

message. It requires exactly k = [lg(m + 1)] steps. The reason for using dimension-

ordered chain is to guarantee that the paths followed by concurrent messages in the

U-cube tree do not go through any common channel. The dimension-ordered chain is

formed by the three following definitions [23]. Let crn_i(x)<Tn_2(x) . . . a0(x) represent

the binary address of a node.

D efin ition 1 The binary relation “dimension order, ” denoted <<*. is defined between

two nodes x and y as follows: x <<* y i f and only i f either x = y or there exists a j

such that crj(x) < <7j(y) and crfx) = crfy) for all i, 0 < i < 1.

D efin ition 2 A sequence {dj, d2, d3, dm) is a dimension-ordered chain i f and only

if all the elements are distinct and the sequence is dimension-ordered, that is, i f di <<*

dj for all i . j , such that 1 < i < j < m.

D efin ition 3 A sequence {dL, d2. d3, dm) is called a d0-relative dimension-ordered

chain i f and only i f {do 0 d\, do © do, -. -, do © dm}, is a dimension-ordered chain.

The U-cube Tree Algorithm is shown in Figure 2.3. An example based on (11010)-

relative dimension-ordered sequence {01110. 01000, 11100, 11011, 00001. 01101} is

given in Figure 2.4. In the reduction phase, the algorithm just use a reverse U-cube

Tree. This algorithm is classified as SBIT. It is static-binding because it needs to

know the joining PEs to arrange the dimension-ordered sequence before it starts. It

is idle-tasking since all PEs have to wait for the barrier processor for new messages.

13

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm : T he U -c u b e Tree A lgorithm

Input :<f0-relative cube ordered address {d/e/ t »d-ieft+h • - • • dLnght} •
where d/e/ £ is the local address.

O utput: Send fig {right — l e f t + 1)] messages
Procedure:
begin

p = \\g{right — l e f t -I- 1)] messages
w hile{p > 0} do

center = l e f t +
D — {(̂ .center, dcenter-r 1* • - • • d-nght};
Send a message to node ^center with the address field D;
right = center — 1;
p = p - 1:

endw hile
end:

Figure 2.3: U-cube Tree Algorithm [23]

[1]

011011110011010 00001110110100001110

11010-relative chain

00000 10100 10010 00110 00001

diXOR 11010

Source Node

11011 10111

D estination Node

Figure 2.4: Example for U-cube Tree Algorithm

14

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P ro c e d u re start;
(* performed by the root node when it decides to
detect term ination of the underlying computation *)

beg in
mystate «— DT;

for each outgoing network link In do
b e g in

color In;
Send a warning message on In

e n d
end;

P ro c e d u re receive.warning;
(* performed when a node p. receives a warning message from its neighbor q

beg in
color the incoming link (q.p);
if (mystate < > DT) th e n

b eg in
m ystate <— DT;
fo r each outgoing link In do

b eg in
color In;
Send a w arning message on In

en d
e n d

end:

Figure 2.5: Procedures used in CV Algorithm [10]

15

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P ro c e d u re send_message(g : neighbor);
(* performed when a node p wants to send a message to its neighbor q *)

beg in
Push TO{q) on the stack:
send the actual message to node q

end:

P ro c e d u re receive_message(y : neighbor);
(* performed when a node x receives a message
from its neighbor neighbor y on the link (y , x) that was colored by x*)

begin
receive message from y on the link (y , x)
if (link (y, x) has been colored by x) th e n

push F R O M (y) on the stack
end:

Figure 2.6: Procedures used in CV Algorithm [10]

2.3 S ta tic -B in d in g Sam e-T asking C apable T echniques

2.3.1 C V A lgorith m

The procedures used in the CV algorithm [10] are given in Figures 2.5 to 2.7. The

CV algorithm first organizes all the participating processors as a logical spanning tree

of PEs. It can start after the underlying computation starts. When the CV algorithm

starts, it first flushes every links in the spanning tree to take care of messages sent

before the algorithm starts: then the root node changes its state to DT (detecting

termination) and sends a warning message to each of its children and color the link

at the same time. In turn, the warning messages are passed through links connected

to all its child nodes until all the participating nodes are notified of the detecting

termination decision. The CV algorithm maintains a stack in each PE to keep track

of sending and received activities on each PE. When a node becomes idle, it examines

16

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P ro c e d u re stack_cleanup:

b eg in
w hile (top entry on stack is not of the form “T O ()”) do

b e g in
pop the entry on the top of stack;
let the entry be FRO M (q):
send a rem ove.entry message to q:

e n d
end;

P ro c e d u re idle;
(* performed as soon as the node becomes idle *)

beg in
stack_cleanup

end:

P ro c e d u re receive_remove_entry(y : neighbor);
(* performed when a node x receives a rem ove-entry message from its neighbor

beg in
scan the stack and delete the first entry of the form TO(y):
if idle th e n

stack.cleanup
end:

Figure 2.7: Procedures used in CV Algorithm [10]

17

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

its stack from the top. For every received entry, it sends the remove-entry message

to the sender and erase the entry'- from its stack. It repeats this until it encounters

a sending entry. This procedure is defined as stack.cleanup. When a node receives

a remove.entry message, it scans its stack and deletes the sending entry related to

this message and repeats the stack.cleanup procedure as previously described if it is

in idle status. A node sends a terminate message to its parent when it is idle, its

stack is empty, each of its incoming links is colored, and it has received the term inate

message from each of its children. When the root node meets the requirements to

report term inate message, it declares the termination.

The CV algorithm is classified as SBST. It is treated as static-binding because it

is performed on a fixed spanning tree of PEs formed before its execution. The CV

algorithm, as originally defined, supports only processor reactivation for the same

barrier; hence it is classified as same-tasking.

2.3.2 LTD A lg o r ith m

The LTD algorithm [12] [13] is an improvement over the CV algorithm. Its algo­

rithm for all PEs is given in Figure 2.8. The two procedures used in the algorithm are

given in Figure 2.9. Like the CV algorithm, it organizes participating processors as

a spanning tree of PEs first and it can start after the underlying computation starts.

When the root decides to sta rt the algorithm, it changes to DT (detecting termina­

tion) status and sends a start message to each of its children. In turn, its children

send start messages to their own children until all participating processors are notified

of the root's decision. Each PE maintains four variables, namely irij, out,, modei .and

parenti, to apply message counting to decide whether all the messages sent by it have

been finished. The integer array, m ^l-.n], is used to keep track of the messages which

are received from PE 1 to n and have not been finished. The number of messages

18

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A l:(U pon sending a basic message to pj)
outl := outl -+- 1;

A2:(Upon receiving a basic message from Pj)
irii\j) := im \j] + 1;
if (parenti = NULL) A (i ^ 1) then parents := j ;

A3:(Upon deciding to switch to DT mode) /* for p\ */
or (Upon receiving a ST A R T message) /* for p,. 2 < i < n * /
modex := DT;
for each child Pj of Pi do

send a S T A R T message to Pj;
end for
if (pi is idle) th en

ca ll respond..minor(i):
ca ll respond.m ajor(i):

end for

A4:(Upon receiving a F IN IS H E D (k) from Pj
outx := outi — k\
if (modei = DT) A (pt is idle) then ca ll respondjm ajor{i):

A5:(Upon turning idle)
if (modei = DT) th en

ca ll respondjm inor(i);
ca ll respondjm ajor(i);

end if

Figure 2.8: Algorithm for p*, 1 < i < n, in LTD Algorithm [12]

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P ro c e d u re respondjm inor{i : in teger)
beg in

for each j ^ parenti with in t[j] ^ 0 do
send a F IN IS H E D (in* [;']) to p f
in i \ j] :=

end for;
end;

P ro c e d u re respondjm ajor(i : in teger)
beg in

if (outl = 0) th e n
if (z = 1) t h e n report termination
e lse

send a F IN IS H E D (in* [parenti]) to parentx
ini\parentt] := 0:
parenti '■= NULL;

e n d if;
end if;

end;

Figure 2.9: Procedures used in LTD Algorithm [12]

sent by j to z is stored in in x\j\. The integer, outi, records the number of unfinished

messages sent by PE z itself. The Boolean variable, modei, shows the status of the

processor (DT or NDT). The pointer which indicates where the most recent major

message came from is stored in p a r e n t A major message is the message which is

received when the processor is idle and has finished all the messages which it sent

to other processors, otherwise the received message is defined as a minor message.

Whenever a node turns idle, it calls procedures respond-minor and respondjmajor to

detect termination. W hat procedure respond-minor does is to send one F IN IS H (k)

message to each non-parent node which has sent it messages to inform them of the

number of messages which it has finished for them, where k means the toted number

of messages which it has finished for a specific node before turning idle. This is the
%

largest improvement over the CV algorithm. It uses one FINISH(k) message instead

20

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Parent field Child field

Group ID +X -X +Y -Y +X -X +Y -Y Node Type
Group ID +X -X +Y -Y +X -X +Y -Y Node Type

•

Group ID +X -X +Y -Y +X -X +Y -Y Node Type

Status Register Set

Child field

Group ID P +X -X +Y -Y Message
Group ID P +X -X +Y -Y Message

j

Group ID P +x -X +Y -Y Message

Working Register Set

Figure 2.10: Status and Working Registers

of k remove.entry messages as in the CV algorithm to save (k — 1) messages. As for

the procedure respondjmajor . it checks if all the sent messages have been finished

and sends one F IN IS H (k) message to parent node if all the messages sent by it are

finished. After the root turns idle and finds out tha t all the messages it sent out are

finished, it concludes the termination. It is classified as SBST with the same rationale

for the CV algorithm.

2 .4 S ta tic -B in d in g D ifferent-T ask ing C ap ab le T echniques

2.4 .1 C o llec t iv e S ynchron ization Tree

The Collective Synchronization (CS) Tree algorithm [29] implements on 2D mesh

networks. A CS tree is built on joining PEs before the algorithm begins. The CS

21

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

tree is a logic tree which is rooted at the central node of the joining PEs and links

all member nodes together. In short, a CS tree is built by dividing the joining PEs

into four quadrants according to their positions in the 2D mesh network and finding

the central node as the root. Then it initialize the routers to set up the CS tree

in hardware. To record the parent-child relationship in the CS tree, the routers use

two sets of centralized registers, namely status and em working registers, which are

shown in Figure 2.10 [29]. each status register contains two fields, parent and child,

and each has four bits (+X . -X. +Y, -Y). A ” 1” in any bit in a field indicates that

the parent or child node can be reached through the corresponding port. The node

type indicates the role of the node in the CS tree, which can be the central node, a

leaf, an internal node, or an intermediate node. The working sta tus is used to record

whether the message from the local processor (P field) or child nodes (child field) has

arrived. Both registers for the same barrier are identified by the Group ID. hence the

CS Tree algorithm can implement on different barriers simultaneously by applying

different group ID. The operations of all nodes in the algorithm are summarized in

Table 2.1. In general, the leaf nodes reports to their parents after they finish their

tasks; the internal and intermediate nodes wait for messages from all their children

and the local processor before they report to their parents; the central node declares

the completion of the barrier after it receives messages from all its children. The

CS Tree algorithm is classified as SBDT. It is static-binding because it must know

the joining PEs a-priori to build the CS Tree. It employs different register sets for

different barriers hence it has different-tasking ability.

2.4 .2 F etch -an d -A d d

The Fetch-and-Add (F & A) primitive [19] [45] is a hardware feature which allows

a PE to indivisibly read and increment a counting variable stored in shared memory.

22

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N ode T y p e O pera tions

Leaf R A 1: Receive a Rmsg from local processor and forward it through the port
specified in SReg[PF].

Internal

RBI:Receive a Rmsg (perhaps from local processor) and set the bit
corresponding to its input port in WReg. If SReg[CF]^ WReg[CF] or
WReg[P] is not set. then discard the message and go to RBI.
RB2:Fonvard the message through the port specified in SReg[PF].
RB3:Reset WReg.

Central
R C l:Sam e as RBI.
RC2:Reset WReg and notify local processor.

Intermediate

RDlrReceive a Rmsg and set the bit corresponding to its input port in
WReg[CF]. If SReg[CF]^ WReg[CF], then discard the message and go to
RD1.
RD2:Sam e as RB2.
R D 3: Reset WReg.

Table 2.1: Operations in the Router for CS Tree [29]

num .at-barrier = F&A(counter, 1);
if {num-at-barrier < num-expected.)

w h il e (e x it- fla g = = 0);
else

{sequential code};
ex i t . f lag = 1;

endif;

Figure 2.11: Fetch and Add Barrier Code

23

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

If the number of processes converging on a barrier is known a-priori, a counting

variable can be used to detect the barrier . An example of the code executing on the

converging processes is shown in Figure 2.11. As each processor reaches the point in

its operation where synchronization is required, it increments and tests the counting

variable using an F & A instruction. W hen a process detects that the counting

variable has reached the expected final value, the barrier has been reached. Both

counter and exit^flag are initialized to zero prior to executing the barrier code. Note

that the process which detects the barrier (the last converging process to reach the

barrier) can execute sequential code, since the else portion of the i f statem ent can

be executed by a process only if all other converging processes are in a busy-wait

condition testing the exit_flag. The use of this primitive for barrier synchronization

can result in significant hot spots due to contention for bo th the counting variable

and the exit-flag. The detection latency encountered when using the F & A primitive

is determined by the access time of the counting variable and the test for the terminal

count by the last PE reaching the barrier. This synchronization method is SBIT per

se because joining PEs must be known in advance and all bu t the last PE reaching

the barrier code shown in Figure 2.11 must wait for the exit_flag to be set. However

concurrent barriers can be accommodated by duplicating the barrier code on multiple

sets of PEs, each using a different counting variable. Thus a PE can be reactivated

for a different barrier. Therefore we classified it as SBDT to show that most SBIT

techniques can be easily upgraded to SBDT techniques.

2.5 S ta tic -B in d in g A ny-T ask ing C apable T echniques

So far we have not discovered any SBAT mechanism in literature. However, some

mechanisms in other category can easily be adapted to SBAT capability. For example,

both CV and LTD algorithms can be extended to be SBAT capable by attaching

24

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P roc 0 P roc 1 P roc 2 P roc 3 P roc 4

Figure 2.12: Simple AND Gate Barrier

barrier ID to each message; then multiple barriers can be executed simultaneously

without ambiguity.

2.6 D y n a m ic-B in d in g Id le-T ask in g C apable T echn iques

2.6 .1 A N D G a te B arrier

Ghose and Cheng propose a simple AND gate hardware barrier [24] as shown in

Figure 2.12. Each processor notifies of its arrival at the barrier by setting a local

latch. This figure shows a 5 processor synchronization circuit. The block containing

the symbol is a latch set by the processor when the barrier has been reached by the

processor. The ou tpu t of all of the latches are AND-ed together, generating a global

reset signal to all latches. It is classified as DBIT. It is dynamic-binding because it

does not need to know the participating PE s in advance. It is idle-tasking because

every joining PE has to wait for the global reset signal after it has reached the barrier.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

S1
from :

SO
from :

PEn-

BTNAND
tree

PE1
PEO

SET

CLEAR

PEn-

NANO
tr««

PE1
PEO

RDY

Figure 2.13: NAND Tree in TTL-PAPERS

2.6 .2 T T L -P A P E R S

The TTL.PA PERS [28] [40] [41] is a simple TTL hardware implementation of PA­

PERS (Purdue’s Adapter for Parallel Execution and Rapid Synchronization) [30]. It

is plugged into the parallel ports of all personal computers in the cluster. Conceptu­

ally the TTL-PAPERS employs a AND tree to detect whether every PE has reached

the barrier. However there are two serious problems with AND tree in asynchronous

barrier. 1. A PE with a small task for the first barrier may reset its signal before all

other PEs signal for completion of the first barrier. They end with waiting for a signal

which is gone. 2. A PE which finishes the first barrier faster may set the signal high

again before other PEs clear their signals for the first barrier. The TTL-PAPERS

adopts the two NAND trees and a one-bit register design as in Figure 2.13 to handle

the two problems. To solve the first one, it adds the one-bit register. When all PEs

signal completion of a barrier, the output of the first NAND tree set the register to

one; then every PE can test RDY to know whether the barrier has been reached. To

solve the second problem, it adds a second NAND tree. Any PE sets signal 50 after

26

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Signaling C ondition Value Subm itted
The processor does not want to delete from nor insert into the
shared queue. 0
The processor inserts an element into the shared queue. -1
The processor deletes an element from the shared queue. 0
The interface processor fails to delete an element from the
shared queue. +1
PE is idle. +1

Table 2.2: SAV Value Returned by PEs

it clears the signed S i . When all the PEs set its SO, the output of the second NAND

tree reset the register. Any PE can enter the next barrier after it senses the RDY is

zero. The TTL -PAPERS is classified as DBIT. The fact that it does not need to know

the joining PEs makes it dynamic-binding. However every PE has to be committed

to the barrier makes it idle-tasking capable.

2.7 D yn a m ic-B in d in g Sam e-Tasking C apable T echniques

2.7.1 S im u ltan eou s A ccess Variable

The Simultaneous Access Variable (SAV) [22] technique is a simultaneous access

design which provides idle processor reactivation and termination detection capa­

bilities for the shared-memory architecture. The basic idea is: The SAV algorithm

organizes PEs as a binary tree and uses a shared queue to store spawned tasks. The

values sent to the SAV by every PE under different situations are tabulated in Ta­

ble 2.2. Every PE keeps track the accumulated SAV of the subtree which is rooted

at itself and reports it to its parent.The SAV acts like a counter which counts the

difference of the idle PEs and the tasks inserted into the shared job queue. If the

value of SAV is greater than zero, there axe more idle PEs than the tasks inserted

to the queue; otherwise there are more spawned tasks than available idle PEs. The

27

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

U[<- Ur <- 0:
R <— + Rr\
case

Ri > 0 and /£*.>():
U <— min(Up. R);
Ui <- I f x C/|:
C/r <- 1% x (/|;

Ri > 0 and Zlr < 0:
Ui <— min(Up — /&, i?;);

Ri < 0 and > 0:
Ur <— min(Up — Ri, R r);

endcase
R<r- R - U p:
send R to parent;
send Ui to left child:
send Ur to right child;

Figure 2.14: SAV Algorithm [22]

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

term ination is reached when the accumulated SAV at the root equals the number

of the PEs in the system. The PEs at odd and even levels execute alternately and

the algorithm for each active PE is listed in Figure 2.14. Each PE maintains four

sets of registers, each consisting of R and U registers. Three sets of registers are for

information received from or intended for the left child, the right child, and parent

respectively and they are denoted by the subscripts of I, r. and p respectively. The

remaining set is for its own use. When a PE which is a left child sends R to its parent,

the parent stores it in Rp, otherwise it is stored in Rr- On the other hand, the value

received from the parent node is stored in Up. The value of Up is the number of tasks

sent by its parent which may be consumed in this subtree and Up > 0. Every PE

processes according to cases based on the values of Ri and Rr. When Ri > 0 and

Rr > 0, which means both child subtrees have more idle PEs than spawned tasks,

tasks from its parent are shared among two children proportionally. If R < Up. only

R of Up are shared: the rest are used by its parent. If R t > 0 and Rr < 0. which

means left child subtree has more idle PEs and right child subtree has more tasks

to be consumed, the excess tasks from the right child subtree and the parent can be

dispatched to the left child subtree. The case Ri < 0 and Rr > 0 is symmetric to the

previous case. W hen both child subtrees have more tasks than idle PEs. i.e. when

Ri < 0 and Rr < 0. the excess tasks from both child subtrees together with the tasks

from the parent are dispatched to its parent. W hen R < 0 at the root, there axe still

tasks to be consumed. When R > 0 a t the root, there are more idle PEs than the

tasks to be consumed. When R at the root equals the number of PEs in the system,

which means all PEs are idle, the term ination has been reached. The SAV algorithm

is classified as DBST. It is dynamic-binding because the joining PEs do not have to

be known in advance. It is same-tasking because PEs can only be reactivated for the

same barrier.

29

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

2.7.2 T he C ou n tin g A lgorith m

The Counting Algorithm [31] is a two-phase distributed termination detection al­

gorithm. The pseudo codes for both phases are listed in Figure 2.15. A copy of the

algorithm runs on every PE. All participating PEs are organized as a spanning tree.

Every PE keeps track of the created and processed tasks locally with the variables

nc and np respectively and maintains the accumulated counts of the created and pro­

cessed tasks of the subtree rooted at itself with the variables Nc and N p respectively.

In phase 1. each leaf PE sends the idle message with Nc and Np initialized to nc

and nprespectively after it turns idle. The idle message signifies that each PE in the

subtree below has been idie at least once since the last idle message: in contrary to

the activity message in phase 2. which is merely a report of creation and processing

activities. As for the other PEs. they update the local Nc and Np by adding the N c

and Np sent from their children with the idle message. After receiving idle messages

from all its children, a PE sends an idle message with N c and Np, updated with nc

and np respectively, to its parent when it turns idle. W hen the root node has received

idle messages from all children and turns idle, it compares Nc and Np. If they match,

enters phase 2 because there is a very good chance tha t the termination has been

reached. If not. restart phase 1. In phase 2, every PE sends up an activity message

containing new values of Nc and Np. These activity messages are assembled in the

same way as in the phase 1. When the root has received activity messages from all

children, it compares the old and new values of Nc and Np. If they are the same, it

means that there has been no new activities. The root declares termination of the

barrier: otherwise restarts phase 1. The Counting Algorithm is classified as DBST.

It is dynamic-binding because the joining PEs do not have to be known a-priori. It

is same-tasking capable because PEs can only be reactivated to the same barrier.

30

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Phase 1()

Nc = 0 :N P = 0:
wait until (RecdMsgsFromChildren()):
add to local N c and N p the values received from children,
wait until (IdleQ);/* wait until this PE has no activation messages */
Nc = N c -F nc; Np = Np + rip',
if (RootSpanTree())

if (Ne ? Np)
Broadcast message to begin Phase 1

else
N °ld = Nc; N°ld = Np
Broadcast message to begin Phase 2

else
Send message with N c and Np to Parent in Spanning Tree

}

Phase 2()
{

Nc = 0; Np = 0;
wait until (RecdMsgsFromChildren());
add to local N c and l\’p the values received from children.
wait until (Idle());
:VC = Nc + nc; Np = Np + rip\
if (RootSpanTree())

if (N°ld = = Nc AND N°ld == Np)
Report Quiescence

else
Broadcast message to begin Phase 1

else
Send message with N c and Np to Parent in Spanning Tree

}
CreateMessage(){nc + +}
ProcessMessage(){np -1-}

Figure 2.15: Counting Algorithm [31]

31

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

+5V

Barrier 0
Banter 1
Barrier 2
Banter 3

C ontro l V ec to r M onito r V ec to r. C on tro l V ec to r M onitor V e c to r .

Processor # 0 Processor #1

Figure 2.16: Wired NOR Barrier

2.8 D y n a m ic-B in d in g D ifferent-T ask ing C ap ab le T echniques

2.8 .1 W ired -N O R B arrier

The W ired-NOR Barrier is a distributed and hardwired barrier architecture which

supports both intracluster and intercluster synchronization [26] [25]. An example

supporting 4 barriers with 2 PEs is shown in Figure 2.16. The description for general

case follows. There are m barrier wires and each supports an independent barrier at

the same time. Physically every barrier wire is connected to n PEs, where n is the

size of the system or cluster. Each PE i , where 1 < i < n, uses a control vector X i =

(X ,j, X i 2, - • •, Xt'Tn) and a m onitor vectorYi = (V .̂i, Yi.2 , • • •. Yi.m) for synchronization

control. These vectors are m apped into the shared memory or distributed to special

registers in each processor board. Thus, they are program accessible from each PE.

Each barrier wire, labeled as j for 1 < j < m, is connected to n NPN bipolar

32

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

transistors [50]. associated with n PEs separately. Changing a view point, every

PE contains m transistors tied to m barrier wires. At each PE i, the base of each

transistor is connected to a control bit Xij ; the collector of the same transistor is

monitored by a monitor bit Ytj . When a barrier exists, the corresponding barrier

wire is pulled up to the high voltage. Any PE sets its corresponding control bit X l Tn

when it enters the barrier. That makes the associated transistor closed and pulls

down the voltage the barrier wire. A PE resets its corresponding control bit when it

finishes its job for the barrier. A barrier line will be pulled high again only when all

transistors connected to it are reset low, which will be sensed by the monitor bit. That

performs the wired-NOR logic and also means the barrier is terminated. The Wired-

NOR barrier architecture is classified as DBDT. It is dynamic-binding because the

participating PEs do not have to be known in advance. It is different-tasking because

PEs can only be reactivated to different tasks.

2.8 .2 B arrier S yn ch ron iza tion R eg ister H ardw are

A hardware for supporting barrier synchronization in parallel loops [27] is proposed

by Beckmann and Polychonopoulus. The single barrier version supporting N PEs is

shown in Figure 2.17. The R register contains a bit for each PE. As a PE completes

the loops required to reach the barrier it clears its bit in the R register. The zero

detect logic, which is a iV-input NOR gate, determines when all bits in the R register

are clear. The B R {Barrier Register) is used as a single flag to inform all the PEs

of the term ination of the barrier. The £?/?.£7V(Barrier Clear Enable Register), which

is ANDed together with the output of the zero detect logic, enables the autom atic

clear of the BR when all the R bits are 0. The mechanism of this design works as:

Initially, BR=1 and R[1..N] and BREN are all 0. Every PE sets its R bit to 1 when

it enters the barrier and resets its R bit after it finishes its loops for the barrier.

33

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Proc 3Proc 2

Zero detect logic

BR
BREN

clear

Proc NProc 1

Figure 2.17: Single Barrier Register Hardware [27]

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

| Proc 3! Proc 2

RtegWer
(1 . 1) (1.N)

(2.N)(2 .2)(2 . 1)
(3.1) (3.N)

(N.3)(N.1) (N.N)

Bren
clear,

Proc NProcl

Barrier C lear
Detect Logic

Figure 2.18: Multiple Barrier Register Hardware [27]

35

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The PE dispatched the last iteration sets the BREN to 1 to enable the detecting

of term ination before executing its loops. After all PEs finish their jobs and reset

their corresponding R bits, the BREN and the output of the zero detect logic triggers

the clear of the BR. which in turn clears all PEs for next barrier. The multiple

barrier version ju st duplicates the single barrier version and is shown in Figure 2.18.

The Barrier Synchronization Register Hardware is classified as DBDT. It is dynamic-

binding because it support arbitrary nested loops [27]. It is different-tasking capable

because each PE can be reactivated for different tasks.

2.9 D y n a m ic -B in d in g A ny-T ask ing C ap ab le T echniques

2.9.1 C red it A lgorith m

The Credit Algorithm [9] is a global quiescence detection algorithm based on a

very simple principle. There are some variants which are not necessarily better than

the original design, hence only the original design is described. When the underlying

computation begins, the controller which can be on either a dedicated PE or any PE

distributes a credit of to tal value 1 to all processes. These processes either distribute

part of their credit share to the new processes spawned by them or return the credit

share to the controller when they finish or become passive as described in the original

paper. The controller declares termination when it regains all the credit. To ensure

the credit distribution, the algorithm follows the rules:

1. When a process becomes passive it transm its its credit share to the controller.

2. When an activating message with credit share C arrives at an active process,

C is transm itted to the controller.

36

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

3. When an activation message with credit share C arrives at a passive process. C

is transferred to the activated process.

4. When an active process with credit share C sends an activation message, the

process keeps and the message gets the other half.

Although not mentioned in the original paper, the Credit Algorithm can easily

support multiple barriers by attaching barrier IDs to each credit share. Hence it is

classified as DBAT. By the simple principle of credit distribution and the fact that no

restrictions exist, obviously the Credit Algorithm is dynamic-binding and any-tasking

capable.

2.10 S u m m ary

Thirteen m ajor term ination detection algorithms are examined in this Chapter.

They are classified by the capability category proposed in the previous Chapter.

Their individual capability level can be recognized by matching their classification to

the hierarchy of term ination detection capability class in Figure 1.3. Therefore less

capable algorithms can be compared with the more capable algorithms and differences

among them can be clearly identified to make substantial improvements.

37

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H APTER 3

OPTIM ALITY ANALYSIS OF TERM INATION

DETECTION TECHNIQUES

When it comes to find the optimality for termination detection algorithm or an­

alyze their performance, traditionally researchers focus on message complexity. It is

because determining the transit time of messages across the network is usually not

as practical as the theoretical value. Moreover, messages may not arrive in the or­

der as they were sent out. The concept that increased message traffic causes more

performance degradation is correct in this aspect. However, pursuing the least mes­

sage complexity only does not necessarily ensure the optimal performance as will be

shown in the following research. The message delivery architecture and mechanism

should also be taken into consideration to provide the optimal overall performance.

Especially the messages travel inside local PEs and through the network should be

clearly identified to accomplish the optimal performance because there is significant

difference in the overhead to transmit both kinds of messages. The notation which

will be used in the performance analysis is tabulated in Table 3.1.

38

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

N otation M eaning
Epoch duration of processing which occurs between barriers

N to ta l number of physical processing elements (PEs) in the parallel
machine

N ' number of distinct PEs actively processing tasks during an epoch,
where 0 < N ' < N

E to ta l number of events which happen in an epoch
Mi number of internal notifications incurred in event i
T to ta l number of logical tasks created during an epoch
D maximum depth of task nesting levels during an epoch
L links between physical processing elements

tsend. message transit time
■iProtocol

checkup time required for termination criterion checkup of specific protocol

Table 3.1: Notation used in Performance Analysis

3.1 B asis

Chandy and Misra established a lower bound of message complexity of T for

termination detection algorithm sfllj. They built a distributed environment model

and used induction to prove that any termination detection algorithm needs to send

out at least as many messages as the underlying com putation messages to detect

the completed barrier. This matches the intuition th a t every process involved in a

barrier in a parallel program needs to send out a t least one message to let other

processes know its status. Hence T processes initiated by T underlying computation

messages need a t least T control messages to make other processes understand its

status. Theoretically, the optimal value of messages required to detect termination

of a barrier in a parallel program with T processes or messages involved is T. That

can only happen in a unique case for the dynamic-binding termination detection

algorithms as shown in Figure 3.1. In particular, all processes send out one message

directly to the centralized control process. However, the time required for detection

39

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is expected to be very lengthy and much longer than the theoretical value because of

the network traffic caused by so many messages. In practice, it is difficult to achieve

the optimal performance bound. Although the same case and an additional case as

shown in Figure 3.2 apply to the static-binding termination detection algorithms,

the latter will be proved inferior to other case later. Therefore optim ality for overall

performance will be further explored in the following sections.

3.2 P re lim in a ry A n a lysis

The analysis of Chandy and Misra is based on the individual processes. Therefore

the overhead of transm itting a message in their model is uniform. However in real-

world parallel and distributed systems, the overhead for delivering an message inside

a local node, which is designated as internal message, is much less than that of

delivering an message out of the local node and across the network, which is designated

as external message. Hence internal control messages and external control messages

should be clearly identified to determine optimal overall performance. As a rule

of thumb, opting for as many internal messages, rather than external messages, as

possible will achieve more performance gain.

Assume the tim e to deliver control messages in our models is uniform. Consider

first the case with the least control messages required; i.e., T control messages sent

for T underlying com putation messages. There are T processes generated by the

T underlying com putation messages. Every process sends out one message after it

finishes its job. We hereby define the decision process as the process in charge of

determination of term ination. For a static-binding algorithm, the most fundamental

form which can be achieved is: every process sends out one external control message to

the centralized decision process. This case is designated as case A and shown in Figure

3.1. For simplicity of analysis, the decision process is assumed to be allocated to an

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

dedicated PE other than the working PEs in all cases. Apparently, the performance

will suffer because all messages are external messages with much higher overhead.

An intuitive thought to solve the shortcoming is to send out all control messages as

internal instead of external. However, it is implausible since the information for all

processes dispatched to the same PE cannot be transm itted out of the PE. There is no

way that the decision process knows the status of all the other processes. Because of

the characteristic of static-binding, the distributed locations of all processes are known

a-priori. Taking advantage of this fact, one compromising solution can be offered. All

processes reside at the same PE except one still send out one internal control message

to other processes after they complete, in linear order. The last process in the chain

sends out an external message to the decision process after it terminates. This case

is designated as case B and shown in Figure 3.2. Any design which lies in between

case A and case B has performance in between those extremes. This is because it

always has less external messages than case A while having more external control

messages than case B. We conclude that case B corresponds to the optimal case for

the static-binding term ination detection algorithms under these conditions. It will be

compared with other case later.

For the dynamic-binding algorithms, the first case considered is the same as case A

in the static-binding category. Due to the characteristic of dynamic-binding, there is

no way to know how many processes will be created at each PE in advance. Therefore,

the predecessor chain as in case B cannot be built because no process can be identified

as the last one. If no process can be assigned the task to send the external control

message to the decision process, the status of the processes at the local PE wouid

not be learned by the decision process. Case B cannot occur in the dynamic-binding

termination detection algorithms; neither does any situation in between case A and

41

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PE0

CASE A
Legend
o Processing EJsmsnt

Underlying Computation
Task (P ro c s s s)

Control P rocess

Flow of
Control M essage

Figure 3.1: Case A for Optimality Analysis

PE0

CASE B

L egend
o Processing Element

Decision Process
Underlying Computation
Task (P ro ce ss)

Control Process

Flow of
Control Message

Figure 3.2: Case B for Optimality Analysis

42

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C A SE CDecision Process
n Underlying Computation t
- Task (P ro c e ss) \

I i i Control P rocsss

m Flow of
Control M essage

Figure 3.3: Case C for Optim ality Analysis

case B because of the same rationale. Only case A is plausible. However, the perfor­

mance limitations of case A are expected as previously stated.

3.3 A n alysis o f O p tim ality C ases

Since the only case for the dynamic-binding termination detection algorithms

using only T control messages precipitates performance limitations in practice, let us

try to adapt the control messages to improve the overall performance. Returning to

the general rule of applying as many internal control messages as possible can provide

an approach. In particular, let every process send out an internal control message to

let others know its status. However, some local agent processes need to be adopted

to take the responsibility of counting processes dispatched to its domain by collecting

status information from all processes in its domain and sending one external control

message to report the status summary to the decision process. The performance

depends on how many such agent processes are necessary. Because every process can

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PE0

CASEDD«ci>lon Procesi

PE2

U

Figure 3.4: Case D for Optimality Analysis

transm it internal control message inside the boundary of a local PE. one local agent

process for each PE is necessary and sufficient. Namely, the new better scheme needs

(T + N r) control messages, where N ' is the number of participating PEs in the system

other than the dedicated PE where the decision process resides. Basically there are

two options to implement this case. One is similar to case B and is shown in Figure

3.3. Every process at a node sends an internal control message to another process to

form an information chain with the last process in the chain sending one message to

the local agent process. The local agent process sends an external control message to

the decision process after it receives the message from the last process. This case is

designated as case C. Another option is illustrated in Figure 3.4. Every process at the

same PE sends out one internal control message directly to its local agent process after

it finishes its job. Since the local agent process keeps account of processes dispatched

to the node, the local agent process will send an external control message to the

decision process after it senses tha t all processes at the node are completed. This

44

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

case is designated as case D. Considering the detection delay, the time required to

detect termination after the last processes in the barrier ends, case D is more efficient

than case C. Because every process in case D reports directly to the local agent

process, the local agent process can report to the decision process immediately after

it receives the control message from the last finished process at its node. However,

in case C the local agent process can report to the decision process only after it

receives the control message from the last process in the information chain. If the

last finished process happens not to be the last process in the information chain,

the local agent process has to wait longer for the information to pass through the

information chain. Apparently case D incurs less detection delay than case C under

many scenarios. Thus, a lower bound for a practical implementation of tradeoffs

yields message complexity for dynamic-binding termination is (T + N ') under these

conditions. More details will be investigated later.

3.4 O p tim ality for S ta tic -B in d in g C ategory

Now it is possible to re-examine whether case D is better than case B for static-

binding termination detection algorithms. In case D. no m atter where the last finished

process is located, it sends out an internal control message to its local agent process

and the local agent process in turn transm its an external message to the decision

process to let it determine termination. T hat is to say, the detection delay after the

last process ends always takes the overhead of delivering one internal and one external

control messages. Yet in case B, although it requires same number of control messages,

its detection delay varies with the locations of the few last finished processes. The

best and only situation of case B which can outperform case D is when the last

completed process is located at the end of one predecessor chain and external control

messages from all PEs except the one which the last finished processes resides have

45

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

been sent out before the last process is done. This unlikely situation beats case D

only by the overhead of delivering one internal message. The only case which matches

the performance of case D is when the external control messages from all PEs except

the one which the last finished processes resides have been sent out before the last

process is done. Meanwhile, the last completed process is located at the second from

the end of one information chain. This is also less likely to occur than other scenarios

in general. Even the fact that the last finished process is located at the end of one

information chain cannot guarantee that the detection delay is only the overhead of

one external control message delivery. Because the process completed just before the

last process could be at the first position of a long information chain and the traversing

of the information chain might end later th an the last process finishes. All the other

cases are worse than those of case D. All the performance improvements are gained

by adding N ' additional messages. Recognizing the fact that typically T ;§> N ' and

the extra messages are all internal messages with less overhead, the little increased

message complexity is worthwhile. We can conclude that the optimal case for static-

binding termination detection algorithms is depicted by case D. Theorem 1 follows

directly from these findings.

T h o e re m 1 When taking into account tradeoffs between internal and external mes­

sages, the lower bound for message complexity o f static-binding termination detection

algorithms is given by min(7\ N ').

3.5 O p tim ality for D y n a m ic-B in d in g C ategory

The analysis for dynamic-binding term ination detection algorithms can be sim­

ilarly refined. The previously established lower bound of (T + N ') is based on the

foundation that each PE requires one local agent process to report its status. To be

46

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the most efficient, a dynamic-binding termination detection algorithm should sup­

port processor re-activation to fully utilize the available PEs and improve overall

performance. The local agent process must report to the decision process once the

local PE becomes idle because there is no way to know whether more processes will

be dispatched to the local PE without incurring more notification messages. These

extra messages will not only increase message complexity, but also deteriorate the

overall performance since they are all external control messages. If any PE is re­

activated. then its local agent process needs to report one additional message for this

re-activation event after the local PE turns idle again. Therefore, the overall number

of control messages for ail the local agent processes to report can be tightened to E.

the number of events, rather th an N '. the number of participating PEs in the system.

Theorem 2 follows directly from these results.

T h o e re m 2 When taking into account tradeoffs between internal and external mes­

sages, the lower bound for message complexity of dynamic-binding termination detec­

tion algorithms is given by min(T. E) .

47

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CH A PTER 4

TIERED DETECTION ALGORITHM

In this chapter we propose a software-based distributed termination detection al­

gorithm. the Tiered Detection Algorithm [32] [16], which solves the spawn-in-transit

problem by applying a global invariant without introducing significant overhead dur­

ing termination detection.

4.1 O verview

The basic idea of the Tiered Algorithm is described below. A node is designated

as the centralized controller to keep track of the global status. Every participating PE

reports the amounts of the locally consumed and locally produced tasks at each level

of process nesting to the controller whenever it becomes idle. The controller updates

the records it keeps accordingly. After all P E ’s have turned idle and reported, the

controller determines whether the global consumption count and production count

a t each level of nesting match. If they do, then the controller announces global

termination. Otherwise, it waits for the next round of checking. Obviously, the

reporting action is processor-centered, contrary to process-centered, to reduce message

traffic as suggested in Chapter 3. The controller can m aintain the difference of the

amounts of the consumed tasks and the produced tasks. No difference between these

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

quantities means tha t all spawned tasks are consumed, hence no tasks are in transit

and the global termination is reached. However, at least one scenario can induce

false termination detection if level of thread nesting is not considered. It is described

below.

Assume a two processor system for simplicity. After the parallel program has

executed for a while, the current status sensed by the controller is: P E\ is busy

with the only task spawned to it while P E 2 is idle. The difference of the amounts

of the consumed and produced tasks known by the controller is one which means

one spawned task is unfinished. Then the task at P E \ spawns a task to P E 2. P E 2

processes the task which in turn spawns a task back to P E\. Before PE? finishes its

job and reports to the controller. PE\ completes the tasks and report “consumed =

2. produced = P to the controller. The controller will erroneously declare false global

termination based on the fact th a t all PE’s are idle and the consumed and produced

tasks match in amount while P E 2 is still processing.

To remedy the false detection issue, task hierarchy information is required along

with the consumption count and production count. For example in the false ter­

mination detection scenario, if the two consumed tasks are distinguished as in the

kth level and (k + 2)th level respectively and the produced task as in the (k -I- l) t*

level, they will not be accounted together as to precipitate erroneous detection. The

process creation message of the underlying computation will carry the level number

information. Every PE needs to keep track of the consumption count and production

count for each level of the logical tree of the process. The PE reports these to the

controller whenever it turns idle. When the controller checks for termination, if the

amount of the consumed tasks for each level equals the amount of tasks spawned by its

parent level, then the global termination has been achieved. The detailed algorithm

is described in the following sections.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Procedure: Receive. TaskSpawn.Message(I : level number)
begin

Update local activity table accordingly;
end

P ro c e d u re Finish.A . Task(I: level number)
beg in

Update local activity table accordingly;
end

P ro c e d u re UponAdLle
beg in

Report non-zero difference in local activity table to controller;
end

Figure 4.1: Operation of the Processing Element in Tiered Detection Algorithm

4.2 O p eration o f th e P ro cess in g E lem en t

The algorithm for the local PE is given in Figure 4.1. Every PE needs to maintain

an activity table as shown in Figure 4.2a. which records the local consumption count

and production count for each level. The consumption count stands for the number of

tasks which are consumed for any specific level at this local PE. Likewise, the produc­

tion count means the number of tasks spawned by any specific level at the local PE.

One relationship employed with the production count is that the tasks dispatched by

the kth level are also the tasks created on the (A: -i- l) t/, level. Since we are really inter­

ested in whether the amount of tasks spawned to a specific level matches the amount

of tasks consumed at the same level, it is sufficient to maintain the difference of the

two amounts for each level. Furthermore, the number of quantities communicated

are reduced. Hence we will maintain a one-dimension array as shown in Figure 4.2b

for the difference of the local consumption count and production count for each level,

which is still referred to as the activity table to reflect its function. Whenever a

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Level
Consumption
Count

Production 1
Count

0 0 4
i

1 4 6

2 6 8

i

(D -l) 5 7

D 7 0 :
i

(a)Theoretical

Figure 4.2: Activity Table

DIFF(l)

DIFF(2)

DIFF(D -l)

DIFF(D)

(b) Implementation

51

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

creation message is received by a PE. the procedure Receive. TaskSpawn.Message is

called to update the local activity table in accordance to the level number accompa­

nying the creation message, i.e. increment the number in the corresponding cell by

one. Likewise, the procedure Finish^A.Task is called whenever a task is completed

at a PE to refresh the local activity table according to the level number which the

finished task belongs, i.e. decrement the number in the corresponding cell by one.

The consumption count and production count are kept current by the execution of

the procedures Receive_TaskSpawn_Message and the Finish_A_Task. After the PE

finishes all the tasks in its execution queue and turns idle, the procedure Uponddle

is activated to report the difference of the amounts of the consumed tasks and pro­

duced tasks for each level to the controller. To reduce network traffic, only levels

with nonzero value are reported. After reporting, any PE can be reactivated by the

creation message of the underlying computation.

4.3 O p eration o f th e C ontroller

The algorithm for the controller is given in Figure 4.3. The controller maintains

a ledger table to keep track of the global consumption count and production count by

the information reported by all PE 's. For the same rationale as for the activity table

for a PE. a one-dimension array serves as a ledger table well, i.e. we m aintain only the

difference of the consumption count and production count for each level. Whenever

a PE reports to the controller, the controller calls the procedure Receive.Report to

respond. It updates the ledger table according to the information sent in by the

reporting PE. T hat is, increase or decrease the number in the corresponding level cell

of the ledger table by the amount reported. Then it checks the ledger table. If values

of the differences in all cells of the ledger table are equal to zeroes, which means

all tasks spawned to all levels are consumed; then the global term ination has been

52

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Procedure Receive-Report(r: report)
begin

Update ledger and idle table accordingly;
If(Check-Ledger)
T h e n

declare g lo b a l te rm in a tio n
E n d if;

end

P ro c e d u re Check.Ledger
begin

Check ledger table to determine if consumption
and production counts of every level match;
I f yes. report T R U E
else report FA L SE
e n d if;

end

Figure 4.3: Operation of the Controller in Tiered Detection Algorithm

reached. If the value of any cell in the ledger table is not zero, which means that

there are messages still in transit, then the controller exits the procedure and waits

for the next report.

4.4 P erform an ce A nalysis and C om parison

In this chapter, the performance of the Tiered Detection Algorithm is analyzed

and compared against the other three of the more effective termination detection

algorithms which can be found in literature, namely Credit Algorithm , CV Algorithm,

and LTD Algorithm. The performance of the Tiered Detection Algorithm and the

LTD Algorithm depend greatly on the mapping of tasks in an epoch.

However, determining scenarios used for mapping does not produce deterministic

results [14] [17] [15] [48] [4]. For example, when same batch of tasks and same algorithm

53

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

are applied to different distributed systems w ith different processing speed component

nodes, mapping outcomes differ. The fact makes it difficult to do absolute quantitative

analysis. Hence we will apply different approaches where appropriate to do relative

quantitative analysis. Four aspects of performance will be analyzed; namely message

complexity, bit complexity, detection delay, and space complexity [43] [5].

4 .4 .1 N o ta tio n and A ssu m p tio n s

The notation used in the analysis of these distributed termination detection algo­

rithm s is the same as tabulated in Table 3.1.

The following assumptions are extensively used in the analysis of these algorithms.

We state them here to prevent ambiguity and redundant explanation in the future.

The mapping of a distributed application plays a decisive role for the performance

of some term ination detection algorithms. For the comparisons to be made in the

following sections, all the mapping cases for the four algorithms in the same category

comparison are the same. T hat is. the mappings of tasks to physical PEs are the

same for all algorithms no m atter how they are mapped logically in each algorithm.

In the four algorithms to be analyzed, each of them needs to attach some in­

formation to the initializing messages of the underlying computation. The Tiered

Algorithm attaches level number, the Credit Algorithm attaches credit, the CV Algo­

rithm attaches PE ID, and the LTD Algorithm attaches PE ID. Since the information

are appended to the existing messages and do not incur new messages, those mes­

sages will not be accounted for. We count only the new messages generated by the

termination detection algorithms.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

PEi

(a) Tiered Algorithm (b) Credit Algorithm

PE 1

PE 2
PE i

PEN

(c) CV Algorithm (d) LTD Algorithm

Figure 4.4: Messages Sent After the PE turns Idle

55

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

80

4.4.2 M essage C om p lex ity

Message complexity accounts for the number of messages required to detect termi­

nation. As stated in C hapter 3. the overhead of delivering external messages is much

larger than that of internal notifications. Therefore, we should focus on the total

number of external messages required for an algorithm instead of overall messages

required because it is the number of external messages tha t dominates the perfor­

mance of a term ination detection algorithm. As mentioned in the beginning part of

this section, the mapping of tasks in a distributed application is nondeterministic; the

combination of mappings is large. Therefore we need to use an event-based approach

to make a relative comparison. Event is defined here as the process that tasks are

allocated to a specific PE. all tasks are executed by the PE, and the PE turns idle.

A distributed application is achieved by execution of its component events. In the

Tiered Algorithm, when an event on a specific PE ends, the PE needs to send one

external message to the controller as seen in Figure 4.4. However before that happens,

every task existing in this single event must send one internal notification to notify

the local agent process of its completion. Let M* denote the number of internal noti­

fications in event i. Eventually Mi = T internal notifications are required for T

tasks in the epoch. Since there are E events in the epoch, E external messages are

required. Overall. (T -F E) messages are required by the Tiered Detection Algorithm.

In the Credit Algorithm, each task sends one external message to the controller after

it is finished. In any event, the number of external messages sent to the controller

is as many as the number of tasks in the event as shown in Figure 4.4b. Since these

external messages are sent directly to the centralized controller process, there is no

need to adopt local agent processes nor are internal notifications necessary. Hence

the overall number of messages required by the Credit Algorithm is still T. However

its performance would not be optimal because of the heavy network traffic caused by

56

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the external messages. In the CV Algorithm as shown in Figure 4.4c, every task in an

event needs to send a external rem ove-entry message to its sender; the total is A/, for

event i. In whole, Mi = T external rem ove.entry messages are generated. The

PE where the event resides needs to send a term inate message to its logical parent,

(N — 1) external messages are required for (N — 1) child PEs. However, (Ar — 1)

messages instead of (E — 1) messages are needed here not because it requires less

messages than other algorithms, but that the CV Algorithm does not support PE

reactivation. Combined with 2L external messages to build the logical tree of PE.

(2L + T + N — 1) external messages are needed for the CV Algorithm. Because a child

PE is required to send a term inate message to its parent PE after it becomes idle, ap­

parently every task in an event needs to send one internal notification to let the local

agent process know of its completion so that the local agent process knows when to

send out the term inate message. The number of these internal notifications amounts

to T for T tasks in the epoch. Since the LTD Algorithm is an improvement over the

CV Algorithm, it usually needs less external messages than the CV Algorithm does.

The number of messages required depends on the mapping of the tasks. As shown in

Figure 4.4d. some tasks are spawned by the same PE, the event needs to report to

the spawning PE with only one F I N I S H message instead of several messages as in

the CV Algorithm. This is also the largest improvement over the CV Algorithm. In

the worst case, every task in any event is spawned by different PE; the performance

is degraded to the level of the CV Algorithm, i.e., Mi — 1 = (T — 1) external

FINISH messages are generated. In the best case, the performance matches that of

the Tiered Algorithm; i.e.. every task in an event are spawned by the same PE, there­

fore only one external message is reported by the event to the spawning PE. Finally

(E — 1) FIN ISH messages are required for E events except for the event happening

on the root node of the tree of PE. Counting the (N — 1) external messages required

57

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm External Messages Internal Notifications Total Messages

Tiered
Algorithm E T E + T

Credit
Algorithm T 0 T

CV Algorithm (2 L + T + N - 1) T (2L + 2T + N - 1)

LTD Algorithm from (N + E - 2)
to (N + T - 2) T

from
(N + T + E - 2)

to
(N + 2 T - 2)

Table 4.1: Comparison of Message Complexity

to inform the D T status, the best case generates (N + E — 2) external messages while

the worst case generates (N + T — 2) external messages. As for the internal notifica­

tion. every task needs to inform its local agent process of its completion so th a t the

local agent process senses that the local PE is idle and sends out FINISH messages

to its parent node and /o r other PEs. The required number of internal notifications

amounts to T no m atter in what case. The overall number of messages required by

the LTD Algorithm ranges from (T + N + E — 2) to (2T -I- N — 2). Those results are

summarized in Table 4.1.

The Tiered Detection Algorithm performs best with the same number of messages

as the number of events in the epoch. The Credit Algorithm needs the number of

messages as many of number of tasks. The CV Algorithm needs more than the

number of tasks. The LTD Algorithm’s performance lies in between.

58

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Level 2

Level 1

Level 3

Level 4

Level T
(a) Extreme Dispatching Case 1

Level 1

i Level 2 Level 2 Level 2Level 2

(b) Extreme Dispatching C ase 2

i Level 1 Level 1Level 1Level 1

(c) Extreme Dispatching C ase 3

Figure 4.5: Extreme Dispatching Patterns for Tiered Detection Algorithm

59

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

4.4 .3 B it C om p lex ity

Bit complexity accounts for the number of bits of the messages required to perform

termination detection. In the Tiered Algorithm, every report consists of two fields,

namely level number and difference of the production count and consumption count

in the matching level. The maximum level number of an epoch with T tasks is T

when all tasks are dispatched to different levels; as shown in Figure 4.5a. Hence

fig T] bits are required. The maximum difference which can be contained in one level

of an epoch with T tasks is (T — 1). That happens when the only task spawned by

the controller spawns all the remaining (T — 1) tasks to the second level as shown in

Figure 4.5b. When only the first level task is dispatched to a PE as an event, the PE

needs to report the difference of (T — 1) for level 2. We still count that flgT] bits are

required for the difference field for simplicity. Therefore a basic report unit requires

2 flgT] bits. The worst case happens when all tasks are dispatched to different levels

of the logical tree and are physically allocated to the PE ?s in a way that no two

tasks in adjacent levels are dispatched to the same PE, same as the case shown in

Figure 4.5a. In that case, the PE needs to report “one consumed and one spawned”

for every finished task because no two tasks from adjacent levels are dispatched to

a same PE; eventually 2T basic report units are required to cover the T finished

tasks. The worst case takes 4T flgT] bits. The best case happens when all tasks

are dispatched to the first level, as shown in Figure 4.5c. Since all tasks are in the

first level, all tasks dispatched to the same event take only one basic report unit to

report the amount consumed. Finally, E basic report units are required to cover all

consumed tasks dispatched to the E events. The best case takes 2T flgT] bits.

In the Credit Algorithm, the capacity of the message needs to accommodate the

extreme case when all tasks are dispatched to different levels as shown in Figure 4.6.

As the algorithm uses a local integer variable CREDIT to stand for the value of

60

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CREDIT-1 CREDIT-2

CREDIT-2

CREDIT-3

• • • CREDIT-2

CREDIT-3

CREDIT-5

CREDIT-T-l

 i ___
CREDIT-T

Figure 4.6: Extreme Dispatching for Credit Algorithm

2 - c r e d i t fig 7 "] bits are sufficient to represent the smallest credit share. Since the

messages required are T as stated in previous section, T flgX ’] bits are required in an

epoch. In the CV Algorithm, the message needs to identify the identification of the

PE which it comes from and what kind of message it is; hence we assume the message

consists of two fields: PE ID and message ID. There are N PEs joining the operation:

fig Â] bits are sufficient to represent all the PEs. There are only three kinds of

messages in the algorithm; two bits are sufficient to identify them. The CV Algorithm

needs (2 L + T + N — 1) messages in any case; hence (2L + T + N — l)(flg N] +2) bits

are necessary. As for the LTD Algorithm, two fields are sufficient: message ID and

amount. There are only two kinds of messages in the algorithm; one bit is enough.

The amount field which represent the messages being reported by the F I N I S H (n),

needs fig T~\ bits because the greatest possible number of messages being reported is

T. Hence the bits required by the LTD Algorithm ranges from (E + N — l)(flgT] +1)

to (T + N — l) (f lg T] + 1). The results are summarized in Table 4.2.

61

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm Best Case Worst Case Complexity

Tiered
Algorithm 2£rigTl 4T R gT l O (T lgT)

Credit
Algorithm T R gT l T R gT l © (T lgT)

CV Algorithm (2L + T + N - l)x
(|lg AT|+2)

(2L + T + N — 1) x
(rig a h + 2)

© (Tig N)

LTD Algorithm (E + N - l) x
(Rg7l+1)

(T + N - l) x
(RgTl+1)

O (T lgT)

Table 4.2: Comparison of Message Bit Complexity-

Looking a t the complexity of bit in Table 4.2, we can find that the Credit Algo­

rithm performs the worst with a complexity of © (T lgT). This indicates that it always

needs (T lg T) bits. The CV Algorithm is slightly better than the Credit Algorithm

with a complexity of (T ig N), however it still always needs (T ig V) bits. The Tiered

and LTD Algorithms are better than the other two with a complexity of O (T lgT),

which means th a t chances are that they need less than (T lg T) bits. Comparing the

best and worst cases of the Tiered and the LTD Algorithms, we can further find that

the LTD Algorithm usually needs less bits than the Tiered Algorithm.

4.4 .4 D e te c t io n D elay

Detection delay accounts for the interval between when the last task ends and the

controller or the root node concludes global termination. Two new kinds of notation

are introduced for these quantities. Although the time necessary to send a message

across the network depends on the state of the network and is usually variable, we

62

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 4.7: Dispatching for the Worst cases of CV and LTD Algorithms

always designate it as tsend. The procedure which every algorithm uses to check global

termination is different and takes different amounts of time; we designate to

represent the tim e taken by the execution of each checkup procedure for a given

protocol. In the Tiered Algorithm, in all cases, after the last task ends the resided

PE sends a report to the controller: the controller checks up the status and concludes

global termination. The detection delay is (t send + ^hTdtp)- The quantity tQ*dctp

is bounded as follows. tadd + tcompare < < T • tadd + D ■ tcompare- In the

Credit Algorithm, same as the Tiered Algorithm, the resided PE sends a report to

the controller after the last task ends; the controller executes checkup procedure and

concludes global termination. The detection delay is (tsend + t^ecfrup)- For ĉheckup-

the credits are kept in a set [9].

As for the CV Algorithm, the detection delay is variable and depends on the

location of the last task in the physical tree of PE. The worst case happens when

tasks are dispatched as shown in Figure 4.7, i.e. only one task to each of the first

(N — 1) PEs and the rest to the last PE in the tree of PEs, and the last ending task

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

resides in the last PE. After the last task ends, the last PE needs to send (T — N + 1)

rem ove.entry messages serially first, which takes (T — N -F 1)£3eTU<; then it checks

its status up and sends term inate to its parent. Its parent also checks up its status

and sends term inate to its own parent. This process goes on on every PE except

the root PE of the physical tree, which takes (N — l) (t ^ eckup + tsen(i). Receiving the

term inate message from its child, the root PE checks up the status and concludes

global termination, which takes t ^ eckup. Summing up, the detection delay for the

worst case is ('T tsend + A /'t^dtup). The best case happens when the last ending task

residing in the root PE. The root PE checks up the status and concludes global

termination. The detection delay is t%£ckup. In the LTD Algorithm, the situation is

very similar to th a t of the CV Algorithm and also depends on where the last ending

task is located. The worst case happens when the tasks are dispatched as in Figure 4.7

and the last ending task resides in the last PE. The scenario is slightly different from

that of the worst case of the CV Algorithm: Same as the CV Algorithm, only one task

is dispatched to each of the first (JV — 1) PEs, the rest to the last PE in the tree of PEs.

However every PE ’s major message comes from its parent in the physical tree of PEs.

After the last task ends, the last PE in the tree sends one F I N I S H Q message to each

of the (N — 1) PEs above it. which takes (N — 1)tsend- Since the PE above the last PE

sent the major message to the last PE. the last F I N I S H {) message from the last PE

is sent to its physical parent as in Figure 4.7. After receiving the message, the second

PE from the last checks up its status and sends a F I N I S H Q message to its own

parent, which takes {tcheckup + tsend)- AH the PEs above the last PE in the hierarchy

except the root PE take the same action. T hat takes (N — 2)(t%fedcup + tsend). The

root PE only checks up its status and declares global termination, which takes only

tcheckup- Summing up, the detection delay for the worst case of the LTD Algorithm

is (2N - 3)tsend + (N — 1)£^Sbip. The best case happens when the last ending task

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm Best Case W orst Case Complexity

Tiered
Algorithm (tsend + d̂iecJcup) (tsend + t j£ Sfĉ p) ©(1)

Credit
Algorithm (^send + t̂ hecJcup) (tsend + £^dt£p) ©(1)

CV Algorithm t CVcheckup (T tsend + 0(T)

LTD Algorithm t LTD L checkup
(2 N 3) tsend

+ (N — l)t%je%eup O(N)

Table 4.3: Comparison of Detection Delay Complexity

resides in the root PE. After the last task ends, the root PE checks up its status and

concludes global termination, which takes only The results are summarized

in Table 4.3.

Apparently both the Tiered and the Credit Algorithms performs the best with

a complexity of 0(1). The CV Algorithm has the worst performance. The LTD

Algorithm lies in between the other three algorithms.

4.4 .5 S p ace C om p lex ity

The space complexity accounts for the memory space required by the mechanism

of each algorithm. We assume th a t all four algorithms use fixed memory allocation

instead of dynamic memory allocation to save the execution overhead. In the Tiered

Algorithm, the controller needs to maintain the ledger table while every PE needs to

maintain an activity table. For the ledger table, we reserve T record space in the table

for possible T levels in the worst case. Because the index of the record in the table

can serve as the level number implicitly, there is no need to set a field for the level

65

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

number; the difference field is enough. The largest possible number for the difference

is (T — 1), hence figT] bits are sufficient for one record. Eventually T\\gT~\ bits

are required for the ledger table. As the ledger table and the activity table are the

same thing. JVTpgT] bits axe needed for N tables at N PEs. Finally (N + l)T [lg T l

bits are required for the Tiered Algorithm. In the Credit Algorithm, in order to

avoid underflow problems and process exponents practically, the Credit algorithm

proposes a debts bookkeeping technique. It lets K = C R for each task and maintains

a D E B T S set, which contains K for every active task. Whenever a task becomes

passive and returns its credit share, the controller deducts it from the D E B T S set.

When D E B T S becomes empty, term ination is concluded. The controller needs space

to maintain the set. The worst case is the same as Figure 4.6; when all T tasks are

active and the largest K = T. Therefore it needs T flgT] bits to accommodate the

worst case. As for the CV Algorithm, every processor maintains a stack to record

sending and receiving activities. The stack must be big enough to accommodate

(T — N + 1) records which are fig N~\ bits wide each in the worst case tha t all the other

(N — 1) processors send the remaining messages in the epoch aside from the messages

spawning them to the same processor. The space required is N (T —V-f-1) fig N] bits in

total fro N PEs. Hence the space complexity is O(NTl ogN) . In the LTD Algorithm,

every node has to maintain four variables. The first, ini, needs (N — l)flg T] bits.

The second, out,, needs flgT1] bits. The third, modei, needs I bit. The last, parents,

needs fig N~\ bits. The total is (V flgT] + [lg N] + 1) bits for each PE. Hence N joining

PEs need Ar(Ar[lgT] + fig Ar] + 1) bits. The results are summarized in Table 4.4.

The Tiered Algorithm requires the most space. The CV Algorithm needs slightly

less space than it. The Credit and the LTD Algorithms requires much less space than

the other two. The Credit Algorithm needs only ^ of the bits required by the Tiered

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Algorithm Space Required Complexity

Tiered Algorithm (jV -H)7 T lg 7 l e (N T \ g T)

Credit Algorithm r [ig 31 © (T lgT)

CV Algorithm N (T — N + 1) [lg N] S { N T \ g N)

LTD Algorithm N(N[l gT] + fig AT| + 1) ©(JVlgT)

Table 4.4: Comparison of Aggregate Space Complexity

Algorithm. The LTD performs the best with only ^ of the bits needed by the Tiered

Algorithm.

4.5 Softw are D esign O p tim ization s

The Tiered Detection Algorithms is more efficient than the other three algorithms

in message complexity, bit complexity, and detection latency respects. Its advantages

are gained by some optimizations in software design which cannot be recognized by the

performance analysis alone. First, the scheme adopts to report the global invariance

of equal production count and consumption count, which eliminates the necessity to

understand other P E s’ status. That saves either the inquiry messages to other nodes

or the informing messages from other nodes. Attaching level number to each task

provides the controller a way to uniquely recognize production count and consump­

tion count without false detection. The two factors makes it possible that any local

node needs only to report to the controller without communicating with other nodes,

which greatly reduces the costly external messages. The choice of processor-centered

67

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

reporting activities further cuts the number of required reporting messages than that

of process-centered reporting. All those makes the Tiered Detection Algorithm con­

form to the practically optimal message complexity as predicted in the optimality

analysis. The adoption of production count and consumption count with attached

level numbers also helps in minimizing detection latency. Since that makes the last

finished task able to report directly to controller without traveling through the logical

tree structure as in the CV Algorithm and LTD Algorithm. The practice of applying

the difference of production count and consumption count instead of individual pro­

duction count and consumption count cuts the bit complexity almost in half. That

effectively reduces the bit requirement.

4.6 S um m ary

Judging from the previous performance analysis, the Tiered Detection Algorithm

outperforms the other three algorithms in message complexity, bit complexity, and

detection latency by a tradeoff in space complexity. The former three factors dominate

the performance of a termination detection algorithm while the latter factor is merely

a cost factor. The cost difference is negligible with the fact tha t RAMs are very

cheap and affordable. Therefore, the Tiered Detection Algorithm proves to be a high

performance termination detection algorithm in terms of software-based approaches.

68

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A PTER 5

D ISTR IBU TED -SU M BIT-COM PARISON

LOGIC

5.1 O verview

The Distributed Sum Bit Comparison (DSBC) logic configuration for a system

with n PEs is shown in Figure 5.1. It consists one instance of the Global Logic which

can reside at either an independent node or any one local node, and n instances of the

Local Logic, one at each node. The Global Logic configurat ion consists of a Responder

Count Encoder . a Decision Module, and Global Control signal source. Each Local

Logic configuration is comprised of a Summation Module, a dual-port random-access

memory (RAM), and a Reporting and Recording Module. The Local Logic at each

node keeps a ledger of the task count produced or consumed by each thread on a

single PE. The value is stored in the dual-port RAM. The Global Logic will demand

the local task counts from the Local Logic units and performs a summation of local

counts to evaluate if the present snapshot of all PEs in the system satisfies the barrier

criterion for having an equal number of produced and consumed tasks.[32] The result

will be sent back to each Local Logic configuration by a 1-bit signal. Each Local Logic

configuration will respond depending on the result by either storing the completed

69

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(n instances)

Ig m
\—

PE,

\ 2

— x —

lg m

Data Bus

J Reporting and
Recording Module I

Dual-Port RAM

Summation
Module

Local Logic

ToPEn

T0 PE2
To PE!

T b P E £ 4

ToPE„

ToPEj

To PE 2 *
To PE ! •*-

From PEn_
From PEj

From PE2-
From PE^ -

(1 instance)

Control h

! Decision U
! Module ;‘ »----

-Ufl"
I Respondar|
[Count
Encoder

yr-

Global Logic

Figure 5.1: Basic Layout

barrier number into a First-In First-Out (FIFO) register or skipping to inspect the

next barrier.

5.2 O p eration a l C oncept

Each PE notifies its own Local Logic whenever it produces or consumes a task.

The Local Logic then makes adjustments to the local cumulative task count of the

related barrier, which is stored in a dual-port RAM. Hence it is referred to as a

“Distributed Summation” method. A value of 1 is added to the task count before

each task is produced, while a value of 1 is deducted from the task count after each

task is consumed. There are m words in the dual-port RAM to record task counts

for m distinctive barriers to accommodate multithreading.

70

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Since a dual-port RAM is adopted, the Global Logic can inspect the local task

counts without interfering with the simultaneous adjustments to the local task counts

by the PEs. The Global Logic broadcasts requests to each PE. demanding the local

task count for a specified barrier. Each PE responds with its own local task count

for the designated barrier. The Global Logic sums them up to obtain the global

task count and determine if the barrier has been reached. If the global task count

equals zero, indicating that the barrier has been reached, it signals each PE to record

the finished barrier number in its own FIFO queue. If not zero, it signals each

PE to load the task count for the next barrier to be examined. The Global Logic

keeps inspecting the global task counts for consecutive barriers in a round-robin style,

independent of other events. When it inspects each task count, the Global Logic sums

up and examines the count bit-by-bit starting from the least significant bit. Hence,

the design is referred to as a "Bit-Comparisonr method. If any bit of the stun is one.

which means that the task count is not zero; the task count word for the next barrier

will immediately be fetched and checked. If the bit is not one. then the next bit of

the current count will be fetched and checked. There are two reasons to do so:

1. The data lines between the global hardware and each local hardware can be

reduced to be minimal instead of full width of the task count.

2. Considering the fact that it takes some time to process the spawned tasks, it

is not necessarily inferior to the practice of comparing all bits simultaneously

with getting negative results for most of the time.

Each PE decides when to examine the FIFO queue of finished barriers which enables

the FIFO queue to output a value. The FIFO queue signals the PE only when it is

empty, which means all barriers have been reached.

71

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

P ro c e d u re DSBCQ;

p a rb e g in /* Summation Module*/
adjust task count according to the request of local PEs;
continue;

p a re n d

p a rb e g in /*Bit-Com parison Module*/
case

0< BCM_countl < (full_range-l): /*check the sinn of all task counts bit by bit* /
if decision = = 0 /* the sum of this bit is zero*/

BCM_countl+-F;
fetch next bit:

e lse /* th e sum of this bit is not zero*/
reset BCM.counterl;
fetch next word;

BCM .countl = = full-range: /*check the last bit of the sum of all task counts*/
if decision = = 0 /*all the bits of the sum are zeroes, the barrier is reached*/

reset BCM_counterl:
fetch next word;
write current barrier ID in FIFO;

e lse /* th e sum of the last bit is not zero*/
reset BCM .counterl;
fetch next word:

endcase
continue:

p a re n d

Figure 5.2: DSBC Algorithm

72

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.3 H ardw are C o m p on en ts

The functionality of the hardware components is specified in Figure 5.2.

5.3.1 L ocal L ogic

Sum m ation M odule A lgorithm

The operations of the Summation Module are subject to the inputs from the local

PE. The four possible activities and the design of the summation module are shown

in Figure 5.3. W hen the input is 00. no action is required. When the input is 01.

which means tha t a task will be produced by the PE, it reads the current task count

from the dual-port RAM. adds one to the count, and stores the result in the latch.

When the input is 10. which means tha t a task is consumed by the PE. it reads the

current task count from the dual-port RAM, deducts one from the count, and stores

the result in the latch. The operation of deducting one is executed by adding a value

of negative one as a two’s complement number, for example, adding 1111 to a 4-bit

number. The inputs of 01 and 10 must be followed by the input of 11. which enables

writing the result in the latch back to the dual-port RAM.

R eporting and R ecording M odule A lgorithm

The layout of the Reporting and Recording (R k R) module is schemed in Fig­

ure 5.4. The R k R module consists of two major components, namely Parallel-In

Serial Out (PISO) register and FIFO register. The PISO register loads the task count

in parallel and outputs the binary representation of the count serially while the DSBC

logic is inspecting the task count. The FIFO queue is used to store the completed

barrier numbers. It is driven by the result from the Global Logic.

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From PEj
TS1 TS2 From Bus

OS,

"K Igm
l o a d ;

igC

Vcc

ActivityTS1 TS2

No action
Task produced for barrier # on bus
Task consumed for barrier # on bus
Write back result to DP RAM

OE

Adder

LOAD
Latch P*

OE
\ Line
) Expanderbus connector |

Summation Module

Figure 5.3: Summation Module

74

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

FIFO: first In, first out queue

DFF: delay flip-flop
CNT: counter
OE: output enable
EM: empty
WE: write enable

From PE i To PE j To busPISO: parallel in, serial out register

FIFO
WE*

OFF

Ig A

CNT2

PISO

\ CNT1 <-f
zero

To Global Logic From Global Logic

Reporting and
Recording Module

Global
Control

Figure 5.4: Reporting and Recording Module

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

The operation of the R & R module is driven and synchronized by the Global

Control signal. The sequences are controlled by the counter CNT1 as shown in

Figure 5.4. A second counter, labeled CNT2, maintains the barrier number to be

inspected next and serves as the completed barrier number provider if the current

barrier is found to be completed. When the cycle begins, it loads the task count

of the barrier identified by CNT2 from the Dual-Port RAM into the PISO register.

The PISO register outpu ts one bit at a time starting from the least significant bit

to the global hardware. If the result from the decision module is zero, which means

more bits need to be checked to determine termination then the next bit in the PISO

register is fed to the Global Logic. If the result is non-zero then the barrier is not yet

reached The Global Control will then start a new cycle with next task count word for

the next barrier. If all of the resulting bits are zero for the entire word, then the sum

of all the local task counts is zero which implies that the barrier has been finished,

the control writes the current barrier ID into the FIFO queue and begins a new cycle

for the next barrier.

5.3.2 G lobal L ogic

R esponder C ount E ncoder

The Responder Count Encoder is used to sum up the single-bit indicator lines

from all PEs and ou tpu t the sum in a binary encoded format. An adder-tree as

shown in Figure5.5(a) serves this purpose. The levels in the adder-tree depends on

the number of the supported PEs. A 4-bit full adder with fast carry design, as shown

in Figure5.5(b), is a direct way to extend this to a multiple-bit full adder without

introducing significant gate delays. Therefore support for more PEs only slightly

increases the propagation delays.

76

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LU

■►*5u.

(a) Responder Count Encoder with 16 inputs

•< •> * « * i * » • »

(b) Tl 74F283 4-bit Full Adder with Fast Carry

Figure 5.5: Responder Count Encoder

77

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

From
Responder
Count
Encoder

igN

CnCn-1

Quotient { Shift Right

* »
OCn
Shift Right

Latch k
— ... - ,.i

OET T LOAD

Delay r
; Global j
I Control !Line Reducer

Decision Module

Figure 5.6: Decision Module

D ecision M odule

The Decision Module adds the sum from the Responder Count Encoder to the

carry output from the previous bit. if any exists; then it extracts the least significant

bit (LSB) to indicate the decision by using the Line Reducer. The reason for adopting

the LSB to indicate the decision is that if the sum is an odd number as its LSB value

is 1. Obviously the barrier is not reached under this scenario. The su m s LSB is zero

if the count is either zero or an even number. Under this circumstance, we need to

check further to the next bit to decide whether the barrier has been achieved. At

the same time the Decision Module also directs the result from the adder to the Shift

Right Function, which can be implemented by just relabeling each bit as the next less

significant bit. It stores this quotient into the latch to be used as the carry for the

next bit, however the carry will be cleared if the decision is one since the carry does

not apply to the next barrier.

78

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

written by
sum m ation
module

barrie r 1

barrie r 2

barrie r N

b arrie r M

fe tched by
reporting and
recording
m odule

checked
from barrier 1
to barrier M

FIFO R eg ister
' A----------

checked
from LSB
to MSB

1 1 1 1 1 1 1 I I

com pleted
barrier
num ber
written

CNT 2

D ual-Port RAM PISO R egister

Figure 5.7: Procedure Applied by DSBC Logic to Detect Completed Barrier

5.4 P erform ance A n a ly sis

In this section, we first analyze the time for termination detection with the DSBC

logic, denoted Tq sbc■ Then its performance is compared with a software-based Test-

and-Set algorithm [34] and the Wired-NOR logic [26] in both performance and fea­

tures.

5.4 .1 D e tec tio n T im e

The procedures for a completed barrier to be detected by the DSBC logic can

be decomposed as shown in Figure 5.7. First, the local task counts for the current

barrier are written into the dual-port RAM after the barrier has been reached. Then

it must wait its turn to be checked, requiring time Twait. Once it occurs, the barrier

can be determined to be completed serially in time Tword• In particular, all bits of

79

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the word instead of just partial bits are checked, and stored in the latch in front of

the FIFO queue. The barrier number is immediately written into the FIFO register

after the next cycle begins requiring time Tfifo • Thus, this defines the DSBC logic

timing as given by Eq.(5.1).

TdSBC = TfiAM + Twait + TWOrd + TfIFO

= TrAAi + T wait + q ■ Tbt^chk + Tfifo (5-1)

where q = £ -Fur. and 2£ is the maximum number of task counts supported by each

PE and w denotes the additional bits generated by the carry operations.

For physically distributed computing system, we can estimate DSBC performance

using discrete ICs and their datasheets collected from several semiconductor makers.

First, the writing time to the dual-port RAM. Tram , is about 30 ns, since 2 cycles are

required a t 10 ns each to read the current count and then write back the incremented

count, and 10 ns to perform the addition. The writing time to the FIFO queue.

Tfif o • is 12ns. The waiting time, Twait, is variable and will be analyzed below. The

time needed for one barrier-checkup cycle. Tword, ranges from 1 to q bit-checkup times,

Tbtuchk- depending on the status of these bits. For a completed barrier, all bits of the

global task counts are zero; hence every bits will be checked to decide whether the

barrier is reached. Thus, Tword. = q-Tbt^hk as given in Eq. 5.1. The bit-checkup time

can be estim ated by summing up the propagation delays of the gates along the major

datapath of the DSBC logic. However the depth of the adder tree in the Responder

Count Encoder increases as the number of supported PEs grows. Therefore a new

notation T ^ ^ k , where n is the number of PEs in the system, is introduced to identify

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

the different time delays. Using 7400-series components, the bit-checkup cycle time

for DSBC logic supporting 256 PEs, T ^ hle, is 190 ns or less.

As the DSBC logic relies upon an instantaneous snapshot of the system state,

the maximum propagation delays dictate 190 ns cycle time to ensure da ta in­

tegrity. Because synchronization behaviour of parallel applications can vary widely,

a probability-based estimate of the typical number of bit-checkup cycles in a bar­

rier cycle provides a fair and equiprobable estimation. The calculation using of the

arithmetic-geometric series is given in Eq. 5.2.

V Z o rd = {~2 ' 1 + 22 ' 2 h 2 q - i ' ~ + 2 ^ 1 ' ' ^W-cWb (5 ‘2)

The first parameter in each term except the last term is the probability to finally

get a value of 1 from bits to be checked after having i values of zero in a row. The

second parameter is the number of checkup cycles to be accounted for, which ranges

from 1 to q. Take the second term for example, the probability of having the value

of one after having one value of zero is | | = (I)2. T hat situation results two bit-

checkup cycles because the first value of zero makes checking the next bit necessary:

however the fact that the second value is one clears the need to check next bit. The

probability for the last term includes those of both value zero and one because t

bits are checked regardless of if the value is zero or one. The rearrangement and

summation of the series in Eq. 5.2 allows it to be expressed as Eq. 5.3.

TS7d = {2 - (j) ’ - 2 • <7 + (i) ’ - 1 • (2? - 1)} • 7 2 ^ (5.3)

Assume that in the dual-port RAM m words are utilized, implying support for m

barriers. The best case happens when the current barrier completes while the previous

barrier is being checked. The next barrier-checkup cycle will detect the termination

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

without waiting, hence Twait = 0. The worst case occurs when the barrier is completed

while the current barrier is being checked. The termination of current barrier cannot

be detected immediately because the previous task count snapshot is being checked,

therefore it has to wait for (m — 1) barrier-checkup cycles before it can be checked

again. Likewise, an equiprobable analysis provides a fair estimation of the typical wait

time. The previous evaluation of the typical number of the bit-checkup cycles in a

barrier-checkup cycle. should serve the purpose well also. Hence the calculation

can be performed as:

Vhait — '-CH------ 1-1-------- F — • (m - 1)} •m m m
(m - 1) . 'T 'n2 ’ w ord

= (m — 1){1 —(!)•-■ ■, + (!)« . (2 , - 1) } T S ^ (5.4)

The expected value for barrier detection time using DSBC logic can be obtained

by substituting Eq. 5.4 into Eq. 5.1. The derivation can found in any mathematical

handbook of formulas, such as [7].

Tdsbc = Tram + T£ait + -I- TFIFO

= T r AM + { i m ~ 1)[1 — ’ 9 + ^ ~ ^ + Tu_chk

+TFrFo (5-5)

Thus, TqSBC scales linearly with respect to m and is independent or at most only

weakly dependent on lg n.

82

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

5.4 .2 C om p arison s o f P erform ance an d F eatu res

Based on Eq. 5.5 and information from [34] [26]. the detection times for four

approaches are plotted in Figure 5.8. Curves are shown for DSBC logic supporting

16 barriers. DSBC logic supporting 32 barriers, W ired-NOR logic replicated for an

arbitrary number of barriers, and a Test-and-Set software-based scheme [45]. The

three hardware-based schemes outperform the software-based scheme in termination

detection, as the number of PEs increases. The ratio of benefit increases superlinearly

from 10-fold for 20 PEs to 1000-fold for 512 PEs. Both W ired-NOR logic and DSBC

logic have nearly constant detection times in the respective ranges of the number of

PEs. Their detection times increase slightly above some specific PE numbers because

new levels of propagation delay are added. In particular, to accommodate more PEs.

additional levels of adders are required for the DSBC logic, and a new repeater board

is required for the Wired-NOR logic configuration. Theoretically, the detection time of

the W ired-NOR logic is independent of the number of supported barriers, m: however

it is restricted to 16 with current technology [26]. Although the detection time of the

DSBC logic increases as m increases, the version of the DSBC logic supporting 16

barriers takes less detection time than the W ired-NOR logic while the version of the

DSBC logic supporting 32 barriers needs slightly more time than the Wired-NOR

logic. The problem can also be easily remedied by duplicating the DSBC logic. Since

the DSBC logic works independently of the local PEs, more sets of them can be

implemented and execute in parallel without degrading the performance of the local

PEs. The only drawback is the line complexity is increased. However each DSBC

logic requires only 3n lines, where n is the number of PE of the system, between its

local hardware and global hardware while the W ired-NOR logic requires m ■ n lines.

Therefore the DSBC logic still can perform better with less line complexity.

83

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Ti
me

(H

S
)

(l
og

sc
al

e)

—• — DSBC logic m=16, 3n wires
O DSBC logic m=32, 3n wires
▼ Wired-NOR logic, m*n wires

—■<7 Test-and-Set Software-based

Barrier Detection Time

10000 -

1000

100 -

10

10 100

PE Number (log scale)

Figure 5.8: Detection Time Comparison

84

1000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

W
ire

Co

‘'

‘og

sc
al

e)

DSBC (n = 4 PEs)
Wired-NOR (n = 4 PEs)
DSBC (n = 16 PEs)
Wired-NOR (n = 16 PEs)
DSBC (n = 256 PEs)
Wired-NOR (n = 256 PEs)

Interconnection Requirement

10000 -

1000 -

100 -

6010 30 40 50 700 20

Number of Threads (m)

Figure 5.9: Interconnection Requirement Comparison

85

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

97

There are additional features of the DSBC logic which are not revealed by the de­

tection time comparison. The W ired-NOR logic supports only one task dispatched to

each PE; that is effective for computations that are statically-scheduled and allocated

at compile time. The DSBC logic can support execution of multiple tasks dispatched

to each PE that contribute to the same barrier dynamically at run time; that makes it

suitable for all kinds of applications. DSBC also provides adaptability, since the only

interaction between the local PE and the DSBC logic is the writing into the dual-port

RAM and reading the FIFO register of the Local Hardware of the DSBC logic, which

is distributed to tha t node. T hat fact makes both applications on message-passing

architectures [49] [44] and applications on shared-memory architectures [49] [44] easy

to adapt to the DSBC logic methods. Actually, DSBC logic blends aspects of both

synchronization approaches, message-passing and shared-memory. In the DSBC logic

approach, the PE places an encoded message in the dual-port RAM to indicate pro­

ducing or consuming of a task; the action is similar to that of the message-passing

architectures. However, the fact th a t the completed barrier number is stored in the

local FIFO register and waits to be inspected acts somewhat like the behaviour of a

shared-memory approach. Both the operating system and the compiler can readily

adopt the DSBC logic because multithreaded synchronization can be implemented by

simply accessing specific memory locations.

5.5 D elay -In sen sitive D esig n

Delay-insensitive circuits [35] can eliminate time dependencies in digital logic cir­

cuits because of its clockless design. All concerns about timing, for example clock

skew, can be cleared since they are completely insensitive to the propagation delays

among its gates. That fact is also potential to improve the performance of their

Boolean logic counterparts if properly designed. Null Convention Logic (NCL) [35]

86

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

is the first technique able to economically implement the delay-insensitive circuits.

In the following sections, NCL is introduced and a delay-insensitive DSBC logic is

developed utilizing NCL components.

5.5.1 N u ll C on ven tion L og ic

Traditional Boolean logic is not symbolically complete because it needs the as­

sistance of other control components [33], such as clocks, to coordinate the gates in

order to get valid results. NCL implements different approaches to accomplish a sym­

bolically complete logic without clocks. NCL can utilize dual-rail encoding for each

Boolean variable instead of low and high voltages on a single rail as in the traditional

Boolean logic. The high voltage in a wire represents the validity of the data or DATA

while the low voltage means invalidity of da ta or NULL. Thus the arrival of the data

wavefront can be clearly identified by existence of DATA or NULL. Since each wire in

NCL can only express the validity or invalidity of a d a ta value, unlike that each wire

in traditional Boolean logic can express two values, namely 0 and 1; threshold gates

[36] are utilized to sense how many DATA values are present. A threshold gate will

assert DATA when sufficient or more DATA values are input. A 5 input/threshold

3 gate is shown in Figure 5.10. Threshold gates with hysteresis axe required to syn­

chronize the DATA or NULL wavefronts. A threshold gate with hysteresis is actually

a threshold gate with weighted feedback of (threshold-1) as shown in Figure 5.11.

It acts somewhat similarly to a latch in a clocked logic. It asserts DATA only after

required DATA values arrive and DATA keeps being asserted until all input DATA

values transform into NULL because of the weighted feedback. Thus, the DATA or

NULL wavefronts can be synchronized. The NCL asynchronous register as shown in

Figure 5.12 provides means to control the flow of the DATA or NULL wavefronts.

A combinational network can be realized with NCL pipelines as shown in Figure

87

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Figure 5.10: 5 Input/Threshold 3 gate [35]

Figure 5.11: Threshold Gate with Weighted Feedback of (Threshold-1) [35]

5.13 while a sequential network can be implemented with NCL with the arrangement

shown in Figure 5.14. W ith those building blocks, virtually any device can be built

with NCL and functions as its Boolean logic counterpart, only without help of the

clock.

5.5 .2 N C L V ersion D S B C Logic

The DSBC Logic adopting NCL components is designed here. The basic layout

is sketched in Figure 5.15. For simplicity, full ranks of wires, i.e. DATA 0 and DATA

1, are shown as one wire in all NCL diagrams. Since the summation module plays no

important role in the performance issue, only the Reporting and Recording Module,

88

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

A_0
A_0

NULL
convention

combinational
circuit B_0

B_a

C_0
C_0

C_1
C_1

D_1

NACK
from next

to previous

Figure 5.12: Null Convention Logic Register [35]

89

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

previous eurrent nsxt
A.0

A.1

B.O

C.1C.1

0.00.0-

0 .10 . 1-

E*—
■ DACK

NACK
■ DACK

NACK
1 DACK

NACK

NULLNULL

Figure 5.13: NCL Combinational Network [35]

90

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

input output
rsgiste ragista

A_0 A_0

a.o
B.O'

8_1

DACK
NACK

DACK
NACKDACK

NACK

NULL
convention

combinational
drcuit

Figure 5.14: NCL Sequential Network [35]

91

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

(n instances)

Ig m

PEi

■ 2

Ig m

Data Bus

NCL
Reporting and
Recording Module

Summation
Module

Local Logic

Dual-Port RAM

ToPEn<_
DATA to PEj

ToPE2«
To PE,-

From PE^
CONTROL frotrj PE l i

From PE»-
From PE j-

ToPEn«----
CONTROL to PE

To PE2*-
To P E ,-

From PEn--------
DATA From PE;

From PE2 -
From PE-) -

(1 instance)

2
-v-«

NCL
Decision
Module

Ign
OK

.O
NCL
Responder)
Count
Encoder
---—r r

Global Logic

Figure 5.15: NCL Version DSBC Logic Basic Layout

Responder Count Encoder, and Decision Module are implemented with NCL. Also for

sake of simplicity, some logic and gates still adopt traditional Boolean logic symbols

while they are fully implementable with NCL.

NCL R ep ortin g and R ecording M odule Encoder

The NCL Version Reporting and Recording Module layout is identical to the

original Reporting and Recording Module except NCL registers are inserted among

gates to mediate the flow of DATA and NULL wavefronts. Since the dual-port RAM

is not a NCL, the interface between it and the NCL R & R Module needs converters

to transform DATA values. A delay device is also required in parallel with the Dual-

92

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

port RAM to ensure th a t the output data of it is synchronized with the DATA front.

The NCL Version Reporting and Recording Module is shown in Figure 5.16.

NCL Version R esponder C ount Encoder

The layout of NCL Version Responder Count Encoder is also identical to the

original Responder Count Encoder except one NCL register is inserted to mediate

the flow of DATA and NULL wavefronts from Reporting and Recording Module and

to the Decision Module. All adders in the Responder Count Encoder are implemented

with NCL version gates. The NCL Version Responder Count Encoder is shown in

Figure 5.17.

NCL Version D ecision M odule

The NCL Version Decision Module is shown in Figure 5.18. It is also identical to

the original Decision Module except Always-1 logic is added to generate the required

DATA to actuate Counter 1 in the NCL Reporting and Recording Module because

there is no clock in the NCL version DSBC Logic. The latch in the original design

can be replaced by a NCL register with the NCL sequential network arrangement of

control wires and a Reset logic to perform the original clear function.

5.6 Sum m ary

In this chapter, we have introduced hardware support for termination detection

capable of supporting multithreading. It supports dynamic allocation of multiple bar­

riers and multiple tasks per barrier while remaining scalable in time and space com­

plexity. Through theoretical analysis and calculations, DSBC is shown to outperform

existing termination detection hardware while providing additional capability. The

speedup of the DSBC logic supporting 16 barriers over a Test-and-Set software-based

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

CONTROL
from
NCL RCE

DATA to
A NCL RCE

Dual-Port RAM

T
PISO R egister

ik e

oOSTJ
—»j NCL R egister

1------* »— S

Delay NCL Converter NCL Convartarto_!__!___
n ■■

l O !
NCL Register

T
f-

NCL Register

j

FIFO R egister
 s— s—

I NCL Converter 1 1---

NCL R egister
 X----

f l

toill
NCL R egister

A
rh

TL
J f c

n
o H

Q
NCL
Register

i

~T t rese t

DATA CONTROL DATA
from to Decision from
Decision Module Decision
Module Module

Figure 5.16: NCL Version Reporting and Recording Module

94

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DATA from
PEs*
R a n d R
M odu les

DATA to
NCL
D ecision
M odule

05

*1 COMP'1

CONTROL from
NCL D ecision M odule

C O N TRO L to P E s '
R a n d R M o d u les

Figure 5.17: NCL Version Responder Count Encoder

95

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

DATA
from NCL
Responder
Count
Encoder

DATA
to PEs'
R sndR

LOO*
-«■ COMP

'j COMP

CONTROL
from PEs'
R sndRCONTROL

to NCL
Responder
Count
Encoder

|COMP»

NCL Decision Module

Cn C3C2C1

Line Reducer

CnGn-1 0\

oc„
Shift Right

C2

Always-1 Logic Reset Logic

Figure 5.18: NCL Version Decision Module

96

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

scheme is 29-fold for a 20-processor system to 3,008-fold for a 512-processor system.

With consideration of the number of barriers supported and the number of tasks al­

located to each PE. DSBC logic can be advantageously applied. Because of the low

line complexity, even the DSBC logic configuration provided here can be duplicated

to boost overall performance of the parallel application being executed by inspecting

more barriers at the same time. The clockless logic version[?] intended to cut the

propagation delays with the NULL Convention Logic has also been designed to give

another practical alternative where interconnection delays are significant.

The software interface to the DSBC logic consists of writing to the dual-port RAM

and reading the FIFO register. T hat relieves the compiler and the programmer of

all activities except for accessing certain memories. The fact that the task count is

distributed in the memories of each PE and each PE needs to check its local FIFO

register resembles a distributed shared-memory lock access. Meanwhile, the practice

of summing local task counts and returning the identified completed barrier number

back to each node resembles message-passing synchronization protocols. Those char­

acteristics encourage adaptability of both the message-passing and shared-memory'

applications to adopting DSBC logic.

97

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

C H A P T E R 6

CONCLUSION

6.1 S u m m ary

The performance of term ination detection is fundamental to the throughput of

the parallel and distributed applications. An optimal term ination detection algo­

rithm should be sought to keep the detection overhead minimized in order to reduce

the impact to the underlying computation. In this dissertation, we proposed a capa­

bility taxonomy of the term ination detection techniques in parallel and distributed

com putation. The classification is based on the characteristics of process allocation

and degree of processor reactivation support. There are eight classes in the taxonomy,

namely SBIT, SBST, SBDT, SBAT. DBIT, DBST, DBDT. and DBAT. A capability

class hierarchy is formed as a result of the taxonomy. The classification along with

hierarchy facilitate the recognition of the capability class of any existing termination

detection algorithm. Any advantage or lim itation of it can be easily identified, which

will provide valuable experience in the design course of a new algorithm.

T hirteen popular termination detection algorithms in literature were then intro­

duced and carefully studied. Their strong points were identified while their limitations

were analyzed. The knowledge contributes valuable guidelines for what to include and

what to avoid during the implementation of a termination detection technique. An

98

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

optimality analysis was performed to find the optimum which serves as the ultimate

design goal of termination detection techniques. Traditionally the quest for an opti­

mal algorithm is focused on the message complexity concerned with the high overhead

of message transmission in communication channels. A lower bound of T messages for

T tasks in a barrier was established [11]. However the difference of the overhead for

delivering external messages and internal messages is ignored. Therefore, we started

the optimality research by identifying the difference of delivery overhead between the

internal notifications and external messages. The lower bound of T appears to make

network traffic unnecessarily large under our investigation. T hat fact inevitably will

effect the underlying computation. We presented new lower bounds for static-binding

and dynamic-binding termination detection techniques after making tradeoff and ex­

amining relevant performance deviations. The new lower bound for a static-binding

algorithm is m in(T.N) . The new lower bound for a dynamic-binding algorithm is

min(T. E).

W ith the guidelines and specific goal collected from the previous study, we refined

the Tiered Detection Algorithm, which is a software-based approach supporting dy­

namic allocation of multithreaded processes and classified as DBAT class. The key

point that was learned from other algorithms and applied on the Tiered Detection Al­

gorithm is the implementation of a global invariant. This invariant, equal production

count and consumption count in each level of the task dispatching tree, allows our

design to detect the barrier without explicitly obtaining the status of all processing

elements, and to detect spawn messages in transit in communication channels with­

out reading the status of the network. This attribute combined with the processor-

centered signaling approach and the manner of reporting only after the local node

becomes idle significantly reduce the number of external messages required. The per­

formance of Tiered Detection Algorithm is compared with those of three other more

99

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

efficient algorithms, namely Credit Algorithm, CV Algorithm, and LTD Algorithm.

In message complexity aspect, although Credit Algorithm requires the least messages,

they are all external messages which will cause heavy network traffic and make overall

performance suffer. The Tiered Algorithm needs only E external messages plus T

internal messages just as anticipated. The other two algorithms demand more than

E external messages in addition to T internal notifications. In bit complexity, the

requirement for each algorithm varies with each individual case; none has significant

advantage over others and all bit requirements are around the order of T l g T . As the

bandwidth of most networks is more than sufficient for these algorithms, there will

not be noteworthy difference. In the network protocol which adopts the fixed-length

packet, it is hardly an issue since the capacity of the packets are much more than each

message requests. Tiered Detection Algorithms excels in detection latency with only

one step necessary. Credit Algorithm requires one step theoretically while practical

overhead could be large. The other two algorithms both have to transmit the status

report through the hierarchy of their logical trees of processing elements. The space

complexity is actually a cost factor rather than performance factor. Recognizing

the fact that the space requirement of Tiered Detection Algorithm is merely several

KBytes although larger than those of the other three algorithms, that introduces no

concern either. The fact that Tiered Detection Algorithm outperforms others in crit­

ical fields while making tradeoff in negligible aspects makes it a promising practical

choice.

The global invariant implemented in Tiered Detection Algorithm was extended

and utilized to develop another hardware-based approach, the Distributed-Sum Bit-

Comparison (DSBC) Logic. It supports dynamic allocation of multithreaded pro­

cesses on shared-memory [44], message-passing [44], and /or single-chip multiproces­

sors. The invariant property employed in DSBC Logic is that the instantaneous task

100

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

consumption count equals the instantaneous task production count upon barrier com­

pletion. The independently working DSBC Logic cyclically collects and examines the

task counts stored by the local nodes in the dual-port RAMs for each barrier with­

out interfering their execution. The performance of DSBC Logic through theoretical

analysis and calculations is compared with that of W ired-NOR Logic, a hardware-

based approach impressive for its low detection latency, and Test-and-Set scheme, a

software-based approach. The performance analysis reveals that the hardware-based

schemes outperform software-based scheme superlinearly as the number of PE in­

creases. The ratio of benefit ranges from about 10-fold for 20 PEs to about 1000-fold

for 512 PEs. The DSBC Logic supporting 16 barriers takes less detection time than

Wired-NOR Logic while the DSBC Logic supporting 32 barriers requires slightly more

time than W ired-NOR Logic. However. Wired-NOR Logic is limited to support 16

barriers with current technology because of its high wire complexity of B ■ N. The

DSBC Logic owns larger freedom of supporting more barriers with its modest wire re­

quirement of 3N. It can even be duplicated to m ultiply the throughput because of its

low wire complexity. A new version of DSBC Logic adopting Null Convention Logic,

a symbolically complete logic, was designed to supply a delay-insensitive alternative

which eliminates all timing concerns and can potentially improve the performance if

properly designed.

6.2 F uture W ork

The execution of both the Tiered Detection Algorithm and DSBC Logic depends

on reliable message delivery and error-free PE execution. Thus, the termination

detection mechanism may malfunction if any node fails to function normally. There­

fore, fault-tolerance capability [46] [51] [17] [48] would be beneficial if integrated into

both designs. The improvements can be applied on the Tiered Detection Algorithm

101

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

through encoding mechanisms to save reporting transmission bits and information

storage requirements on the controller and local nodes. As for DSBC Logic, although

a NCL version has been developed, the NCL implementation can be optimized in

both layout and NCL components used. A critical phenomenon observed during the

development of this dissertation is the need for globally-accepted benchmarks for

evaluating term ination detection algorithms. In particular, a parallel and distributed

application benchmark would assist significantly in validating evaluation of termina­

tion detection algorithms in practice and in relevant implementation optimizations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

LIST OF REFERENCES

[lj A.S. Tanenbaum, “Computer networks," 3rd Edition, Prentice-Hall, 1996

[2] B. Furht et al., “Handbook of internet and multimedia, systems and appications.” IEEE press.
1999

[3] D.E. Comer, “Computer networks and internets," 2nd Edition, Prentice-Hall, 1999

[4] D. Sima, T. Foutain, and P. Kacsuk. “Advanced computer architectures, a design space ap­
proach," Addison-Wesley, 1997

[5] T.H. Cormen. C.E. Leiserson. and, R.L. Rivest, “Introduction to algorithms,” MIT Press, 1991

[6j J.R. Smith. "The design and analysis of parallel algorithms,” Oxford University Press, 1993

[7] M.R. Spiegel, “Mathematical handbook of formulas and tables,” McGraw-Hill, 1968

[8] R.M. Hord, “Understanding parallel supercomputing,” IEEE Press, 1999

[9] F. Mattern, “Global quiescence detection based on credit distribution and discovery,” Informa­
tion Processing Letters. Vol.30, No.4, pp.195-200, Feb.. 1989

[10] S. Chandrasekaran and S. Venkatesan, “A message-optimal algorithm for distributed termina­
tion detection.” Journal of Parallel and Distributed Computing, Vol.8. No.3, pp.245-252. March,
1990.

[11] K.M. Chandy and J. Misra. "How process learn.” Distributed Computing, Vol.l, pp40-52. 1986.

[12] T.-H. Lai. Y.-C. Tseng, X. Dong, "A more effient message-optimal algorithm for distributed
termination detection.” Technical Research Report, OSU-CISRC-1/92-TR-2, Ohio State Uni­
versity, 1992.

[13] T.-H. Lai. Y.-C. Tseng, X. Dong, "A more effient message-optimal algorithm for distributed
termination detection,” Proceedings o f Sixth International Parallel Processing Symposium, pp.
646-649. IEEE CS Press, March 1992.)

[14] S. Bokhari, “On the mapping problem,” IEEE Transactions on Computers, C-30(3):pp. 207-
214. 1981.

[15] I. Foster, “Designing and Building Parallel Programs - Concepts and Tools for Parallel Software
Engineering,” Addison-Wesley, 1995

[16] K. Drake, "Time and Space Efficient Multiprocessor Synchronization and Quiescence Detec­
tion,” M.S. Thesis, University of Central Florida, 1995

[17] A.Y.H. Zomaya et al; Parallel and Distributed Computing Handbook, McGraw-Hill, 1996

[18] N.S. Arenstorf and H.F. Jordan, “Comparing Barrier Algorithms,” Parallel Computing 12,
pp.157-170, 1989

[19] K. Hwang and F.A. Briggs, Computer Architecture and Parallel Processing, McGraw-Hill, 1984

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

[20] E.D. Brooks III, "The Butterfly Barrier,” International Journal o f Parallel Programming, Vol.15
No.14, pp.295-307, 1986

[21] D. Hensgen, R. Kinkel, and U. Manber. T w o Algorithms for Barrier Synchronization,” Inter­
national Journal of Parallel Programming, Vol.17 No.l, pp.1-17, 1988

[22] K.H. Cheng and Q. Wang, "A Simultaneous Access Design for Idle Processor Reactivation and
the Detection of the Termination of a Parallel Activity,” Journal of Parallel and Distributed
Computing 17, pp.370-373, 1993

[23] H. Xu. P.K. McKinley, and L.M. Ni. “Efficient Implementation of Barrier Synchronization in
Wormhole-Routed Hypercube Multicomputers,” Journal of Parallel and Distributed Computing
15. pp.172-184. 1992

[24] K. Ghose and D.-C. Cheng, “Efficient Synchronization Schemes for Large-Scale Shared-Memory
Multiprocessors," Proceedings of the 1991 International Conference on Parallel Processing,
pp.153-158. 1991

[25] K. Hwang and S. Shang, “Wired-NOR Barrier Synchronization for Designing Large Shared-
Memory Multiprocessors,” Proceedings of the 1991 International Conference on Parallel Pro­
cessing, pp. 171-175, 1991

[26] S. Shang and K. Hwang, “Distributed Hardwired Barrier Synchronization for Scalable Mul­
tiprocessor Clusters.” IEEE Transactions on Pamllel and Distributed Systems, Vol.6, No.6.
pp.591-605. June 1995.

[27] C.J. Beckmann and C.D. Polychronopoulos, “Fast Barrier Synchronization Hardware.” CSRD
Report No. 986, University of Illinois, Urbana-Champaign, November 1990

[28] H.G. Dietz et al., “Purdue’s adapter for parallel execution and rapid synchronization: the
TTL.PAPERS design.’ Jan. 1995

[29] J.-S. Yang and C.-T. King, “Designing tree-based barrier synchronization on 2D mesh net­
works.” IEEE Transactions on Parallel and Distributed Systems. Vol.9. No.6, pp.526-533. June
1998.

[30] T. Muhammad. “Hardware Barrier Synchronization for A Cluster of Personal Computers,”
M.S. Thesis, Purdue University, May 1995

[31] A. B. Sinha and L.V. Kale. “ A dyanmic and adaptive quiescence detection algorithm,” Depar-
ment of Computer Science. University of Illinois, Urbana, IL

[32] R. DeMara, B. Motlagh. C. Lin and S. Kuo, ”Barrier synchronization techniques for distributed
process creation.” 8th International Parallel Processing Symposium Proceedings, pp.597-603.
April 1994.

[33] C.H. Roth, Jr., “ Fundamentals of Logic Design,” 3rd Edition, West Publishing Company, 1985

[34] T.E. Anderson, T h e performance of spin lock alternatives for shared-memory multiprocessor,"
IEEE Transactions on Parallel and Distributed Systems, Vol.l, N o.l, pp.6-16, Jan. 1990.

[35] K.M. Fant and S.A. Brandt, “NULL Convention Logic,” Theseus Logic, Inc. document.
www.theseus.com

[36] G.E. Sobelman and K. Fant, “CMOS circuit design of threshold gates with hysteresis.” Theseus
Logic, Inc. document, www.theseus.com

[37] I. Foster et a l.,T h e Grid, Blueprint for a new computing infrasturcture,” Morgan Kaufmann,
1999

[38] D. I. Moldovan, “Parellel processing, from application to systems,” Morgan Kaufmann, 1993

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

http://www.theseus.com
http://www.theseus.com

[39] W.J. Dally and C.L. Seitz, “T h e torus routing chip,” Distributed Computing, Vol. 1, pp. 187-196,
1986

[40] H.G. Dietz, R. Hoare, and T. Mattox, “A fine-grain parallel architecture based on barrier
synchronization,’ Proceedings of the Int’l Conf. on Parallel Processing, pp.247-250. Aug. 1996

[41] R. Hoare et al., “Bitwise aggregate networks,” 8th IEEE Symposium on Parallel and Distributed
Proceedings. Oct. 1996

[42] M.R. Zargham, "Computer architecture, single and parallel systems,” Prentice-Hall, 1996

[43] G. Brassard and P. Bratley, "Algorithmics, theory and practice,” Prentice-Hall, 1988

[44] D.E. Lenoski and VV.-D. Weber. "Scalable shared-memory multiprocessing,” Morgan Kauf­
mann, 1995

[45] K. Hwang and Z. Xu. “Scalable parallel computing,” McGraw-Hill, 1998

[46] T.H. Lai and L.-F. Wu, “An (Ar — l)-resilient algorithm for distributed termination detection,”
IEEE Transactions on Parallel and Distributed Systems, Vol.6, N o.l, pp.63-78, Jem. 1995.

[47] K. Hwang, “Advanced computer architecture, parallelism, scalability, programmability,”
McGraw-Hill, 1993

[48] J. Bacon, “Concurrent system s.” 2nd Edition, Addison-Wesley, 1997

[49] D.E. Culler. J.P. Singh and A. Gupta, "Parallel computer architecture, a hardware/software
approach.” Morgan Kaufmann, 1999

[50] A.P. Malvino. "Electronic Principles,” 2nd Edition, McGraw-Hill. 1979

[51] S. Venkatesan, “Reliable protocols for distributed termination detection,’ IEEE Transactions
on Reliability, Vol.38, No., pp.103-110, April 1989.

[52] T.L. Casavant, P. Tvrdik, and F. Plasil. "Parallel Computers, theory and practice,’ IEEE
Computer Society Press. 1996

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

