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ABSTRACT

The Localized Self-Contained Adaptive Networks (LSCAN) representation
strategy is developed to integrate advantages of symbolic and subsymbolic approaches
while supporting scalable distributed processing techniques. Although symbolic pro-
cessing systems have been successfully implemented for several decades, the problems
of ambiguity, brittle decision-making, and low availability parallelism have encouraged
development of various subsymbolic approaches. However, subsymbolic representa-
tions lack variable binding capabilities and make symbolic composition and decom-
position difficult. To address these deficiencies. a localized decision-making approach
is designed and evaluated which integrates beneficial features from both paradigms.
In LSCAN, the fundamental structures of entity nodes, AND evaluators, OR evalu-
ators. and lateral links are used to allow more direct incorporation of cognitive rules
while retaining the learning capabilities inherent in subsymbolic approaches. First,
processing nodes are defined for constant, variable, functional. and decision assertive
entities. Next, reasoning mechanisms are developed using scaled and shifted sigmoid
evaluation functions to generate excitatory, inhibitory, and synchronization interac-
tions among processing nodes. The evaluation functions can be readily adapted and
tuned using supervised or unsupervised learning. It is shown that these structures

are capable of performing classification and filter switching tasks by means of several
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examples. The structures are then cascaded using weighted links to propagate belief

factors defined by thresholding expressions derived through the training process.

LSCAN was applied extensively to two case studies to evaluate its performance
relative to previous approaches using a network manager implemented in the C++
language. In the first case study, LSCAN is employved to classifv hand-written digits
provided in the NIST benchmark image database. Both pattern-based and rule-
guided classification methods are developed and compared to previous approaches.
The number of classes required to achieve desired levels of recognition accuracy is
evaluated for numerous parameters of feature orientation, feature strength, pattern
threshold. and bias values when using methods such as Gaussian feature extraction.
In the second case study, LSCAN is used to implement routing protocols capable
of handling dynamic network configurations in the context of the Border Gateway
Protocol 4.0 (BGP4) methodology. It is shown that localized decision-making in
LSCAN can provide a flexible, distributed processing approach to the integration of

rule-guided techniques with self-adaptive representations.
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CHAPTER 1

INTRODUCTION

It is widely recognized that symbolic processing more directly emulates high-
level human cognitive processes. Inputs to symbolic processing systems are typically
representations in the form of comprehensible character strings. Hence. real world
information at cognitive levels is more readily represented and handled. On the other
hand, connectionist, or subsymbolic processing, replaces fixed symbols with dynamic
of numerical values, and processes those numerical patterns among connected simple
processing nodes. Each node constructs an output based on some contribution of
its total input strengths. Connections between nodes are associated with numerical
weights which can be adjusted through a systematic learning algorithm. Connec-
tionist models provide advantages of learning. handling incomplete information, and
parallel processing. However, inputs to subsymbolic processing systems consist of nu-
merical data which are low-level representations not directly discernible nor related

to human reasoning processes.

Symbolic and subsymbolic paradigms are distinguished by three major char-
acteristics [7]: (1) the type of representation. (2) the style of composition, and (3) the
paradigm’s functional characteristics. During processing, the forms of the symbols
themselves are never changed so that symbolic paradigms work equally well by replac-

ing svmbols with variables. Those variables bind to actual symbols at run-time. In
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contrast. a subsymbolic paradigm encodes knowledge using numerical patterns which
are distributed over a collection of processing units. Therefore, an entity in the sub-
svmbolic representation might be a pattern of continuous values. For example, the
concept of car might be expressed subsymbolically as (-1.525 +0.831 +0.928 -1.192).
These values may vary as necessarv during processing time, although the new pat-
tern will still behave closely to the original pattern. This feature provides tolerance
of variations of a specific symbol. Thus, the ambiguity of a symbol is resolved or
well-tolerated. Connections between sub-symbols can be numerically-weighted links
which are subject to adaptation. Therefore. subsymbolic paradigms possess learn-
ing capabilities. These fundamental representation differences influence directly the

functional characteristics and compositional styles of each paradigm.

One of the main criticisms to against the subsymbolic paradigms is that the
subsymbolic models are unable to represent useful compositional structure [16]. In
svmbolic models, svmbols are combined into higher-order composite representations
which maintain the integrity of the constituent elements without losing the rela-
tionships between those elements. These relationships form well-defined structures
between symbols. On the other hand, subsymbolic paradigms employ layered nodes
which are flat and do not exhibit useful compositional structure. The compositional
representations of svmbols are encoded into patterns similar in form to each individ-
ual symbol. This point was addressed by the distributed connectionist model. called
Recursive Auto-Associative Memory (RAAM) [41]. The RAAM model encodes re-
cursive data structures such as trees and lists into distributed representations. These
representations of data structures are very different from the symbolic concatenative

structures.

o
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Svmbolic and subsymbolic paradigms have their own advantages and dis-
advantages respectivelv. However, advantages of symbolic paradigms supplement
disadvantages of subsymbolic paradigms. The same situation applies to the reverse
relationship. Therefore, hybrid of symbolic and subsymbolic paradigms have been
gaining more interesting to researchers [51] [58]. Hybrid systems attempt to resolve
the disadvantages which appeared in each of symbolic and subsymbolic paradigms
while maintain their advantages. From the symbolic viewpoint. hybrid systems are

trying to resolve the problems such as:
e brittleness of decision making.
e resolution of symbolic ambiguities,
e decision making with incomplete input information,
e lack of learning mechanisms.
e maintaining multiple searching paths while eliminate backtracking.
e maintaining semantic structures, and

e maintaining reasonable processing time while knowledge base size increased. if

parallel processing is implemented.

1.1 Strengths and Limitations of Symbolic Models

Svmbolic representations utilize forms that humans can understand easily.
Therefore, thes knowledgebases can be more readily maintained and revised. The
svymbolic processing of Artificial Intelligence has two computing directions: one is
function-based computing and the other is logic-based computing. Function-based

computing, e.g. LISP, takes a set of symbols as inputs to map to another symbols

3

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



as outputs. Logic-based computing is based on relations between objects and their
properties. PROLOG is an example of a programming language using predicate logic

to represent knowledge using two-valued logic, either TRUE or FALSE.

Probabilistic Reasoning [40] is one scheme which does not compute truth
values using two-valued logic. It uses Bayesian formalism or conditional probabilities
to compute beliefs between symbolic variables. Syvmbolic variables are connected into
Bayesian Networks. Each Bayesian network node represents one svmbolic variable.
Related symbolic variables are linked together forming a Directed Acyclic Graph
(DAG). Each DAG is an Independent-Map or I-map which showing minimal links
required to make clear independence between symbolic variables for a given proba-
bility distribution P. The directed acyclic links represent direct dependency between
svmbolic variables: a symbolic variable depends on the symbolic variables which have
outward links connected to it. To compute the value of belief of a svmbolic variable.
it needs information of the prior probabilities of the symbolic variable and the causal
svmbolic variables. also the likelihood probability. For example. in the propositional
statement “if X then Y, X is the causal variable of Y. The prior probabilities of X
and Y are P(z) and P(y) which are probabilities for \' = r and Y = y alone. The
likelihood probability is A(x) = P(x | y) which is the probability of how likely it
happens while Y = y and .\' = z. The belief of Y is computed as:

P(z | y)P(y) _ AMz)P(y)
P(x) ~ P(x)

BEL(y) = P(y | z) = (1.1)

If a third symbolic variable Z is caused by Y. then the likelihood probability A(z) has

to include the affection of outcomes of Z into consideration:
Mr)=P(z|y)=Y_ Pz |y.c)Plylz)=)_P(z|y)Ply|z) = My, e A(y) (1.2)
v y

4
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where A, is the conditional probabilistic matrix of the two variables X and Y and
Ay) = P(y | z) is the likelihood probability of ¥ = y if Z = z. From observations of

Equations 1.1 and 1.2, some points are concluded as:

e belicf of a symbolic variable can be computed locally.

e belief of a symbolic variable can be affected if new events which have no direct

dependency are added to a DAG.

e computational complexity increases while more symbolic variables are included

in a DAG.

e computational complexity increases with more outcomes of each symbolic vari-

able. and

e all probabilities of outcomes of each symbolic variable has to be known before
definitive calculation of beliefs.

Computational complexity will be increased if more symbolic variables are causally

related of other variables. Nonetheless. the structure of Bayesian Network is favorable

for parallel processing.

Rule-based systems use a set of interrelated hypotheses. Each rule contains a
premise and a conclusion. The premise is. in turn. made of one or more conditions.

The general form of a rule can be expressed by:
If premise then conclusion;

A rule suggests that the conclusion follows the premise in an action-oriented way.
Once the rule matches the premise part to known facts, then, the rule is proven or

the conclusion is confirmed. Rule-based systems are limited by:

($1]
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e lack of partial matching the premise,
e use of backtracking to find other searching paths, and

e poor conflict-resolution capability.

Associative networks are also known as semantic networks [43]. Concepts are
represented as nodes with labeled links representing the relations between concepts.
The original semantic network models increase the activation of some particular net-
work nodes when an input is processed. Activations are spread to connected nodes
and potentially numerous irrelevant spreading activations may be generated. Marker-
passing, in contrast, uses discrete symbolic markers to control the spreading activa-
tion. Markers are passed among network nodes simultaneously and are evaluated by a
set of rules to decide which node a marker is passed to. The symbolic information held
in their markers and networks enable them to perform dynamic role-bindings. thus,
high-level inference for applications such as natural language understanding can be
achieved. Associative networks are the most connectionist of the symbolic models and
have the potential for massive parallel processing (8] [34]. However. marker-passing
semantic networks still lack learning capabilities. In summary, symbolic processing

svstems face some difficult problems:

svmbolic ambiguities are difficult to resolve,

learning mechanisms are difficult to construct,

best searching path is not promised while multiple searching paths exist.

confidence factors are hard to maintain while backtracking is required. and

throughput drops when knowledgebase size increased.
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Figure 1.1: A Simple Artificial Neuron

1.2 Strengths and Limitations of Subsymbolic Models

Subsymbolic paradigms are built around the structure of Artificial Neural
Networks [47] [34]. Artificial neural networks consist of input neurons. hidden neu-
rons. and output neurons [47]. The input neurons accept information from the real
world. However, the real world information has to be encoded into certain numerical
formats, binary or real numbers for example. which are accepted by the input neu-
rons. The hidden neurons receive inputs from the input neurons which have direct
connections to the hidden neurons. The hidden neurons act as an intermediate stage
to store intermediate state information about the network. The outputs of hidden
neurons are inputs of the output neurons. An artificial neural network is tuned en-
tirely' through the network connections which store the mapping information between
the input neurons and the output neurons. In order to make correct mapping infor-
mation the network has to be trained by a set of input examples. The advantages of
artificial neural networks are two-fold. One is at the neuron level and the other is at
the network level. For an individual neuron, inputs are summed by each product of

an input value and a connection weight to that neuron. The summation of products

~1
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is mapped to the output of a neuron by an activation function f(Z). as illustrated in
Figure 1.1. The activation function together with a threshold decide whether an arti-
ficial neuron can fire its output to other neurons. Beneficial features of this approach

include:
e the output of an neuron is depends on the strengths of inputs. and
e the firing decision is made completely locally.

At the network level, the strength of all connections between neurons are regulated at
the training time by a pre-selected input set. The regulation of connection weights are
guided by learning algorithms. The relation information between neurons is stored

in the network connections after the training phase to realize the following benefits:
e the reasoning system can work correctly even with incomplete information.
e learning capabilities are readily possible. and
e processing can be more directly implemented on massively parallel architectures.
Different subsymbolic models emphasizing these features. [14]. [16]. [19], [27], [41].
(49]. [54]. [53]. and [60]. have been designed.
1.3 Needs for Hybrid Symbolic Processing

In hybrid symbolic systems. connectionist networks resolve problems such as
belief propagation, multiple path searching., and disambiguat ion while using symbolic
processing features to perform composition, decomposition, and variable bindings. A

general model of distributed hybrid symbolic system is illustrated in Figure 1.2. This
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Figure 1.2: A General Model of a Hybrid Distributed Symbolic System

hybrid system [26] acts as a symbolic parser for natural language processing. The
symbolic side contains a look-ahead buffer to hold a fixed number of constituents.
a stack for manipulating embedded structures, an encoder to code the look-ahead
buffer and the stack for the input layer of the network. and a decoder to evaluate
an action from the output units. The subsymbolic part contains a feed-forward net-
work which examines the contents of the buffer and stack and vields a preference
for an appropriate action. The feed-forward network is trained with patterns which
represent the encoding of the buffer positions and the top of the stack. The output
of the network contains a series of units which represent actions to be implemented
during processing. The input to the hybrid system is a natural language sentence.

The output is a parse tree representing the intended meaning to be conveyed.

The second kind of hybrid svstem uses localist connections which is embed-
ded into symbolic systems. Symbols are not encoded into numeric patterns as in
the connectionist systems. A general model of hybrid localist symbolic system is

illustrated in Figure 1.3. Each network node represents a symbol or a concept. A
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Figure 1.3: A Hybrid Localist Symbolic System

hybrid system, SC-Net [46]. demonstrates use of localist and symbolic processing to
integrate learning capabilities into rule-based systems. Rules are encoded as inputs
to the network. Each intermediate and output cell contains a bias value which are
subject to being regulated during the learning process. This model is different from
others in that the learning does not occur on the weights between nodes but on the
bias values. This model also shows how to build sub-networks for structured variable
presentations. variable bindings. linguistic hedge evaluations and relational compara-
tors. Two kinds of variables: structureless and structured variables are used in the
SC-Net. Structureless variables have a simple form which includes a variable name
and an uncertainty value associated with the variable. For example, a person’s age
Age = 39 with an uncertainty 0.9. Structured variables includes fuzzy and nominal
variables. Fuzzy variables contain linguistic hedges and nominal variables do not.
Each structured variable has its own sub-network with the attributes of the variable
as the outputs of the sub-network. Each sub-network is evaluated by using the fuzzy
logic. New sub-networks can be added into the existing network and retrained with

the existing network.

10
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The existing hybrid symbolic/subsymbolic models demonstrate various im-
provements over either pure symbolic or subsymbolic systems. However, there may be
a need for long and intricate training periods [26]. Furthermore. the distributed net-
works are not necessarily scalable, as adding new examples requires retraining of the
entire network. Although the SC-Net [46] shows good promise on scalability. How-
ever, the SC-Net is built on vertical relations and may lack in lateral relations between
sub-networks. Svmbolic composition and decomposition are another aspects which
are not covered by most of the hybrid symbolic/subsymbolic models. Yet. symbols
hold very important roles in high-level reasoning. Theyv allow a system to be easily
traced and understood which are important aspects to build an Al system which is
accumulative [47]. competitive [17]. and restrictive [11]. In Chapter 3. a new hybrid
svmbolic/subsymbolic paradigm is proposed as a prototype model toward achieving

the desired goals.

1.4 Outline of Dissertation

In the following chapters, a review of previous work is discussed in Chapter
2. Some of the earlier developed networks such as CONSYDERR [57]. SC-Net [46].
and P,RADISE [3]. are presented in detail. In Chapter 3. the proposed architec-
ture of an irﬂproved hyvbrid system called Localized Self-Contained Adaptive Networks
(LSCAN) is introduced. The philosophy of knowledge representation is discussed
initially. Next, the derived AND and OR feed-forward network units with lateral
connections are discussed in detail. Learning mechanisms for both of feed-forward

and lateral connections are discussed. The learning mechanisms can be used in ei-

11
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ther supervised or unsupervised training modes. A comparison between LSCAN and
CONSYDERR is also discussed. At the end of Chapter 3. the LSCAN knowledge
acquisition and processing tool is introduced which implements the proposed model
and techniques. The feed-forward learning mechanisms are further developed by using
dual-input connections and inverters or NOT operators, to impart the functionalities
of high-pass, low-pass, and band-pass filters. Illustrative examples are used to demon-
strate possible applications and these feed-forward learning mechanisms are discussed
in Chapter 4. In Chapter 5. a case study of hand-printed digit image classification
is implemented and discussed in detail. Two classification methods, pattern-based
and rule-guided classifications, are used to illustrate LSCAN functionality and per-
formance. Chapter 6 is an additional case study of how discrete LSCAN networks can
be designed to implement a network routing decision maker. A hypothetic routing
network with 7 autonomous systems is presented and assessed. The corresponding
LSCAN sub-networks are presented. Finally, the conclusions of this research are given
in Chapter 7. The future work in this area is also expressed. The development of this

dissertation is illustrated in Figure 1.4.
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CHAPTER 2

PREVIOUS WORK

2.1 Overview

Due to the weaknesses of symbolic processing, various research began in the
mid of 1980°s to develop alternative methods in order to incorporate the advantages
while eliminating the weaknesses of symbolic processing. This kind of processing
blends together symbolic and subsymbolic techniques and therefore named hybrid
symbolic and subsymbolic processing. In general, there are three main research paths
to incorporate symbolic elements into subsymbolic processing systems. One approach
is to allow symbolic elements in connectionist networks [10] [19]. The second ap-
proach associates localist networks with symbolic representations [52] [55]. The third
approach mixes connectionist networks and localist networks in a novel symbolic and
subsymbolic paradigm [57]. In the case of connectionist networks. symbols ar= en-
coded or patterned through the connectionist network nodes. In the case of localist

networks, each node represents one symbolic element.

The network p A LONE [10] was the first subsymbolic connectionist system
designed for reasoning using high-level structured symbolic representations such as
semantic networks. At any one time, an pA'LONE network represents a single hy-

pothesis and relevant information. Each tK'LON E network consists of five modules.
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three auxiliary modules which mediate some of the inter-module constraints, a vari-
able number of modules used for input and output, and a variable number of auxiliary
[/O modules. Individual symbols are patterned into a set of bit-patterns. A concept
is a bit-pattern of micro-features. This kind of network falls into the first approach
of injecting symbols into subsymbolic systems.. One of the localist networks is the
SC-Net [46] which uses an input node to present one premise of a rule. The CONSY-
DERR [57] networks can be considered as the third approach of injecting symbols into
subsymbolic systems. The networks consist of two levels. the upper level is a localist
network in which each network node represents a concept. The lower level consists of
two-layver connectionist networks between subconcepts. Three promising paradigms.
CONSYDERR [57], SC-Net [46]. and P,RADISE [3]. are reviewed in next three
sections. Their main representation strategy and main principle of operation are

outlined along with their advantages and limitations.

2.2 CONSYDERR

CONSYDERR [57] was designed using the concept of a two-level connection-
ist network. The upper level is a localist network from which each network node
represents a concept or a conceptual rule. The upper level is called the conceptual
level. This conceptual level is symbolic and structural. The links between the nodes
represent the relations between the concepts. Each concept A is connected to a con-
cept B which represents a conceptual rule A — B. If the concepts A and B have
features, then their features are represented as two groups of fine-grained elements
on the lower level. Let F4 represent the features of concept A and Fg represent the

features of concept B. Each node on the lower level represents a feature. Each node
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in F4 has links to all nodes in Fp if the conceptual rule A — B is established in
the conceptual level. Otherwise, there is no link established between the nodes of
F, and Fg. A CONSYDERR network structure is shown in Figure 2.1. The lower
level is called the subconceptuul level. The main advantage of this subconceptual
level is its similarity-based representation. The nodes represented on the two levels
interact each other through three phases during an inference processing cyvcle. The
three phases are the top-down phase, settling phase, and bottom-up phase. In the
top-down phase. the feature nodes at the subconceptual level are activated by the
conceptual nodes which have the highest activation values connected to the feature
nodes. In the settling phase, nodes at each level interact with the nodes activated
during the top-down phase through their weighted links. In the bottom-up phase,
the nodes at the conceptual level will pick the highest activation values between their
own original activation values and the activation summations of their corresponding
feature nodes. The key points of these top-down and bottom-up processes are the

top-down and the bottom-up inheritance.
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The design of CONSYDERR combines two levels of reasoning structures.
One is a high-level reasoning mechanism which resembles symbolic processing. The
other is a low-level reasoning mechanism which resembles subsymbolic processing.
Therefore, the CONSYDERR networks can maintain most advantages of symbolic
processing at the top level while gain some advantages of subsymbolic processing at
the bottom level. Some nodes at the top level can be activated due to the similarity
processing at the bottom level. At the same time, the activated nodes at the top
level inherit properties from some of the other nodes at the top level. The advantages
of CONSYDERR networks is that they meet many of the desired features of hybrid
symbolic and subsymbolic systems. However. the learning mechanisms at both levels
are not well defined. This shortcoming may lead CONSYDERR networks into uncer-
tain situations in some adaptive environments. For instance, consider a subconcept at
the bottom level which needs to develop some subfeatures. In this case, there might
be a need of having a third level to deal with this situation. The reasoning system

may be complicated to support arbitrary interactions between levels.

2.3 SC-Net

The SC-Net [46] is a hybrid symbolic and subsymbolic system to integrate
learning capabilities into expert systems, especially, rule-based systems. The system
does its learning from examples that are encoded in much the same way that the
other connectionist networks. The system can learn concepts where imprecision is
involved. The network representation allows for variables in the form of (attribute,
value) pairs to be used. Both numeric and scalar variables can be represented. They

are provided to the system upon setting up for the domain. The learning algorithm
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uses a network structure, which is configured based on the distinct problems presented

to the system.

A SC-Net network consists of three types of cells: input, hidden, and output
cells. Each cell has a bias associated with it. which lies on the real number scale.
Cells are connected through links which are weighted. Each cell has an activation
value within the range of [0. 1]. This corresponds to the fuzzy membership values of
fuzzy sets. Some cells in the network act as maz and min functions as fOR and fAND
operations in fuzzy logic. Those cells are distinguished by using the sign of the bias of
a cell to determine which of the two functions is to be modeled. Furthermore, a bias
value of zero indicates when a cell should operate as an inverter, or fNOT operation.
An example SC-Net network is shown in Figure 2.2. Each cell in a network can
accommodate n inputs with associated weights C117,. Every cell contains a bias value.
which indicates what type of fuzzy function a cell models, and an absolute value which
represents the rule range. Every cell C; with a cell activation C 4;, except for input
cells. computes its new cell activation according to the formula given in Equation 2.1.

Let

C A; = cell activation for cell C;.C4; in [0. 1].
CW5; = weight for connection between cell C; and C;,CHW7; in R.

C B; = cell bias for cell C;,CB; in [-1, +1].

4

minj=,. . i-1i+1..2(CA; x CWy) [CB;|. CB; <0

CAy =9 mazj=o.,.. i-1+1..2(CA; x CW) | CB;|. CB; >0 (2.1)

1 - (C:‘j X C“"}j), CB, = OandCI'l-",-j 7’5 0

.

An activation of 0 indicates no presence, 0.5 indicates unknown, and 1 indicates

18
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true. In the initial topology contains an extra layer of two cells, denoted as the
positive and the negative cell laver placed before every output cell. These two cells
collect information in conjunction with the positive cell and against the presence of
a conclusion from the negative cell. The final cell activation for the concluding cell is

given as:

N
§V]
N

C-'Lmtput = C"‘positivecell + C-4negativecell -05 ( -

In Figure 2.2, the unknown cell labeled as UK always propagates a fixed value of 0.5
and. therefore, acts on the positive cell and the negative cells as a threshold. The
positive cell will only propagate an activation > 0.5, whereas the negative cell will
propagate an activation < 0.5. Whenever there is a contradiction in the derivation of
a conclusion. the fact will be represented in a final cell activation close to 0.5. For ex-
ample. if CApositivecen = 0.9 and C Apegativecer = 0-1. then C Agyipye = 0.5. which means
it is unknown. If either C Apssitivecer OF C Anegativecert 1 €qual to 0.5, then CAgyipy is
equal to the others’ cell activation. which indicates there is no contradiction. One

exaniple rule given as:
if and(or(sl. s2). s3) then d1 (0.8):

is translated into the SC-Net subnetwork as shown in Figure 2.3. There are two
tvpes of variables that can be used in the SC-Net systems. One type is the fuzzy
variable and the other type is the scalar type variables. Fuzzy variables need special

subnetworks to represent them.

The SC-Net networks showed the benefits of resolving the weakness of rule-
based systems. A learning algorithm is also provided to adjust the bias values in order

to change the outputs of the concluding nodes. However. using fAND operation or
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min functions neglects the total influence of the inputs toward the concluding node.
Furthermore. encoding rules into a network involves extra work to convert values into
the range of [0, 1]. For variable binding, it needs a specific design for a particular

fuzzyv variable.

2.4 PARADISE

Psttern Recognition Arrchitecture for Deformation Invariant Shape Encoding
(PyRADISE) [3] was designed as a network to detect patterns of visual images. The
detected patterns can be used for image classification. PyRADISFE is not a strictly
hybrid symbolic and subsymbolic system. However, the network architecture and
classification methods are related to the LSCAN networks. P RADISE employs
three stages of processing to achieve deformation invariant object recognition. The
first stage is the feature extraction processing using either a Gaussian or Gabor filter.
The second stage is pattern detection processing. The third stage is classification
processing. As shown in Figure 2.4, the three layers, feature extraction layer, pattern
detection layer, and classification layer work together to implement all of the three

processing stages.

At the feature extraction layer, a Gaussian or Gabor filter is applied to a scan-
ning window which moves through the entire input image. The filters are oriented
in two directions. One is in the horizontal direction and the other is in the vertical
direction. The two orientations result in two feature planes in the feature extraction
layer as shown in Figure 2.4. In a feature plane, each location is influenced by the

scanning window which covers a specific area on the input plane. After the window
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scanning process, the two oriented feature planes are ready for the next processing

stage which is pattern detection processing.

At the pattern detection layver. a Pattern Detection Module (PDMI) is shown
in Figure 2.5. A PDM consists of two sublayers. The top sublayer has only one node
which represents the winning node of the lower sublayer. The top sublayver node has
connections to the classification nodes. The bottom sublayer or called as an invariant
plane consists of 2v+ 1 nodes, as explained below. Each node maps the same areas on
the two feature planes. Each area on the feature plane has a size of 2\ + 1. A pattern

is formed if the average feature strength of the mapped areas is greater than a preset
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threshold. Then. a decision function. a modified Radial Basis Function (RBF) [3]. is
used to evaluate the selected pattern. If the output of the RBF is greater than the
threshold then the corresponding invariant node is eligible to represent the selected
pattern. At the beginning of the training. there is no PD)\I available in the pattern
detection layer. New PDMIs are created while a new class is created. The purpose
of the invariant plane in a PDM is to detect potential patterns on the feature planes
while their locations had been shifted to their neighborhood locations. The farthest
distances of the neighborhood locations are decided by the size of v. The size of ~

also decides how much a pattern can be shared by different image objects.

At the classification layer, a classification node has input connections from
some of the active PDMs. A classification node is activated if the node gains enough

strength from the connected PDMs. If there are no active classification nodes to
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represent the image object, a new classification node is created. While a new clas-
sification node is created. new PDMIs are created if there are not enough PDMs to
represent the extracted patterns from the feature planes. In the case of multiple
active classification nodes representing the input image object, a hypothesis test is

conducted to pick one of the active classification nodes.

Py+RADISE networks had been previously applied to different image objects
and showed reasonable results. The networks show three advantages over the other
tvpes of neural networks. One advantage is that the learning can be incremental
which means new classification nodes can be added into the system at run-time. The
second advantage is no need of pretraining of the networks. At run-time, learning
happens only on the related PDMs. Therefore, learning is achieved in a relatively
short time. The third advantage is that the networks can be tuned for solving specific
image objects using the control parameters. A limitation of PyRADISE networks
occurs when patterns are shared with many image objects. The final classification

decision requires hypothetic tests which may lead to inaccuracy.

2.5 Other Research Works

There are other research works which aimed at combining symbolic and sub-
symbolic processing. Hendler [19] used connectionist networks to connect microfea-
tures to some symbolic elements in semantic networks. These symbolic elements be-
come active through the microfeatures. On the top of the connectionist networks are
semantic networks, which maintain the structures of the semantic elements. Kwasny

and Faisal [26] used a connectionist network to solve symbolic parsing problem for
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natural language processing. The main part of the system is a connectionist network
which is trained with patterns which represent the encoding of the buffer positions
and the top of the stack. The input to the hybrid system is a natural language sen-
tence and the output is a parse tree. The patterns are encoded through a symbolic
processor which handles the constituents of the natural language sentence. Shastri
[52] designed the SHRUTI system to process predicate logic based systems. Each
network node represents one predicate clause. The facts are connected to the related
network nodes to initiate node firing. Eventually. node firing propagates through the

entire network. SHRUTI networks can hence be classified as localist networks.

2.6 Summary

In this chapter, different tyvpes of hyvbrid symbolic and subsymbolic were
introduced. Three systems. CONSYDERR, SC-Net, and PyRADISE . were discussed
in more detail. Their advantages and limitations were also discussed. Work from other
researchers, Hendler, Kwasny and Faisal, and Shastri. were introduced briefly. There
are more research works in this related areas. Those models can be found in various

aspects of the other researchers’ works already mentioned.

After reviewing the previous hybrid symbolic and subsymbolic models. it
appears that more research can be done in order to increase the benefit of a hybrid
symbolic and subsymbolic system. This is the purpose of this research to investigate
how a new paradigm can benefit this research area. The new paradigm is given in

next chapter.
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CHAPTER 3
LOCALIZED SELF-CONTAINED ADAPTIVE

NETWORKS

This chapter introduces a new paradigm which handles symbolic values using a
computational model based on artificial neurons. This processing paradigm is called
the Localized Self-Contained and Adaptive Networks (LSCAN) representation and
reasoning scheme. The knowledge entities are represented by interconnected network
nodes. one node for each knowledge entity or concept. Each node has capabilities
to process decisions at the symbolic level. The LSCAN system propagates numerical
values among the network nodes while maintaining high-level symbolic structures.
Each node in the LSCAN network is sufficient to make decisions from its own local
inputs without help from global information. In addition to flexibilities of decision
making possessed by localist networks, LSCAN systems provide learning capabilities.
Furthermore, the LSCAN systems retain the power of symbolic processing such as:
variable binding, svmbol composition and decomposition, relational operators. At
the node level, each node associates a function to derive the outputs from the input
data. The following sections provide information about how knowledge is represented

and how conclusions are made from various input information.
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3.1 Knowledge Representation

A viable parallel knowledge representation formalism provides the following

capabilities:

information can be easily added or removed from the knowledge base.

e representational mechanisms can perform inferences readily from the available

knowledge.

e information can be incorporated to guide the inferences mechanism in the most

promising direction, and
e inference mechanisms can be directly implemented on parallel computers.

To achieve these goals. the LSCAN knowledge representation uses knowledge entities
and entity relations. Each entity is named as an unique symbolic identifier. Therefore.
the LSCAN knowledge representation is easily understandable and traceable at the
level of human cognition. Knowledge elements are viewed as knowledge entities; each
entity is either a conclusion or a composition of some other knowledge elements, which
represents the AND relation. or each entity is either a conclusion or a composition
of an alternative of several group of knowledge elements. which represents the OR
relation. In this definition, a knowledge entity can be decomposed into fine elements.
Many fine elements together can be composed into a high-level knowledge entity. The
AND and OR relations have been used in many Al approaches such as Rule-Based
knowledge systems, Predicate Logics. and Prolog Languages. Therefore. these Al
practices can be easily mapped into the LSCAN networks. Furthermore, the AND

and OR relations are universal applicable to represent relations between knowledge
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elements, if the relations are well defined. Let n represents the number of entities
in a specific knowledge domain. An entity vector E(e;.es.€3.....€,) includes all
required entities in a knowledge domain. In a LSCAN network, subnetworks can be
constructed across different knowledge domains, for example, using commonsense in

a specific knowledge domain. The knowledge in a specific knowledge domain can be

represented in the following forms:

L. e; = e;.

o

ey AND e, AND e; AND ... — €;

3. Cy ORCQ DRC'; OR...= €;

1. (e, AND e, AND ...) OR (e; AND €5 AND ...) OR ... => e,

D. (81 OR e, OR) AND (C,- OR €9 OR) AND ... = €;

6. e, = ej.er.€. ..

7. e; AND e, AND e3 AND ... — €. Cr. €, - ..

-

3. ¢ 0Re; ORe3 OR ... = €j.Ck. €, ...

Where 1 <€ i,j < n. and = means implication. Each of the above forms is called
an implication rule. The word implication is used to indicate that the assertion of an
entity is depending on the strengths of the input entities. However, to simplifyv the
discussion. the word. rule, is used to represent a LSCAN knowledge representation
form. Rule #1 uses a single entity. Rule #2 uses more than two entities combined by
the operator AND. Rule #3 uses more than two entities combined by the operator

OR. The rules #4 and #5 use mixed combinations of the rules #2 and #3. Thus,
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representations of the rules #4 and #5 can be resolved by the representations of the
rules #2 and #3. Rule #6 represents the one-to-many mapping. Rule #7 represents
the many-to-many mapping using AND operator. Rule #8 represents the many-to-
many mapping using OR operator. Therefore. the LSCAN knowledge representations
can be represented in the forms of the rules #1, #2. #3. #6. #7. and #8. The AND
operator represents the composite relation between an entity and its attributes or
input entities. The OR operator represents optional relation between an entity and

its attributes.

Each entity carries two kinds of information. One is the physical values of
an entity. The other information is the belief factor about an entity. There are three
tvpes of physical values: a binary number, a real number, and a character string. The
belief factor is a real number between 0 and 1. The belief factor with a value of 1. an
entity is fully accepted. Otherwise, with a value of 0. an entity is fully rejected. The
LSCAN inference mechanism can always process and propagate belief factors in the
range of [0, 1]. A NOT operator can be applied for each entity. If the NOT operator is
applied to an entity, the belief factor of that entity is subtracted from 1. For example.

the belief of BOB_IS_TALL is 0.82, then, the belief of NOT(BOB_IS_TALL) is 0.18.

An entity can represent a relation between other entities. This kind entity is

called relational entity. There are four relations between entities:
e one-to-one relation.
e one-to-many relation.

e many-to-one relation, and
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e many-to-many relation.

For example, the one-to-one relation is a person’s Social Security Identification Num-
ber which is unique for each person. On the other hand. one physics teacher has
many students, which is an example of one-to-many relation. Conversely, the stu-
dents having a particular physics teacher is an example of many-to-one relation. For
the many-to-many relation, a proper example is words spoken in a natural language
sentence and the intended concepts which the sentence delivers. These relations are

represented by using the forms of #1. #6. #2. and #7 repectively.

The other kind of entity is called assertive entity. An assertive entity asserts
something with a belief factor. For example, the entity BOB_IS_TALL is an assertive
entity. Depending on the physical values asserted. there are four classes named as:
constant entity. variable entity. functional entity. and decision entity. A constant en-
tity has only one possible physical value. A variable entity has maay possible physical
values. A functional entity manipulates the physical values of its input entities. A de-
cision entity asserts TRUE or FALSE according to its input entities. The processing

of belief factors using the LSCAN knowledge entities is discussed in next section.

3.2 Reasoning Mechanisms

The reasoning mechanism of the LSCAN system is discussed in this section.
As discussed in the previous section. a LSCAN knowledge entity carries two tyvpes
of information. One tvpe of entity information is the belief factor of an entity. The
value of a belief factor is a real number in the range of [0. 1]. The other type of

entity information is the physical values of an entity. The LSCAN reasoning mecha-
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nism manipulates belief factors explicitly between knowledge entities. The assertion
of the LSCAN reasoning mechanism is based on the values of belief factors among
a set of entities. The largest belief factor is selected as the assertion of an informa-
tion query. Some knowledge representations use two-valued logic. These knowledge
representations are Predicate Logic, Frame-based Systems, and Database Systems.
The belief factors for these systems are embedded in their knowledge representations.
The reasoning mechanisms for these systems directly manipulate the physical values
of the knowledge components. A belief factor has a value of one if a physical value is
matched. Boolean Logic systems implement two-valued belief factors directly with-
out physical values. or physical values equal to belief factors from the viewpoint of
the LSCAN reasoning mechanisms. Production systems [39] process reasoning in two

phases: matching premises of rules and combining confidence factors.

The LSCAN reasoning mechanisms are analogous to the Production Rule
svstems in the matter of forward processing. However, there are differences between
the LSCAN reasoning mechanisms and the production systems on the ways of com-
puting the belief factors and resolution of conflicting rules. Furthermore. in rule
based systems, computational tractability problems are encountered whien the size of
knowledge base increased and the relations between the knowledge entities become
more complicated. The reasoning mechanisms face harder decisions to select a correct
direction among all possible searching paths. For processing efficiency, a reasoning
mechanism may have to forego multiple search paths. On the other hand. LSCAN

reasoning mechanisms attempt to meet the following goals:

e maintain multiple search paths,
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Figure 3.1: A Complete AND E-node Structure

e provide belief-factor propagation and two-valued logic processing,
e resolve rule conflicts and rule synchronization constraints.

e provide training and learning capabilities,

e tolerate incomplete information. and

e utilize massive parallelism during the reasoning process.

3.3 Low-Level System Structure: Evaluator Nodes

As mentioned in Section 3.1, the AND relation is required for all composite
entities. The AND operator obtains the summation of the attribute entity strengths.
Let € represent the summation for the entity node e;. Thus, the mathematics expres-

sion for the AND operator is:

€ = Z & w;; (3.1)
J

1=1..n

where ;. j = l..n, are n belief factors of the active entities connected to the entity e;
and wj; are the connection strengths between the entities e; and e;. A complete AND

cvaluating node is illustrated in Figure 3.1 which contains feed-forward connected
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input nodes and lateral interacting nodes.

Each entity is embedded in an evaluator node, called an E-node. Let &; be

the output strength of the entity e;. and &; is expressed as:

1 £
= [ 3.2
& (1 +e-(s.—6,h)) (55}') (3-2)

where z; is a normalized equation from Equation 3.1 based on the ratio of number of

input connections d;, and the constant é,¢: in mathematical expression:

R
o (5) -

The constant 4,y is a pre-selected constant number in order to scale the first factor

o)

in Equation 3.2 into the range of [0. 1]. An appropriate default value is §;5 = 28.4

which is just sufficient to saturate the function:

L

1+ e—(=3.n) (3-4)

The function 3.4 is a modified function of a regular Sigmoid function called Shzft-Right
Sigmoid function which shifts the center of an original Simoid curve to a positive off-
set, dg,. in the horizontal direction. Where 44, is equal to %L The curve of the
Equation 3.4 is illustrated in the Figure 3.2. Equation 3.2 is called a Scaled-Shift-
Right Sigmoid function which maps inputs to an output value into the range of [0, 1].

The plot for Equation 3.2 is illustrated in the Figure 3.3.

The OR relation indicates sufficient conditions which are not always nec-
essary. If an eniity has OR relations with sets of ANDed entities then the entity

picks up the strongest set as its belief factor. The OR operator is analogous to a
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Figure 3.2: Shift-Right Sigmoid Function
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Figure 3.3: Scaled-Shift-Right Sigmoid Function

34

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Bxcitatory Iahibitory
node node

Hidden nodes

|
l

Input nodes ! O

Figure 3.4: A Complete OR E-node Structure

local winner-get-all [48] operation. The locality of competition is among a small set
of ANDed neural units. As illustrated in Figure 3.4. each hidden unit gets the sumn-
mation of its input strengths by applying Equation 3.1. Next, the output strength
is evaluated by using Equation 3.2. The output unit picks up the largest strength &

from the hidden unit e,. The mathematics expression for the OR operator is:
& = MAN—1_m (&) (3.3)

where m is the number of hidden units an 117 is the connection strength between
the entity e; and the hidden unit e;. The default value for 17 is 1. Different values

can be assigned to 1 in order to distinguish the preferences among ihe hidden units.

The NOT operator inverts the belief factor of an entity. The mathematics

expression for the NOT operator is:
§=1-¢; (3.6)

where & is the belief strength of the entity e; and Zj is the inverted belief strength

of the entity e;. LSCAN systems use these AND. OR and NOT operators together
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with activation function of entities to process the belief factors. Through the LSCAN

network. belief factors are propagated.

Comparing the Scaled-Shift-Right Sigmoid function to the Shift-Right Sig-
moid function. the former has some advantages over the later as an activation function.
The Scaled-Shift-Right Sigmoid function consists two parts in the plot of Figure 3.3.
The lower half of the plotting curve is a near-exponential curve and the upper half
is a near-linear curve. Unlike the Shift-Right Sigmoid function which separates acti-
vation strengths into two extremes, near 0 or near 1, the Scaled-Shift-Right Sigmoid

activation function provides following features:
e Degrades activation strengths for weak inputs.
e Distinguishes activation strengths for strengly active inputs.

The property of the Scaled-Shift-Right Sigmoid activation function has the similar
effect as the experimental results, frequency versus input current of a standard neu-
ron, of Gerstner [17]. Firing an E-node is decided by an individual threshold 6;. If
the activation strength &; is greater than the threshold 6; then the E-node, e,. is fired
with the strength &;. Each E-node is classified into two types of belief logic. One is
the two-valued logic and the other is the real-valued logic which has values fall into
the range of [0. 1]. For the two-valued logic, the threshold 6; of an E-node is set at
a value near to 1 so that output is generated if the evaluated expression indicates a

TRUE condition.

There are also three lateral relations between the LSCAN E-nodes: excita-

tory, inhibitory, and synchronization interactions. The excitatory interactions permit
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Figure 3.5: Enhancement Lateral Interaction

an E-node to excite other E-nodes. On the other hand, the inhibitory interactions
discourage other E-nodes. As illustrated in the Figure 3.1 and Figure 3.4, both ex-
citatory and inhibitory interactions can coexist resulting in the summation of the
excitatory and inhibitory strengths. If the E-node e; has p excitatory interactions
and ¢ inhibitory interactions, then the total influence of the other E-nodes on the
E-node ¢; is:

P = Z €W i — Z €rpi (3.7)
j=l.p k=l...q

where w;; and wy; are lateral connection strengths between the E-node ¢; and other

E-nodes ¢; and ¢.

If p, is positive. then p; is mapped into the range {1. 2] with the mapping factor
ni. Then, n; is used to magnify the output strength of the E-node e; by multiplying
the mapping factor ;. The mapping factor r; is illustrated in the Figure 3.5 and is
given as:

—1 Pi
e — _ 9
L (l + e—(th-p.)) (1 51[) + = (3.8)

where d;; is a constant value which makes the curve in the Figure 3.5 saturation. A
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good practical value for d;; is 10 so that ¢, = 9#

If p; is negative, then p; is mapped into the domain [0. 1] which is represented
by the mapping factor n;. The mapping factor 7, is multiplied to the output strength
of the E-node e;. Therefore. the E-node ¢; is discouraged. The plot of n; for the

negative p; is illustrated in the Figure 3.6 and is given as:

1 Pi
m—(r::m:m)ﬁ‘&) (3:9)

Equation 3.8 and Equation 3.9 are mirror functions of one another. The resuit of 7;

is applied to Equations 3.2 and Equation 3.5. The output &; of an E-node e; becomes:

& =& (3.10)

The effects of lateral connections are two-fold. One benefit supports conflict-
resolution. If two or more E-nodes are active at the same time and they conflict each
other. the preferred E-nodes inhibit the others to be active. The other benefit is
support for non-monotonic reasoning. If new information is added which contradicts
previously established knowledge then the old information can be inhibited. This

action results in no conclusion from affected E-nodes. Now consider the more com-
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Figure 3.7: An Example of Chained Inhibitory Links

Figure 3.8: An Example of Chained Excitatory-Inhibitory Links

plicated cases which have e; to be degraded by e, which then to be degraded by ej.
The problem raised over here is that how e, knows it should be activated because e,
is degraded by ej. This scenario and solution are illustrated in the Figure 3.7. The
node €, is enhanced by e3 in order to cancel the effect of degradation from e,. In this
manner. €; is able to make decision by itself alone without looking at whether e, is
degraded by e3. In the case of that e; is enhanced by e, which then is enhanced by ej.
¢; is not required to have an enhanced link from e3. However, in the case of that e, is
enhanced by e, which then is degraded by ej. then e, is required to have an degraded
link from e; in order to cancel the effect of enhancement from e, as illustrated in the

Figure 3.8.

The lateral syvnchronization connection is always two-valued: a connection
is either active or inactive. If an E-node e; is active while a lateral synchronization
connection is asserted from the other active E-node e;. then the E-node e; is deacti-

vated regardless the activation strength of the E-node e;. The lateral synchronization
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Figure 3.9: An Example of Using Svnchronization Links

connection is required while an ORed subnetwork has different depths in its branches.

Consider the scenario giving the following structure:

e; AND e; = ey
e3 AND ey =— e;

5 AND e = ¢35

[§)
v

e; AND eg = ¢4

This structure is illustrated in the Figure 3.9. If all of the entities: e;, e». e3. €, e5. and
¢g are activated, then eq can be activated through either the left or the right branch.
The activation of e; and e, will activate eg directly. However. the activation of e3, e,
cs. and eg will activate e; and eg which then activate eq. Therefore, eg is activated
at different time which may not give es a chance to pick up the highest strength
between the two branches. The solution to this problem is to use the synchronization
connections between e;, eg. and eg as shown in the Figure 3.9. Once e; or eg is
activated, eq is disabled to wait for one more processing cycle. If neither e¢; nor eg is

activated, e has no problem to be activated immediately through the left branch.

40

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Problem Solver

@

Network Manager

]

Hybrid-Symbolic Network

Figure 3.10: A System Diagram

3.4 A High-Level System Structure

This section discusses the network management process used during problem
solving. A LSCAN system consists of an artificial localist network. a problemn solver.
and a network manager as shown in Figure 3.10. The LSCAN network provides mul-
tiple searching paths and local decisions based on the relations between an E-node
and other E-nodes. Initially. some leaf E-nodes are activated by some facts. A leaf
E-node has no input connections. Next, the activated leaf E-nodes activate some
other E-nodes which are connected to them. This process continues until no E-nodes
arce activated. An entire firing cycle is defined as a processing period from the time
of the first E-node is fired to the time of no E-node is fired. An entire firing cycle is
composed of many firing stages. A firing stage is defined as the time of some E-nodes
activated to the time of some other E-nodes which are activated. Once activated.
cach E-node is disabled from further activating within the same cycle. To generate

the effects of lateral interactions between E-nodes. a firing stage is accomplished in
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two phases. The first phase computes the output strength, &;. from the inputs, and
n; using Equation 3.2 and Equation 3.9. The second phase recomputes the output

strength. & using Equation 3.10, if any lateral interacting E-node is activated.

The network manager provides the services of controlling the firing cycle,
changing thresholds of E-nodes. reporting results from any specific E-node. and trac-
ing firing paths. The problem solver interprets a specific problem and converts the
problem into forms which are implemented by the LSCAN networks. The final results

inferred by the LSCAN network are also interpreted by the problem solver.

3.5 Learning Mechanisms

LSCAN systems support learning from the input units of an E-node and
lateral connections. The inputs contribute to learning by allowing partial set of inputs
to result in the activating of an E-node. the learning from incomplete information.
Supervised learning and unsupervised learning schemes are both provided with the
LSCAN systems. Lateral learning occurs when two or more conflicting E-nodes resolve
the conflict by allowing one or more than one E-node to be activated. Learning

schemes adjust the weights of the links between E-nodes, as discussed below.

3.5.1 Supervised Learning

Supervised learning is a guided scheme where both the facts and the expected
results are provided at each firing cycle. Each expected firing E-node adjusts its own
input connection weights based on the difference between the actual and the expected

output strengths and the number of active inputs. If some of the inputs of an E-node
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are all active. then this E-node is learning how to deal with incomplete information.
Let an ANDed E-node, e;. have n input units with the input connection weights,
wj;- Also, let p; be the expected output strength and the actual output strength be
&;. At the time of firing the E-node e;, the number of active input units is m and
m < n. In order to adjust each weight of w;;, v; has to be computed from u; using
Equation 3.2; &; is replaced by u; and z; is replaced by v;. However. Equation 3.2 is
not reversible. so the Newton-Raphson [42] method is used to find an approximate
v; from pu;. Let the difference between v; and ¢; be Az; = v, — ;. The adjustment
of weights wji(new—active) is proportional to the radios of ff— and m—‘}“ﬁj% The final

weight adjustment for active input units is:

nv; AE,‘/\
Wiilnew —active) — Wji(old—active) + 33_— (3.1 1)
sfm fave

where &,.. is the average input strength and )\ is a learning rate which limits the
learning step size. The value of A is less than 1 and greater than 0. In the case of A =
1 only one learning step is required. The smaller A creates a longer training period.
On the other hand. weights of inactive input units are adjusted based on the total
amount weight change for active input units. Then. for inactive input units, their

weights are adjusted as:
1
n—m

(3.12)

Wii(new —inactive) = Wiilold-inactive) — E , \‘-""ji(ncw—aclivc) - L‘"ji(ol(l-—aclive))
Jj=l..m

In the case when n = m which implies all input units of an E-node are active and
equation 3.12 is not necessary. The weight adjustment. can be based on cach input
strength: stronger input units gain more weight. On the other hand, weaker input

units lose weights. Let &,,. be the average input strength for the E-node ¢;. Then,

43

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



the weight adjustment is given as:

; vi A\
Wjilnew) = “ji(old) + ( & _ 1) - : (3.13)

&ave 2 Cave
The training process proceeds until all supervised E-nodes reach the expected out-
puts. The process trains input connection weights only for those E-nodes which are
supervised while all other input connection weights are intact. For an ORed E-node.

learning occurs on the winning hidden unit.

3.5.2 Unsupervised Learning

During unsupervised learning. expected values are not assigned. Equations 3.11,
3.12. and 3.13. arc used. However. the expected output strength p; is replaced by
the threshold 6;. Furtheremore. an E-node is trained only when the actual output
strength &; is greater than and equal to a#é;, where « is a factor to control whether an
E-node has to be trained. The value of a is between 0 and 1. Otherwise. an E-node

is not trained.

3.5.3 Learning with Bias Nodes

With the AND connections. any LSCAN node can add one or more bias nodes
to it as shown in Figure 3.11. The purposes of bias nodes are two fold. One purpose is
to stabilize the training process. In some cases. training process takes more training
steps to train a LSCAN node while the strength of a LSCAN node is getting closer
to the training threshold. Addition of bias nodes can help to train a node to reach

the training threshold more accurately and use less training iterations.

The other purpose is to make bias nodes as active or inactive nodes by giving
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Figure 3.11: An AND E-node Structure with Bias Node

bias nodes with constant values of 0 or a value which is greater than 4. which is the
threshold of a LSCAN AND node. Bias nodes are active while their values are greater
than 6. In this case, the bias nodes act as connection weight sink. Some of the weaker
connectious to the LSCAN AND node lose more connection weights after training.
Therefore. the weaker input nodes have lesser influence on the output node. On the
other hand, bias nodes are inactive while their values are always 0. In this case. the
bias nodes act as connection weight source. The connections of the bias nodes provide
weights to the other in-bound connections of the LSCAN AND node. The bias nodes
promote the other input nodes connected to the LSCAN AND node to make them
having more influence on it. Also. bias nodes change the training Equation 3.13 to

the Equations 3.11 and 3.12.

3.5.4 Competitive Learning

Competitive learning occurs at the lateral level. At each firing stage. multiple
E-nodes are fired simultaneously. Conflicting E-nodes establish inhibitory connections
from the preferred E-nodes to the conflict E-nodes. There are supervised and unsu-
pervised competitive learning. For the supervised competitive learning, the LSCAN

svstems select one or more preferred E-nodes which can be continued to trigger other
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E-nodes while the other firing E-nodes are inhibited. The inhibited E-nodes are de-
graded under their own thresholds in order to be not fired. Therefore, the inhibitory
connections have weights to be regulated according to the total inhibitory strength.
Let wy be the inhibitory connection weights from e; to e; and ¢ = 1...p. Then. the

weights w;; are adjusted by:

& £k
Wik(new) = Wik(old) + (814
ik(new) ik(old) Zj:l...p fj 5[jfi(ave)

where =, is derived from 6¢/& by the Newton-Raphson [42] method and &;(ape is
the average inhibitory strength from all E-nodes e;,=;_,. to ex. Under supervised
competitive learning. at one firing stage the LSCAN systems can inhibit some E-

nodes from different non-inhibitory E-nodes.

Under unsupervised competitive learning. the maximum number of E-nodes
that can be fired at a firing stage is specified as x. The first £ E-nodes with greater
output strengths are used to inhibit the others. Equation 3.14 is used to adjust the
weights wig. Under the unsupervised competitive learning. all E-nodes are inhibited

by the same group of the preferred E-nodes.

3.5.5 Enhancement Learning

The LSCAN systems also support, at a firing stage. exaggeration of some
E-nodes from others if they are fired at the same time. The LSCAN systems estab-
lish connections from some E-nodes N;-;_, to the E-node N, which is exaggerated.
Alternately, some E-nodes can be exaggerated with respect to each other. This kind
of learning is called enhancement learning and is supervised only. This kind of learn-

ing occurs when some conditions are asserted. In other words, activations of some
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E-nodes are exaggerated if some other clues are activated. Even an inactive E-node

can be activated by one or more exaggerating E-nodes.

3.6 Comparison Between LSCAN and CONSYDERR

The main functionalities of CONSYDERR networks are similarity and in-
heritance. These two functionalities can be achieved by LSCAN networks through
appropriately structured networks. As this view point, LSCAN networks have sim-
ilar representation power as CONSYDERR has. The interactions between the sub-
conceptual nodes in the sub-conceptual layer also can be constructed by using LSCAN

networks. The following two sub-sections describe the LSCAN approaches.

3.6.1 Similarity

The similarity appeared on the subconceptual level is defined as the number
of overlapping features between any two feature groups. If A and B are the two
concepts represented in the conceptual level. their features are represented as F 4 and
Fg respectively in the subconceptual level. The number of features of F4 is m_4 and
the number of features of Fp is mg. The number of overlapped features is m g which
can be zero. Then the similarity between the two concepts A and B is measured as
sap = (A ~ B) = '—:‘-,;1:- One of the advantages of the similarity representation is
to allow the concept B to be activated to some level of strength if the concept A is
activated with the strength ACT, and A is not a direct causal fact of B. In this case
the concept B is activated with the strength ACTg = s.1p x ACT,. If the concept A

is activated with a full strength of 1. then the concept B is activated with the strength

ACTgp = s.4p which is a fraction of the number of features of Fz. This measurement
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Figure 3.12: An Example of Weak-Bound Similarity

is very close to the results using the LSCAN's activation function (Equation 3.2). The
outputs of this equation are plotted in the Figure 3.3 which shows that the activation
strengths are near s, if the activation strengths arc greater than 0.6. The activation
strengths are dropped sharply if the similarity s 4p is less than 0.6. The Equation 3.2
can be used as a measurement of similarity of s in a non-linear manner. This non-
linear manner shows a good property to prevent weak similar concepts from being

activated and propagated.

There are two cases for the concept B to be activated through the overlapped
features with the concept A in LSCAN's structures. The first case is called weak-
bound-similarity which is shown in the Figure 3.12. The activation strength of the
concept B does not depend on the activation strength of A. This is due to the fact
that features., or knowledge entities, of the concept A are not activated by A. The
second case is called strong-bound-similarity which is shown in the Figure 3.13. The
features of the concept A are activated by A. Therefore. the activation strength of
the concept B depends on the activation strength of A. The similarity of B to A is
measured only when the E-nodes €3, e;. and e; are activated while eg and e; are not

active.
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Figure 3.13: An Example of Strong-Bound Similarity

3.6.2 Inheritance

Consider a set of concepts A and B which A is the superclass of B. In the
feature space, the features F'y are a subset of Fg. Similarly, C is the superclass of D

and F¢ are a subset of Fp. In the CONSYDERR. the following cases are handled:

e Suppose A has a property value C'and B has no specified property value. If B is
activated then Cis activated to a certain extent from the top-down inheritance

of A.

e Suppose B has a property value D and A has no specified property value. If 4

is activated then D is activated too from the bottom-up inheritance of B.

In LSCAN, the first case is handled as shown in Figure 3.14. In Figure 3.14, e, is
the superclass of eg. E4 covers all features which include the subclass of eg. E¢ is
activated only when e, _; are all activated. While ep is activated. e¢ is activated to a
certain strength by ey, e5, and eg. The second case is handled as shown in Figure 3.15.

While e 4 is activated, ep is activated by ey. e5. and eg.
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Figure 3.14: An Example of Inheritance for The Case 1

Figure 3.15: An Example of Inheritance for The Case 2
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Figure 3.16: Inheritance Cancellation for The Cases 1 and 2

The above cases deal with only either A or B has property value. If both

of A and B have property values C and D respectively then activation of A may acti-
vated both of C and D. Therefore, CONSYDERR deals with cancellation of property

inheritance. The following four cases are discussed:

1. A has a property value C and B has a property value Dand D # C. If A is

activated then activation of C is stronger than D.

N

. 4 has a property value C and B has a property value D and D # C. If B is

activated then activation of D is stronger than C.

W

. A has a property value C and B has a property value D which is a subclass of

C. If A is activated then activation of C is stronger than D.

e

. A has a property value C and B has a property value D which is a subclass of

C. If B is activated then activation of D is stronger than C.

In LSCAN, the cases 1 and 2 are handled as shown in Figure 3.16. For the case 1,
e 4 activates all of the belonging features e;_; which activate e~ and ep to the same

activation level. However, the degradation of ep from ec will cease the activation of
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Figure 3.17: Inheritance Cancellation for The Cases 3 and 4

D. In case 2, eg is activated. In this case, ep is activated at its full strength and ec
is only activated at a fraction of its full strength. Therefore. the activation strength
of ep is stronger than ec. The cases 3 and 4 are handled in Figure 3.17. In these
two cases, ec and ep have their own features. €s 12 and ey0,1;. which interact with
the features of e4 and eg. While e, is activated. both of e~ and ep are activated
through eg_12. However, ec degrades ep to cease activity. If eg is activated. then ep
is activated to its full strength through e;o;. The activation strength of ec is much

weaker than the strength of ep.

3.7 LSCAN Knowledge Acquisition and Processing Tool

The LSCAN simulation tool is a Windows-based software using windows stan-
dard user interface. This tool is a prototype to simulate LSCAN networks for discrete
nodes, not aggregate nodes. However, aggregate nodes can be further developed. The
purpose of the simulation tool is to examine the needs for LSCAN networks and fur-

ther requirements for future developments.
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The software was designed using MS Windows standard user interfaces to
allow users to build LSCAN networks and implement them for testing and analysis.
The first user interface is a dialog window as shown in Figure 3.18. Users can de-
fine the properties for an E-node, add a new E-node, or modify an existing E-node.
The properties of an E-node include name. node type. value type, logic type, input
link type, and other control parameters. A node type is one the six types: constant.
variable. function, decision, digital (binary). and construct. A constant type means
an E-node carries a constant value. A variable type means the values of an E-node
can be binded with anyv values at processing time. A function tvpe means that an
E-node derives its own value from a given function. A decision tvpe means that an
E-node implements Boolean logic. A construct type means an E-node implements an
external script. A value type can be an integer, a real number, a binary logic value
which is either 0 or 1, a real logic value which is in the range of [0. 1], or a character
string. The logic type is either a rigid logic or a soft logic. A rigid logic has a value
of 0 or 1. A soft logic has a value between 0 and 1 inclusive. There are four kinds
of input connections. The NIL link means an E-node has no inbound connections.
which is a leaf node. The AND link means an E-node has AND connections, which
implements the AND evaluation function. The OR link means an E-node has OR
connections. which implements the OR evaluation function. The SINGLE link means
an E-node has only one input connection. In the most cases. a SINGLE link E-node
may be a variable to bind the value from its input node. The control parameters are

self-explained from their labels.
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The second user interface shown in Figure 3.19 is a dialog window to define
the function type for an E-node. LSCAN tool provides some build-in functions. or
allows users to specify a function script, a formatting function. or an external func-
tion call using DLL techniques. If a function is selected as a Fuzzy logic function,
the required Fuzzy logic parameters are inquired. The third user interface is shown
in Figure 3.20. Through this dialog window, users can establish inbound connections
for the specified E-node. Inbound connections can be added or delinked. The forth
user interface is shown in Figure 3.21. Through this dialog window. users can estab-
lish outbound connections for the specified E-node. Outbound connections can be
added or removed. Using these two dialog windows. users can double check whether
the inbound and outbound connections are well established. The fifth user interface
is the connection weights setup dialog window as shown in Figure 3.22. All default
connection weights are 1. Through this dialog window. uers can assign a different

weight value to a specific connection.

After a LSCAN network is established. users can view the entire network
or networks through two view windows. One window shows the list view of the all
E-nodes. Within this view window, some properties of the all E-nodes are displayed
at the right side of the view window. One example list-view window is shown in
Figure 3.23. The other view window is the tree view of the all E-nodes. The tree-
view window shows how the E-nodes are connectioned. The tree-view allows users
to expand or collapse any E-node if such an E-node has inbound connections. One
example tree-view window is shown in Figure 3.24. There are many other features of

this LSCAN tool. However, they are not included in this text due to space limitation.

(1]
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3.8 Summary

This chapter introduced the proposed LSCAN paradigm. The background
motivation of the deriving AND and OR evaluation nodes was presented in the for-
malization of knowledge representations. The complete AND and OR nodes include
feed-forward connections and lateral connections. Next. their feed-forward evaluation
functions and lateral interaction functions were defined. The NOT operators are the
1's complement of the logical outputs of any AND or OR nodes. Learning mechanisms
for both of feed-forward and lateral connections were defined. For the feed-forward
learning mechanisms. two cases would be considered. One case is when the input
nodes are not all active. In this case, two learning mechanisms are used. One mech-
anism is for the active nodes and the other mechanism is for the inactive nodes. The

active nodes gain more connection weights from the inactive node connections. The
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second case is when all of the input nodes are active. In this case, only one learn-
ing mechanism is used. The stronger active node connections gain more connection
weight from the weaker node connections. Therefore. the stronger active nodes gain
more activation than the weaker ones. All learning mechanisms can be implemented
under the supervision or without supervision. The lateral interaction learning mech-
anisms were also defined. Two types of lateral learning mechanisms were provided.
One is the competitive learning mechanism. In the competitive learning mechanism,
the winner nodes prohibit activations of the other nodes. which depending on the
lateral connections. Conversely, the type of the lateral learning mechanisms is the
enhancement learning mechanism. Some active nodes would enhance the activations
of some other nodes, which may be active or inactive. A LSCAN subnetwork can add

some bias nodes to accelerate the learning process as discussed in Section 3.5.3.

Sun’s CONSYDERR networks have some similarities to the LSCAN repre-
sentations. The two aspects of similarity and inheritance can be compared to the
LSCAN representations as discussed. Finally. the LSCAN knowledge acquisition and

processing tool was presented with some explanations and illustrations.
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CHAPTER 4
EXTENDED FEED-FORWARD LEARNING

TECHNIQUES

This chapter demonstrates how to use the feed-forward learning method given
in Section 3.5.1 to build networks as classifiers, switches, and pattern recognizers.
These networks are considered as subsymbolic networks which can be integrated into
the LSCAN hybrid structure. In order to build these networks. the concepts of high
pass filter. low pass filter. and band pass filter are explained as the base of constructing
the mentioned networks. Each category of these networks: classifiers. switches. and

pattern recognizers. has been illustrated with an example.

4.1 Filters

This section demonstrates how to train a single input variable to be a high
pass filter, a low pass filter. or a band pass filter. Refer to Section 3.5.1 on the training
mechanism, an E-node is trained to be active while a sequence of inputs, which have
values between 0 and 1. are applied. The inputs activate this trained E-node with a
strength above the threshold. In this sense. the trained E-node is acting as a high
pass filter. The Figure 4.1 illustrates the structure of the high pass filter. In a rapid

training procedure. the network needs to be trained with the lowest value to form a
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high pass filter. In Figure 4.1. the E-node HPF is trained with the value of 0.3 from

the input E-node Var. The final weight of the link is 3.333.

On the other hand, the E-node LPF is trained with the one’s complement of
the value of the E-node Var. which is Var = 1 —1"ar. The highest value of the E-node
Var is the lowest value of the E-node Var. As illustrated in the Figure 4.2. in the
viewpoint of the E-node V7ar, the E-node LPF is a high pass filter. However, in the
viewpoint of the E-node Var, the E-node LPF is a low pass filter. The E-node LPF
in Figure 4.2 is trained with the value of 0.4 from the E-node Var. The link weight is
1.6 between the E-node LPF and the E-node Var. The LPF is active while the values
of Var are less or equal to 0.4. The output strength of LPF reduces until failure to

be active depending on where the threshold is set. if the values of Var exceed 0.4.

Merging the above two filters forms a band pass filter as shown in Figure 4.3.
The E-node HPF is trained as a high pass filter with the value of 0.3 from the E-node
Var. The trained weight is 3.333. The E-node LPF is trained as a low pass filter with
the value of 0.5 from the E-node Var. The trained weight is 2.0. If the value of Var
is lower then 0.3, the E-node HPF is inactive and the E-node LPF is active. In this
case. the E-node BPF fails to be active. On the other hand. if the value of Var goes
above 0.5, the E-node HPF is active and the E-ncde LPF is inactive. In this case, the
E-node BPF fails to be active. However. if the value of Var is between 0.3 and 0.5.
both E-nodes HPF and LPF are active. Therefore, the E-node BPF is activated and
behaves a band pass filter. All examples used for the three filters can be extended for

multiple inputs.
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Figure 4.3: A Band Pass Filter Structure
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4.2 Classifiers

Based on the concept of the filters, this section demonstrates design of a
network to classify the color Yellow based on the strengths of the three elementary
colors: Red. Green, and Blue. As shown in the Figure 4.4, the three input E-nodes:
IR. IG. and IB. represent the three elementary colors and have integer values between
0 and 255. These input data are normalized by the E-nodes: NormR, NormG, and
NormB. with the constant 255. These three normalization E-nodes generate the

strengths of the three elementary colors with values between 0 and 1. The three

E-nodes: NormR. NormG. and NormB. act as the inverters of NormR, NormG.,
and NormB. Their outputs are the 1's complements of the normalization. The three
E-nodes: YelR1. YelG1. and YelBl. are trained as three high pass filters with their
input link weights which are 1.067. 1.063. and 51.0. respectively. The three E-nodes:
YelR2. YelG2. and YelB2, are trained as three low pass filters with their input link
weights which are 15.938. 17.0, and 1.02 respectively. The input data used for this
training are: 239. 240, and 3. for the three eiementary colors respectively. In this case.
a single set of data is used to train the network. Therefore. the three E-nodes: YelR.
YelG. and YelB. act as three pulse filters. The output E-node. Yel which represents
the vellow color, is activated only when the input data has the values as the training
data set. Otherwise. it fails to be active. For example. the testing data set is (230.
252. 11). The E-node Yel has an output strength of 0.639 which fails to be active.
The other testing data set is (230. 252, 33). The E-node Yel has an output strength

of 0.002 which is further weakened.

64

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 4.4: A Yellow Color Classifier

4.3 Switches

The color classifier illustrated in last section shows no significance with respect
to the input locations. the three inputs can be arranged in any sequences. the results
are the same. In this and next sections, the two examples demonstrate the results of
the two networks are input location sensitive. As the example shown in the Figure 4.5,
the network is trained to switch one of the four inputs to the assigned one of the four
outputs. The four input E-nodes are: Varl. Var2. Var3, and Varj. The four output
E-nodes are: Destl. Dest2, Dest3, and Destf. The four middle E-nodes, Destll.
Dest21, Dest31. and Dest41. arc trained as high pass filters. The four middle E-
nodes, Dest12, Dest22. Dest32, and Dest/2, are trained as low pass filters. The
training process takes four stages. For each set of the input data, a pair of the middle

E-nodes of one of the four output E-nodes are trained as a pair of high pass and low
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Figure 4.5: A Four To Four Switch

pass filters. Table 4.1 shows the input and output data sets and the trained weights
for the middle E-nodes. From the trained weights, it shows that the network resists
noisy inputs. For example. if the first input data set becomes 0110, then. both of the

two E-nodes. Dest1! and Dest!2 fail to be active.

4.4 Pattern Recognizers

This section demonstrates a network to recognize three different patterns in
a 4 x 4 grids. There are three output E-nodes which represent the three patterns.
The three patterns are shown in Figure 4.6. The third pattern has two variations as
shown in Figure 4.6. For each pattern, a pair of the middle E-nodes are trained. The
pattern recognizer network is shown in Figure 4.7. The training results are shown in

Table 4.2.
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Table 4.1: Training Results for The Switch Example

Input | Output Weight
0010 1000 | Destll | -7.805 -7.805 3.977 -7.805
Dest12 | 1.323 1.323 -24.775 1.323
0001 0100 | Dest21 | -7.805 -7.805 -7.805 3.977
Dest22 | 1.323 1.323 1.323  -24.775
0100 0010 | Dest31 | -7.805 3977 -7.805 -7.805
Dest32 1.323  -24.775 1.323 1.323
1060 0001 Dest4l | 3.977 -7.805 -7.805 -7.805
Dest42 | -24.775  1.323 1.323 1.323
I II
1 |
1 |
1 |
| 1
IIi-1 I11-2
l l
i 1 1
| 1
1

Figure 4.6: Three Training Patterns
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Table 4.2: Training Results for The Pattern Recognizer Example

Pattern Weight

0100100000010010 | Patll | 0.010 3.971 0.010 0.010
3.971 0.010 0.010 0.010
0.010 0.010 0.010 3.971
0.010 0.010 3.971 0.010

Pat12 | 1.323 -5.444 1.323 1.323
-5.-144 1.323 1.323 1.323
1.323 1.323 1.323  -5.444
1.323 1.323 -5.144 1.323

0100100001000010 | Pat21 | 0.010 3.971 0.010 0.010
3.971 0.010 0.010 0.010
0.010 3.971 0.010 0.010
0.010 0.010 3.971 0.010

Pat22 | 1.323 -5.444 1.323 1.323
-5.444 1.323 1.323 1.323
1.323 -9.444 1.323 1.323
1.323 1.323 -5.444 1.323

0100100100100000 | Pat31 | -0.322 4.966 -0.322 -0.322
0100100000100100 4.966 -0.322 -0.322  3.639
-0.322  -0.322 4.966 -0.322
-0.322 1.005 -0.322 -0.322

Pat32 | 1.888 -16.716 1.888 1.888
-16.716  1.888 1.888  -4.879
1.888 1.888 -16.716 1.888
1.888 -9.950 1.888 1.888
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Figure 4.7: A Pattern Recognizer

4.5 Summary

A LSCAN subnetwork can learn a concept or event directly from its input
nodes if the activation strength is equal to or greater than the threshold §,. After
learning. all activation strengths above the threshold activate the output node of the
subnetwork. In the concepts of filtering. the output node acts as a high pass filter.
On the other hand. if all of the strength values of the input nodes are inverted by
subtracting from 1 then the LSCAN subnetwork learns the complement of a concept
by passing its activation strength over the threshold 6,. In this case, the output node
of this subnetwork acts as a low pass filter. If a LSCAN subnetwork uses both of
positive and inverted input nodes, then the subnetwork can be trained as a band pass
filter. By using these techniques. various applications can be developed according the

needs of the problem space.
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Sections 4.2, 4.3, and 4.4, showed three examples of applications. These sub-
networks can be embedded into a larger LSCAN network to perform more complex
reasoning tasks. Using the concept of a band pass filter, a subnetwork can be trained
as a pulse filter as illustrated in Section 4.2. Therefore. a concept can be learned
sharply (pulse filter), accurately (band pass filter). or loosely (high or low pass fil-

ter).
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CHAPTER 5
APPLICATION TO HAND-PRINTED DIGIT

CLASSIFICATION

This case study includes two methods. one uses pattern-based reasoning and
the other uses rule-based reasoning. which demonstrate the flexibility of LSCAN to be
used for variety classification methods and derive satisfactory recognition results. The
pattern-based classification is constructed with a network in several lavers which are
similar to other feed-forward neural networks. The rule-guided classification method
incorporates cognitive rules from the input data. The rules are used as inputs to the

classification network which contains two layvers, one input layver and one output layer.

The training and testing data were obtained from NIST (National Institute
of Standards and Technology) database [36] which contains 3.471 hand-printed digits
from 49 individuals. Each digit was scanned as a binary image in 32 by 32 matrix.
Figure 5.1 shows 88 hand-printed digits from a single person. Both of the pattern-
based and the rule-guided classification networks use on-line training. On-line training
contains no classes or patterns at the initial state and has no knowledge about the
input digits. This kind of learning is called unsupervised learning. The networks
train themselves by growing the required number of classes while there remains some

unclassified digits. In the pattern-based network approach, the number of patterns
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Figure 5.1: Examples of Some Hand-Printed Digit Images

grows while additional new classes are recognized. In the rule-guided network ap-
proach, the number of rules are fixed in the initial state. Therefore, the number of

input nodes are not changed during execution.

5.1 Pattern-Based Classification

Pattern-based classification has been implemented by Banarse {3] in his dis-
sertation. In this case study. a similar approach is adapted to extract features from
the input image and to form patterns from the extracted features using LSCAN. The
LSCAN pattern-based networks has similar structure as Banarse’s P4{RADISE net-
works. However. they differ in the activation functions of the output nodes at each
layer and in some of the control parameters. Furthermore, there are some bias nodes

connected to each of the classification nodes.

~1
V]
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5.1.1 Network Structure

The network structure contains four layvers: input layver, feature layer. pattern
laver. and classification layer. as illustrated in Figure 5.2. The input layer contains
a 32x32 node matrix which read the binary input image. The feature layer contains
two feature planes which represent the twc orientations of the feature extractions.
The two orientations are 0 and 90 degrees. The O-degree orientation filter extracts
features for vertical lines and the 90-degree orientation filter extracts features for
horizontal lines. The pattern layer contains no pattern nodes at the beginning of
training. A new pattern is created if all of the existing patterns failed to represent
the new pattern which is extracted from the two feature planes. Each pattern unit
structure contains two sub-layers. The output sub-layer contains one pattern node
P, which represents the pattern. The pattern node input sub-layer is composed of a
set of invariant pattern evaluation nodes or an invariant plane as shown in Figure 2.5.
Each invariant node P[;;. where / = 1...2v+1.j = 1...2v 41, maps its inputs from the
specific areas of the two feature planes. The size of cach invariant plane is controlied
by the variable v which can be either an odd or an even number. The purpose of the
invariant plane is to detect the pattern while the corresponding features shift near the
location where the pattern was first detected. The size of + also decides how much
of a pattern is shared by the other digit images. Which means more pattern sharing.
or larger ~, then the less number of patterns generated. The classification layer has
inputs from the pattern layer. Initially, there are no classes in the initial state. While
an input digit image is presented to the network. if there is no class which can best
represent the input digit then a new class is created with the all input connections to

the activated patterns.
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Figure 5.2: The Pattern-Based Network
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5.1.2 Feature Extraction

The features of a digit image are extracted by using Gaussian filters. A
Gaussian filter uses a ;3 x 3 window which scans through the input image plane as
shown in Figure 5.3. The size of 3 is always picked as an odd number. The results of
the scanning window are recorded in the feature planes. Each feature plane has the
same size as the input image plane. The feature point F;, at (x, v) in a feature plane is
mapped to the region R,, in the input image plane. The region R, has the same size
as the scanning window 3. Therefore. the region R,, covers the area with locations
Iy.whereu=y—-(3-1)/2.y+(3—-1)/2and v =z — (3 - 1)/2..0 + (3 - 1)/2.
The Gaussian filter is applied to all regions R,,. A Gaussian filter is a 2D Gaussian

function plus orientations. The function is given as:

scos @ + usin@)?  (—vsind 0)?
Guvzel'p(—(bcos - gsm ) (=usin ‘-i-‘)ucos ) ) (5.1)
20; 207

where 6 is the orientation. In this case study. two orientations. 0 and I are used.

e

Figure 5.4 and Figure 5.5 show the plots for the two orientations of Gaussian filters
using 3 = 13,0, = 4. and g, = 2. The Gaussian feature strength at the location (x,
v) in a feature plane is given:

y+=(B-1)/2 r+(3-1)/2

ny = Z Z [,.Gy. (

u=y—(3-1)/2v=r—(3-1)/2

[}
[ 8]
~—

5.1.3 Pattern Detection

A pattern is formed by the areas which have the same locations on the feature
planes as shown in Figure 5.2. As shown in Figure 2.5, each area on the feature plane

has a radius A. To select a pattern is to pick up the areas where have the maximum

~1
(3]
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Figure 5.3: A Structure for Feature Extractions

Figure 5.4: Gaussian Filter with 0-Degree Orientation
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Figure 5.5: Gaussian Filter with 90-Degree Orientation

average feature strength. The pattern selection function is given:

PS — ZI,:‘:.:X ZA == ZA:—A Frﬁngmn
v K2\ +1)2

(5.3)

where K is the number of feature planes and g,,, is the Gaussian weight which is
given as:

{ 71121'—112
—_— T T L0 )
Jmn =€ hd

(5-4)
If Ps;, > v. where 0 < v < 1.0. then the pattern is selected. Once a pattern
is selected. the corresponding areas on the feature planes are masked with the 1's
complement of the Gaussian weight function 5.4. The 1's complement of the Gaussian

weight function is expressed as

~—
ot
(V1]
N

1- Gmn
The purpose of this masking is to prevent the same areas on the feature planes to be

sclected as another pattern.

If there are some pattern modules in the pattern detection layer, the selected

pattern from the feature planes is examined by the existing pattern modules. If the
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selected pattern is not presented by any of the existing pattern modules, then a new
pattern module is created at the time of a new class creation. A new pattern module
as illustrated in Figure 2.5 is created with one set of connections, a size of K (2A +1).
The weights of the connections cast the product of the feature strengths and the

Gaussian weight function 5.4 as given by
k Kk -
Wimn = PFrngmn (5.6)

where p is a factor to control the feature strengths. The values of p are between 0

and 1.

Detecting a pattern is done by finding a representing node Pll?j?i" in the
invariant plane of a pattern detection module (PDM) for the selected pattern drawn
from the feature planes. The representing node PIi'j-'"" is the winning node which has
the maximum output strength among the all invariant nodes in the invariant plane.
Furthermore. the strength of P[;;Ti" has to pass the preset threshold ¥J,. Therefore.

the activation decision of PI,-';-'"‘ is given by

) active if >0, — 7
PIein = PR (
ij e
inactive otherwise

Ut
=1
~—

where the factor 7, is less than v, and is used to control pattern sharing between

numerals. Each invariant node PP[;; is evaluated as
Pl;; = &(z45) (5.8)

where € is a function of £ as expressed in Equation 3.2 and 3.3. The factor € in

Equation 3.3 is evaluated as

K A A
€; = Z Z Z ('19p - difrﬁn) (5.9)
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where difX  is the difference between the connection weight wk,, and the input feature

strength pF%X g., at the k;, feature plane. It is expressed as

difk

mn

= abs(wy,, = PFpnGmn) (5.10)

If all of difk, equal to 0. then the selected pattern Ps., has a perfect match with

the corresponding PI;; in the invariant plane.

Pattern sharing between numerals can be controlled in two manners: one
in a spacial aspect and the other in a pattern strength aspect. In a spacial aspect,
pattern sharing is controlled by the variable v. The larger size of ~ then the larger
chances are for a pattern to be shared with the other numerals. This result is due
to increase in the total areas covered by the invariant pattern nodes in a PDM. In a
pattern strength aspect. pattern sharing is controlled by the variable 7, which lowers
down the activation threshold as indicated in Equation 5.7. Therefore, more invariant

pattern nodes PI;; can be activated.

5.1.4 Classification

A class node C, is activated by a set of active pattern nodes Practive; Which

are connected to C,,. C, is evaluated as:
Crn = &(cn) (5.11)

where £ is a function of = as expressed in Equation 3.2 and 3.3. The factor € in

Equation 3.3 is evalunated as:

A
& = P (5.12)

i=1
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C, is activated if
active if > V.7
Cn= (5.13)
inactive otherwise
where the factor 7. is a percentage of ¥, and is used to increase the number of active
classes if the value of 7. is smaller. The purpose of using 7. is due to the pattern
sharing problem. Patterns are shared between the numerals. Therefore, a class can
be mis-activated by a different digit numeral. Thus. it is not sufficient to select an
active class to represent the input digit image alone. One needs to examine another
factors to make the decision of whether an active class node can represent the input
numeral. There are two factors used in the experiments. One factor is the ratio of

the number of active patterns connected to the class node C,, and the total number

of patterns connected to the class node C,. This ratio . is expressed as:

P(lotal—active—-in—C,,)

He = (5.14)

P(!otal—pallern—in—Cn)
The other factor is the ratio of the total number of patterns connected to the class
node C,, and the total number of feature patterns of the input digit image. This ratio

Ly is expressed as:

Ij(lotal—pauerns——in—Cn) (

(W]
[
(1]
~—

Hp =
P,’(tolal—fealure—palterns)

The final selected class node Cy has to satisfy the conditions of v. > ¥, and abs(1 —

vg) < U,5. Where 9, and 0, are preset thresholds for . and py respectively.

5.1.5 Class Creation

A new class is created at the beginning of the on-line learning and while
there is no existing node which can represent the input digit image. A new class is

formed by a set of active patterns which include the new patterns. A new class is
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trained with the connected active patterns by adjusting the connection weights using

the Equations 3.11 and 3.12. Once a new class is trained then no further training is

required.

5.1.6 Classification Experiments

In this case study. the digit images shown in Figure 5.1 were used for the clas-
sification experiments. All experiment results were one-pass learning results unless
otherwise specified. Two kinds of variables. spacial variables and functional vari-
ables. have influence on the outcomes of the experiments. The follows describe the

effectiveness of the two kind of variables:
e Spacial variables:

#: The value of # changes feature orientations. Two # values. 0 and %. are used

[(MIE]

in this case study.
3: The size of 3 changes the strengths of features.

A: The size of A changes the number of patterns extracted from the feature

planes.

~: The size of v changes pattern sharing possibilities.

e Functional variables:

p: Changing feature strengths may get patterns similar to each other. therefore,

fewer patterns are generated.

v: Feature strength average threshold changes the number of patterns extracted

from the feature planes.
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Yp: The pattern node threshold is preset at 0.70.
J.: The class node threshold is preset at 0.85.
Uyt Thresholds for g change the number of active class nodes.

U, s: Thresholds for yy change the number of active class nodes.

A large number of experiments were implemented for this small data set in order to
observe the changes of outcomes of the experiments while changing the values of the

spacial and functional variables.

Some experiments were implemented to observe the influence of the functional
variables. First. the spacial variables were fixed at the values of 3 = 15, A = 5. and
~ = 7. Some of the functional variables had values at v = 0.10.9,. > 0.7. and
Umus < 0.3. Figure 5.6 shows the results of variations of controlling of the variable 7,
with p = 0.175 and 7, = 0.3. Figure 5.7 shows the results of variations of controlling of
the variable 7, with p = 0.175 and 7. = 0.3. Figure 5.8 shows the results of variations
of controlling of the variable p with 7. = 0.5 and 7, = 0.3. All figures were plotted
for the number of images against the percentages. The curves labeled as Class are
the ratios of the number created classes over the number of input images. The curves
labeled as Accuracy are the ratios of [‘—,‘Iﬂ where I is the number of input images and
Al is the number of misclassified classes. All ratios are expressed in percentages. For
spacial variables. v, A, and ;3. Table 5.1 shows the experiment results. The functional

variable values were fixed at: p = 0.16,v = 0.08. 7. = 0.3, and 7, = 0.4
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Table 5.1: Experiment Results for Spacial Variables

(2~ + 1) x (2A + 1) x 3 | Class/Missed | Class/Accuracy %
13x11x13 19/25 22/72
13x13x13 8/55 9/38
13x15x13 6/58 7/34
15x11x13 13/27 15/58
15x13x13 6/66 7/25
15x15x13 5/65 6/26
13x11x15 19/26 22/70
13x13x15 9/54 10/39
13x15x15 5/64 6/27
15x11x15 15/31 17/65
15x13x15 5/72 6/18
15x15x15 1/59 5/33
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Table 5.2: Experiment Results for High Accuracy

Dus
Dye 0.1 0.2 0.3 0.4 0.5 06 |07-10
0-06|64/3|57/4|51/6|46/15 | 41/22 | 38/27 | 38/27
0.7 67/4|60/5 | 54/6 | 47/17 | 42/24 | 39/27 | 37/28
0.8 72/2 1 65/3|39/6 | 535/15 | 50/20 | 47/20 | 45/21
0.9 84/0 | 82/0 | 79/0 | 78/1 | 75/4 | 73/6 2/7

Experiments With Bias Nodes

With bias nodes added to the classification layer. the new class nodes are
trained to change their connection weights using the Equations 3.11 and 3.12. The
bias nodes have constant values of 0. The purpose of the bias nodes is to stabilize
the patterns connected to each classification node. The results of the experiments
were tuned for either higher accuracy or less classes generated, but lower accuracy.
Table 5.2 shows the results for higher accuracy and Table 5.3 shows the results for
lower accuracy with less classes required. The values for the variables were:

13.A=53.v=6,p=017.7, = 0.4. v = 0.16.J, = 0.3.J. = 0.85 for high accuracy.

and U, = 0.60 for low accuracy.

Experiments With Large Image Set

For the large image set. all of the 3.471 images were used to train the LSCAN
networks. The experiments were implemented in 10 stages. Each stage had an incre-

ment of 350 images starting from 350 images. For each set of images, two experiments
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Table 5.3: Experiment Results for Low Accuracy

0#!

VUye 0.1 0.2 0.3 0.4 05 |06-1.0

0-0.4|32/19 | 23/20 | 17/31 | 16/34 | 16/35 | 13/43

0.5 |33/19 |23/20 | 18/30 | 16/35 | 16/36 | 13/44

0.6 |35/19 | 24/20 | 19/28 | 17/35 | 17/36 | 15/41

0.7 |43/18 |32/18 | 25/27 | 21/34 | 21/34 | 18/40

0.8 |54/11 | 42/13 | 10/18 | 36/24 | 34/27 | 31/32

09 | 79/2 | 75/1 | 72/2 | 71/6 | 69/6 | 687

were undertaken. The first experiment utilized one-pass training. The second experi-
ment used the constructed classes to test the same image set. but in a different input
sequence. The results showed that during the second experiment there were no new
classes created. The accuracy was also improved slightly. The results showed that
LSCAN networks were trained well during the first pass. The network was not tuned
for the best conditions for either high accuracy or low number of classes. The purpose
of these experiments was to observe the trends of accuracy and number of created
classes while increasing the size of an image set. The control parameters used in these
experiments were 3 = 15. A =6. 7 =7. v = 0.08. p = 0.14. 7, = 0.14, 7. = 0.83,

U, = 0.3, and J. = 0.7. The results are shown in Figure 5.9.

5.1.7 Conclusion

The experiments had demonstrated that LSCAN networks have capabilities to

learn patterns to perform classification tasks. The LSCAN networks can be tuned to
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Figure 5.9: The Experiments for Large Image Sets

perform high accuracy demanded tasks as indicated in Table 5.2 at the cost of higher
number of classes. However. the experiments showed that the LSCAN networks
displayed good learning capabilities. One-pass learning is very important in some
working environments, if there is only one chance to learn the input patterns. In the
cases of the experiments for larger image sets, the accuracies were improved slightly.
These were due to the shared patterns had better representations for some particular
digit images at the second pass. If this is the case. then. improving the pattern

representations can improve the accuracy and reduce the number of created classes.

5.2 Rule-Guided Classification

Rule-guided classification uses rules to classify the class tyvpes of the input
digit images. There are different ways to extract rules from the digit images. In this
case study. a scan-path is used to develop cognitive rules. The scan-path method
scans each image directly at a specific area to evaluate a specific rule. This method
is simple to develop and demonstrates the ability to incorporate rules into LSCAN

models.
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5.2.1 Network Structure

The network structure contains two layers as shown in Figure 5.10. The rule
layer contains a fixed number of rules. These rules are predefined. Their inputs are
from the input image plane. Some rule extraction algorithms are used to detect the
existence of rules. A rule node has an input of 1 if there is a rule extraction algorithm
detects a rule. At the rule layer. there are some bias nodes which are connected to
cach classification node at the classification layer. These bias nodes have no inputs
from the image plane and always have the values of 1. The purpose of the bias nodes
is two fold. One purpose is to represent a class if there has no rule node which is
activated by a rule extraction algorithm. The other purpose is to make each of the
classification nodes distinguishable from each other if they have different combinations
of the rule-node activations. This is required based on the results of the training of

cach classification node.

At the classification layer. there is no classification node in the initial state.
A new classification node is created if there is no existing classification node which is
activated by the input rule nodes. However. the classification node which represents
any unclassified digit images is created only once.
5.2.2 Rule Extraction

The rule extraction algorithms are used to detect the features of a digit image

as follows:
e change from one segment to two segments with continuity.

e change from two segments to one segment with continuity.,

88
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Figure 5.10: The Proposed Rule-Guided Network

e change from two segments to one segment without continuity.

e change from one segment to two segments with no connection,

e only one segment from top to bottom.

e only one segment from left to right.

e bottom half has a short stroke,

e upper right has a short stroke.

e upper left has a short stroke.

e vertical center has three segments, and

e down left side has an angle.
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Based on the features of all of the digit images. the following 15 rules are used to

detect the features in the input digit images:

1. Only one segment from top to bottom.

[\

. Only one segment from left to right.

3. Upper half changes from one segment to two segments with continuity.

4. Bottom half changes from one segment to two segments with continuity.

5. Left half changes from one segment to two segments with continuity.

6. Right half changes from one segment to two segments with continuity.

. Upper half changes from two segments to one segment with continuity.

~1

8. Bottom half changes from two segments to one segment with continuity.

9. Vertical center has three segments.

10. Upper half changes from two segments to one segment without continuity.

11. Upper left side has a short stroke.

12. Bottom half has a short stroke.

13. Bottom left side has an angle.

14. Upper right side has a short stroke.

15. Upper half has two vertical strokes.
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Table 5.4: The Purposes of The Rules

Rule No | Good for the digits
1 1
2 1
3 0.2.3.7.8., and 9
4 0.3.5.6.and 8
59 0.4.6.and 9
6 0.2.6.7.and 9
T 8 and 9
8 6 and 8
9 2.3.5.6, and 8
10 2.3.and 7
11 6
12 1.7.and 9
13 4
14 D
15 4
91
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The purpose of each rule is shown in Table 5.4. From Table 5.4, it shows several
digits share one rule. However, using of a set of combinational rules can identify one
digit from the others. If each rule can perfectly detect the feature for its own pur-
pose. then the 15 rules are sufficient and efficient to classifv all digits. The sufficiency
means no more rules are needed. The efficiency means less classes are generated with
high accuracy of classifications. However, hand-printed digits do not perfectly obey
these rules. Here. the qualities of ideal rules are discussed before looking into the real

problems.

The outcomes of rules have strong influence on the performance of the
svstems. Some guidelines are required to establish the rules. Ideal rules have the

following qualities:

each unique rule represents only one unique feature.

for each feature of a digit there is a rule to detect it.

e ecach rule is exclusive from the other rules, and

no rule leakage for cach rule.

In the actual case of the NIST hand-printed digit images shown in Appendix D.
extracting ideal rules may be infeasible. For example, in Figure 5.11 shows some
zeros with broken curves. Rules 3 and 6 fail to detect the change from one segment

to two segments with continuity. All rules face unpredictable problems:
e oricentations of the same feature,
e locations of the same feature.
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Figure 5.11: Examples of Defective Digits
e availability of a feature.
e relations of a feature with the others,
e broken writing.
e thickness of writing,
e noise, ink infusion. and
e incomplete images.

The rules have to be tuned to find the best fit for some potential problems. However.
all of the rules can not cover all of the problems. Table 5.5 shows the experiments
implemented for each rule alone against the same digit. The numbers in the table
represent the number of misdetected cases. or features not available. of a rule for the
correspondi.ig digit. The data show no rules which are perfectly exclusive and all
rules have leakage. The data in Table 5.5 are also plotted in Figures 5.12 to 5.26.

The point here is that LSCAN can learn to accommodate these deficiencies.

93

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Table 5.5: The Rule Misdetections

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

Rule | 0/406 | 1/404 | 2/378 | 3/384 | 4/331 | 5/209 | 6/369 | 7/347 | 8/304 | 9/339
1 405 5 368 | 376 | 329 | 186 | 353 | 311 | 302 | 327
2 | 406 35 | 377 | 384 | 313 | 209 | 369 | 344 | 304 | 338
3 38 | 404 | 139 | 93 | 317 | 140 | 361 | 107 | 265 | 289
4 36 | 404 | 334 | 185 | 214 | 97 158 | 347 | 280 | 309
5 28 | 397 | 289 | 380 | 225 | 202 | 72 | 343 | 214 | 162
6 58 | 403 | 320 | 299 | 279 | 204 | 287 | 53 | 201 | 147
7 74 | 404 | 268 | 378 | 323 | 203 | 353 | 347 | 132 | 129
8 49 | 404 | 336 | 372 | 327 | 199 | 294 | 347 | 49 242
9 347 | 401 | 219 | 15 | 254 | 63 124 | 314 | 80 70
10 | 403 | 404 | 94 90 194 | 136 | 369 81 | 301 | 224
11 | 367 4 272 | 272 | 301 65 9 291 | 290 | 323
12 | 397 5 336 | 335 | 80 166 | 299 2 255 13
13 | 393 | 382 | 347 | 353 | 24 175 | 354 | 156 | 201 17
14 | 394 | 395 | 374 | 383 | 300 | 22 | 206 | 346 | 269 | 319
15 | 387 | 400 | 329 | 315 | 50 106 | 64 | 304 | 237 | 282
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Figure 5.12: Misdetections for Rule 1 Figure 5.16: Misdetections for Rule 3
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Figure 5.20: Misdetections for Rule 9
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5.2.3 Class Creation

A new class is created in two cases. One case is when there are no classes in
the classification laver. The other case is that there are no existing classes activated
by the activation rules. A new class has connections to the all rule nodes. Initially.
all of the connections have the weights of 1. The new class node is trained at the time
of creation by using the Equations 3.11 and 3.12. The activation threshold is set
at 0.75. After training. each classification node uses the Equation 3.2 to determine
whether the activated input rule nodes are sufficient to activate the corresponding

classification node.

5.2.4 Classification Experiments

Input digit images were arranged in random sequences for all of the experi-
ments. For one size of digit images, only one random sequence was generated. Two
data sets were used for small and large data set experiments. The small data set uses
the 88 images as shown in Figure 5.1. The large data set uses all 3.471 digit images.
The small data set was conducted for the experiments to observe how effectively the
rules change the number of classes created and the number of misclassified classes
while more rules were used. Table 5.6 shows the experiment results. The row of
“Class™ shows the number of classes created. The row of ~Missed™ shows the number
of misclassified classes. The “%” rows show the percentage of created classes and
the percentage of accuracy against the total input images. Table 5.6 also indicates
which rule has a better improvement. For example, when the rule 5 added into the
group of rules from 1 to 4, the accuracy jumped from 40% to 63%. At the right end

of this table, when the accuracy reached to 99%. no more improvement can be done.
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Table 5.6: The Effectiveness of The Rules

Number of rules applied

1 (23 (436|789 1011|1213 14

Class 2121416 [10j14]17;20|26| 34|38 42|43 |46

T 21257 |11116]19]23|30|39 43|48 |49 |52
Missed T7168[60153133(32125(23115|1 641 1]1
Accuracy % | 13 123132406364 72| 74[83!193195{99 9999

Figure 5.27: Experiments for Increasing Number of Rules

However. more rules applied the higher accuracy for the large data set. The graphical

illustration is shown in Figure 5.27.

The experiments for the large data set were observed for what was the effec-
tiveness of increasing the number of input digit images while the number of rules were
fixed. The input digit images were increased for every 350 images started from 350
images. The experiments used 14. 15 rules. and 9 selective rules (1. 3.5, 7. 9, 10, 11,

12. 14). The Tables 5.7, 5.8, and 5.9 show the experiment results. The graphical
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Table 5.7: Experiment Results Using The First 14 Rules

Number of input images

350 | 700 | 1050 | 1400 | 1750 | 2100 | 2450 | 2800 | 3150 | 3471

Class 157 | 249 | 318 | 369 | 416 | 439 | 476 | 506 | 536 | 554

% 45 | 36 30 26 24 21 19 18 17 16

Missed 35 | 74 | 120 | 170 | 249 | 370 | 370 | 386 | 468 | 470

Accuracy % | 90 | 89 | 89 88 86 82 85 86 85 86

illustrations are shown in Figure 5.28, Figure 5.29..and Figure 5.30. These three
experiments show that the number of created classes decreased in percentage. From
Table 5.9. the number of classes stopped to increase while the number of input digit
images reached 2.450. From the trends of the three experiments. for a fixed number
of rules. the number of classes created might be saturated while the number of input
digit images continues to increase. The accuracy in percentage shows a small varia-
tion in the three experiments. It appears to be stable while input images increased

into larger numbers.

5.2.5 Conclusion

From the implemented experiments, rule-guided classification showed an ef-
ficient way to perform this kind of recognition task. The performance of the classi-
fication system depends on the rule-extraction algorithms which in turn rely on the
qualities of the input digit images. LSCAN can learn to provide very good perfor-

mance if the rule-extraction algorithms are even just reasonably accurate.
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Figure 5.28: Experiments Using The First 14 Rules

Table 5.8: Experiment Results Using All 15 Rules

Number of input images

Reproduced with permission of the copyright owner.

Further reproduction prohibited without permission.

350 | 700 | 1050 | 1400 | 1750 | 2100 | 2450 | 2800 | 3150 | 3471
Class 168 | 264 | 349 | 406 | 459 | 495 | 541 981 | 611 | 638
% 48 | 38 33 29 26 24 22 21 19 18
Missed 30 | 68 | 105 | 154 | 223 | 338 | 344 | 357 | 417 | 420
Accuracy % | 91 | 90 | 90 89 87 84 86 87 87 88
100




Percontage %
8
]

Figure 5.29: Experiments Using All 15 Rules

Table 5.9: Experiment Results Using The 9 Selective Rules

Number of input images
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350 | 700 | 1050 | 1400 | 1750 | 2100 | 2450 | 2800 | 3150 | 3471
Class 65 | 101 | 108 122 | 125 129 139 144 144 144
% 19 14 10 9 T 6 6 5 D 4
Missed 97 | 189 | 251 | 383 | 526 | 620 | 838 | 707 | 822 | 1003
Accuracy % | 72 | 73 76 73 70 70 66 75 74 71
101
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Figure 5.30: Experiments Using The 9 Selective Rules

5.3 Compare Pattern-Based to Rule-Guided Classification

From the viewpoint of network architecture. both pattern-based and rule-
guided classification networks are similar to each other at the top layver. From the
viewpoint of performance. both have advantages and disadvantages. Pattern-based
classification can use the control parameters to tune the network to have high or low
classification accuracy. The number of created classes varies accordingly. Rule-guided
classification networks have no such control parameters. Once the rule extraction
algorithms have completed. there is not much room for tuning. Nonethelss. different
combinations of rules can change the classification accuracies and the numbers of
created classes. Pattern-based classification systems have one more advantage over
rule-guided classification systems. Pattern-based classification systems are free from
image noise. Image noise are ignored at the process of pattern formation. On the

other hand. image noise can make rule algorithms perform more poorly.
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As the count of number of connections is concerned. rule-guided classification
networks use less connections. Each classification node has connections of the number
of rules plus the number of bias nodes. Each classification node has a fixed number of
connections. On the other hand. each pattern-based classification node has a variable
connections to a number of PDMIs. which depending on the number of patterns ex-
tracted from the feature planes. Furthermore. each PDM has A'(2)A + 1) connections
to the feature planes. where K is the number of feature planes. The larger size of A,

refer to the Figure 2.5, the larger number connections is required.

At the feature extraction laver, pattern-based classification networks require
more computational power than rule-guided classification networks. Each rule needs
to scan one time on a particular area on each input image. Let the size of the input
image be M N pixels. For each rule. it needs M'N' computational operations. where
M < M and N' < N. The total number of computational operations is RA['.N',
where R is the number of rules. For feature extractions. each location on a feature
plane has .3° computational operations. Then the total number of computational

operations is K M .N 32

5.4 Summary

In this Chapter, pattern-based and rule-guided classification methods were
applied to classifv hand-printed digit images. Both approaches showed the the flex-
ibilities of LSCAN networks to perform one task in different ways. The LSCAN

networks were configured here to meet the needs of large-scale learning environments.
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P,RADISE [3] is one of the pattern-based classification networks. It was first
used in Banarse's dissertation for digit image classifications. LSCAN can be used
for a similar approach to implement the same task. The architecture of PyRADISE
is compatible with LSCAN E-nodes. Each classification node and PD)I are trained
individually. This kind of approach resembles localist networks. There are no hidden
layers need to be trained. Therefore. LSCAN is a good candidate to implement
the task. In alternative. LSCAN networks can implement rule-guided classifications.
These two approaches demonstrate the flexibilities of LSCAN networks which can be

configured to meet different requirements.

104

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6

APPLICATION TO ROUTING NETWORKS

The purpose of this case study is to demonstrate the capabilities of LSCAN to
build LSCAN networks to replace the regular routing tables using Border Gateway
Protocol version 4 (BGP4). The knowledge of routing information develops while
new routes are detected. The LSCAN routing networks not only provide the best
path for each IP network destination. they also provide the second best path for the
same IP network destination. The second best path is not part of BGP4 standard. It
is provided for the illustrative purposes in this case study. Nonetheless, the LSCAN

networks built in this case study do not cover all aspects of BGP.

6.1 Introduction

The Border Gateway Protocol (BGP). defined in RFC 1771. allows network
administrators to create loop-free inter-domain routing between autonomous systems.
An autonomous syvstem (AS) is a set of routers under a single technical administration.
Routers in an AS can use multiple interior gateway protocols to exchange routing in-
formation inside the AS and an exterior gateway protocol to route packets outside the
AS. BGP version 4 is a classless routing protocol. Each BGP router uses aggregated
[P addresses to route network messages. An IP address can be aggregated into an

any bit length between 1 and 32 to specify a network IP address.
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BGP uses TCP as its transport protocol (port 179). Two BGP speaking routers
form a TCP connection between one another (peer routers) and exchange messages
to open and confirm the connection parameters. BGP routers will exchange network
reachability information. this information is mainly an indication of the full paths
(BGP AS numbers) that a route should take in order to reach the destination net-
work. This information will help in constructing a graph of ASs that are loop-free
and where routing policies can be applied in order to enforce some restrictions on the

routing behavior.

Any two routers that have formed a TCP connection in order to exchange BGP
routing information are called peers. they are also called neighbors. In this text, peer
and router may be used as synonyms. BGP peers will initially exchange their full
BGP routing tables. From then on incremental updates are sent as the routing table
changes. BGP keeps a version number of the BGP table and it should be the same
for all of its BGP peers. The version number will change whenever BGP updates the
table due to some routing information changes. Keep-alive packets are sent to ensure
that the connection is alive between the BGP peers and notification packets are sent

in respouse to errors or special conditions.

I[f one AS has multiple BGP speakers. it could be used as a transit service for
other ASs. It is necessary to ensure reachability for networks within an AS before
sending the information to other external ASs. This is done by a combination of
Internal BGP (IBGP) peering between routers inside an AS and by redistributing
BGP information to Internal Gateway Protocols (IGP) running in the AS. All BGP

speakers running between any two different ASs use Exterior BGP (EBGP).
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ConnectRetry Timer

Figure 6.1: The BGP Finite State Machine
6.1.1 BGP Finite State Machine

This section briefs BGP operation in terms of a Finite State Machine (FSM).
One BGP peer in order to make a connection with its neighbor peer goes through
different states. Initially. a BGP is in the Idle state. Once the connection between
two peers is completed, the BGP is in the Established state. Figure 6.1 illustrates

relations of all states. A brief description for each state is given as:

Idle state: In this state. BGP refuses all incoming BGP connections. No resources
are allocated to the peer. In response to the Start event (initiated by either
svstem or operator) the local system initializes all BGP resources, starts the

Connect-Retry timer, initiates a transport connection to other BGP peer, while
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listening for connection that may be initiated by the remote BGP peer. and
changes its state to Connect. The exact value of the Connect-Retry timer is a

local matter, but should be sufficiently large to allow TCP initialization.

Connect state: In this state, BGP is waiting for the transport protocol connection
to be completed. If the transport protocol connection succeeds. the local sys-
tem clears the Connect-Retry timer. completes initialization. sends an OPEN
message to its peer, and changes its state to OpenSent.

If the transport protocol connect fails (e.g.. retransmission timeout). the local
svstem restarts the Connect-Retry timer. continues to listen for a connection
that may be initiated by the remote BGP peer. and changes its state to Active

state.

Active state: In this state, BGP is trving to acquire a peer by initiating a trans-
port protocol connection. If the transport protocol connection succeeds. the
local system clears the Connect-Retry timer, completes initialization. sends an
OPEN message to its peer, sets its Hold Timer to a large value. and changes
its state to OpenSent. A Hold Timer value of 4 minutes is suggested.

In response to the Connect-Retry timer expired event. the local system restarts
the Connect-Retry timer, initiates a transport connection to other BGP peer.
continues to listen for a connection that may be initiated by the remote BGP
peer, and changes its state to Connect.

If the local system detects that a remote peer is trying to establish BGP con-
nection to it, and the IP address of the remote peer is not an expected one, the

local system restarts the Connect-Retry timer. rejects the attempted connec-
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tion. continues to listen for a connection that may be initiated by the remote

BGP peer. and stays in the Active state.

OpenSent state: In this state, BGP waits for an OPEN message from its peer.
When an OPEN message is received. all fields are checked for correctness. If
the BGP message header checking or OPEN message checking detects an error.
or a connection collision the local system sends a NOTIFICATION message and
changes its state to Idle.

If there are no errors in the OPEN message. BGP sends a KEEPALIVE mes-
sage and sets a Keep-Alive timer. The Hold Timer. now is replaced with the
negotiated Hold Time value. If the negotiated Hold Time value is zero, then
the Hold Time timer and Keep-Alive timers are not started. If the value of the
Autonomous System field is the same as the local Autonomous System number.
then the connection is an “internal” connection: otherwise. it is “external”. This
effects UPDATE processing as described below. Finally, the state is changed to
OpenConfirm.

If a disconnect notification is received from the underlying transport protocol.
the local system closes the BGP connection, restarts the Connect-Retry timer.
while continue listening for connection that may be initiated by the remote BGP
peer. and goes into the Active state.

If the Hold Timer expires. the local systemn sends NOTIFICATION message

with error code Hold Timer Expired and changes its state to Idle.

OpenConfirm state: In this state. BGP waits for a KEEPALIVE or NOTIFICA-

TION message. If the local system receives a KEEPALIV'E message. it changes
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its state to Established.

If the Hold Timer expires before a KEEPALIVE message is received, the local
system sends NOTIFICATION message with error code Hold Timer Expired
and changes its state to Idle.

If the local system receives a NOTIFICATION message. it changes its state
to Idle. If a disconnect notification is received from the underlying transport

protocol. the local system changes its state to Idle.

Established state: In the Established state, BGP can exchange UPDATE. NO-
TIFICATION. and KEEPALIVE messages with its peer. If the local system
receives an UPDATE or KEEPALIVE message, it restarts its Hold Timer, if
the negotiated Hold Time value is non-zero.

If the local system receives a NOTIFICATION message. it changes its state to
Idle.

If the local system receives an UPDATE message and the UPDATE message
error handling procedure detects an error. the local system sends a NOTIFI-
CATION message and changes its state to Idle.

If a disconnect notification is received from the underlying transport protocol,
the local svstem changes its state to Idle.

If the Hold Timer expires, the local system sends a NOTIFICATION message

with Error Code Hold Timer Expired and changes its state to Idle.
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6.1.2 BGP Decision Making

\While all BGP peers are in the Established state. each peer receives new route
or updated route information using the update messages from its neighbor peers. Each
new route or updated route is examined against the existing routes which have the
same network ID and initial router. The best route is selected and advertised to its
neighbor peers. One route which is advertised by a peer to its neighbor peers might
be returned to the same peer. In this case. the original advertising peer detects its
own AS ID in the AS Path parameter in order to avoid route loops. BGP uses several
parameters to make the decision of which route is the best route according to the
BGP configurations. The parameters which are used for the best route choice are

briefly described as:

Weight: This is a Cisco defined attribute. The weight is assigned locally to the
router. It is not propagated or carried through any of the route updates. A
weight can be a number from 0 to 65535. Paths that the router originates have

a weight of 32768 by default and other paths have a weight of zero.

Local Preference: Local preference is an indication to the AS about which path is
preferred to exit the AS in order to reach a certain network. A path with a
higher local preference is more preferred. The default value for local preference
is 100. Unlike the weight attribute which is only relevant to the local router.
local preference is an attribute that is exchanged among routers in the same

AS.

AS path: Whenever a route update passes through an AS. the AS number is preap-

pended to that update message. The AS-Path attribute is actually the list of
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AS numbers that a route has traversed in order to reach a destination. An

AS-SET is an ordered mathermnatical set of all the AS that have been traversed.

Origin code: The origin is a mandatory attribute that defines the origin of the path

information. The origin attribute can assume three values:

IGP: Network Laver Reachability Information (NLRI) is interior to the orig-
inating AS. This normally happens when we use the BGP network com-
mand or when IGP is redistributed into BGP. then the origin of the path

information will be IGP. This is indicated with an *i” in the BGP table.

EGP: NLRIislearned via EGP (Exterior Gateway Protocol). This is indicated

with an "e” in the BGP table.

INCOMPLETE: NLRI is unknown or learned via some other means. This
usually occurs when we redistribute a static route into BGP and the origin
of the route will be incomplete. This is indicated with an =7 in the BGP

table.

MED: \ulti_exit_discriminator (MED for BGP4). or Metric attribute. is a hint to
external neighbors about the preferred path into an AS. This is a dynamic way
to influence another AS on which way to choose in order to recach a certain route
given that we have multiple entryv points into that AS. A lower value of a metric
is more preferred.

Unlike local preference, metric is exchanged between ASs. A metric is carried
into an AS but does not leave the AS. When an update enters the AS with a
certain metric, that metric is used for decision making inside the AS. When the

same update is passed on to a third AS. that metric will be set back to 0. The
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Metric default value is 0.
The decision making sequence is given as:

1. If NextHop is inaccessible do not consider it.

N

. Prefer the largest Weight.

3. If same weight prefer largest Local Preference.

4. If same Local Preference prefer the route that the specified router has originated.
5. If no route was originated prefer the shorter AS path.

6. If all paths are external prefer the lowest origin code (IGP;EGP;INCONPLETE).

=1

If origin codes are the same prefer the path with the lowest MED.
8. If path is the same length prefer the External path over Internal.

9. If IGP synchronization is disabled and only internal path remain prefer the path

through the closest IGP neighbor.
10. Prefer the route with the lowest ip address value for BGP router ID.

Figure 6.2 illustrates the sequence of how a best route is selected. The last decision
making picks the path coming from the BGP peer which has the lowest IP address

no matter what conditions are.

6.2 Network Topology

The hypothetic back-bone routing network contains six Autonomous Systems

as shown in Figure 6.3. The six AS are numbered as: AS10, AS20. AS30., AS40,
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Figure 6.2: The BGP Decision Making Flow Chart
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AS50. and AS60. AS10 has three routers: RTA. RTB. and RTF. RTF is an internal
router which does not speak to any router outside of AS10. RTF is not considered
in this case study. The other autonomous systems. AS20 through AS60. contain one

BGP router in each AS. EBGP is used between the BGP peers.

Within each autonomous system. each internet address is prefixed with a
letter of E, L. or S. The letter E represents the interface between the two routers
using Ethernet. The letter L represents the interface between the two routers using
LoopBack connection. LoopBack interface is a software-only interface which emulates
an interface that is always up. The letter S represents the interface between the two
routers using Serial connections. The first one-digit number following the letter is
the interface slot number on the router. The second one-digit number following the
first one-digit number is the interface port number on the router. For example. S2/1

means serial interface with slot number 2 and port number 1.

6.3 BGP Configurations

BGP routing policy is controlled by the configuration of each router. Through
the configuration. each router makes the decision of selecting the best path for each
destination. The configuration controls many aspects of how cach route flows among
BGP peers through BGP commands and attributes. The complete configurations of
cach router in Figure 6.3 are given in Appendix A. Here, some of the BGP commands

and attributes are given in brief explanation.

ip address ip-address mask: This is an interface command that configures an inter-

face with an IP address/mask tuple.

115

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



(AS10

L0 201.250.13.41

RTA L

EO0 201.250.14.2  [TTTTTI

RTF

Tt

EO0 201.250.14.1

|
201.250.X.X
S1201.250.15.1

\\ 50 201.250.15.2

i RTB

xxxxxx

 S0128.203.63.1

xxxxxx

IBGP 595207232 /~__s1192218.106 |

| RTC

L0 95.207.23.37

S095.207.23.1 / AS60

T IRTH
S195.207.23.4 / 95'207‘X'X L S1175.201.10.1

‘ )
Azn 128203632 AS20 AS30  so192218.103
192.218.X.X T | RTD
— L0 128.203.63.130 L0 192.218.10.174 ——
L \ §2/0128.203.63.5  128.203.X. § S0/1 192.218.I0.2I )
N

L0 175.201.10.174

S0 192.218.10.1 I ASS0

T | RTG

puoe

175.201.X.

i

e

S1128.203.63.6

|_180.180.X.X

$395.207.23.5

RTE

LO 180.180.10.1 AS40J

S0 175.201.10.2

N

Figure 6.3: Case Study Back-Bone Network Topology
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ip classless: This command enables the router to forward packets that are destined

for unrecognized subnets of directly connected networks.

ip subnet-zero: This global configuration command is necessary in case the inter-

faces of the subnet-zero subnets are configured.

neighbor: This command is used to define the BGP neighbor connection parameters

and policies between this router and its peers.

network network-number network-mask: The network command controls what net-
works are originated by this AS. This command is not trving to run BGP on a
certain interface, rather it is trving to indicate to BGP what networks it should
originate from this AS. The mask portion is used because BGP4 can handle sub-
netting and supernetting. A maximum of 200 entries of the network command

are accepted.

remote-as: This command. when used with the BGP neighbor command. specifies

the AS number of the remote BGP peer.

route-map: Route map is a method used to control and modifyv routing information.
This is done by defining conditions for redistributing routes from one routing
protocol to another or controlling routing information when injected in and out

of BGP.

synchronization: If an autonomous system is passing traffic from another AS to a
third AS, BGP should not advertise a route before all routers in the transit AS

have learned about the route via IGP. BGP will wait until IGP has propagated
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the route within the AS and then will advertise it to external peers. This is

called svnchronization.

update-source interface: This command. when used with the BGP neighbor com-
mand, specifies the interface to be used as a source [P address of the BGP

session with the neighbor.

6.4 BGP Path Flow

During a BGP session. each active BGP router receives update messages. For
any IP network within an AS, a BGP router originates the advertisement of a specific
IP network to its peers. Then this [P network with its attribute and path information
are examined at each receiving pecr. This incoming IP network is advertised to the

neighbors of the receiving peer in two cases:
1. The incoming IP network is new to the receiving peer.

2. The path of the IP network is the best path compared to the other paths of the

same [P network.

In the first case. a new [P network to the receiving peer is accepted and advertised
automatically. This is because there has no other paths to be compared. The complete
path flow information for each router is given in Appendix B. Each path carries the
information of Origin. Network, Next Hop. Local Preference, Weight, Metric. and
AS-Path. Under the Origin column. two information are shown. On the left side, it
shows the router names. On the right side, some special characters are used to mark

the status of cach path. Those special characters are explained as:
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“>%» This character marks the path which is the best path and is advertised to the

neighbor peers.

“@” This character marks the path which is the second best path and is added into
the routing table. This option is for this case study only and it is not part
of BGP. The second best path in not advertised by the router to its neighbor

peers.
“1” This character marks the path which is dropped out of advertisement.
“*» This character marks the path which is a valid path.

“A” This character marks the path as a default path.

The network column contains the network ID or IP addresses where BGP
routers originate them. Each network ID contains one [P address and a number of
mask bits. For example. 128.203.0.0/16 has 16 mask bits or the mask is 255.255.0.0.
The mask is used to routing all packets with more specific I[P addresses to the network

128.203.0.0.

The next hop column contains the neighbor peers from which the paths flow
into the receiving router. The next hop is also used to routing a data packet to the
destination. However, for clarity purpose, the router RTB (refer to the AS10 in Fig-
ure 6.3) is the next hop of the router RTA and the same for the router RTA. Since
RTA and RTB both are in the same autonomous system. thev communicate with
cach other using IBGP. In BGP. any next hop is outside of the AS. For example. the
router RTB learns external paths from the router RTC through the router RTA. The

next hop of RTB is RTC, not RTA.
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The AS-Path column shows how many AS have been passed through for each
path. When an IP network is advertised by a BGP router. the router preappends its
own AS ID in the AS-Path attribute. If a path flows back to any router which had
advertised the path, the router rejects this path. Therefore. it prevents a loop to be

happened. The letter “i” denotes that the path is learned through IBGP.

6.5 Construct LSCAN Networks

The main goal of constructing LSCAN networks is to establish the feasibil-
ity and performance for a learning network in this environment. The final routing
networks for the router RTA is shown in Figure 6.4. The other routing networks are

provided in Appendix C.

In this case study. the router RTA is taken as the example to build all re-
lated networks. At routing time. each destination IP address is required to compare
to the all IP network addresses which were originated by the BGP routers. Tak-
ing an example in Figure 6.5. the destination IP address Des_NetID may contain a
more specific IP address which is a subnetwork of the network which RTA originated.
Then the network mask Mask_RTA1 has to be applied to Des_NetID in order to gen-
crate a super-network [P address Des MaskNetID. Then, the Des_MaskNetID is com-
pared to the originated network Net_201.250.13.0 which has a value of 201.250.13.0.
If Net_201.250.13.0 and Des_MaskNetID are matched. the E-node MatchNet_RTA1l
is fired. If Net_201.250.14.0 and Des_MaskNetID are matched. the E-node Match-

Net_RTA2 is fired. Both MatchNet _RTA1l and MatchNet _RTA2 are ORed onto the
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MatchNet_RTB D \(MatchNet_RTD ;

Qe RTC

All inbound links are OR links

Figure 6.4: The RTA Routing Networks

Figure 6.5: The RTA Destination Matching Networks
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Figure 6.6: The RTB Destination Matching Networks
E-node D_RTA which leads the routing to the router RTA as shown in Figure 6.4.

The destination matching networks for the router RTB is shown in Fig-

ure 6.6. The destination matching networks for the routers RTC. RTD. RTE. RTG.

and RTH are given in Appendix C.

6.5.1 Initialize LSCAN Networks

In order to build the routing and the destination matching networks for
cach router. some of the LSCAN networks are constructed at the beginning based
on the knowledge given in the configurations. The first network to be built is the
All NextHops network as shown in Figure 6.7. This network contains generic E-nodes
for the neighbor peers. If the E-node All NextHops is activated. it triggers the E-
nodes from NextHopl to NextHopN. The values of NextHopX are the names of the
routers. For example. RTA has two neighbors, RTB and RTC. Next, the value of
NextHopl is RTB and the value of NextHop2 is RTC. Each E-node of NextHopX
activates its own attribute E-nodes: NH_IDX. NH_LPrefX. and NH_MEDX which

represent network ID. local preference, and MED respectively as shown in Figure 6.8.
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Empty_NextHop

Figure 6.8: The Next Hop X Network

The E-node Empty_NextHop in Figure 6.7 is a functional E-node to detect if there is
no valid next hop which is connected to this host router. The E-node All_NextHops

carries a count for how many next hops are connected.

Refering the Section 6.1.2, the first condition of the decision making is the
accessibility of the next hop. The Find Next Hop Network is required to make up
the decision of whether an incoming path should be dropped out of consideration.

Figure 6.9 illustrates the network.

The next step is to build an All_Routes network as shown in Figure 6.10. Ini-
tially, this network has only two E-nodes, the All_Routes E-node and the Empty_Route
E-Node, only. Empty_Route is active only if the value of All_Routes is 0. This net-

work grows as more new routes are received. Each valid new route is added into this
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V (Find_NextHop

EQ_NextHopN

In_NextHop) ( NextHop2 ) ------

Figure 6.9: The Find Next Hop Network

! ! !

Next. each route is constructed as in Figure 6.11. In order to construct a new Rou-
teX network, the incoming route has to be compared to all existing routes. The two
routes are same if they have the same origin. come from the same next hop. and have
the same AS paths as shown in Figure 6.12. If there is no existing route matches
the incoming route. then a new route network is constructed by the construct route
network as shown in Figure 6.13. The E-node Construct(Route) is a system E-node
which builds the RouteX network. Find Route network. and All_Routes network

based on the script of Route. The Route script carries all required information to
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RouteX

Figure 6.11: The Route X Network

Figure 6.12: The Find Route Network
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Construct(Route)

! f

Figure 6.14: The All Net Network

build the mentioned networks.

For each route or path. if there is one network ID which is discovered as
a new network ID to the host router, then this new network ID is added into the
corresponding destination matching network. The all-nets network. find-net network.
and construct-net network are for this purpose as shown in Figures 6.14, 6.15, and

6.16.

The network builds the construct-default network. If the incoming network
ID is equal to the default network ID and the default network is not defined yet, then
the E-node Construct(Default) is activated as shown in Figure 6.17. The activities of
Construct(Default) generate the default network and the default matching network

as shown in Figures 6.18 and 6.19. The script Default gives all information to build

126

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Figure 6.15: The Find Net Network

T T

Construct(NetMatching)

Figure 6.16: The Construct Net Network

f
Consruc Deful

CEQ_Detuit >
In_NettD ) (DefaultlD

Figure 6.17: The Coustruct Default Network
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NotMatch_RTB | (NotMaich_RTC > NotMaich RTD >
NotMatch_RTE NotMatch_RTG NotMatch_RTH

Figure 6.18: The Default Matching Network

otMatch_AnyNet

these two networks.

One of the feature of BGP4 is to prevent loops occurring while a router learns
a path and readvertises the path to its peers. This feature is done by the find-my-AS
network shown in Figure 6.20. The attribute In_ASPath is matched against My_AS
which is the AS number where the router belongs to. The E-node My_AS_InPath
evaluates the matching. If My_AS_InPath is fired, it prevents the incoming route to

be considered.
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Default_NextHopl Default_NextHop2
Default_ID UnDef_Defaul

Figure 6.19: The Default Network

QS P>
Cotts > Clrashan>

Figure 6.20: The Find My AS Network
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All_Routers

Figure 6.21: The All Routers Network

6.5.2 Build the Best Path Networks

For each destination router, there is at least one best route associated with
one of the peers of the host router. Every incoming route is examined to against
the current best path. Refering to Figure 6.4. the best path connection between a
destination router and a neighbor peer may be changed from time to time if a new
path is picked up as the best path based on the decision making criteria. There are

two situations for a path becoming the best path for a destination router:
1. a path carries a new orienting router. or
2. the incoming path is better than the current best path.

In order to identify the originating router is new to the host router. the find-router-
X network is used to identify the originating router which is noted as an E-node
In_Origin as shown in Figure 6.22. Initially. the all-routers network is constructed
with the two E-nodes, All_Routers and No_Router. only. Each time a new originating
router is discovered, the new router is added into the all-routers network as illus-

trated in Figure 6.21. Adding a new router into the all-routers network is done by
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Figure 6.22: The Find Router X Network

Construct(Router)

Figure 6.23: The Construct Router X Network
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Construct(BestX) In_NotLGWeightX

Figure 6.25: The Equal Origin X Network
the construct-router-X network as shown in Figure 6.23.

For the best path selection in this case study. there are attributes: weight. lo-
cal preference. and AS-path which are considered. According to the decision making
sequence. refering to Section 6.1.2, the weight is considered initially. Next. the local
preference is the second and the AS-path is the third place to be considered. Fig-
ure 6.24 illustrates how a path with a larger weight is selected. The best-X network
is constructed or modified only when the originating router is the same as the best

origin X. To detect the same origin router is done by the equal-origin-X network as
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Best_ASPathX

Figure 6.27: The Shortest AS Path X Network

shown in Figure 6.25.

If the largest weight is failed, the path is dropped out with no further
consideration. If the two weights are the same. then the local preference is con-
sidered to compare to the best-local-preference-X as shown in Figure 6.26. In this
network, the activation of the E-node Construct(Best_X) is restricted by the E-node

In_EQWeightX.

If the largest local preference is failed. the path is dropped out with no

further consideration. If the two local preferences are the same, then the AS path
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Figure 6.28: The Best X Network

is considered to compare to the best-As-path-X as shown in Figure 6.27. In this
network. the activation of the E-node Construct(Best_X) is restricted by the E-node
In_EQASPathX. The best-X network is shown in Figure 6.28. The script BestX

instructs how to update the link for the destination router to the best neighbor peer.

6.5.3 Build the Second Best Path Networks

The second best path information which is added into the routing networks is
a feature for this case study only in order to demonstrate how an alternative routing
option can be implemented using LSCAN. As same as the best path selections, there

are two conditions for a path to be the second best path:

1. a path is not the best path and there are only two paths for an orienting router.

or

2. the incoming path is better than the current second best path.

-~

The first path attribute consideration is the weight. As shown in Figure 6.29, the
weight was failed in the largest weight network is the condition of selecting the second

largest weight. If the weight is larger than the current second largest weight, the path
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Construct(SecondX)

In_NotLGWeightX In_SecWeightX

In_EQSecWeightX

Figure 6.29: The Second Largest Weight X Network

!

Construct(SecondX)

In_NotLGLocPrefX

In_EQSecWeightX

Figure 6.30: The Second Largest Local Preference X Network

is selected as the second best path. If the weight is smaller than the current second
largest weight, the path is no longer considered. If the weight is equal to the current

second largest weight, then the local preference is further considered.

Figure 6.30 illustrates how the path is selected as the second best path based
on the local preference attribute. If the local preference is larger than the current
second largest local preference, the path is selected as the second best path. If the
local preference is smaller than the current second largest local preference, the path

is no longer considered. If the local preference is equal to the current second largest
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Construct(SecondX)

In_NotShortPathX

In_NotSecShortX

n_EQSecLocPrefX

Figure 6.31: The Second Shortest AS Path X Network

T ]
A

Second_WeightX

Second_X

Figure 6.32: The Second Best X Network
local preference then the AS path is further considered.

Figure 6.31 illustrates how the path is selected as the second best path
based on the AS path attribute. The path with a shorter AS path is selected as the
second best path. Otherwise. the second best path is not changed. The second-best-X
network is shown in Figure 6.32. The script SecondX instructs how to update the

link for the destination router to the second best neighbor peer.
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6.6 Summary

This chapter introduced a case study for applving LSCAN networks to the
BGP4 network routing protocols. This case study explored the requirements for
building LSCAN networks to perform the routing tasks without external processing.
This means that all LSCAN subnetworks can self-support required functionalities.
which include calling external procedures to implement some specific computations.
establishing subnetwork nodes and connections through some external specification
scripts, and even creating a new subnetwork through some external scripts for defini-
tions. All of these kinds of functionalities are embedded in the processing of the nodes.
Based on the given networks, the main required subnetworks were provided. Those
subnetworks form the entire networks for any one BGP4 router. A small amount of

learning or training is required on the routing subnetwork as shown in Figure 6.4.

The main differences between the networks built for the BGP4 routing pro-
cessing and for the hand-printed digit classifications are in two aspects. The first
aspect is the learning processing. In the hand-printed digit classification networks. a
massive learning processing is involved. In the routing processing networks. learning
processing happens only on a small portion of the entire subnetworks. The learning
processing is more direct compared to the hand-printed digit classification networks.
The second aspect is the structure of the subnetworks. The hand-printed digit classifi-
cation networks contain more uniformed subnetworks. PDMs and classification nodes
are created in an identical way. Conversely, the subnetworks for the BGP4 routing
networks are more unique than the others. Subnetwork nodes creation benefits from

the guidance of external scripts.
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CHAPTER 7

CONCLUSION AND FUTURE WORK

This research was motivated by providing solutions to symbolic processing
with learning and distributed computing capability. Furthermore, the proposed net-
works should maintain the structures of causal relations between symbolic entities.
Symbolic entity composition and decomposition are also facilitated. LSCAN networks
are representations of knowledge formalisms expressed in Section 3.1. Variable bind-
ings arc embedded into the knowledge formalism expressions. therefore, they are

represented in LSCAN networks.

The activation function of the LSCAN networks is a general purpose eval-
uation function. The activation function can derive a decision making with any
combination of rigid-logic and soft-logic from the input nodes. At the output ievel.
the strength of a decision making can be maintained as a soft-logic or a rigid-logic.
In feed-forward learning techniques. LSCAN networks can be structured using dual-
input connections for cach input node in order to extend the learning techniques.
Using these extended feed-forward learning techniques discussed in Chapter 4. more
applications can be explored. For example. sequential learning can gain advantages

from these extended feed-forward learning techniques.

Similarity between any two symbolic entities can be measured using the

LSCAN activation function, if the two symbolic entities have similar inputs. Re-
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ferring to Figure 3.3, while the output strength is above 0.6, the output strength
maintains a linear relation with the input effect. The output strength drops sharply
while the ratio ;—!, refer to Equation 3.2, is lower than 0.62. This implies the linearity

of the similarity is maintained with the ratio above 0.62.

7.1 Summary of Case Study Results

In Chapter 5, the LSCAN networks implemented classification for the NIST
hand-printed digit images. The experiments showed that the LSCAN networks were
capable to achieve the goal of the recognition task. However, compared to the exper-
iment results from the P4yRADISE networks as shown in Table 7.1 using Gaussian
filters and all of the 3,471 digit images, the LSCAN networks generated a larger
number of classes. For example. at the level of the accuracy of 71 %. the LSCAN
networks created 819 classes. This is 14.89 times of 55 classes as shown in Table 7.1.
The possible reason is that under the values of the control parameters. the LSCAN
networks could not make more pattern sharing among different numerals. At the
same time, there were many patterns shared by different meta-classes. which lead
to lower accuracy. However, the LSCAN networks needed only to be trained one
time. At the second training pass, there were no new classes created. At the same
time, the accuracy ratio was improved. The rule-guided classification showed another
important benefit of the LSCAN representation strategy. The experiments showed
that the LSCAN networks were able to perform the classification task. When the
supporting algorithms in the rule-guided classifications are improved, the LSCAN
networks attain better performance directly from the cognitive rules even if the rules

are imperfect.
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The main problem in the pattern-based classification is the sharing problem.
The LSCAN networks used many patterns shared between different numerals. This
problem causes the hypothesis test failure which leads to more classes. There are

three ways to enhance the results of classification:

e In the experiments of pattern-based classification, new patterns were created
only when a new class was created. In this situation, a pattern may be not
the best pattern to represent the pattern extracted from the feature planes.
If all new patterns are created once theyv are detected. even there is no new
class discovered. Later. a new class is created with more representable patterns
which leads to higher accuracy. Therefore, the number of created classes is also
reduced.

e Using cognitive rules which identify an input digit image for specific group tags
on each created pattern can be evaluated. A pattern represents the extracted
pattern from the feature planes only if the tag of a pattern is in the same group
of the input digit image. In this way. a pattern is more accurate to represent
the extracted pattern from the feature planes. Therefore. it reduces the number

of classes.

e A method is to use tags for the created patterns as the previous method does.
however, the differences are using giobal similarity tests instead of rules. A
global similarity test is applied to each input digit image in order to identify
the group of the input digit image. \While a new pattern is created. a group
tag is added to the new pattern. In order to increase the accuracy, the pattern
represents the extracted pattern from the feature planes only when these two

patterns have the same tag.
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Table 7.1: Some Experiments Results from P.RADISE

Number of classes | Classes per metaclass | Accuracy (%)

33 3.9 71.2
78 7.8 67.3
125 12.5 81.5

The three suggested methods can lead to better results with higher accuracy and

lower number of classes.

The case study in chapter 6 showed a different aspect of using and develop-
ing LSCAN networks. This case study explored the needs for establishing LSCAN
networks to implement network routing tasks. Some new features and requirements

such as external function calls and script-guided network creation were implemented.

7.2 Future Work

LSCAN networks can be viewed in two aspects. One aspect is the viewpoint of
connectionist networks. The case study showed in Chapter 5 that hand-printed digit
classification can utilize a kind of connectionist network. which has massive learning
capability. On the other hand. LSCAN networks can deal with discrete cases such as
the case study showed in Chapter 6. In discrete cases, learning happens within the
network entities. Some subnetworks need to be trained. Based on these two aspects.
LSCAN networks are beneficial in integrating neural and cognitive approaches, but

more improvements are possible.
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Capitalizing on the advantages of LSCAN networks, it is worth investigating
two aspects. One aspect is to seek enhanced learning mechanisms. In a broad view,
LSCAN networks can adapt another learning techniques as in the case of pattern
learning in Chapter 5. Dealing with different problems may involve benefits from
different learning mechanisms. The architectures of LSCAN networks are suitable for
these kind of changes. The other aspect is to seek the required mechanisms for ex-
tended system integrations. LSCAN networks handle well for discrete events. Integra-
tion with the other connectionist networks is highly worthwhile. Those connectionist
networks can be merged with LSCAN networks using different learning mechanisms
and activation functions. Furthermore. the lateral connections and learning may be

emploved to readily achieve these goals.
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APPENDIX A
BGP4 ROUTER CONFIGURATIONS
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This appendix lists the configurations for all BGP routers.

RTA#

hostname RTA

ip subnet-zero

interface LoopbackO

ip address 201.250.13.

interface EthernetO

ip address 201.250.14.

interface Serial0

ip address 128.203.63.

router ospf 10

41 255.255.255.0

1 255.255.255.0

1 255.255.255.252

redistribute bgp 10 metric 2000 subnets

passive~-interface SerialO

network 201.250.0.0 0.
network 128.203.0.0 O.

0.255.255 area O
0.255.255 area 0

default-information originate metric 2000

router bgp 10

no synchronization
network 201.250.13.0
network 201.250.14.0
neighbor 128.203.63.2
neighbor 128.203.63.2
neighbor 201.250.15.2
neighbor 201.250.15.2

ip classless
ip default-network 180.

remote-as 20

route-map setlocalpref in
remote-as 10
update-source Loopback0

180.0.0
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route-map setlocalpref permit 10
set local-preference 20

RTF#

hostname RTF

ip subnet-zero

interface EthernetO
ip address 201.250.14.2 255.255.255.0

interface Seriall
ip address 201.250.15.1 255.255.255.252

router ospf 10
network 201.250.0.0 0.0.255.255 area O

ip classless

RTB#

hostname RTB

ip subnet-zero

interface Loopbackl
ip address 201.250.15.10 255.255.255.252
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interface SerialQ

ip address 201.250.15.2 255.255.255.252
!

interface Seriall

ip address 192.218.10.6 255.255.255.2562

router ospf 10
redistribute bgp 10 metric 1000 subnets
passive-interface Seriall
network 201.250.0.0 0.0.255.255 area 0
network 192.218.10.6 0.0.0.0 area O
default-information originate metric 1000
!
router bgp 10
no synchronization
network 201.250.15.0
neighbor 192.218.10.5 remote-as 30
neighbor 192.218.10.5 route-map localonly in
neighbor 95.207.23.1 remote-as 60
neighbor 95.207.23.1 route-map localonly in
neighbor 201.250.13.41 remote-as 10
!
ip classless
ip default-network 192.218.10.0
ip as-path access-list 1 permit ~30$
ip as-path access-list 2 permit ~60$

route-map localonly permit 10
match as-path 1

match as-path 2

set local-preference 30

RTC#
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hostname RTC
ip subnet-zero

interface Loopback0
ip address 128.203.63.130 255.255.255.192

interface Serial2/0

ip address 128.203.63.5 255.255.265.252
!

interface Serial2/1

ip address 128.203.63.2 255.255.255.2562

router bgp 20

network 128.203.0.0

aggregate-address 128.203.0.0 255.255.0.0 summary-only
neighbor 128.203.63.1 remote-as 10

neighbor 128.203.63.1 distribute-list 1 out

neighbor 128.203.63.6 remote-as 40

ip classless

access-list 1 deny 175.201.0.0 0.0.255.255
access-list 1 permit any

RTD#

hostname RTD
ip subnet-zero

interface Loopback0

ip address 192.218.10.174 255.255.255.192
!
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interface Serial0/0

ip address 192.218.10.5 255.255.255.252
!
interface Serial0O/1

ip address 192.218.10.2 255.255.255.252

router bgp 30

network 192.218.10.0

neighbor 192.218.10.1 remote-as 50
neighbor 192.218.10.6 remote-as 10

RTE#

hostname RTE
ip subnet-zero

interface LoopbackO
ip address 180.180.10.1 255.255.2565.0

interface Serial0
ip address 175.201.10.2 255.255.255.252

interface Seriall
ip address 128.203.63.6 255.255.255.252

router bgp 40

network 180.180.10.0

aggregate-address 180.180.0.0 255.255.0.0 summary-only
neighbor 128.203.63.5 remote-as 20

neighbor 175.201.10.1 remote-as 50

neighbor 95.207.23.4 remote-as 60

neighbor 95.207.23.4 route-map setlist out
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ip classless

access-list 1 deny 175.201.0.0 0.0.255.255
!

route-map setlist permit 10

match ip address 1

RTG#

hostname RTG
ip subnet-zero

interface LoopbackO
ip address 175.201.10.174 255.255.255.192

interface Serialo
ip address 192.218.10.1 255.255.255.252

interface Serialil
ip address 175.201.10.1 255.255.255.252

router bgp 50

network 175.201.10.0

aggregate—address 175.201.0.0 255.255.0.0 summary-only

neighbor 192.218.10.2 remote-as 30

neighbor 192.218.10.2

neighbor 192.218.10.2 route-map setcommunity out
2

neighbor 175.201.10.
!

send-community
remote—-as 40
ip classless

access-list 1 permit 175.201.0.0 0.0.255.255
access-list 2 permit any
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laccess-1list 101 permit ip 175.201.0.0 0.0.255.255 host 255.255.0.0
!
route-map setcommunity permit 10

match ip address 1

set community no-export

route-map setcommunity permit 20
match ip address 2

RTH#

hostname RTH
ip subnet-zero

interface LoopbackO
ip address 95.207.23.37 255.255.255.248

interface Serial0
ip address 95.207.23.1 255.255.255.252

interface Seriall
ip address 95.207.23.4 255.255.255.248

router bgp 60

network 95.207.23.0

aggregate—-address 95.207.0.0 255.255.0.0 summary-only
neighbor 95.207.23.2 remote-as 10

neighbor 95.207.23.5 remote-as 40

neighbor 95.207.23.5 route-map localonly in

!

ip classless

ip as-path access-list 1 permit ~40$
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route-map localonly permit 10
match as-path 1

151

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX B

LISTS OF NETWORKS AND ROUTES

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Local Preference Default: 100

Metric Default: 0

Weight Default: 32786 for paths that the router originates and 0 for all others paths.
Status: x — valid. > —best. '@ — second. \ — de fault.! — drop

AS-Path: ¢ — internal

RTA: Default Network 180.180.0.0

Origin Network Next Hop Loc. Pref. Weight Metric AS-Path
RTA > 201.250.13.0/24 0.0.0.0 32768 0 i
RTA > 201.250.14.0/24 0.0.0.0 32768 0 i
RTA '* 201.250.13.0/24 RTC 200 0 0 20 10
RTA '* 201.250.14.0/24 RTC 200 0 0 20 10
RTB > 201.250.15.0/24 RTB 100 0 0 i
RTB t* 201.250.15.0/24 RTC 100 0 0 20 40 60 10
RTC > 128.203.0.0/16 RTC 200 0 0 20
RTC '@ 128.203.0.0/16 RTB 300 0 0 10 60 40 20 i
RTD > 192.218.10.0/24 RTB 300 0 0 10 30 i
RTD '@ 192.218.10.0/24 RTC 200 0 0 20 40 50 30
RTE 'A@ 180.180.10.0/16 RTB 300 0 0 10 60 40 i
RTE > A 180.180.10.0/16 RTC 200 0 0 20 40
RTH > 95.207.23.0/24 RTB 300 0 0 10 60 i
RTH !@  95.207.23.0/24 RTC 200 0 0 20 40 60
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RTB: Default Network 192.218.10.0

Origin Network Next Hop Loc. Pref. Weight Metric AS-Path
RTA > 201.250.13.0/24 RTA 100 32768 0 i
RTA > 201.250.14.0/24 RTA 100 32768 0 i
RTA !* 201.250.13.0/24 RTD 100 0 0 30 50 40 20 10
RTA I* 201.250.14.0/24 RTD 100 0 0 30 50 40 20 10
RTA !* 201.250.13.0/24 RTH 100 0 0 60 40 20 10
RTA I* 201.250.14.0/24 RTH 100 0 0 60 40 20 10
RTB I* 201.250.15.0/24 RTD 300 0 0 30 10
RTB * 201.250.15.0/24 RTH 300 0 0 60 10
RTC > 128.203.0.0/16 RTA 200 0 0 10 20 i
RTC !* 128.203.0.0/16 RTD 300 0 0 30 50 40 20
RTC @ 128.203.0.0/16 RTH 300 0 0 60 40 20
RTD > A 192.218.10.0/24 RTD 300 0 0 30
RTD A 192.218.10.0/24 RTA 300 0 0 10 20 40 50 30
RTD '@  192.218.10.0/24 RTH 300 0 0 60 40 50 30
RTE '* 180.180.10.0/16 RTA 200 0 0 10 20 40 i
RTE > 180.180.10.0/16 RTH 300 0 0 60 40
RTE '@ 180.180.10.0/16 RTD 300 0 0 30 50 40
RTH > 95.207.23.0/24 RTH 300 0 0 60
RTH * 95.207.23.0/24 RTA 200 0 0 10 20 40 60 i
RTH '@ 95.207.23.0/24 RTD 30C 0 0 30 350 40 60
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RTC: Deny 175.201.0.0/16 out to RTA

Origin Network Next Hop Loc. Pref. Weight Metric AS-Path

RTA > 201.250.13.0/24 RTA 100 0 0 10

RTA > 201.250.14.0/24 RTA 100 0 0 10

RTA '@ 201.250.13.0/24 RTE 100 0 0 10 60 40 i
RTA '@ 201.250.14.0/24 RTE 100 0 0 10 60 40 i
RTB > 201.250.15.0/24 RTA 100 0 0 10

RTB '@ 201.250.15.0/24 RTE 100 0 0 40 60 10
RTC !'* 128.203.0.0/16 RTA 100 0 0 10 20
RTC ' 128.203.0.0/16 RTE 100 0 0 40 20
.RTD > 192.218.10.0/24 RTA 100 0 0 1030 i
RTD !@ 192.218.10.0/24 RTE 100 0 0 40 50 30
RTE > 180.180.10.0/16 RTE 100 0 0 40

RTG ! 175.201.10.0/16 RTE 100 0 0 40 50
RTH '@ 95.207.23.0/16 RTA 100 0 0 10 10 60 i
RTH > 95.207.23.0/16 RTE 100 0 0 40 60
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RTD:

Origin Network Next Hop Loc. Pref. Weight Metric AS-Path
RTA > 201.250.13.0/24 RTB 100 0 0 10 i
RTA > 201.250.14.0/24 RTB 100 0 0 10 i
RTA '@ 201.250.13.0/24 RTG 100 0 0 50 40 20 10
RTA '@ 201.250.14.0/24 RTG 100 0 0 50 40 20 10
RTB > 201.250.15.0/24 RTB 100 0 0 10
RTB !'@ 201.250.15.0/24 RTG 100 0 0 50 40 60 10
RTC > 128.203.0.0/16 RTB 100 0 0 10 20 i
RTC !@ 128.203.0.0/16 RTG 100 0 0 50 40 20
RTD !'* 192.218.10.0/24 RTB 100 0 0 10 30
RTD '* 192.218.10.0/24 RTG 100 0 0 50 30
RTE '@ 180.180.10.0/16 RTB 100 0 0 10 10 20 40
RTE > 180.180.10.0/16 RTG 100 0 0 50 40
RTG > 175.201.10.0/16 RTG 100 0 0 50
RTH > 95.207.23.0/16 RTB 100 0 0 10 60
RTH '@ 95.207.23.0/16 RTG 100 0 0 50 40 60
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RTE:

Origin Network Next Hop Loc. Pref. Weight Metric AS-Path
RTA > 201.250.13.0/24 RTC 100 0 0 20 10
RTA > 201.250.14.0/24 RTC 100 0 0 20 10
RTA '* 201.250.13.0/24 RTG 100 0 0 50 30 10 i
RTA '* 201.250.14.0/24 RTG 100 0 0 503010 i
RTA '@ 201.250.13.0/24 RTH 100 0 0 60 10 i
RTA '@ 201.250.14.0/24 RTH 100 0 0 60 10 i
RTB '@ 201.250.15.0/24 RTC 100 0 0 20 10 i
RTB '™  201.250.15.0/24 RTG 100 0 0 50 30 10
RTB > 201.250.15.0/24 RTH 100 0 0 60 10
RTC > 128.203.0.0/16 RTC 100 0 0 20
RTC '* 128.203.0.0/16 RTG 100 0 0 50 30 10 20 i
RTC '@ 128.203.0.0/16 RTH 100 0 0 60 10 20 i
RTD ' 192.218.10.0/24 RTC 100 0 0 2010 30 i
RTD > 192.218.10.0/24 RTG 100 0 0 50 30
RTD '@ 192.218.10.0/24 RTH 100 0 0 60 10 30
RTE !'* 180.180.10.0/16 RTC 100 0 0 20 40
RTE '* 180.180.10.0/16 RTD 100 0 0 50 40
RTE !'* 180.180.10.0/16 RTH 100 0 0 60 40
RTG > 175.201.10.0/16 RTG 100 0 0 50
RTH > 95.207.23.0/16 RTH 100 0 0 60
RTH '@ 95.207.23.0/16 RTC 100 0 0 20 10 60 i
RTH '* 95.207.23.0/16 RTG 100 0 0 50 30 10 60
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RTG:

Origin Network Next Hop Loc. Pref. Weight Metric AS-Path
RTA > 201.250.13.0/24 RTD 100 0 0 30101
RTA > 201.250.14.0/24 RTD 100 0 0 30101
RTA '@ 201.250.13.0/24 RTE 100 0 0 40 20 10
RTA '@ 201.250.14.0/24 RTE 100 0 0 40 20 10
RTB > 201.250.15.0/24 RTD 10C 0 0 30 10
RTB '@ 201.250.15.0/24 RTE 100 0 0 40 60 10
RTC '@ 128.203.0.0/16 RTD 100 0 0 30101020 i
RTC > 128.203.0.0/16 RTE 100 0 0 40 20
RTD > 192.218.10.0/24 RTD 100 0 0 30
RTD '@ 192.218.10.0/24 RTE 100 0 0 40 60 10 30
RTE !@ 180.180.10.0/16 RTD 100 0 0 30 10 60 40
RTE > 180.180.10.0/16 RTE 100 0 0 40
RTG '* 175.201.10.0/16 RTD 100 0 0 30 50
RTG ' 175.201.10.0/16 RTE 100 0 0 40 50
RTH '@ 95.207.23.0/16 RTD 100 0 0 30 10 60
RTH > 95.207.23.0/16 RTE 100 0 0 40 60
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RTH:

Origin Network Next Hop Loc. Pref. Weight Metric AS-Path
RTA > 201.250.13.0/24 RTB 100 0 0 10 i
RTA > 201.250.14.0/24 RTB 100 0 0 10 i
RTA !@ 201.250.13.0/24 RTE 100 0 0 40 20 10
RTA !@ 201.250.14.0/24 RTE 100 0 0 40 20 10
RTB > 201.250.15.0/24 RTB 100 0 0 10
RTB !@ 201.250.15.0/24 RTE 100 0 0 40 20 10 i
RTC '@ 128.203.0.0/16 RTB 100 0 0 10 20 i
RTC > 128.203.0.0/16 RTE 100 0 0 40 20
RTD > 192.218.10.0/24 RTB 100 0 0 10 30
RTD !'@ 192.218.10.0/24 RTE 100 0 0 40 50 30
RTE '@ 180.180.10.0/16 RTB 100 0 0 10 30 50 40
RTE > 180.180.10.0/16 RTE 100 0 0 40
RTG !@ 175.201.10.0/16 RTB 100 0 0 10 30 50
RTG > 175.201.10.0/16 RTE 100 0] 0 40 50
RTH '* 95.207.23.0/16 RTB 100 0 0 10 60
RTH !'* 95.207.23.0/16 RTE 100 0 0 40 60
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ROUTING NETWORKS
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This appendix shows the routing networks for the routers: RTB, RTC, RTD,
RTE, RTG, and RTH. These routing networks are shown in Figures C.1, C.2, C.3,

C.4. C.5. and C.6. At routing time, the destination matching networks foi the routers
RTC, RTD. RTE. RTG, and RTH are shown in Figures C.7, C.8, C.9. C.10. and C.11.

QxS CxO @

MatchNet_RTAI MatchNet_RTB MatchNet_RTE Match_Defaultl
MatchNet_RTA2 @ @ Match_Default2

All inbound links are OR links

Figure C.1: The RTB Routing Network
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All inbound links are OR links

Figure C.2: The RTC Routing Network

MatchNet_RTAlI MatchNet_RTB i

All inbound links are OR links

Figure C.3: The RTD Routing Network
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MatchNet RTADN (MatchNet_RTB MatcthtRTD\
MatchNet_RTA2

All inbound links are OR links

Figure C.4: The RTE Routing Network

All inbound links are OR links

Figure C.5: The RTG Routing Network
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MatchNet_RTAl MatchNet_RTB MatchNet_RTD

All inbound links are OR links

Figure C.6: The RTH Routing Network

! !

Net_128.203.0.0 Masked_DesRTC

Mask_RTC

Figure C.7: The RTC Destination Matching Networks
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NotMatch_RTD

et_192.218.10.0

NotMatch_RTE MatchNet_RTE

Masked_DesRTE

Des_NetID

Figure C.9: The RTE Destination Matching Networks

NotMatch_RTG MatchNet_RTG

Net_175.201.10.0

Mask_RTG Des_NetID

Figure C.10: The RTG Destination Matching Networks
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NotMatch_RTH

Net_95.207.23.0 asked_DesRTH

Des_NetID

Figure C.11: The RTH Destination Matching Networks
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APPENDIX D

NIST HAND-PRINTED DIGIT IMAGES
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This appendix displays all 3471 hand-printed digits sorted in numerical orders.
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Figure D.1: Digit 9 with 339 Images

168

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



wp 9% 4 S0 %0 09 () 6 G0 O V0 & A e % Do
o ©o 00 0o 00 % H= By G S0 00 ), e o W) G0
§8 La 00 00 g By 02 Dy 80 0o Do ), W & U O
o tg Og 90 U O oo Oy 08 A o Oy be Do W Oo
N\ Yo %0 % 00 v 0 Oy 02 0= 00 §, U & Oy 00
& 8% @ 00 00 0 Dy On &= Y 0o O we o O B0
& Ug o0 0Q 00 ®e @0 Gy b % 00 4, D* © o &0
o % 00 ¥ A\ Yo so Op Op Ve Go o, W o0 X OO
Vo o 00 @) do 0 Bo @) O Do Vo L 00 Yo W by
Do & ©0 {g O\ "0 Oo U0 Oq O % §, U4 0 ¥ &
Uy Do B9 @ Ve 0 0= (0 O 08 V% ty >u w0 e @0
0o Oy O Do O v 60 @) O Qg S By B0 S0 W N
Op 00 wo Q) & 0 Ds OF Gy %0 &, Y Og © Do *0
09 O O 00 O3 ™0 Oy () By O W0 €0 B % o e
% % O O b 20 % 00 9 Og ) 00 20 2o b N
Oy @ %0 V0 % Op O 00 A b 00 00 By X W o
Oy W 00 Oq O 0p O, 00 V9 60 Bg Oo & & W ¥y
00 Oy V0 Oy % 00 O O0 DB P9 O 0o (e o ¥ O

Figure D.2: Digit 8 with 304 Images
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Figure D.4: Digit 6 with 369 Images
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