
A COMPETITIVE RECONFIGURATION APPROACH TO
AUTONOMOUS FAULT HANDLING USING GENETIC ALGORITHMS

by

KENING ZHANG
B.S. Xidian University, 1998

M.S. University of Central Florida, 2004

A dissertation submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

in the School of Electrical Engineering and Computer Science
in the College of Engineering and Computer Science

at the University of Central Florida
Orlando, Florida

Summer Term
2008

Major Professor: Ronald F. DeMara

© 2008 Kening Zhang

ii

ABSTRACT

In this dissertation, a novel self-repair approach based on Consensus Based Evaluation

(CBE) for autonomous repair of SRAM-based Field Programmable Gate Arrays (FPGAs)

is developed, evaluated, and refined. An initial population of functionally identical (same

input-output behavior), yet physically distinct (alternative design or place-and-route

realization) FPGA configurations is produced at design time. During run-time, the CBE

approach ranks these alternative configurations after evaluating their discrepancy relative

to the consensus formed by the population. Through runtime competition, faults in the

logical resources become occluded from the visibility of subsequent FPGA operations.

Meanwhile, offspring formed through crossover and mutation of faulty and viable

configurations are selected at a controlled re-introduction rate for evaluation and

refurbishment. Refurbishments are evolved in-situ, with online real-time input-based

performance evaluation, enhancing system availability and sustainability, creating an

Organic Embedded System (OES).

A fault tolerance model called N Modular Redundancy with Standby (NMRSB) is

developed which combines the two popular fault tolerance techniques of NMR and

Standby fault tolerance in order to facilitate the CBE approach. This dissertation develops

two of instances of the NMRSB system – Triple Modular Redundancy with Standby

(TMRSB) and Duplex with Standby (DSB). A hypothetical Xilinx Virtex-II Pro FPGA

model demonstrates their viability for various applications including a 3-bit x 3-bit

multiplier, and the MCNC91 benchmark circuits. Experiments conducted on the model

iii

evaluate the performance of three new genetic operators and demonstrate progress

towards a completely self-contained single-chip implementation so that the FPGA can

refurbish itself without requiring a PC host to execute the Genetic Algorithm.

This dissertation presents results from the simulations of multiple applications with a

CBE model implemented in the C++ programming language. Starting with an initial

population of 20 and 30 viable configurations for TMRSB and DSB respectively, a single

stuck-at fault is introduced in the logic resources. Fault refurbishment experiments are

conducted under supervision of CBE using a fitness state evaluation function based on

competing outputs, fitness adjustment, and different level threshold. The device remains

online throughout the process by which a complete repair is realized with Hamming

Distance and Bitweight voting schemes. The results indicate a Hamming Distance

TMRSB approach can prevent the most pervasive fault impacts and realize complete

refurbishment. Experimental results also show that the Autonomic Layer demonstrates

100% faulty component isolation for both Functional Elements (FEs) and Autonomous

Elements (AEs) with randomly injected single and multiple faults. Using logic circuits

from the MCNC-91 benchmark set, availability during repair phases averaged 75.05%,

82.21%, and 65.21% for the z4ml, cm85a, and cm138a circuits respectively under stated

conditions. In addition to simulation, the proposed OES architecture synthesized from

HDL was prototyped on a Xilinx Virtex II Pro FPGA device supporting partial

reconfiguration to demonstrate the feasibility for intrinsic regeneration of the selected

circuit.

iv

TABLE OF CONTENTS

LIST OF FIGURES ... viii

LIST OF TABLES.. x

CHAPTER 1: INTRODUCTION .. 1

1.1. Introduction to Genetic Algorithms .. 1

1.2. Using Evolvable Hardware to Increase Reliability... 3

1.3. FPGA Architecture ... 7

1.3.1. Xilinx FPGA Architecture .. 7

1.3.2. Hypothetical FPGA Architecture.. 9

1.4. Organic Computing Concept .. 11

1.5. Contribution of Dissertation ... 13

1.5.1. Integrate Fault Detection, Isolation, Diagnosis, and Recovery phases..... 15

1.5.2. Realize Adaptable Quality of Service (QoS) Levels for Reliability......... 15

1.5.3. Realize Online Device Refurbishment.. 15

1.5.4. Proposed Self-Recovery Architecture... 16

CHAPTER 2: PREVIOUS WORK.. 18

2.1. Overview... 18

2.2. EHW Approaches to Increases Reliability ... 18

2.3. Self-X properties on Organic Architecture ... 22

2.4. TMR and Standby System Application on Improving Reliability.................... 26

CHAPTER 3: TMR, STANDBY AND TMRSB SYSTEM.. 29

3.1. Overview of Traditional Fault Tolerance Strategy ... 30

3.1.1. Embedded Device Properties Influencing Redundancy Strategies........... 33

3.2. System Reliability Analysis.. 38

v

3.2.1. Standby System... 38

3.2.1.1. Imperfect Switching.. 40

3.2.1.2. Unknown Configurations Status ... 43

3.2.2. NMR System... 45

3.2.3. Hybrid System .. 47

3.3. Simulation Result.. 50

CHAPTER 4: AUTONOMOUS REPAIR USING COMPETITIVE RUNTIME
RECONFIGURATION... 54

4.1. Detecting Faults using a Population of Alternatives... 54

4.2. CBE Approach .. 56

4.3. Self-Adaptive Fitness Assessment using Outlier Identification 58

4.4. Achieving Device Refurbishment... 61

CHAPTER 5: PERFORMANCE EVALUATION OF CBE APPROACH................. 63

5.1. Circuit Representation and Benchmark Characteristics 63

5.2. Quantifying Search Space Complexity under Fault.. 66

5.3. Source of Redundancy in Digital Circuits .. 68

5.4. Initial Circuit Population Design .. 69

5.5. Effect of Reintroduction Rate on Refurbishment Performance........................ 73

5.6. Comparing Discrepancy Scoring Schemes... 75

5.7. Recovery from Pervasive Faults ... 78

CHAPTER 6: FAULT MONITORING AND RECOVERING USING ORGANIC
COMPUTING APPROACH .. 80

6.1. Embedded Organic Computing Architecture.. 80

6.1.1. Requirements and Architectural Overview... 80

6.1.2. System Operation.. 83

vi

6.1.2.1. System Initialization Phase ... 84

6.1.2.2. FE Fault Detection/Recovery and AE monitoring Phase 85

6.1.2.3. AE Fault Detection Phase ... 86

6.1.3. CBE evaluation process and AE fault recovery Phase on the AS 87

6.2. Evolutionary Process FE and AE.. 88

6.2.1. Genotype Definition.. 88

6.2.2. Genetic Operations.. 90

6.2.2.1. Mutation Operation... 90

6.2.2.2. Cell-Swap Operation... 91

6.2.2.3. Partial Match Crossover Operation... 93

6.2.3. Consensus Based Evaluation (CBE)... 95

6.3. Experiment Configuration .. 96

6.3.1. FE and AE Failure Coverage .. 96

6.3.2. Single vs. Multiple Fault Coverage .. 96

6.3.3. Hardware Prototype .. 99

6.4. Result and Analysis... 101

CHAPTER 7: CONCLUSION... 110

7.1. OVERVIEW ... 110

7.2. Evolvable Hardware and CBE.. 111

7.3. Organic Computing Architecture.. 113

7.4. Future Work .. 115

LIST OF REFERENCES.. 117

vii

LIST OF FIGURES

Figure 1: Genetic Algorithm Process.. 2

Figure 2: Xilinx Virtex-II Pro device Generic Architecture Overview 8

Figure 3: Genotype in a rectangular array cells .. 10

Figure 4: Genotype array representations ... 11

Figure 5: Dual-Layer ASoC platform from Lipsa et al [29]... 12

Figure 6: TMR System.. 30

Figure 7: Standby System ... 33

Figure 8: FPGA Configuration and Readback Mechanism .. 34

Figure 9: Reliability of Imperfect Switching Standby System ... 43

Figure 10: The Standby System with Imperfect switching and Unknown Configuration
Status... 45

Figure 11: NMR System ... 46

Figure 12: TMRSB System... 47

Figure 13: Comparison of Simplex,TRM,Two-Parallel-Redundancy,Standby,TMRSD
Reliabilities ... 48

Figure 14: States in the Lifetime of the ith Half-Configuration... 57

Figure 15: Fitness State Adjustment Process in the CBE Technique 60

Figure 16: Generation of Alternate Configurations by – .. 64

Figure 17: MCNC91 Benchmark Circuit Sensitivity to Stuck-at Faults 67

Figure 18: Prioritizing Individuals for Refurbishment ... 69

viii

Figure 19: Effective Throughput ηE during Regeneration Under Duplex and TMR Modes
of Operation .. 70

Figure 20: Comparison of Performance Characteristics under Duplex and TMR Modes 70

Figure 21: Effective Throughput with Hamming Distance and Bit-weight Schemes 76

Figure 22: CBE Performance Characteristics with Hamming Distance and Bit-weight
Schemes .. 76

Figure 23: Column-oriented OES on Xilinx Virtex II Pro FPGA platform 81

Figure 24: AE architecture in OES ... 82

Figure 25: OES Integrated FE and AE Failure Detection Procedure 84

Figure 26: Genotype Chromosomes of GA Operation ... 89

Figure 27: Mutation on the Genotype Chromosomes... 91

Figure 28: Mutation on the Phenotype.. 91

Figure 29: Cell-Swap operation on Genotype chromosomes ... 92

Figure 30: Cell-Swap operation on Phenotype chromosomes.. 93

Figure 31: PMX operation on Genotype chromosomes ... 94

Figure 32: Gate Level Design of OES (Case study) ... 100

Figure 33: Physical Layout of OES system on FPGA with GNAT/JTAG shown 101

Figure 34: Fitness as a function of 12 LUTs with 48 fault locations tested 103

Figure 35: cm85a FE Evolutionary Recovery without CBE .. 107

Figure 36: AE Evolutionary Repair for cm85a Circuit using CBE 108

ix

LIST OF TABLES

Table 1: Attributes of proposed technique.. 14

Table 2: Fault Recovery Characteristics of Selected Approaches 22

Table 3 Performance Characteristics of FPGA-based Fault Tolerance technique 49

Table 4 Stadnby System Simulation Result.. 51

Table 5 TMRSB Simulation Result .. 52

Table 6: Characteristics of Benchmark Circuits ... 66

Table 7: CBE Performance under Duplex and TMR Modes for Two Different Circuits. 72

Table 8: Number of Fully Refurbished Individuals vs. Effect of Reintroduction Rate (λR)
for Four Circuits.. 74

Table 9: CBE Performance under Hamming Distance and Bit-weight Performance
Evaluation Schemes .. 77

Table 10: MCNC-91 Benchmark Circuits Evaluated on OES Architecture................... 102

Table 11: z4ml Circuit Experiment Results.. 104

Table 12: cm85a Circuit Experiment Results ... 105

Table 13: cm138a Circuit Experiment Result... 106

x

CHAPTER 1: INTRODUCTION

1.1. Introduction to Genetic Algorithms

In computer science, Evolutionary Computation (EC) [1] is a subfield of Artificial

Intelligence (AI) [2] that involves combinatorial optimization problems which uses iterative

progress, such as growth or development in a population using guided random search to

achieve the desired end. Two developed techniques involved in EC which are based on

identical principles, but different biology behaviors are Evolutionary Algorithms (EAs) [3]

and Swarm Intelligence (SI) [4]. They have been heavily researched and implemented in

different problem solutions which start from limited available information about uncertain

environment and eventually develop an approximated informative solution based on

interaction of the population solutions themselves. EA emphasizes population-based meta-

heuristic optimization approach which is composed of Genetic Algorithms (GA) [5],

Evolutionary Programming (EP) [6], Evolutionary Strategy (ES) [7], Genetic Programming

(GP) [8-10] and Learning Classifier System (LCS) [11], while SI is more based around the

study of collective behavior in decentralized system which composed of Ant Colony

Optimization (ACO) [12] and Particle Swarm Optimization (PSO) [8]. This dissertation

concentrates on developing EA-based approach for fault-handling methods.

Genetic Algorithms (GAs) [1] are the most popular EA technique inspired by biological

mechanisms of evolution used in finding exact or approximated solutions to either search

problems or optimization problems originated by John H. Holland and his colleagues at the

University of Michigan in the 1970s. A computer simulation, a population of individuals,

1

each of which represents a potential solution to the problem, explores and exploits the search

space in response to the environment of the individuals undergoing adaptation. An individual

is encoded by various computer manipulatable structures, and the typical structure is a binary

string although the best representations are determined by the problem being solved. Problem

representation is one of the key decisions to be made when applying a GA because it may

affect the adaptation process in terms of shape of the solution space that a GA searches

through as well as solution complexity and precision. Furthermore, a measurement of the

performance of the population named the Fitness Function is implemented to select the

candidate for the next generation for further operation. Figure 1 below shows a conventional

GA flow.

Yes

No

Implement (n)th Generation

Evaluation/Fitness Computing
(eg. Travel time,cost)

(n+1)th Generation

Mutation

Crossover

Reproduction

Stop

Initilization

Termination

Figure 1: Genetic Algorithm Process

2

The GA repeats the above steps in Figure 1 iteratively in order to create better designs. The

procedure begins with the initialization of the individuals in the population. An evaluation

mechanism for the assessing the suitability of each individual design in the population is utilized

called a fitness function. A fitness function computes how well a particular design performs in

terms of some specific metrics. Different operators like mutation and crossover will be used for

new offspring generations until the stop condition can be achieved for termination the process.

The application field of GA is focused on the optimization and search problems which appear in

biogenetics, computer science, engineering, economics, chemistry, manufacturing, mathematics,

and physics [3, 8, 10, 13-17]. Evolvable Hardware is one of emerging application fields which

emphasizes digital circuit design and fault tolerance based on reprogrammable devices.

1.2. Using Evolvable Hardware to Increase Reliability

Reliable embedded computing systems are vital to every sector of our economy and daily

personal lives. Embedded systems using Field Programmable Gate Arrays (FPGAs) are

frequently relied upon in mission-critical applications like deep space explore missions where the

safety of human life and material assets are at risk. The recent availability of large multi-million

gate-equivalent FPGAs provides the necessary resources facilitates the feasibility of using

Genetic Algorithms (GAs) on these devices. GAs are used to evolve diverse and competitive

solutions for a variety of problems, ranging from the general to the specific, by occluding the

faults in the device at runtime. The reason GAs can be an appropriate adaptive mechanism for

embedded systems are that they can adjust the solution quality without external control or

3

supervision. GAs can also adapt and respond to many unforeseen fluctuations in the operating

environment.

Evolvable Hardware (EHW) [10, 14, 18] combines the benefits of reconfigurable hardware with

GAs to offer efficient solutions to fault-related problems. Conventionally, EHW can be classified

into two categories depending on the method of simulation. In the Extrinsic Evolutionary

method, the physical condition of real circuits is simulated and a user defined genotype is used to

evolve each individual outside of the real chip. Finally, the best-fit individual is selected and

programmed into the real chip. On the other hand, in the Intrinsic Evolutionary method, the

fitness is evaluated at run-time by using the phenotypes of the individuals directly in the real

chip.

Depending on the application, EHW can be classified into two categories. One perspective is an

alternative to traditional, specification-based manual circuit design techniques. In the other

perspective, EHW is online device capability for autonomous reconfiguration. This dissertation

will view EHW along the lines of the second approach. A fundamental difference of these two

views is the former places the emphasis on the design phase and the latter emphasizes the

execution, or run-time phase. The evolutionary design approach has several advantages as

compared to the manual approach. For example, no a-priori knowledge is required on the

specific domain, and the availability of a wider search space may help exploration of novel

solutions.

With benefits of the EHW introduced in the previous section, still, there exist some substantial

obstacles to overcome before there is wide utilization of this approach. First of all, the limited

4

number of optimal/suboptimal potential solutions within a large the gigantic search space always

lead to excessive evolution time even under parallel search with multiple individuals in a

population. This may not satisfy the cost-effective and efficiency of most problem solving

criteria. For example, suppose there is a 2-bit adder composed of 10 gates and each gate can be

implemented using 4 different functionalities (AND, OR, XOR, NOT). Without considering

interconnection, there are 410 possible ways and whenever one more gate is added to current

design, that will increase 4-fold the possible designs over the previous designs. Instead of

starting from scratch, some heuristic approaches have to be used as auxiliary tools to assistance

exploring and exploiting the search space. To address this problem, a diverse population is used

to supply candidate solutions initially as described below. Previous work did not investigate the

benefit of diversity.

Secondly, each candidate problem is going to use specific application dependent fitness function

to evaluate the new generated individuals for further evolution. Until now, no one has been

proposed any universal fitness functions which can fit even similar classes of applications.

However, without a versatile fitness function, it is difficult to assess how adaptive it will be for a

GAs concept. Since a special fitness function must be dedicated for certain application in order

to get accurate evaluation, knowing all of the circuit functionalities becomes a prerequisite

system constraint which definitely decreases the feasibility of the GA utilization. To address this

problem, this dissertation develops a standardized fitness assessment scheme based on

discrepancy behavior suitable for any combinational logic circuit.

Lastly, most current EHW research is focused on digital circuit design which use randomly

generated configurations as seeds which are evolved further with new offspring individuals in

5

subsequent generations. Starting from scratch is one possible way for small design, but not

appropriate for design scalability since current FPGA device have multi-million gate capacities.

Unlike conventional fault tolerance technology such as Triple Module Redundancy (TMR) [19]

which uses majority information to maintain the current output for the system, there is no

previously proposed idea to utilize the majority of the operational information contained in the

population to maintain the system performance.

Consensus Based Evaluation (CBE) for autonomous repair of SRAM-based Field Programmable

Gate Arrays (FPGAs) proposed in the dissertation is first implemented as a system using a

general population consensus information to replace the specific fitness function based on a pre-

designed population of functionally identical (same input-output behavior), yet physically

distinct (alternative design or place-and-route realization) FPGA configurations. Instead of

exploring the entire search space for the solution, any surviving individuals under a fault

condition will be used as starting point for evolution. Furthermore, even if there are no

individuals that survive unaffected, the population still can maintain acceptable system

availability using partial working configuration which may not generate all possible correct

outputs, yet maintain a useful amount of correct outputs.

For the CBE approach, the target applications are those mission-critical embedded systems

which can utilize hundreds of field programmable devices with very limited capacity for spares.

Another feature is that human intervention is infeasible for such applications in deep space or

deep sea missions which required autonomy self-recovery as primary functionality. Also even

they are mission-critical, using background evolution cycles, the system still provides attractive

alternatives to device redundancy under graceful degradation except for catastrophic failures.

6

However, the system is not required to anticipate any specific environment it will experience and

instead can dynamically adjust its configuration according to correspondent external conditions.

Two experimental applications are presented in this dissertation. One is using standard

benchmark circuits implemented on an FPGA software model for system reliability analysis and

the other on a prototype of an Organic Computing model. Both applications are using Xilinx

Virtex-II Pro architecture model as hardware platform which introduced in next two sections and

detailed in Chapter 4 and 5. The last section of this chapter presented the research objectives of

this dissertation in more detail.

1.3. FPGA Architecture

1.3.1. Xilinx FPGA Architecture

The FPGA hypothetical model is inspired by Xilinx-style architecture [20-22].

7

Figure 2: Xilinx Virtex-II Pro device Generic Architecture Overview

• Virtex-II Pro devices, as shown in Figure 2, are built on the Virtex-II FPGA

architecture and are user-programmable gate arrays with various configurable

elements and embedded cores optimized for high-density and high-performance

system designs. The Virtex-II Pro family has the following features crucial to the

design.

• Up to 22,592 Configurable Logic Blocks (CLBs) provide abundant reconfigurable

recourses [21] with strong functional elements for combinatorial and synchronous

logic, including basic storage elements (distributed RAM), MUX, fast carry chains,

arithmetic logic, and BUFTs (3-state buffers).

8

• Up to four Incorporated embedded PPC405 cores in a single Virtex-II Pro device

operate up to 400+ MHz with specially designed interface logic integrates the core

with the surrounding CLBs, block RAMs, and general routing resources, which not

only makes the implementation of autonomous system possible but also brings more

flexibility and possibility to carry out complex reconfiguration application, such as

GAs, in an even faster way by reducing off-chip I/O.

• A large amount of memory are available on-chip and on board, including the on-

chip block RAM, on-board SDRAM SODIMM, Mobile SDRAM, Asynchronous

SRAM and Flash, which provides huge extension for large calculation and

reconfigurations.

The additional functionalities, such as Embedded 18-bit x 18-bit multipliers, Digital Clock

Manager (DCM) blocks and multi-gigabit transceiver blocks, etc, [20], may greatly enhance

programmable logic design and provide possible application extensions in the future as well.

1.3.2. Hypothetical FPGA Architecture

The hypothetical structure used in this dissertation is shown in Figure 3, which is similar to the

architecture introduced in section 1.3.1. The feed-forward combinational logic digital circuit

uses a rectangular array of nodes with two inputs and one output. Each node represents a Look-

up Table (LUT) in the FGPA device, and a Configurable Logic Block (CLB) is composed of

four LUTs. In the array, each CLB will be a row of the array and two LUTs are represented as

four columns of the array. There are five dyadic functions -- OR, AND, XOR, NOR, NAND --

9

and one unary-function NOT, each of which can be assigned to an LUT. The LUTs in the CLB

array will be indexed from 1 to n. This linear labeling enforces a feed-forward property in the

combinational digital circuit for the array interconnection and routing.

Array routing is defined by the internal connectivity and the inputs/outputs of the array. Internal

connectivity is specified by the connections between the array cells. The inputs of the cells can

only be the outputs of cells with lower row numbers. Alternatively, the outputs of each cell are

only allowed to be inputs of cells with higher row numbers.

LUT0

LUT3LUT1

LUT2

I0

I5

I4

I3

I2

I1

O0

O5

O4

O3

O2

O1

Internal Connection

CLB 0 CLB # CLB #

CLB #

CLB #

CLB #

CLB #

CLB #

CLB #

CLB #

CLB #

CLB #
CLB n

CLB 1

CLB 2

CLB i

OutputInput

Figure 3: Genotype in a rectangular array cells

A phenotype is any observable characteristic of an organism, such as its morphology,

development, biochemical or physiological properties, or behavior. They can also be represented

as a linear string of integers as shown in Figure 4. This scheme is comprised of multiple CLB

fields as well as array input and output fields. Array input-output fields are at the beginning and

at the end of the entire configuration. Each CLB field is composed of a number of component

10

LUTs whose functionality and interconnection is specified. The first bit of the CLB field is the

CLB number that indicates the relative order of the CLB in the entire configuration. Each LUT

field within the CLBs is composed of a bit which reflects the functionality and bits which reflect

the two inputs of the LUT. The array input and output sections both have six input bits and six

output bits at the beginning and the end of the configuration.

I
n
p
u
t
2

I
n
p
u
t
1

......

I
n
p
u
t
2

I
n
p
u
t
1

....

I
n
p
u
t
2

I
n
p
u
t
1

......

I
n
p
u
t
2

I
n
p
u
t
1

CLB
Number

LUT0
Function
TypeArray Input

CLB0

LUT3
Function
Type Array Output

CLB n

LUT0
Function
Type

CLB
Number

LUT3
Function
Type

Figure 4: Genotype array representations

1.4. Organic Computing Concept

The realizations of systems that are capable of exhibiting such adaptive behaviors constitute the

vision sought by Organic Computing (OC) [23]. OC self-x properties include self-configuration,

self-reorganization, and self-healing which comprise the focus of this dissertation [23-26].

Ideally, these objectives are maintained in an autonomous fashion, yet sufficiently constrained to

avoid undesirable emergent behaviors. In particular, OC systems rely on self-organization to

respond to internal imbalances and changing environmental conditions using an

Observer/Controller architecture [23, 27, 28].

To provide OC architectures with sufficient capability for exhibiting self-adaptive behavior,

reconfigurable logic devices offer an attractive hardware platform. SRAM-based Field

11

Programmable Gate Arrays (FPGAs) logic devices can realize self-adaptation within their

reconfigurable logic fabric using Evolvable Hardware techniques. Since evolution is employed,

the Observer/Controller has the task of detecting internal/external errors and well as initiating

reconfiguration when necessary.

A widely known generic OC platform called the Autonomous System-on-a-Chip (ASoC)

architecture proposed in [29] is depicted in Figure 5. The ASoC platform consists of two layers:

the Functional Layer and the Autonomic Layer. The Autonomic layer contains Autonomic

Elements (AEs) that are responsible for correct operation of the corresponding Functional

Elements (FEs) present on the Functional Layer. Every FE such as CPU, RAM, and Network

Interface has a counterpart Monitor, Evaluator, and Actuator component within the Autonomic

Layer. The Autonomic Layer also consists of an Autonomic Supervisor (AS) that has no

counterpart on the Functional Layer. The AS is responsible for the correct functionality of all

AEs on the Autonomic Layer.

Figure 5: Dual-Layer ASoC platform from Lipsa et al [29]

12

The Dual-Layer ASoC design approach in Figure 5 is extended herein to provide fault coverage

at both the Functional Layer and Autonomic Layer. This is achieved by assessing consensus

among elements in a two-fold approach. Consensus is used first to realize failure detection.

Once identified, consensus provides an organic method for fitness evaluation of competing

alternatives during evolution providing a self-regulating approach to fault resolution. The

measured performance is analyzed as an integrated OC system for self-configuration and self-

healing. This demonstrates a generic OC architecture that can detect faults and refurbish itself

while still providing a degraded level of valid throughput even during the online repair period.

1.5. Contribution of Dissertation

One point which comes through clearly from the previous discussion is that the fitness function

is indispensable central composition of the GA process. It measurs the performance of different

individual’s structure and makes a trajectory through the possible solution search space under the

successive GA operations. Conventionally, most GA applications such as function optimization

and scheduling problems perceived their ultimate objectives prior to the design time. However,

for the real time electronic device, the operation environment is full of unknown factors which

may not be apparent to the designers. Even worse, the devices may be affected by a fluctuating

operational environment during long execution times. Apparently, the static Fitness function

cannot provide sufficient support for such applications. With FPGA devices in most mission-

critical applications confront severe natural conditions, a new approach should be proposed and

evaluated.

13

In response to the questions presented above, a consensus based Fitness evaluation approach is

presented in this dissertation using population information and a new fault tolerance model

which embedded both traditional TMR and Standby system and FPGA device reconfiguablity

property in order to facilitate real-time competitive computing for autonomous regeneration of

embedded reprogrammable model. An analytical software model is constructed to simulate the

large-scale reconfigurable on-chip resources. Failures will be occluded by iteratively developed

adaptive reconfiguration techniques in Extrinsic Evolvable Hardware. The most significant

attributes and advantages are listed in Table 1.

Table 1: Attributes of proposed technique

Technique
Terminology Problem Domain Attributes of Proposed

Approach Significant Contribution

Consensus
Based
Evaluation
(CBE)

Genetic algorithm fitness
function

Population-based
evaluation which is driven
by execution environment

First use of fitness function
that depends on explicitly
global population
information and implicitly
environmental information

Triple
Modular
Redundancy
+ Standby
Model
(TMRSB)

Reliability model
TMR with standby
individuals in component-
level

First proposed reliability
model which takes
advantage of the
reconfiguration capacity in
FPGA device

Evolutionary
Organic
Computing
Architecture
(OC)

Self-organization
architecture

Autonomous fault-
detection and self-recovery

New OC architecture with
utilization of EHW idea

Specific
Genetic
Operators

Genetic operators

Genetic operators which
can manipulate the
configuration of
SRAM-based FPGA

New operators which are
specifically designed to
facilitate SRAM-based
FPGA genetic operation

This novel self-regeneration approach for embedded systems is based on CBE. Instead of using

redundant spares to handle failures, it synthesizes fault-specific reconfigurations to regain lost

functionality. Mechanisms of competitive computation are developed to achieve each Research

Objective identified below.

14

1.5.1. Integrate Fault Detection, Isolation, Diagnosis, and Recovery phases

Real-time competitive computing approaches for autonomous regeneration of embedded

reprogrammable model are developed and evaluated in this dissertation. An analytical software

model is constructed to simulate the large-scale reconfigurable on-chip resources. Failures are

occluded by adaptive reconfiguration techniques for Extrinsic Evolvable Hardware.

1.5.2. Realize Adaptable Quality of Service (QoS) Levels for Reliability

A novel self-adaptive population-based mechanism for all fault-handling stages in embedded

reconfigurable devices is developed. This approach will detect faults by comparing outputs of

competing configuration alternatives. By comparing discrepancies from alternative

configurations, it is possible to isolate the failed physical resource. Remapping operators are

then used to realize a failure-specific refurbishment during normal operations to make detailed

physical failure mode diagnosis unnecessary. The refurbishment procedure will be realized

using established mechanisms of crossover, mutation, and deterministic guided search. This

objective will be realized with an experimental hardware-in-the loop research strategy.

1.5.3. Realize Online Device Refurbishment

By varying only an FEW parameters of the competition process, a wide range of reliability vs.

overhead tradeoffs are obtained. Under the CBE technique, the costs of FPGA resource space

15

overhead, additional power consumption, and throughput delay incurred to support regeneration

are continuously variable. Analytical modeling of these costs provides us not only a composite

measure of system performance, but also feedback for adaptively reconfiguring FPGAs.

Specifically, the Evaluation Window Interval and Re-introduction Rate can be updated according

to recent discrepancy counts in order to maintain a suitable Mean-Time-To-Repair (MTTR) vs.

Mean-Time-Between-Failures (MTBF) condition under adaptive and possibly hybrid control

algorithms. To ensure system availability, parts need to be regenerated at a faster rate than they

are failing such that a MTTR < MTBF condition is maintained. This objective of quantifying

and optimizing the performance characteristics of the proposed CBE method will realize

adaptive Quality of Service (QoS) levels for reliability via analytical modeling and advanced

controls.

1.5.4. Proposed Self-Recovery Architecture

It is demonstrated, with the exception of catastrophic failures, how a device can be refurbished

online without additional function or resource test vectors. This will be achieved by integrating

competition and refurbishment wholly within the FPGA’s normal data throughput processing

flow. Because a fitness adjustment function is used that favors fault-free behavior, the FPGA’s

normal input data throughput stream can be used to evaluate fitness states while the device is

under normal operation. The benefits of fitness adjustment functions based on Binary

Discrepancy and Hamming Distance will be determined. This research will be conducted by

developing a unified framework that involves techniques from three separate areas:

16

combinatorial analysis of the problem space and statistical analysis of fault occurrence versus

population size.

17

CHAPTER 2: PREVIOUS WORK

2.1. Overview

This chapter will present a broad overview and survey of the techniques utilized in this

dissertation including EHW applications under GAs, OC architectures, and fault tolerance

strategies. The most advantage of above techniques is presented as well as the drawback in terms

of their efficiency, overhead, and adaptive capacity. The successful EHW [14, 15, 18, 30] [16]

applications are shown in Section 2.2 and the OC architecture [23] introduction follows and

finally the TMR and Standby fault tolerance system are analyzed in terms of their own

properties.

2.2. EHW Approaches to Increases Reliability

Several previous works describe other Regenerative Fault-Handling Techniques in EHW and

how they attempt to actively restore mission-critical functionality in FPGA devices. They

provide attractive alternatives to device redundancy for permanent degradation due to thermal

fatigue, oxide breakdown, electromigration, and radiation-induced stuck-at-faults. Benefits of

regeneration include fault recovery without the increased weight and size normally associated

with spares. Also, failures need not be precisely diagnosed through external means, due to the

intrinsic assessment of the remaining functionality on the device itself. Furthermore, a

competitive regeneration approach enables failure-time synthesis of new FPGA configurations to

handle failure scenarios that are unforeseen at design time.

18

Lohn, Larchev, and DeMara [14, 15, 31] develop an FPGA bit-string representation along with

mutation and two-point crossover operators for actively refurbishing interconnection as well as

logic resources. This related work demonstrated the complete regeneration of a Quadrature

Decoder on a Xilinx SRAM-based Virtex XCV1000 FPGA. It shows that a stuck-at-fault on the

input to a FPGA’s Configurable Logic Block (CLB) can be occluded through reconfiguration.

The Genetic Algorithm (GA) developed synthesizes a new alternative configuration using

evolution in a population of 40 competing configurations after a few hundred generations. The

GA is shown to recycle the damaged part as well. It was observed that partially-damaged CLBs

were reassigned to new functions based on the residual functionality that could be utilized in the

refurbished configuration. While achieving complete regeneration for modestly-sized circuits,

refurbishment was performed offline and required exhaustive fitness test vectors.

Lach’s deterministic approach segments the FPGA into static tiles at design time with a known

functionality, some redundant resources, and a pre-designed alternate configuration. Spare tiles

can be selected when needed, but their functionality is predetermined and thus limited. On the

other hand, Roving STARS [18] is a resource-oriented dynamic online test approach that

performs Built-in Self-Tests (BISTs) on roving sub-sections of the FPGA. Each portion is

continually taken offline in succession and tested while its functionality moved to a new

location. STARS’ detection latency can be excessive since the tests must sweep through all

resources. Also, STARS’ power consumption and unavailability due to unnecessary

reconfigurations when no faults have yet occurred can be prohibitive.

An alternative approach is taken by Keymeulen, Stoica, and Zebulem [30] using a design-time

emphasis. They develop evolutionary techniques so that field programmable circuits are initially

19

designed to remain functional even in presence of various faults. Their population-based fault

tolerant design method evolves circuits and then selects the most fault-insensitive individual.

This method provides good resource coverage and passive runtime operation. The technique

may be applicable for constructing a diverse initial population under our proposed CBE

approach.

Table 2 addresses active Fault Recovery characteristics. Ideally, recovery would be performed

with the residual functionality in faulty device remaining online whenever possible, but only

STARS and CBE attempt this. Vigander’s and Lohn’s methods exhibit likelihood of recovery

related to the FPGA’s design complexity. In other words, they try to design an original repair

where only a single failed configuration is available from which to learn from. Instead, CBE

draws upon a diverse population to bias search towards regions of alternative configurations that

are still operational. While the quality of recovery under evolutionary approaches cannot be

guaranteed, static redundancy approaches like Lach’s are either completely recovered or

completely beyond recovery. STARS’ quality of recovery is restricted by a fixed routing scheme

that cannot adapt.

As listed in Table 2, several active recovery approaches support resource recycling, including the

CBE. Under the CBE, the frequency of reconfiguration can be varied to tradeoff configuration

overhead vs. recovery capability. With regards to pre-determined system recovery limits, only

dynamic competitive approaches are truly restriction-free. While competitive and evolutionary

recovery approaches have been demonstrated on small applications, the focus of this dissertation

will be to extend the methods to larger, more useful circuits using improved techniques of the

CBE with statistical, adaptive, and hybrid design methods of control.

20

In this dissertation, CBE utilizes an innovative temporal voting approach whereby the outputs of

just two competing instances are compared. The presence or absence of a discrepancy is used to

adjust the fitness statues of both individuals without rendering any judgment at that instant on

which individual is actually faulty. The faulty, or later exonerated, configuration is determined

over time when each individual is paired with other competing configurations under certain

times. The competitive process is applied repeatedly to form a strong consensus across a

diverse pool of alternatives. Under CBE, the FPGA’s outputs are compared before they leave

the chip so fault detection occurs on the first erroneous output and detection latency is negligible.

A unique advantage of this competition-based approach is that it also permits coverage for active

elements of the fault comparator itself by embedding an instance of the fault checker in each

configuration. Fault isolation in the TMR, Vigander, and Lach approaches are restricted to

coarse predefined granularities. Meanwhile, STARS attempts to isolate resource faults at only

the very finest granularity. Alternatively, as in Vigander’s and Lohn/Larchev/DeMara’s

approach, CBE does not require fault isolation of a particular granularity in order to achieve

refurbishment. Under CBE, transients reduce instantaneous fitness values, but their effects are

automatically attenuated over time so that unnecessary refurbishment is not triggered given a

properly-selected Threshold.

21

Table 2: Fault Recovery Characteristics of Selected Approaches

Approach Online
Recovery

Basis for
Likelihood of

Recovery

Quality of
Recovery Availability Externally-supplied

Elements

Potential for
Faulty

Resource
Recycling

Pre-
determined
Recovery

Limits

 TMR No Not addressed

Vigander No Design
complexity

Non-
deterministic

Non-
deterministic

GA Controller, function
test vectors

Yes None

Keymeulen,
Stoica, Zebulum No

Depends on
characteristics
at design time

Non-
deterministic

Not
addressed

None at runtime No Depends on
characteristics
at design time

Lohn,
Larchev, DeMara No Design

complexity
Non-
deterministic

Non-
deterministic

GA Controller, function
test vectors

Yes None

Lach No

Available spares Either complete
or none

Either
complete or
none

Device test vectors No Only one faulty
CLB per tile

STARS Yes

Available spares Restricted by
non-
optimizable re-
routing strategy

~93% for
ORCA FPGA

Test Reconfiguration
Controller + device test
vectors

Yes Free STARS
available and
fixed routing
chokepoints

CBE Yes

Recovery
complexity

Optimized by
second-order
fitness metric
scheme

Adaptable Optional external RAM.
Fault coverage for this
RAM is intrinsic when
configuration loaded.
No test vectors used.

Yes None

2.3. Self-X properties on Organic Architecture

Related works in the literature have explored techniques useful for development of an OC system

from various theoretical and practical perspectives. A frequent focus among these has been the

design of OC architectures and OC development methodologies for systems with potential for

exhibiting increased reliability and sustainability. For example, in [32] a runtime reliability

22

evaluation of ASoC architectures was addressed. The objective was to design SoCs that can

tolerate faults by introducing dynamic reliability, power management, and security tradeoffs, as

well as adaptation to environmental changes and unpredictable failure scenarios. Under these

conditions, a theoretical model for calculating error probability during run-time is presented. A

related fault model in [26, 33] concentrated on transient and timing faults caused by ionizing

radiation or variations at the technology or device level. The C-program simulations executed on

Leon-2 processor code resulted in a penalty of two cycles for the detection and correction of an

error in the processor’s pipeline. Work has also been conducted on prototyping platforms capable

of support OC architectures. For instance, the Egret system provides a platform for

reconfigurable SoC’s supporting applications such as OC [34]. The Design objectives of the

Egret is to provide a platform that students can use to rapidly prototype new reconfigurable,

embedded computing application and the second objective is to provide a straightforward path to

commercialization of prototyped designs. The platform consists of modular functional elements

that can be interconnected to design an embedded application for reconfigurable logic.

From the design methodology perspective, various previously-proven agent concepts were

combined into a system-level design approach for OC development. This is presented in [27]

which developed an adequate, model-driven software engineering methodology based on the

Unified Modeling Language (UML) and Model Driven Architecture (MDA). The model was

applied and tested on a manufacturing control system which exhibited various self-x properties.

In [28], Observer/Controller architecture was developed to provide a generic template to develop

OC systems. The template was used to implement the control of an urban traffic network.

23

While maintaining area/performance and power requirements, Avizienis [35] suggests

integrating biology inspired concepts into the integrated circuit design process with the main

objective being achievement of higher reliability. The immune system which was proposed

continuously identifies and handles problems either internally or with the aid of external agents.

In more a general study, identification of SoC system requirements for detecting faults and

handling the faulty components is addressed in [26]. Fault tolerant error detection techniques are

classified into three groups: hardware redundancy, information redundancy, and time

redundancy. The three techniques and their combination are surveyed on Autonomous SoC

design consisting of the two layers: the Functional Layer and Autonomic Layer. In this

theoretical research framework, it is suggested that the Autonomic SoC would need a well-

tailored AE layer which would cope with malfunctioning subcomponents. The simulation

consists of a paradigm with priori knowledge about the system’s behavior when an error occurs

and examines setting a threshold for errors that can occur before the system goes into self-

organizing mode [26].

In order for an autonomous system to invoke its self-healing mode, it must be able on its own to

detect errors during run-time [36, 37]. Reconfiguration and detection techniques explored

include scrubbing which is the continuous reconfiguration of the bitstream to refresh the stored

configuration [38], Built-In-Self-Test (BIST) techniques [39], on-chip hardware test benches

[40] and Triple Modular Redundancy (TMR) [41]. Decentralized approaches to

Observer/Controller units can be preferable in the design of fault-detection and self-healing

systems due to the fact that the observer/controller system itself might be faulty [36, 37], and this

is one focus of the OES Architecture described in Chapter four.

24

For realization of the recovery phase, Genetic Algorithms (GAs) have been applied to FPGA

devices in various approaches. In the cases of intrinsic hardware evolution, the GA is invoked to

apply crossover and mutation on the FPGA bitstream to evolve a fault-specific repair in-situ on

the device. A software-simulation study of this approach was presented in [42]. It also explored

the use of voting systems that operate in parallel despite imperfect GA solutions to refurbishment

of local permanent damage in the FPGA fabric. Results showed improvement in aggregate

repair performance from several different incomplete repairs obtained by the GAs. In [28], an

autonomous self-repair approach for SRAM-based FPGAs is developed based on Competitive

Runtime Reconfigurability. This approach was applied to a FPGA-based multiplier design which

demonstrated evolution of a complete repair for 3x3 multiplier from several stuck-at-faults

within a few thousand iterations. Using conventional offline population based approaches, GAs

were also explored in [31] and [14, 15] for evolutionary fault recovery in Virtex FPGAs using an

external controller and an offline repair process.

Other examples of OC architectural approaches include an OC system developed for face

recognition [24]. The system utilizes some characteristics of an OC system such as self-

organization and robustness. Methods for recognition of an input face from variation of images

based on learning from biological systems are discussed. Others have argued that neutrality is a

necessity for optimal self-adaptation [43]. They emphasize the need to provide a unifying

formalism to embed approaches to self-adaptation in evolutionary computation.

25

2.4. TMR and Standby System Application on Improving Reliability

The TMR approach, first proposed by Von Neumann [19], is shown in Figure 1. It was widely

used in software fault tolerance [3] and reliable hardware [30] applications. The primary

drawback of the TMR approach is resource overhead. The TMR design triples the area and

power consumption of physical resources over a simplex design. Duplex systems with a hot

standby component based on a process pair [14] paradigm for fault tolerance are widely

implemented in Network Access Devices (NAD) [15] and other uninterruptible operational

systems.

However, much of the superiority of TMR and Standby type systems hinges upon some critical

components. The reliability (or lack or reliability) of the majority voter in TMR systems and the

Standby system switch mechanism may be detrimental to the overall system reliability. There are

other issues to consider including: the reliability of memory which stores the standby

configurations, the capability of sensing improper operation to trigger a switch, or how the

majority voter and the switch operation must maintain data consistency between the primary and

backup components.

Several previous works on TMR systems for FPGAs are introduced in [10] [30] and [13]. In

[10], the TMR system with voting technique is combined with bitstream scrubbing implemented

in a Virtex FPGA device in order to mitigate Single Event Upset (SEU) effects [44]. The voting

mechanism identifies the faulty configuration based on single failure assumption and

reconfigures (scrubs) the device with an alternative bitstream. However, the reconfiguration has

26

to take place off-line and can only deal with a transient faults which can be restrictive for use

during deep space missions.

Fault detection characteristics relevant to embedded FPGAs are presented in multiple

approaches. A traditional approach to fault-handling such as Triple Modular Redundancy (TMR)

utilizes a fixed pool of three identical device resources. Under TMR, only the majority vote of

three outputs is propagated, realizing online fault handling with negligible detection latency.

Vigander’s [16] approach extends TMR-style voting to utilize faulty FPGAs that have been

partially regenerated using evolutionary algorithms. He demonstrates that FPGA-based

implementations of 4-bit x 4-bit multipliers can be automatically reconfigured to realize partial

refurbishment. Yet since each partially refurbished multiplier is deficient with respect to only

certain input pairs, a voting arrangement of partially refurbished parts exhibits complete

regeneration of the lost functionality. TMR, Vigander’s, and other n-plex spatial voting

approaches can deliver real-time fault detection, but also increase power consumption n-fold

during fault-free operation and insert a critical voting element into the reliability path.

A TMR application for the Virtex series of Xilinx FPGA is described in [45]. The Majority voter

is implemented with tri-State buffers based on the Virtex bus structures. Different types of data

structures such as Throughput Logic, State-Machine Logic and I/O Logic are illustrated in terms

of a TMR technique. Some special features provided by the Virtex architecture are also

mentioned.

Another analysis of the TMR with mitigation of SEU effects in the Xilinx FPGA device is [46].

A selective TMR architecture is implemented for sensitive portions of the circuit in order to

27

harden against the SEU effects. However, as the authors mentioned in the conclusion section, the

result of STMR is based on the input signal probabilities and nature of the circuit and may only

be beneficial to the circuit with input environments where the size of the SEU sensitive portion is

smaller than the original one. Such an approach narrows down the application range and can not

be viewed as useful for general utilization in different kinds of circuit design.

Furthermore, an analysis of the SEU effects in the TMR architecture in [47] shows that TMR

may not be sufficient to harden a circuit. The results presented show most of the faults escape the

TMR architecture. They proposed a smart floorplan for the placement and routing which may

improve mitigation of SEU effects using TMR.

A VHDL design methodology for redundancy in combinatorial and sequential logic research is

developed in [48]. A VHDL approach has been developed for automatic TMR insertion and

demonstration in order to mitigate the SEU effects. Both module level mitigation and gate level

mitigation are discussed.

All the above enumerated techniques or architectures based on electronic embedded system have

their own advantage and restriction in terms of different applications and different system

performance requirement. Based on current techniques and architectures, we proposed a new

technique CBE approach in order to cover some of disadvantage of previous approaches such as

constant fitness evaluation, online repair, and specific architecture-oriented GA operations

through evaluation multiple benchmark circuits. Also a new proposed OC architecture is shown

in this dissertation to utilize either the Lispa’s layered OC concept [29] in conjunction with the

CBE technique.

28

CHAPTER 3: TMR, STANDBY AND TMRSB SYSTEM

Despite continued improvements in reliability at the component level, fault tolerance strategies

still retain an essential role for applications that require high reliability in environments with

unpredictable adverse effects. Fault tolerance strategy utilizing redundant components have a

variety of architectures that can be used to obtain higher system reliability. Many previous fault

tolerance approaches such as Triple Modular Redundancy (TMR), Simplex/TMR and Standby

systems were extensively covered in literature [19] [35] [49] [50] starting in the 1950s. In recent

decades new types of electronic devices have become available, such as reconfigurable hardware

that has allowed some inefficient strategies, which were never considered or implemented

before, to become viable due to the unique characteristics of such devices.

Consider the variety of embedded computing environments which frequently occupy harsh and

difficult-to-regulate surroundings with thermal, mechanical or acoustical stress. In addition,

space or avionic applications may also face very high levels of radiation exposure. Higher

reliability systems required for long duration missions have, in most cases, limited capabilities

for interactive diagnosis, repair and onboard spares. These systems must count on system level

fault tolerance strategies even though implemented with high reliability components.

Furthermore, along with the finer granularity of the electronic device, the measurement of the

system/component reliability may not satisfy the evaluation of the current implementation

scenario and restrict ad-hoc repair strategy as well. The concepts of residual functionality after

fault and autonomous repair are receiving increasing affection beyond traditional fault tolerance

29

techniques. Addressing these new considerations may improve not only the system reliability,

but can be achieved in parallel with the system throughput without human intervention.

3.1. Overview of Traditional Fault Tolerance Strategy

The TMR approach, first proposed by Von Neumann [19] is shown in Figure 6. It was widely

used in software fault tolerance [49] and reliable computer architecture [35] and Evolvable

Hardware design[50]. The utmost drawback of the TMR approach is resource overhead which

will increase by 200% the area and power consumption of physical resources over a simplex

design and introduce the extra voting components which introduce new the vulnerability of the

system. This may be infeasible to a system with limited payload capacity such as space

application.

Voter

Functional Input
Data Operands

Output Output

Output

Validated Output

M1 M2 M3

Functional Output

Voter

Functional Input
Data Operands

Output Output

Output

Validated Output

M1 M2 M3

Functional Output

Figure 6: TMR System

The approach combines time and spatial redundancy by applying time redundancy to TMR

systems. For the permanent fault, a reconfiguration will be implemented on either all of three

30

instances or just the failed module. For the transient fault, a data roll-back will be implemented

by re-computing the task without replacement. However, in order to obtain accurate detection,

the TMR system needs an extra vote which induces higher overhead. The Markov Chain model

was utilized in this dissertation to analyze the system reliability and availability.

The conventional N modular Redundancy (NMR) [51] system provides a powerful approach of

improving reliability and fault tolerance capacity of digital systems. N functional modules,

N=2m-1 and m>1, implemented identically, are given concurrent computation tasks and utilize a

majority voter on the output to obtain the final result whenever at least m modules are

functioning correctly. Each module is identical in functionality, but fault independent and may

have a different physical implementation or design in order to minimize fault impacts such as

Common Mode Failure (CMF) [52]. The arbitrary fault can be masked by the majority voter

without sudden performance degradation except in the case of catastrophic failure. Among NMR

approaches, TMR [19] [41] has been one of the most popular fault-tolerance schemes using

spatial redundancy in a practical system. In Figure 6, the three functionally identical modules

M1, M2, M3 are deployed in parallel and the outputs converge at the majority voter to obtain the

validated output for the system.

Another fault tolerance strategy is a Standby System (SB) arrangement. A Standby Model refers

to the case in which a primary component (or system) has one or more identical backup

components in an "off" or "off-line" state. When the original active component fails, a switch

mechanism selects one of the "Standby" backup components and makes it the new active

component. The system continues to operate with execution effected only by switching

overhead.

31

Duplex systems with a hot standby component based on process pair [53] paradigm for fault

tolerance are widely implemented in Network Access Devices (NAD) [54], Web Server Systems

(WSS) [55] and other uninterruptible operational systems. However, the “Hot” standby

component will be active and have same fault probability as the current operating component

even though the switch may have less impact on the system performance.

According to the backup component states, three varied types of standby system are defined. The

“Hot” standby is keeping the primary and secondary (backup) components running

simultaneously with the backup tracking the primary system in real time. This will allow a

seamless switch when a fault in the primary component is detected. The “Cold” standby system

is a method in which the secondary component is only called upon when the primary component

fails. Between the “Hot” and “Warm” standby system, the “Warm” standby system will

periodically mirror the primary component which means that there are times when both

components do not contain the exact same data. As shown in Figure 7, the standby configuration

can be in Hot, Cold, and Warm states depends on the specific system design.

However, much of the superiority of TMR and Standby type systems depends on some key

components. The reliability (or lack or reliability) of the majority voter in TMR systems and the

Standby system switch mechanism may be detrimental to the overall system reliability. There are

other issues to consider like the reliability of memory which stores the standby configurations,

the system power supply, the capability of sensing improper operation to trigger a switch, or how

the majority voter and the switch operation must keep data integration between the primary and

backup components.

32

Redundancy techniques are widely used in different applications. One example would be

improving transmission rates of a communication system by expecting packet loss, duplicating,

and reordering the corrupted data. Power plant stations and the power supply grid use redundant

generators or power supply networks to continue to provide power in case of an emergency. It is

also well known the reliability of digital system can be improved through the appropriate

arrangement of additional components. High reliability and availability are particularly sought

after in mission critical system.

Switch
N

N1

NM

.

.

.

Functional
OutputFunctional

Input

Switch
N

N1

NM

.

.

.

Functional
OutputFunctional

Input

Figure 7: Standby System

3.1.1. Embedded Device Properties Influencing Redundancy Strategies

As the application scope of digital system have extended into science and engineering fields, a

strong desire for operational fault tolerance has developed especially in mission-critical

equipment. The particular requirement of fault tolerance and fault repair has to be compatible

with the specific characteristics of a digital device in order to obtain the practical benefit. On the

33

other hand, new up-to-date devices which have unique characteristics can also be catalysts to

develop new fault tolerance structures as is the case in this chapter.

P
R
O
M

Readback

Configuration

Configuration
Logic

Interface

Address
An . . . A0

Frame Data
Dn Dn-1 D2 D1

Configuration or Readback
Bitstream

P
R
O
M

Readback

Configuration

Configuration
Logic

Interface

Address
An . . . A0

Frame Data
Dn Dn-1 D2 D1

Address
An . . . A0

Frame Data
Dn Dn-1 D2 D1

Configuration or Readback
Bitstream

 Figure 8: FPGA Configuration and Readback Mechanism

SRAM-based reprogrammable devices known as a Field Programmable Gate Arrays (FPGAs)

are large multi-million gate-equivalent devices that employ these technologies extensively. Over

100 FPGA devices can be embedded in a mission-critical system. The FPGA configuration is

stored in bitstream format in the PROM and loaded into or read back from the FPGA chip

through Configuration Logic Interface shown in Figure 8. The different connections on the

FPGA chip integrate the Configuration Logic Blocks (CLBs) or Look Up Tables (LUTs) to

implement computation logic tasks.

Environmental challenges to reliability in space applications can be modeled as having a uniform

failure rate exposure despite status and locations of device activity in the system. Therefore, the

impact of device wear-out (active components vs. cold spares) is small relative to radiation

exposures, which makes ambiguous the active vs. standby role in terms of reliability in the

34

various standby models. In other words the radiation effects far outweigh device aging effects

and because both active and standby components are exposed to radiation equally their lifespan

is primarily and equally determined by the effects of the radiation environment.

The pertinent reliability exposures for embedded FPGA’s include hot carrier aging, ultra-thin

gate oxide breakdown, and electromigration effects. FPGA’s now utilize deep submicrometer

(0.13 µm) CMOS technology. As geometries and supply voltages shrink and electric current

densities raise, increasing interconnect failure rates caused by high current electromigration can

be observed over long product deployments.

Several previous works on TMR system in the FPGA are introduced in [56]. In [56]

[45],[46],[47] and [48], the TMR system with voting technique combine with bitstream

scrubbing implemented in a Virtex FPGA device in order to mitigate Single Event Upset (SEU)

effects. The voting mechanism identifies the faulty configuration based on single configuration

failure assumption and reconfigures (scrubs) the device with an alternative bitstream. However,

the reconfiguration has to take place off-line and can only deal with a transient fault which

maybe inappropriate for a practical system.

A TMR logic generation control log for the Virtex series of Xilinx FPGA is described in [45].

The Majority voter is implemented with tri-State buffers based on the Virtex bus structures.

Different types of data structures such as Throughput Logic, State-Machine Logic and I/O Logic

are illustrated in terms of TMR technique. Some special features provided by the Virtex

architecture are also mentioned. The attached example uses the XVRWARE synthesis library

35

which provides macros and synthesis for constructing TMR circuits in VHDL for the Virtex

architecture.

Another analysis of the TMR with mitigation of SEU effects in the Xilinx FPGA device is [46].

A selective TMR architecture is implemented for sensitive portions of the circuit in order to

harden against the SEU effects. However, as the authors mentioned in the conclusion, the result

of Selective TMR (STMR) is based on the input signal probabilities and nature of the circuit and

may only be beneficial to the circuit with input environments where the size of the SEU sensitive

portion is smaller than the original one. Such an approach narrows down the application range

and can not be viewed as a general approach in different kinds of circuit design.

Radiation-induced Single Event Upsets (SEUs) can produce soft failures in both the

configuration memory itself and in the mapped circuit on the throughput data-path. In addition,

changes induced to the configuration memory not only change the circuit memory but can

change the functionality of the mapped circuit as well. Given the architecture of FPGAs, the two

different types of failures can have equivalent effects. The result of a SEU that makes the device

totally or partially lose functionality is generally defined as Single Event Functional Interrupt

(SEFI) [44]. In order to accurately evaluate the SEU effect, a stuck-at fault model is used in this

dissertation for simulating single and multiple failure scenarios.

FPGAs are the ideal platform for reliability models like NMR and SB. Their unlimited

reprogrammable property makes the standby components switches feasible with low delay and

overhead. Furthermore, the reprogrammability enables designers to consider the appropriate

recovery mechanisms which can extend mission lifetime compared to the non-repair system.

36

After all, the millions gates capacity makes more physical resources reusable and provides more

alternative space for rearranging the routing.

Autonomous repair of FPGAs is of particular interest in aerospace applications for both in-flight

and Ground Support Equipment devices. Several advantages drive the FPGA as an appropriate

platform for the spacecraft electronics. First of all, high flexibility in achieving multiple

requirements such as high performance, low Non-Recurring Engineering (NRE) costs and fast

turnaround allow systems to be made in a more efficient manner. Second, FPGA devices can be

utilized in remote hard to maintain systems such as satellites and space probes and can allow for

remote reconfiguration and repair without too much overhead while maintaining performance.

The emerging field of autonomous repair has essentially impacted deployable systems for deeper

space exploration mission and other high availability, sustainability and serviceability

application that need to survive and perform at optimal functionality during long duration in

unknown, harsh and/or changing environment. Many techniques have been developed to

generate the pre-complied alternative fault tolerance configurations and stored in memory or

generate new fault tolerance configurations after a permanent fault is detected in order to

reconfigure when a fault occurs.

Frequently, such systems have limited capacity for spares yet still have requirements for reliable

operation over long lifetimes [50]. This dissertation approach in this chapter is to design and

implement a hybrid system redundant architecture to handle a wide range of transient faults

through automatic FPGA reconfiguration and also permanent failures though automatic selection

37

from a diverse set of standby components, which implement identical functionality, but may use

different physical resources, and dynamic update of these alternative configurations.

3.2. System Reliability Analysis

3.2.1. Standby System

Consider the SB system configuration depicted in Figure 7. It contains m+1 identical component

of which exactly one is active at any time and the remaining m components act as switchable

spares. Up to m of these spares may provide feasible alternative standby configurations in order

to extend the mission time.

A simple Standby system with only one component Xi (i=0, 1, 2…m, which include one active

and m standby components) will be investigated in this case. The components are modeled with

an exponential failure rate λ. Assuming that the de-energized components do not operate until a

fault is detected on the active component, or otherwise dictated by the reloading schedule, the

lifetime which is time to failure, Z, of such system can be characterized in term of the lifetime,

Xi, of each individual configuration . ∑
=

=
i

iXZ
0

m

Initially, assume the switch mechanism is completely reliable and all of the standby

configurations are fault-free. To model the reliability of a standby redundancy system with a

total m+1 independent configurations, we first identify the probability distribution by

considering the case when m=1 where each component has an exponential distributed lifetime

with parameter λ.

38

Let Xi and Xj≠i be random variables denoting the independent failure of each component.

Assuming an exponential distribution given by the parameter λ, then pdf function

is . Since Z = X() 0, >= − tetf t
Xi

λλ i + Xj, the density of the sum of two non-negative independent

random variables is given by the convolution of the individual densities [57], we have:

() ()

0,2
0

2

0

>=

=

=

−

−

−−−

∫

∫

zze

dte

dteezf

t

z
t

tz
Z

t
Z

λ

λ

λλ

λ

λ

λλ

 (3.1)

Thus Z has a two-stage Erlang distribution [57] for the m=1 case and m-stage Erlang distribution,

in general. Thus, for the m=1 case, the failure distribution function of Z is given by:

() ()

()
t

t

t
m

k

k

te
te

mte
k
ttF

λ

λ

λ

λ

λ

λλ

−

−

−

=

=

−−=

=>≥−= ∑
11

1,0,0,
!

1
0

 (3.2)

Then the m>1 reliability function is obtained by

() ()
()

()
K,2,1,0,0,

!

!

1

1

0

tan

=>≥+=

=

−=

∑

∑

=

−−

=

−

mte
k
te

e
k
t

tFtR

m

k

t
k

t

m

k

t
k

dbyS

λλ

λ

λλ

λ
 (3.3)

39

In Equation (3.3), term represents the reliability of the initially-selected active component.

The subsequent summation term in Equation (3.3) represents the probability that each standby

component will provide a viable alternative. For example, suppose the initial active component

fails and one of the standby components becomes energized to maintain the system availability.

In this case, the summation of the reliabilities of all such replacements plus the initial component

reliability determines the system reliability.

te λ−

3.2.1.1.Imperfect Switching

Because the standby configurations are stored in non-volatile memory (e.g. EEPROM) and the

circuits they describe are mapped into SRAM based FPGA architecture, we need to assume the

standby individual failure status is unknown until they are selected for operation. Such a system

is known to possess standby redundancy [54] in contrast to a system with parallel redundancy.

In cold standby mode, the alternative configurations are in a power-off condition. In warm

standby mode, they undergo periodic reloading and inspection.

There are varied distinct kinds of scenarios for the imperfect switching mechanism based on

distinct standby strategies. For the cold standby system, the detection and switching function

only works at time of failure and for the warm and hot standby system, the system is bound to

have continual or periodic monitoring and detection.

However, the specific characteristics of the space application mentioned eliminate the variety on

the different standby approaches. Two distinct scenarios should be considered in the FPGA case.

40

The first is unknown states of the standby configurations, the second is the imperfect switching

case.

A few assumptions have to be made before further analysis since failure of the switch

mechanism will cause the whole standby system cease operation permanently. Faults in an active

configuration will simultaneously disable that configuration and trigger one switch.Each switch

can cause a recovery from one or more failures. There are always enough fault-free standby

configurations in the standby pool.

For the imperfect switching scenario, we introduce the term q as an observed success probability

of switching to accommodate the reconfiguration process and u as the number of the successful

switches before the switch failed. Prior to switch failure, all required switches were successful,

and after switch failure, no switch function will work anymore. The probability that the entire

system fails due to switching failure, in response to the component failure, can be model as a

geometric random variable with probability mass function of ()qqu −1 .

Therefore, the reliability function of a standby system with an imperfect switch includes the

influence of the probability q of each standby being successfully selected:

 () ()
K,2,1,0,0,

!1
=>≥+= ∑

=

−− mte
k
tqetR

m

k

t
k

ut
StSw λλ λλ (3.4)

41

Thus, only after a failure in the initial active configuration is detected, can switching be

implemented and the switch probability will add into the second term of the Equation (3) to

obtain the Equation (3.4).

The number of the successful switches determines the system feasibility and, according to the

assumption 3 above, u will always less than m, which will make m-u number of standby

configurations without any impact on the Equation (3.4). Therefore, we can draw figure4 based

on u=m to show the RStSw(t).

According to the Figure 9, the reliability of imperfect switching is not a linear increased with the

number of the standby configurations. That is because the more configurations may bring more

switching overhead when more fault occurred in the system. So in the later analysis, we use

u=0.9 and m=4 as the optimization data set.

42

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x=λt

R
el

ia
bi

lit
y

of
 w

ith
 Im

pe
rfe

ct
 S

w
itc

hi
ng

 S
ta

nd
by

 C
on

fig
ur

at
io

ns
 S

ys
te

m
m=1
m=2
m=4
m=10
m=15q=0.9

Figure 9: Reliability of Imperfect Switching Standby System

3.2.1.2.Unknown Configurations Status

Wherever the standby configurations are stored and whatever state they are in, radiation may

cause the same affect on them same as on the active elements. Even with the perfect switching, a

faulty standby configuration will generate an unexpected output. Faulty standby configurations

will be detected when they are online and the switch mechanism will keep loading alternative

backup configurations out of the standby pool until a fault-free one is running. When the fault-

free configuration is loaded as active the one, the selection will be end until next fault occurs and

impacts the current active one.

43

Because of the unknown status of standby configurations the probability that the system fails due

to a switch to a standby configuration with a faulty configuration is follow the number of failures

before the first success, supported on the set { 0, 1, 2, 3, ... }. It can be modeled as a geometric

random variable with probability mass function of ()vpp −1 in which v is the number of the

failure selection trails (v<m) and p is the probability of success on each trial.

Assuming the survival rate p follows an exponential distribution and the selection process is a

binomial distribution, and based on equation (3.4), the reliability for standby switching RStSw is

given by:

() ()
K,2,1,,0,0,

!
)1(

1
=<>≥−+= ∑

=

−− mmvte
k
tpetR

m

k

t
k

vt
StSw λλ λλ (3.5)

The number u of the standby configurations will yield to the dominator of the successful switch

number in the Equation (3.5). Therefore, the Equation (3.5) becomes:

() ()
K,2,1,0,0,

!
)1(

1
=>≥−+= ∑

=

−− ute
k
tpqetR

u

k

t
k

uut
StSw λλ λλ (3.6)

As the number of standby configuration m is increased, will continue to decrease and converge to

some constant value as depicted in Figure 10. The setting is set u=4, p=0.9, q=0.9. Figure 10

shows RStSw as the time to failure, is increased for various values of m is increased. Once u is

increased to a certain level, the improvement in system reliability levels off, implying that a

sufficient pool of standby modules can provide adequate performance compared to using an

infinite number of standby modules.

44

0 1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x=λt

R
el

ia
bi

lit
y

of
 w

ith
 Im

pe
rfe

ct
 S

w
itc

hi
ng

 a
nd

 U
nk

no
w

n
S

ta
tu

s
C

on
fig

ur
at

io
n

S
ta

nd
by

 C
on

fig
ur

at
io

ns
 S

ys
u=4

p=0.9,q=0.9

Figure 10: The Standby System with Imperfect switching and Unknown Configuration Status

3.2.2. NMR System

A general treatment of NMR system was developed starting in the 1950s [19]. Most of them

assume a perfect voter in the system, and the reliability expression is based on binomial

distribution given by:

() ini
n

ki
NMR pp

i
n

R −

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∑ 1 (3.7)

If each component follow an exponential distribution , then the tep λ−=

45

() intti
n

ki
NMR ee

i
n

R −−−

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∑ λλ 1 (3.8)

In which RNMR is equal to the system reliability R. Then, the Reliability of TMR system is

. In Figure 11, the different NMR system based on exponential distribution

is presented. The cross point in figure is

tt
TMR eeR λλ 32 23 −− −=

7.0=tλ which is obtain from let3 . ttt eee λλλ −−− =− 32 2

0 0.5 1 1.5 2 2.5 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x=λt

R
el

ia
bi

lit
y

of
 v

ar
ie

ty
 N

M
R

 R
ed

un
da

nc
y

S
ys

te
m

simplex
TMR
NMR(N=5,M=3)
NMR(N=7,M=4)

0.7

Figure 11: NMR System

46

3.2.3. Hybrid System

The TMRSD system in Figure 12 embeds the Standby system into the TMR framework in order

to achieve the higher reliability and maintainability for the design. The system can be viewed as

three functionally identical parallel subsystems with a majority voter, and each subsystem has m-

1 number of standby components. Components in this case are defined as functionally identical

subsystems that utilize varied physical resources. To simplify the computation, we only consider

the same number of standby components for TMR subsystems.

Voter

Functional Input

Functional Output

Data Operands

Standby
(m)

Output Output

Output

Validated Output

M1 M
2

M3
Active

Standby
(m)

Active

Standby
(m)

Active

Voter

Functional Input

Functional Output

Data Operands

Standby
(m)

Output Output

Output

Validated Output

M1 M
2

M3
Active

Standby
(m)

Active

Standby
(m)

Active

Figure 12: TMRSB System

()

() () ()
⎪
⎪
⎩

⎪⎪
⎨

=>≥=−+=

−⎟⎟
⎠

⎜⎜
⎝

=

∑

∑
−

=

−−−

−

=

K,2,1,0,0,9.0,
!

1

1

1

1

1

tantan

mte
k
tpqetR

RR
i

R

m

k

t
k

vmt
StSw

in
dbyS

i
dbyS

ki

λρλ λλ

⎧ ⎞⎛nn

 (3.9)

47

The relabilities of different types of redundant systems are presented in Figure 13. Compare

TMR vs Simplex and TMRSD vs Standby system, the similar comparison result are presented on

the Figure 13. The TMRSD system improves the reliability only for the limited period time

which can be utilized in short time mission.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x=λt

R
el

ia
bi

lit
y

of
 v

ar
ie

ty
 R

ed
un

da
nt

 S
ys

te
m

Simplex

Two-Parallel

TMR

Standby

TMRSD (m=1,ρ =0.9)

Figure 13: Comparison of Simplex,TRM,Two-Parallel-Redundancy,Standby,TMRSD

Reliabilities

48

However, because x=λt, when the λ is very small, the time t can be varied. This means the

component reliability is essential factor of the system performance. Furthermore, this analysis

shows that the system level reliability is based on the basically reliable components. In another

word, the redundancy technique may not improve or even worse, the system reliability based on

unreliable components.

Table 3 Performance Characteristics of FPGA-based Fault Tolerance technique

Resource

Utilization

Power

Consumption

Additional

Latency

Failure

Tolerance

TMR 3n 3n+voter voter 1/3

Standby n + S n+switch(m) switch m/n

Simplex n n None n

TMRSB 3n+S 3n+voter+switch(3m)
voter +

switch
3m/3n

49

In Table 3, n represents the active resource set and S is the set of resources required to hold the

standby configurations. So, for example, three active sets of resources are required for TMR

configurations and one active resource plus m number of standbys held in S are required for

standby. For the power consumption, TMR will require the power for the three sets of resources,

n, plus consumption for the voter. For Standby the power requirements will be for the single

active resource and possible m times switching if fault occurs. Different approaches may add

different latency in term of the variety mechanism, for TMR the voter is vulnerable but critical

path on the computation and cause the evitable latency, and the switch latency is a conditional

latency based on the occurred fault numbers.

3.3. Simulation Result

BlockSim 6 offered by ReliaSoft was used in the dissertation. It allows you to analyze any

process or product to obtain exact system reliability results (including system reliabilities, mean

times, failure rates, etc.), to calculate the optimum scenario to meet system reliability goals and

to obtain maintainability, availability and throughput results through discrete event simulation.

BlockSim's blocks can be defined with the reliability characteristics of each component of the

process or product. You can then configure these blocks into a reliability block diagram (RBD)

that represents the reliability-wise configuration of the system and analyze the diagram in order

to determine the reliability function (cumulative density function or cdf) of the entire system.

Another feature in BlockSim is use container to emulate the Standby scenario with Switch

Probability on per request. In most cases, the reliability of a switch is to be included in the

analysis the probability of the switch performing the action (i.e. switching) when requested to do

50

so. This is called "Switch Probability per Request" in BlockSim and is expressed as a static

probability (e.g. 90%).

On the simulation, the exponential distribution is used in the experiment. According to the above

discussion, we assign the same distribution on the both active and standby configurations.

According to the Table 4, we can see the simulation results are corresponded to the section 3.2

analysis, even with the standby configurations number m increased, the system reliability may

not improve. Meanwhile the system reliability will improve with the higher configuration

reliability.

Table 4 Stadnby System Simulation Result

Simulation
50000hours Perfect Switch Imperfect Switch (90%)

Standby # (m) MTTF(hours) System Reliability MTTF(hours) System Reliability
10000 78.89% 10000 51.54%
20000 84.71% 20000 78.40%
30000 93.29% 30000 87.18%

m=2

40000 97.05% 40000 91.94%
10000 87.22% 10000 62.76%
20000 93.97% 20000 85.18%
30000 98,29% 30000 91.94%

m=3

40000 99.56% 40000 94.36%
10000 83.20% 10000 69.76%
20000 97.90% 20000 87.67%
30000 99.80% 30000 92.71%

m=4

40000 99.98% 40000 94.76%
10000 99.83% 10000 78.47%
20000 99.97% 20000 89.10%
30000 100.00% 30000 92.90%

m=10

40000 100.00% 40000 94.87%
10000 99.92% 10000 78.60%
20000 100.00% 20000 89.00%
30000 100.00% 30000 92.90%

m=15

40000 100.00% 40000 94.87%

51

The TMRSB approach is also simulated in the BlockSim and the result listed below in Table 5.

The result shows TMRSB improve the reliability compare with the single standby system and the

higher component reliability; the higher improvement can be achieved

Table 5 TMRSB Simulation Result

Simulation 50000hours Imperfect Switch (90%)
Standby # (m) MTTR(hours) System Reliability

10000 74.50%
20000 96.71%
30000 99.47%

m=2

40000 99.80%
10000 86.30%
20000 99.02%
30000 99.68%

m=3

40000 99.97%
10000 93.73%
20000 99.45%
30000 99.83%

m=4

40000 99.99%

Based on the analysis and simulation, we can reach the conclusion that the TMRSB system can

benefit the system reliability with lower storage overhead in the specific reconfiguration device.

The reliability of standby system may not be linearly increased with the number of standby

configurations. The reliability of the configurations both active and standby will be an essential

factor on the reliability issue. The higher configuration reliability, the more reliability benefit is

shown on system performance.

52

The following two chapters present how to utilize the TMRSB model to address the autonomous

repair problem in EHW applications and OC systems. Chapter 4 introduces the CBE approach

for EHW which normally do not have full self-repair capacity. Chapter 5 present the

performance and measurement of the CBE approach using combinational logic circuits from the

MCNC91 benchmark suite as an experimental sample. However, the inherent limitation of the

hardware resource is going to be exhausted for a small circuit eventually and may not support the

ultimate objective of space application which required sustainability a long mission. The OC

architecture are presented in chapter 6 use multiple AE components with identical designs to

self-regulate the system performance FE components which handle fault detection and repair.

Therefore, there are no golden elements of the GA in the case of EHW.

53

CHAPTER 4: AUTONOMOUS REPAIR USING COMPETITIVE
RUNTIME RECONFIGURATION

The proposed CBE scheme realizes regeneration by integrating all phases of fault handling

within an evolutionary algorithm process flow. It employs population diversity information,

partially online recovery of failed resources, and resource recycling with adaptable overheads.

Two innovations are realized for self-adaptive EHW regeneration: elimination of additional test

vectors and temporal assessment based on relative fitness assessment.

4.1. Detecting Faults using a Population of Alternatives

CBE detects and classifies faults using a temporal voting approach. In the Duplex mode, the

outputs of two competing active L and R half-configurations, are compared to detect

discrepancies. Alternative pairings are considered over time to provide the robust consensus

described below. Each individual in the population is represented as a configuration bitstream

[22] that defines the physical resources it uses and their interconnections when it is loaded onto

the FPGA. An initial population of known-good individuals is created at design-time. These

primordial configurations are functionally-identical, yet they utilize physically-distinct resources

by having alternative design or place-and-route implementations. In the Duplex Mode, two of

these competing half-configurations are instantiated on the reconfigurable FPGA device by

downloading their configuration bit streams. This realizes a conventional Concurrent Error

Detection (CED) [58] arrangement to detect at least any single resource fault with certainty. As

in traditional CED approaches, comparison of the outputs of the two resident half-configurations

54

will produce either discrepant or matching outputs to indicate the presence or absence of faulty

resources in the utilized FPGA hardware [50]. Maintaining exclusive resource utilization for

half-configurations belonging to either half ensures that under a single fault assumption, the

presence of a fault implies the fault-free nature of all the half-configurations designed for the

other half. An additional advantage of using pre-designed configurations is that system

downtime is reduced to a minimum as potentially viable alternatives are available. Also, the use

of L and R half-configurations enables the use of runtime reconfiguration technology to

reconfigure a portion of the device without taking other portions offline.

The CBE process is described below using Duplex Mode depicted in Figure 1. After the device

is configured with the competing configurations, the same input vector is applied to both of the

functionally-equivalent logic instances. Fault detection is accomplished when there is a disparity

between the outputs of the active configurations, as ascertained by the discrepancy detector. The

presence or absence of discrepancy is used to adjust the Discrepancy Values (DVs) of both

individuals without rendering any judgment at that time as to which individual is actually faulty.

Succeeding pairings of alternate combinations identify those individual(s) that utilize faulty

physical resources through consensus formation. Meanwhile, the fault-free configurations

become exonerated over time. This is because the DV of a faulty configuration always increases

regardless of its pairing, yet the DV of fault-free half-configurations which are paired together

are not increased. This temporal testing scheme enables the use of pseudo-exhaustive testing

over a period of time without the reduced availability imposed by exhaustive testing.

55

4.2. CBE Approach

Competition among a diverse pool of individuals can generate robust information about their

relative competence and reliability. In particular, the fitness states and health transitions of

competing FPGA half-configurations during online operation are depicted in Figure 14: States in

the Lifetime of the ith Half-Configuration. At any instant, each individual configuration is

labeled with one of four states {Pristine (CP), Suspect (CS), Under Repair (CU), Refurbished

(CR)} as governed by the transitions indicated by the numbered arcs in Figure 14: States in the

Lifetime of the ith Half-Configuration. Initially, all of the individuals in the population begin in

the Pristine state.

If output discrepancies are detected among the half-configurations in the FPGA then the

competing L and R half-configurations undergo indicated health state transitions. A comparison

can lead to one of two results, “L=R” or “L≠R.” When L=R occurs, both individuals retain their

Pristine state, as shown by transition event “1”. However, when their outputs disagree, then

transition “2” occurs whereby both of the configurations are demoted to the Suspect pool and

their DV is increased. The determination of a configuration’s fitness state for subsequent

transitions is based on its cumulative DV relative to DV of the other individuals in the population

evaluated over an Evaluation Window, denoted by E

56

pristine

suspect

refurbished

under
repair

partial
repair

L ≠ R

L = R

complete
repair

primordial

L = R

1

2

3

4
5

6

7

8

integral with

C
O
M
P
E
T
I
T
I
O
N

C O M P E T I T I O N

REGENERATION

{CP}

{CS}

{CR}

{CU}

DVi > DVR

DVi < DVO

DVi > DVO

DVi > DVR

DVi < DVR

.

Figure 14: States in the Lifetime of the ith Half-Configuration

The period E defines a fixed number of evaluations at the end of which an individual’s fitness

state is updated depending on its observed discrepancy history. Only after an individual has

undergone such testing is its fitness state updated. The reintroduction rate, denoted by λR,

controls the rate at which individuals are rotated for instantiation on the FPGA. By varying λR, a

tradeoff between the throughput and the rate of refurbishment can be obtained. In particular, the

re-introduction rate denotes the probability that an instantiated functional configuration is

replaced by another from the competing pool, regardless of whether it has completed its

evaluation window, or exhibits a discrepancy. Higher throughput and availability can be ensured

via a low reintroduction rate which will maintain individuals that perform well on the FPGA for

the length of their evaluation window, at the cost of slower refurbishment of the individuals

57

undergoing refurbishment. Individuals that have been instantiated on the FPGA are replaced in

one of three ways. They will be replaced when they articulate a discrepancy, when they have

completed their evaluation window, or as dictated by the reintroduction rate.

The ith half-configuration is marked as Under Repair if its DV increases beyond the repair

threshold denoted by DVR as shown in transition 4 in Figure 14. DVR is determined by the

relative fitness of the operational elements among the population, i.e. those in the Pristine,

Suspect and Refurbished states. After successive evolutionary refurbishment operations, if an

Under Repair individual’s DV returns to the range of the outlier threshold value DVO as a

consequence of transition 6, then the configuration is Refurbished. Over a period of time, the DV

of an individual could approach zero achieving complete regeneration. Without exhaustive

testing however, it is not possible to completely distinguish partial regeneration from complete

regeneration. Competing half-configurations remain Refurbished unless their DV rises above the

Repair threshold DVR, at which time they are again demoted to the Under Repair state. DVO is

lower than DVR to ensure that only individuals with DV significantly lower than DVR are

recognized as refurbished enough to be operational.

4.3. Self-Adaptive Fitness Assessment using Outlier Identification

Instead of using an absolute fitness function with exhaustive testing, outlier identification is

achieved using statistical techniques such as the hat matrix [59], H, where the diagonal elements

Hii are used to identify the threshold to isolate faulty individuals as outliers. The hat matrix H

defines the Least Squares projection matrix and is so named since it is denoted by a hat on the

58

column vector y=(y1,……,yn)t such that ŷ=H*y and ŷ is the LS prediction for y. The hat matrix

H is defined as follows: consider that there are p explanatory variables and one response variable

which will have n observations. The n-by-1 vector of responses is denoted by y=(y1,……,yn)t.

The linear model states that y=X×θ+e, where θ is the vector of unknown parameters, e is the

error vector and X is the n-by-p matrix:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

np2n1n

p22221

p11211

x....xx

x....xx
x....xx

X
MMM

MMM

Then, the H matrix is composed from X as follows: t1t X)XX(XH −=

The diagonal elements of H have a direct interpretation as the effect exerted by the ith

observation on the expectation of response variable because they equal . The average

value of the diagonal element Hii is p/n and it follows that 0

ii y/y ∂∂
∧

1≤≤ iiH for all i. In the CBE

approach, the DV of each individual can be viewed as one observation or one explanatory

variable, and the observation interval can be set as the size of the entire population. Fortunately,

since the X matrix consists of only one column in our application, we can see that the result of

the XtX product is a single-element vector matrix, and its inverse can be computed using a

straightforward computation. In general, the computation complexity of the H matrix approach

is 2n2+1. In CBE, the threshold value is determined by an analysis of the diagonal elements Hii

of the hat matrix generated from population statistics accumulated over an evaluation window.

59

In order to accelerate the identification of outliers, a Sliding Window, S, defines the period with

which the global discrepancies consensus, to which all individual values are compared, is

updated. Typically, S is selected to be an integer multiple of E such that S=q*E, where 1<q<|C|

and |C| is the population size.

Discrepancy?

Increase L's & R 's DV

Is
the individual

Pristine?

Mark individual as
Suspect

Is its Hii >
Cut-off Value?

YES

NO

NO

YES

Mark individual as Under Repair

 Invoke Genetic Operators only once
and only on L or R

Mark individual as Refurbished

Is
individual Under

Repair?

Is its Hii<
Cut-off Value?

YES

adjust controls
& goto Selection process

NO

 Evaluation
Occurrence

> E ?

YES

YES

Is individual
Refurbished?

NO

YES YES

Is individual
Suspect?

NO

NO

NO

YES

NO

Store the DVO and DVR
and Isolate faulty Individuals Over

the Sliding Window individuals

Figure 15: Fitness State Adjustment Process in the CBE Technique

Figure 15 depicts the Fitness State Adjustment process in CBE. Whenever a discrepancy is

detected, the discrepancy values of the individuals involved are updated. The new discrepancy

values are then compared to DVR and DVO to determine whether the individuals transition from

one fitness state to another. Ideally, the repair and operational discrepancy values are updated

60

after a sliding window width of evaluations have been completed. Under ideal conditions, as

soon as all the individuals in the population have completed at least E comparisons each, new

values of these thresholds are obtained. Since it may be impractical to wait for all individuals to

complete the requisite iterations, the sliding window width S reduces the latency involved in

updating DVR and DVO by considering a subset of individuals instead of the entire population.

The thresholds are updated as soon as a number of individuals, as defined by the sliding window

width, have completed E iterations.

4.4. Achieving Device Refurbishment

Conventional GAs frequently use static fitness functions to search for pre-defined globally

optimal criteria in analog [60] or digital [9] circuits. On the other hand, CBE uses a self-adaptive

fitness measure that is based on consensus formation. This allows for adaptation throughout the

process of solution construction involved with evolving a repair. If the realtime inputs are

limited to a subset of the input space temporarily, then the relative fitness measure directs the

GA towards creating individuals that perform best for this subset. However, there still remain

other individuals in the population that perform optimally for other subsets. In the presence of

viable alternative configurations, such Recovery Complexity of seeded search can be more

tractable than Design Complexity using a blank slate..

Coarse-grained functional elements are recombined into candidate repairs using CBE’s inter-

module crossover operator. For crossover to occur such that offspring are guaranteed to utilize

only mutually-exclusive physical resources within each L and R half configuration, a two-point

crossover operation is carried out with another randomly selected Pristine, Suspect or

61

Refurbished individual belonging to the same L or R half, respectively. By enforcing speciation,

breeding occurs exclusively in L or R, and non-interfering resource use is maintained. Crossover

points are chosen along the boundaries of the FPGA’s Configuration Logic Blocks (CLBs) so that

intra-CLB crossover does not incur logic hazards. To encourage diversity and prevent stasis, an

intra-modular input permutation operation performs alterations to logic cell functionality. The

input permutation operator randomly changes the CLB’s functionality or reconnects one of its

inputs to a new randomly selected output. The input permutation rate defines the probability of

changing the input connections and the logic functions of an LUT when the input permutation

operator is applied.

62

CHAPTER 5: PERFORMANCE EVALUATION OF CBE APPROACH

The search-space complexity of a refurbishment problem is quantitatively compared to the

complexity of the design problem using exhaustive analysis of the output space. Furthermore,

refurbishment experiments were conducted using two classes of benchmark circuits. The first

class consists of circuits where the fan-in exceeds fan-out and the second class includes two

circuits where the converse applies. The performance of CBE in TMR and Duplex modes are

analyzed for both kinds of circuits. In all experiments, performance is evaluated using two

different schemes which are based on the bit-weight tabulation and the hamming-distance

scoring of the observed outputs, respectively.

5.1. Circuit Representation and Benchmark Characteristics

The FPGA structure used in the following experiments is similar to that used by Miller and

Thompson for GA-based arithmetic circuit design [9]. The feed-forward combinational logic

circuit uses a rectangular array of nodes with four inputs and one output. Each node represents a

Look-up Table (LUT) in the FGPA device, and a Configurable Logic Block (CLB) is composed

of four LUTs. There are five dyadic operators OR, AND, XOR, NOR, NAND along with the

unary operator NOT, from which a function may be composed within an LUT. The LUTs in the

CLB array are indexed linearly from 1 to n. Array routing is defined by the internal connectivity

and the inputs/outputs of the array. Internal connectivity is specified by the connections between

the array cells. The inputs of the cells can only be the outputs of cells with lower row numbers.

63

Thus, the linear labeling and connection restrictions impose a feed-forward structure on the

combinational circuit.

Figure 16: Generation of Alternate Configurations by –

a) Input Permutation (shown on left) and b) Cell Swapping (shown on right)

Each of the benchmark circuits was converted into a Verilog representation that preserved the

described functionality. The design was then instantiated on the FPGA using Xilinx ISE version

9.1i. A diverse population of configurations was created from the single Xilinx tool synthesized

design using input permutation and cell swapping operators. Figure 16 shows these operators,

where F1 is the Least Significant Bit (LSB) of the input to an LUT and F4 is the Most

Significant Bit (MSB). As shown in Figure 16a, input permutation leverages low-level

redundancy by utilizing the unused inputs of LUTs to modify the input sequence of a single LUT

as well as corresponding LUT functionality to maintain identical output behavior. The cell

swapping operation, shown in Figure 16b, changes interconnection sequences among LUTs. The

cell-swapping operation maintains the feed forward property and re-connects the LUTs to

64

preserve the functional logic. Together, these operations produce diverse circuits with different

behavior under single or multiple physical resource failures. These circuit modification

operators are also used later by the genetic algorithm to realize refurbished configurations during

the repair process.

Benchmark circuits from the MCNC91 benchmark suite [61] were used to analyze CBE

performance. Table 6 lists the characteristics of these circuits. As listed in Table 6, the z4ml and

cm85a circuits have a fan-in greater than the fan-out, and the cm138a and 2x-decod circuits have

a fan-out greater than the fan-in value. To verify CBE performance on a circuit that utilizes

more resources than the circuits provided by the MCNC91 suite, the 2x-decod circuit was created

by appending multiple copies of the decod benchmark circuit. The resulting 2x-decod circuit

utilizes approximately four times the LUTs used by the other circuits. The circuits were

described using VHDL for synthesis on a Xilinx Virtex-II Pro VP7 FPGA to estimate the gate

count and the number of LUTs used. The input pin redundancy is calculated as the ratio of the

number of unused LUT input pins to the total number of LUT input pins. Table 6 also lists the

percentage of aberrant outputs produced by each circuit under a single stuck-at fault for the

entire output space, across all possible fault locations to indicate the demands of each

refurbishment task. Results from experiments conducted on the MCNC91 circuits also provide

insights into the relative merits of operating CBE in the Duplex and TMR modes, and the effect

of the performance evaluation method used. To examine more demanding failure scenarios the

following experiments consider multiple resource faults.

65

Table 6: Characteristics of Benchmark Circuits

Type of
Circuit Circuit Functionality No. of

Inputs
No. of

Outputs
Gate

Count
LUT
Count

Input Pin
Redundancy

(%)

Aberrant
Outputs

(%)
z4ml 2-bit adder 6 4 20 8 25 28.6 Fan-in >

Fan-out cm85a Logic 11 3 38 12 16.7 19.9
cm138a Logic 6 8 17 10 22.5 6.6 Fan-out

> Fan-in 2x-decod Decoder 10 32 44 40 25 3.7

5.2. Quantifying Search Space Complexity under Fault

In order to evaluate the effect of a single stuck-at fault at the inputs of a circuit, the Correctness-

Under-Fault (CUF) search space characteristics for the various circuits are generated. The CUF

characteristics for a circuit are obtained by inserting a single stuck-at fault at each of the inputs

of the circuit, and then applying all possible input combinations to the instantiated circuit. The

deviation of the observed output from the correct, expected output completely describes the

response of the circuit to all possible stuck-at faults for its entire input space. Using this data, a

three-dimensional representation of the refurbishment search space can be plotted as shown in

Figure 17.

66

Figure 17: MCNC91 Benchmark Circuit Sensitivity to Stuck-at Faults

a) cm85a, b) cm138a and c) 2x-decod Circuit

The single stuck-at fault CUF search space of the benchmark circuits are shown in Figure 17,

which show the Root Mean Squared discrepancy observed for all combinations of input and

stuck-at-fault locations. Vertical bars depict representative aberrant outputs, with one sample

taken from every 300 data points of the entire search space to enhance readability. In the above

figures, the x-axis represents a particular stuck-at fault identified by the input pin at which the

fault is introduced, and the y-axis represents the input combination applied to the circuit. The

z=0 plane represents input combinations for which the output response of the circuit is ideal, in

the presence of a stuck-at-fault. The percentage of aberrant outputs for the various circuits listed

in Table 6 are obtained as the percentage of such points in the output space that are affected by

the various stuck-at faults. The peaks and troughs in the 3-dimensional plot represent deviations

from the expected output due to the presence of a fault. The search space may be sparse, as in

Figure 19c, which represents the CUF space of the 2x-decod circuit, or dense as in the case of the

cm85a circuit shown in Figure 17a.

67

In the case of a refurbishment problem, the evolutionary algorithm is assisted a-priori by the

presence of points in the search space where the deviation from the expected behavior is null, as

represented by the set of points for which Normalized Aberrant Output is zero. For example, if a

particular LUT input is unused, a stuck-at fault at this pin will not adversely affect the outputs of

the circuit. This characteristic can be used by the cell-swapping and input permutation operator

during the search for a refurbished configuration. In a design problem, the search for a solution

starts from a population of arbitrary individuals which provide no such partial functionality. Yet,

a refurbishment problem can leverage diversity of partially working spares.

5.3. Source of Redundancy in Digital Circuits

Under CBE, individuals are prioritized for refurbishment operations based on their discrepancies.

In particular, individuals whose DV’s deviate the most from the average DV of the population

are given more opportunities to undergo refurbishment. This is implemented by reloading the

individual under repair with a frequency exceeding that of individuals who have a higher relative

fitness. Figure 18 shows the measured performance of an individual over 28 iterations during the

repair process for the z4ml circuit. In this particular experiment, the reintroduction rate used was

20%, with both the cell-swapping rate and the input permutation rate set to 20%. As shown in

Figure 18a, whenever the discrepancy of the individual rises above the average discrepancy of

the population, the individual is reloaded onto the FPGA, as evidenced by Figure 18b. This can

be clearly seen for the first and the next to last iterations shown in Figure 18a and Figure 18b.

Conversely, when the individual discrepancy is equal to, or less than the average discrepancy of

the population, the individual is not reloaded, or reloaded less than the average member of the

68

population. This ensures steady improvement in the average fitness of the population, while

ensuring that individuals are prioritized for refurbishment operations based on their relative

fitness arrived at by using a consensus-based evaluation method.

Figure 18: Prioritizing Individuals for Refurbishment
a) Discrepancy Values, and b) Number of Iterations the Individual is Reloaded

5.4. Initial Circuit Population Design

Figure 19 and Figure 20 show the performance of CBE under the Duplex and TMR modes when

using bit-weights to calculate the fitness of individuals. Figure 19 shows the results of

refurbishing circuits in a population of 20 individuals in the Duplex mode, with ten individuals

each comprising the Left- and Right-half configuration populations. The Duplex experiment

begins when a fault is inserted into two resources, one on the Left-half and one on the Right-half,

which impact 18 of the 0.20 individuals in the population. In the TMR mode, a population of 30

individuals is used, with three resource faults distributed across each voting component affecting

27 out of the 30 individuals. However, as opposed to the Duplex mode, in the TMR mode,

69

outputs from three individuals are compared for the input vector applied to realize throughput,

and the majority outcome is asserted as the output of the system.

Figure 19: Effective Throughput ηE during Regeneration Under Duplex and TMR Modes of

Operation

Figure 20: Comparison of Performance Characteristics under Duplex and TMR Modes

70

In all these experiments, the cell-swap rate and the input permutation operation rate were

maintained at 80%. In Figure 20, performance metrics from the experiment refurbishing the

population with re-introduction rate λR = 0.4 are presented, in order to compare the overheads of

the two modes. Detailed results obtained from the implementation of the two modes are listed in

Table11 which tabulates several parameters listed in Equation 5.1. The effective throughput, ηE

is measured using the following relationship:

)1.5(
)(

E
total

reloadreloadincorrectreloadevolutiontotal

N
NNNNN β

η
×−−−−

=

where, is the total number of iterations required to refurbish the population, totalN

 is the number of iterations in which the genetic recovery operators are invoked, evolutionN

 is the number of iterations where the individuals currently evaluated are replaced

by other members from the population,

reloadN

 is the number of iterations yielding discrepant outputs verified during the

experiment to be incorrect,

incorrectN

 reloadβ is the reload penalty, which is the ratio of the time taken to reload a configurations

and the time taken to compute the outputs for a single input.

Thus, ηE measures effective throughput during refurbishment by accounting for the number

of iterations, and the time spent in refurbishment-related operations.

71

 As shown in Figure 19, for low values of λR, 0.2 ≤ λR ≤ 0.4, the effective throughput of CBE in

the Duplex mode is only 2% to 6% lower than TMR mode. For example, with the z4ml

benchmark circuit, from Table 7, CBE in TMR mode provides 2.9% higher effective throughput

when compared to the Duplex mode. The difference in effective throughput is greater across

different values of λR for the cm138a circuit. Performance varies depending on the fan-in / fan-

out ratio of circuit as shown by the z4ml circuit, where fan-in > fan-out, and the cm138a circuit

where fan-in is less than fan-out.

Table 7: CBE Performance under Duplex and TMR Modes for Two Different Circuits

Circuit Mode λR Nevolution Nincorrect Nreload Ntotal ηE

Fully
Refurbished
Individuals

0.2 144 3.9 × 104 1594 4.4 × 105 87.1 5
0.4 166 5.7 × 104 1674 5.4 × 105 86.2 11
0.6 133 5.3 × 104 1671 3.3 × 105 78.3 13

Duplex

0.8 131 5.7 × 104 1907 2.2 × 105 64.5 12
0.2 132 3.9 × 103 1554 2.1 × 105 90.0 5
0.4 150 5.9 × 103 1422 1.8 × 105 87.9 12
0.6 125 1.5 × 103 1002 1.5 × 105 91.7 13

Z4ml

TMR

0.8 121 2.3 × 103 1237 1.6 × 105 89.9 13
0.2 187 1.1 × 105 4771 8.7 × 105 80.6 4
0.4 231 1.7 × 105 5011 1.1 × 106 79.3 11
0.6 165 1.6 × 105 5002 6.5 × 105 67.3 12

Duplex

0.8 161 1.7 × 105 5710 4.3 × 105 45.9 12
0.2 1362 1.2 × 104 4229 4.3 × 105 86.6 5
0.4 1398 1.8 × 104 3965 3.7 × 105 83.6 11
0.6 1348 4.6 × 103 3125 3.2 × 105 88.0 13

Cm138a

TMR

0.8 1340 6.8 × 103 3595 3.2 × 105 86.0 14

However for λR ≥ 0.6, the difference in the effective throughput becomes pronounced in favor of

the TMR mode. This occurs because a higher re-introduction rate replaces active configurations

with configurations from the under repair pool more frequently. TMR throughput is less

72

adversely affected because it ensures throughput whenever any two of three configurations’

outputs agree, giving ⎟⎟
⎠

⎜⎜
⎝

⎞
2
3⎛ = 3 ways for agreement, as opposed to the Duplex mode where there is

only one combination to realize agreement. In both Duplex and TMR modes, disagreements

trigger reloading of configurations as well as re-computation of the outputs.

Figure 20 quantifies the time vs. space tradeoff during recovery when utilizing 50% fewer

physical resources in Duplex mode as opposed to TMR. It shows the number of reloads and the

total number of iterations required to refurbish the population for the z4ml and cm138a circuits

when λR = 0.4. Under Duplex mode, up to 1.6 times as many reloads and 1.3 to 3 fold total

iterations are required to achieve refurbishment of the population. This correlates with the lower

effective throughput observed under the Duplex mode. From Table III, with higher values of λR,

such as λR = 0.8, the increased number of reloads required for Duplex mode skews throughput in

favor of TMR mode.

5.5. Effect of Reintroduction Rate on Refurbishment Performance

Table 8 lists the number of individuals that were fully refurbished from adverse effects of a

single fault inserted into 18 out of 20 individuals under CBE in Duplex mode. A Refurbished

individual might be partially or fully refurbished. An individual is fully refurbished if and only

if its output response to the entire set of possible input vectors implements the correct truth-table

in its entirety. The fitness of the individuals was evaluated using a bit-weight scoring scheme.

The stopping criterion for all refurbishment experiments was the condition wherein none of the

individuals remain in the Under-Repair pool. Nonetheless, the effectiveness of the refurbishment

73

can also be measured by exhaustively testing each individual under all possible input

combinations. Such exhaustive testing is not required for CBE to refurbish individuals; it was

conducted only to evaluate performance at the end of a refurbishment cycle.

Table 8: Number of Fully Refurbished Individuals vs. Effect of Reintroduction Rate (λR) for

Four Circuits

Reintroduction
rate (λR)

Circuit Fully Refurbished
Individuals

z4ml 8
cm85a 6

cm138a 5
20

2x-decod 12
z4ml 11

cm85a 12
cm138a 12

40

2x-decod 14

Table 12 indicates that as λR increases from 0.2 to 0.4, the number of individuals that are fully

refurbished in the population rises, irrespective of the circuit used. The improvement depends on

not just the fan-in to fan-out ratio, but also on the particular circuit. The cm138a circuit shows

the best improvement – from three recovered individuals with the lower re-introduction rate to

10 fully refurbished individuals. In the 2x-decod circuit, which is also a circuit with a fan-in

greater than the fan-out, there is an improvement of only two additional fully refurbished

individuals.

A higher reintroduction rate increases the probability that more individuals are evaluated,

evolved, and therefore improved. This improvement occurs at the cost of the greater number of

74

re-computations and re-loads necessitated by individuals under repair which are instantiated on

the FPGA for evaluation, leading to an increased number of discrepancies. If any individual in

the population expresses very low fitness as expressed by a higher discrepancy count, the

individual will be demoted to the Under Repair pool to be improved. This refurbishes

individuals with low fitness, leading to a higher number of fully recovered individuals.

An additional insight provided by these results is that even though all individuals are not fully

recovered, after successive evaluation, the individuals in the population were promoted from the

Under Repair pool to the Refurbished pool by virtue of their fitness to inputs observed in

practicality. In this manner, CBE emphasizes sustainability by improving the robustness of the

entire population in the process of achieving complete recovery.

5.6. Comparing Discrepancy Scoring Schemes

Figure 21 and Figure 22 show the relative performance of two different discrepancy scoring

schemes. In the Hamming distance method, the fitness of individual configurations was

measured using the Hamming distance of the outputs produced by the competing individuals.

The bit-weight scheme measures the arithmetic difference between outputs produced by the

individuals. Experiments were conducted under the Duplex mode for the cm85a circuit and the

2x-decod circuit. Results from the experiments, both of which were conducted with CBE in the

Duplex Mode, are listed in Table 9.

75

Figure 21: Effective Throughput with Hamming Distance and Bit-weight Schemes

Figure 22: CBE Performance Characteristics with Hamming Distance and Bit-weight Schemes

As shown in Figure 21, the bit-weight evaluation scheme leads to higher effective

throughput for the cm85a circuit for both values of λR, while for the 2x-decod circuit, the

hamming-distance based evaluation scheme seems to lead to a higher throughput. This is due to

the fact that unlike the cm85a circuit, the fan-out of the 2x-decod circuit is greater than the fan-

in. Thus, a fault nearer the inputs of the circuit will affect a larger number of outputs for the 2x-

76

decod circuit. Under these circumstances, the Hamming distance of the output from the ideal

output will provide a much better indicator of the fitness of an individual configuration. From

Figure 22, it can be seen that the Hamming-distance scheme reports a greater discrepancy value

resulting in more refurbishment operations than the bit-weight scheme. As listed in Table V for

either performance evaluation scheme, the effective throughput as well as the number of

individuals that are fully refurbished for a constant λR do not vary significantly. From the results

in Table 9, it is clear that refurbishment can benefit from the selection of an appropriate fitness-

evaluation scheme for the target circuit.

Table 9: CBE Performance under Hamming Distance and Bit-weight Performance Evaluation

Schemes

Circuit
Performance
Evaluation

Scheme
λR Nevolution Nincorrect Nreload Ntotal ηE

Fully
Refurbished
Individuals

0.2 1987 2.8 × 105 70387 8.0 × 106 87.5 5 Hamming
Distance 0.4 2120 3.6 × 105 19593 3.5 × 106 83.6 10

0.2 1913 3.3 × 105 7270 4.1 × 106 87.9 4
cm85a

Bit-weight
0.4 1684 2.4 × 105 7300 3.3 × 106 88.7 10

0.2 13100 4.4 × 105 16676 5.1 × 106 88.0 11 Hamming
Distance 0.4 14420 3.2 × 105 18821 5.3 × 106 90.0 13

0.2 10115 5.9 × 105 13362 3.7 × 106 79.0 10
2x-decod

Bit-weight
0.4 12750 1.2 × 105 14429 3.0 × 106 91.0 12

77

5.7. Recovery from Pervasive Faults

The impact of simultaneous resource failures may completely deplete all viable spares from the

dormant population. The worst case scenario occurs when all individuals in the N mutually

exclusive resource pools allocated to each module are affected, creating a pervasive hardware

failure. However, the residual functionality of each individual can be utilized by the CBE

approach to fully refurbish one or more individuals. The CUF search space characteristics of the

circuits demonstrate the viability of refurbishing individuals using the genetic operators. When

affected by pervasive faults, the functionality of each of the diverse individuals remains partially

intact. The less affected individuals will then be favored by CBE to remain on board longer and

used to generate the consensus output. Conversely, the worst affected individuals will, by virtue

of their discrepancy with the majority vote, be forced to undergo evolutionary repair to improve

their performance.

The diverse failure behavior under a pervasive fault can be exploited to generate a completely

functional individual even if all individuals in the population are faulty. Experiments conducted

on the 2x-decod circuit, which is the most resource-intensive of the benchmark circuits yield

completely refurbished individuals. The Hamming distance based fitness metric produces a

majority-indicative vote when the outputs of the three modules are compared on a bit-by-bit

basis. In these experiments, all of the 30 individuals across the three modules are negatively

affected by a single fault in the resources used by each of the TMR modules. In a sample

experiment, CBE realizes three completely refurbished individuals after Ntotal = 6 × 105 iterations

with a reintroduction rate λR = 0.4. To realize refurbishment, the configurations were reloaded

78

Nreload = 1121 times, and a total of Nevolution = 552 evolutionary operations were completed by

CBE.

In all the experiments, the majority voted output produced by the three modules was asserted as

the output. The throughput was observed to be maintained at 95% throughout the refurbishment

experiment. High throughput is maintained during refurbishment because even partially-fit

individuals can arrive at the correct result for many subsets of inputs encountered at runtime.

For measuring throughput and evaluating the absolute fitness of the individuals, the outputs were

verified against the truth table of the circuit. However, the correctness information provided by

these comparisons was not made available to the refurbishment process. Of course, successful

resolution of a pervasive fault still relies on having a population large enough and diverse

enough to make recovery tractable by consensus.

79

CHAPTER 6: FAULT MONITORING AND RECOVERING USING
ORGANIC COMPUTING APPROACH

6.1. Embedded Organic Computing Architecture

New trends in architecture and investigations for run-time adaptive systems have begun to

explore the possibility of autonomous run-time reconfiguration for increased reliability and

power awareness [35]. The Organic Embedded System (OES) architecture developed herein

utilizes Evolvable Hardware [62] approaches based on a variety of genetic techniques.

6.1.1. Requirements and Architectural Overview

Requirements are summarized below for the ASoC-style architecture in Figure 23 which is

partitioned into two logical layers. The functional layer houses the Intellectual Property (IP)

core component or Functional Elements (FEs). FEs can be any functional element from general

purpose CPUs, memories, on-chip busses, special purpose processing units or network

interfaces. The Autonomic layer consists of Autonomic Elements (AEs) and an interconnect

structure among the AEs. The following properties are inherent:

1. FEs and AEs both reside on two distinct layers with an interconnection

 structure between them.

2. The AEs and FEs can either be realized in hardware, software, or through

hardware/software co-design,

80

3. The AE layer should supervise the functionality of the FE elements in the FE layer

while requiring no application-specific algorithms on the AE layer to be developed to

realize this fault-tolerant functionality.

4. The Observer/Controller architecture includes an AS element which had no

counterpart to evaluate if the AS fault-free, so in the OES design we address reducing the

vulnerability of the AS by emphasizing its simplicity as part of our approach.

As shown in Fig 29, the separate layers of the OC architecture implemented in the OES are

mapped to alternating vertical columns of logic slices on the Xilinx Virtex II Pro FPGA device.

This column-oriented structure permits the architecture to take advantage of Xilinx partial

reconfiguration technology to manipulate the bitstreams of either the AEs or FEs configurations

for the fault recovery.

Figure 23: Column-oriented OES on Xilinx Virtex II Pro FPGA platform

Even a small size system composed of large numbers of various functionalities will need to

occupy differing amounts of physical resources for each FE as well as require a different number

81

of I/O resources. Thus as shown in Figure 23, each FE is placed in single or multiple contiguous

columns of the FPGA chip. The number of columns for each FE can be allocated as necessary

according to the area requirements of the system being designed. Xilinx bus macros [21] are

used to provide relocatable reconfigurable interfaces between FEs and AEs, AEs and the AS, and

between FEs via a user-defined interconnection network module.

Figure 24: AE architecture in OES

Furthermore, controllability and maintainability demands can become substantial because of the

overhead associated with scheduling, coordinating, and communication among the large number

of interacting components. In order to evenly distribute this burden, the decentralization of the

Observer/Controller components is proposed. In OES, the AEs reduce the demand for

centralized controllability as shown in Figure 24. It consists of a Concurrent Error Detection

(CED) [52] unit to collect and Evaluate outputs from 2 FEs, a Checksum for AE fault detection

which are checked against Stored Checksum values and an Actuator. Each AE will monitor the

operation of the corresponding FE component, evaluate the performance of the FE and render a

local assessment on the failure status of FE. An important architectural property of the OES is

that all AE components are identical in structure despite the fact that they monitor different types

82

of FEs. The homogeneous characteristics of the AE components deliver a uniform-behavior

property which is leveraged to realize a consensus-based evaluation fault-detection methodology.

The AE layer will constrain the fault impact under consensus-based control mechanisms in a

fashion that can improve system autonomy level while not needing application-specific

information about the FEs nor extensive details of their functional behavior. Even though the

AE components will add an additional layer to the design, this will ease modification difficulties

inherent with current commercial IP cores while reducing the failure impact as results show in

Section 4.3.

In addition to the AE and FE layers, the OES architecture also contains an AS. The AS

implements the consensus mechanism to evaluate the behavior of all the AEs in the system and

distinguish the abnormal individuals whose behavior may be distinguished from the rest of the

members in the AE population. GA operators are implemented here to achieve fault recovery.

All other factors being equal, the likelihood of local permanent fault of any component is

proportional to the device area required for its realization. The AS is kept as simple as possible

to reduce its complexity and reduce its likelihood of experiencing a fault proportionally.

6.1.2. System Operation

The OES architecture supports several operational phases of interaction between the FEs, AEs,

and AS. The initial state of all components is fault-free. Figure 25 shows a diagram of the flow

of operations in the OES architecture as described below.

83

Figure 25: OES Integrated FE and AE Failure Detection Procedure

6.1.2.1.System Initialization Phase

FE Initialization step

Three functionally identical FE configurations labeled FE, FE, and S-FE are instantiated on

different physical locations. Initially, only the two FEs are active and the S-FE acts a cold spare

FE. The FEs supply the output for each set of inputs applied in parallel in a Concurrent Error

Detection configuration to the AE for the fault detection.

Compute Checksum step

84

Each AE contains a Checksum Component which uses the stored outputs of the AE along with

the small finite number of possible input combinations to the Evaluator and Actuator to populate

the Check Sum Lookup Table (CS-LUT) in the AE. This feature in the AE will be utilized to

detect if the current AE is faulty in a consensus-based approach. For the benchmark circuit

selected a carry and sum, the CS-LUT required a 16-entry x 4-bit memory.

6.1.2.2.FE Fault Detection/Recovery and AE monitoring Phase

As depicted in Fig 31, at runtime the inputs destined to the FE are applied to both active ones

under a CED strategy. After allowing for FE inputs propagation time through the AE, the

expected output will be supplied to AE-CED for the fault detection. The output of the FE is then

compared in the AE-CED module and any discrepancy between the two values will indicate that

a fault has occurred either of one the FE or the AE-CED itself. Further detection will be required

to distinguish which of the two is faulty.

If the AE component is identified as innocent then the fault which occurred in this output will be

discarded and control will branch to a fault identification phase which will wakeup the cold

standby FE and construct a temporary TMR system which can articulate the faulty FE under the

new supplied external input. Furthermore, as described in Section 6.2, the actuator will initiate a

repair cycle which may require automatic evolutionary repair of the identified faulty FE which

will be set as standby-under-repair and the AE-CED will return to receive the remaining two

active FEs’ inputs. The decision-making procedure causes at least one throughput-delay penalty.

85

The AE supports two exclusive modes: FE monitor mode as described above and AE self-repair

mode described in Section 6.2.2. Whenever the AS identifies that an AE is faulty then the AE

will relinquish observation of its FE and focus on its own self-repair. Under FE monitor state,

AE will keep observing the FE behavior and issue control instructions through the actuator.

The recovery procedure entails the use of alternative designs for the AE that have identical

functionality but distinct physical resources. GA operation will manipulate the representation of

the AE bitstream and evaluate each new generated offspring until the fault is occluded. This

evolution may be time-consuming and halt the faulty FE operation, yet it is entirely automatic

repair without any human intervention.

6.1.2.3.AE Fault Detection Phase

Three possible faulty scenarios may occur inside the AE:

• A fault may exist in the CED, Actuator, or Evaluator,

• A fault may exist in Check Sum component, or

• A fault may exist in the Stored CS-LUT.

All three scenarios are detected under the proposed approach. To detect if the CED, actuator, or

evaluator are faulty we apply the outputs of the three components to the checksum circuit while

simultaneously the inputs of the three components are applied to a parallel search circuit that will

locate the input combination and its corresponding output in the CS-LUT. By the time the inputs

propagate through the checksum circuit, the output from CS-LUT will be available, the two

values are then compared and any discrepancy will detect a fault. The second and third scenarios

86

will also generate a discrepancy between the Checksum component and Stored Checksum

component.

Furthermore, the dissertation reveals that the design would operate even under multiple faults as

long as multiple faults generate the same faulty behaviors among different sub-components of

the AE which is impossible in this design because each sub-component is implemented with

distinct logic/arithmetic functionality. Nonetheless, we have observed in experiments that GA

mutation operator described in Section 4.3 applied to AE unit and using cell swap can sometimes

self-heal the AE unit even if more than one of its components is faulty.

6.1.3. CBE evaluation process and AE fault recovery Phase on the AS

A Consensus-Based Evaluation (CBE) approach is utilized for assessing the performance of

individuals based on broad consensus of the AE population instead of a conventional fitness

function defined for GAs. Adoption of CBE enables information contained in the population to

not only enrich the evolutionary process, but also support fault detection and isolation. The AS

component will collect all of AEs outputs and distinguish the abnormal individuals from the

population instead of using traditional threshold, the population information will assist the outlier

identification as well as fault recovery.

The automatic fault recovery utilizes the homogeneous characteristic of the AE components;

each fault impact on any AE can mirror the health of the AE configuration which may reveal

some inherent fault immunity property. Even though each AE occupies different physical

87

locations, they are implemented using identical logic functionality which can be used to

overcome physical failure as explained in Sections 6.2.

6.2. Evolutionary Process FE and AE

The evolutionary process generates improved bitstreams which can be used to configure the

logic fabric within a pre-defined genotype to phenotype mapping [63]. The phenotype is defined

as the FE or AE circuit manifestation of a particular genotype. The physical realization is based

on the specific configuration bitstream which is generated by the Xilinx synthesis tools and is

readable by the FPGAs in that device family. In order to reflect the identical logic functionality,

the logical chromosome of the AE will be uniform despite the physical configuration.

6.2.1. Genotype Definition

Genotype changes during evolution must adhere to the Xilinx-defined format of the bitstream.

Even though not all bitstream information can be manipulated, there is still adequate

evolutionary potential in the key fields of the bitstream. To prevent undesirable conditions that

may damage the FPGA such as a mutation which might tie together two logic outputs

inadvertently, a logical genotype is used for evolution. The proposed logical genotype in this

chapter is an LUT vector which contains logic and physical ordering information plus the

configuration I/O information as shown in Figure 26. The LUT is the basic building block of the

genotype and contains both logic ordering numbers (Logic #) and physical ordering numbers

(Col # and Row #) which identify both physical location and the functionality sequence of the

LUT. Each LUT has 4 single-bit input lines in Xilinx FPGA architectures and each input line

88

contains the 2-tuple (Col # and Row #). The functionality of the LUT describes the logic

function which is implemented and the content of the LUT stores the 24=16 bits which are the

actual content of the LUT in the hardware.

 Figure 26: Genotype Chromosomes of GA Operation

Based on the genotype, three genetic operators are developed in this dissertation for

manipulation, each of which emphasize a different aspect of information for the configuration

and fault recovery process. The operators are implemented in the software simulator and in the

FPGA prototype as described in Section 6.3.

The basic principle of evolutionary recovery approach advocated is on maintaining the integrity

of the functionality of the configurations throughout evolutionary process. Instead of exploring

completely random search space, the proposed approach will move outwards from the original

design space by trying permutations of the existing logic and interconnection for occluding the

physical failure. The reason is that feasible repairs may be expected to require less computational

complexity than realizing a completely new design. Simulation and experimental results have

borne this out this relationship between repair and design complexity [42].

89

6.2.2. Genetic Operations

6.2.2.1.Mutation Operation

The mutation operator is modified in order to fit the FPGA architecture which varied with

traditionally defined mutation. Instead of the inverse binary bit approach, the objects of mutated

are input interconnection of LUTs. The mutation will rearrange the input interconnection to each

input pin of LUTs in order to search the potential unused resources for occulted the fault impact

resource. In this way, the functionalities of LUTs are undistorted and explored in the search

space.

Figure 27 and Figure 28 show how mutation works on both genotype and phenotype in the

proposed GA design. Both figures show that after the permutation of input pins of the LUT, the

new interconnection may use some inherent redundancy resource existing in the original design

which is the result of the logic synthesis. The mutation also modifies the content of the LUT

because of input changing. As shown in Figure 27, the original functionality is F =

F1·(F3＋F4) and input F2 is unassigned by the synthesis tool. The mutation operator will

change the input arrangement to F4 as unused input and the function changed to F =

F1·(F3＋F2) and the shadow on the Before F2 and After F4 stand for the rearrangement of

input lines as well as the LUT content update according to changed functionality. From Figure

28, you can see the detail update in both input lines and content of LUT according to the shadow

show on each component. This operator will provide some opportunity for fault correction

strategy for either input stuck-at fault or LUT content stuck-at fault. The process can be

implemented without human interference and indispensable for the evolutionary procedure.

90

 Figure 27: Mutation on the Genotype Chromosomes

 Figure 28: Mutation on the Phenotype

6.2.2.2.Cell-Swap Operation

The Cell-Swap operator is swaps two distinct LUTs’ blocks and meanwhile maintaining correct

the logic order and functionalities in the genotype. The swap will exchange all the LUT input

91

interconnections, LUT content and physical 2-tuple (Col#, Row#) as well as the logic sequence.

As shown in Figure 29 and Figure 30, two LUTs swap all the information except the LUT

sequence information which is fixed correspondent to hardware location. After swapping, the

two LUTs will implemented the different functionality and have different input lines as the

shadow in the figures. In this way, some fully occupied LUT may swap to some partially

occupied LUT and find some alternative physical resource to recover from the fault impact.

Another update issue in the configuration which should be considered but not shown in the

figures is the output line update according to the swapping. Since the logic sequence now located

in different LUT, the interconnection of output vector should also get current 2-tuple (Col #,

Row #) to keep the integrated functionality of the entire configuration.

 Figure 29: Cell-Swap operation on Genotype chromosomes

92

 Figure 30: Cell-Swap operation on Phenotype chromosomes

6.2.2.3.Partial Match Crossover Operation

Partial Match Crossover (PMX) is proposed by [5] and maintains the crossover information as

well as order information. In our design, the logic orders of each LUT are fixed and thus limit the

possible search space of the initial design. Under PMX, two configurations are aligned, and a

crossover site is picked uniformly at random along the boundary of the LUTs in genotype. This

93

crossover point defines a mating section that is used to affect a cross through LUT-by-LUT

exchange operations.

 Figure 31: PMX operation on Genotype chromosomes

Figure 31 shows the crossover point that occurs in the position 4 of the LUT vector where PMX

is implemented by position-wise exchange. The first step is to map configuration B to

configuration A by exchanging the following aligned LUTs {(4,7),(5,2),(6,1),(7,5)}. This results

in both configuration having duplicate elements and similar replacement mutation reoccurs to

clean such correct functionality behavior. Applying PMX results in two new configurations A’

and B’.

94

6.2.3. Consensus Based Evaluation (CBE)

An innovation of the OES architecture over conventional fault detection, diagnosis, and recovery

strategies for the fault detection and fault recovery, Consensus Based Evaluation (CBE)

approach was developed for fault detection and a GA approach was applied for fault repair in

order to design an embedded system that exhibits some of the self-x properties essential for OC

designs.

The GA used in the FPGA aforementioned in section 4.2 present some successful applications

and demonstrates the benefit of both GA and reconfigurable device. The entities of GA used in

this dissertation are analogical with the FPGA architecture but simpler than the real bitstream

file. In other words, we only encode the information that can be manipulated in the bitstream to

our genotype and apply specifically designed GA operators the bitstream.

The difference between repair and design is the difference in search space. The evolution repair

strategy presented does not damage any functionality of the configurations. Actually the

evolution results in some manipulated offspring of parents. Even if all of the configurations are

fault-free, faulty physical resources may inhibit the configurations from generating the expected

output. Therefore, the objective of the evolution is to obtain some specific configuration which

works around faulty physical resource.

95

6.3. Experiment Configuration

6.3.1. FE and AE Failure Coverage

In the experiments, coverage and resolution of faults in the FE and faults in the AE are

evaluated. The FE fault-handling experiments inject a stuck-at-zero or stuck-at-one fault at one

of the FE’s LUT input pins and the resolution process proceeds as described in Section 6.1. The

AE fault-handling experiment utilizes a CBE-based approach to detect the faulty AE in the

population. Once the fault is detected, the AS generates a new population for identified AEs,

reconfigures them on the logic fabric sequentially in order to evaluate their correctness. After all

the configurations are evaluated, CBE keeps detecting faults in that AE under repair, until the

number of newly created configuration evaluations reach Ew. During the AE repair, the FE will

reside on the chip and generate output even under fault impact conditions. The AE units are said

to be functionally identical yet physically distinct due to the fact that they all contain the same

functional elements with a constraint of identical number of I/O pins. This implies that as long

as the AE is designed for the largest output word-width output by any FE, then all of the FEs can

differ in function and even differ in output word-width by just tying any unused input pins of the

AE to ground without any loss of generality.

6.3.2. Single vs. Multiple Fault Coverage

In order to determine the fault handling mechanism in the proposed system, two different fault

models Single-Failure Model and Multiple-Failure Model are introduced. If Single-Failure

Model is applied to the proposed system then the fault will be located either in a FE or an AE

96

component, but not simultaneously. Therefore the analysis of the evolutionary recovery

operation will only focus on the faulty component without considering the other component’s

status. Whenever the AE component is undergoing an observable fault impact, the system will

lose the monitoring functionality of the corresponding FE component. However, under Single-

Failure Model, the FE component will be fault-free and maintain data throughput without error

during that time period.

Alternatively, if the FE component is under the impact of the fault then the AE component

notifies the AS that the wrong output came from the output of the FE component. Even when

the FE component is under fault impact, the cold spare can provide a ready replacement for

reconfiguration. Under the FE fault case there is no unavailability once the switch to TMR to

identify the failed resource is completed. The failed FE can be repaired in the background via

the GA as a refurbished CED mode has been restored.

For a single FE fault, the system availability, ASF, is given by Equation (6.2). Let the number of

correct behaviors of the FE that have been observed during the evolutionary recovery phase be

denoted by Fc while the number of errant or discrepant behaviors of the FE is denoted by Fe.

The quantity 1 represents the number of faulty outputs, i.e. exactly one output required to detect

the fault during the original CED configuration. The coefficient 2 is the number of the

reconfigurations required, i.e. one from CED to TMR, and one back from TMR to CED. The

quantity β represents reconfiguration time expressed in the same time units as the computation

time units, yielding:

97

⎪⎩

⎪
⎨
⎧

++
=)2.6(faultsingleunderFEif

21

faultsingleunderAEif%100

βc

cSF

F
FA

The next scenario represents the Multiple-Failure Model. If multiple faults occur in only either

the FE component or the AE component exclusively, it yields the same behavior as the Single-

Failure Model case because no matter how many faults that occur, the unit-under-test is the

entire FE or AE itself during the fault detection step. On the other hand, if the AE and FE are

under the impact of faults simultaneously, then the system will keep the FE online executing

correct FE behavior if possible by introducing the S-FE.

If deployment of the S-FE is unsuccessful then group information will be used to repair the AE

first. As long as the AE returns to normal, the FEs will be recruited into repair process. So under

this strategy system still can maintain graceful degradation capability under the multiple fault

impacts. The quantities Fc , Fe, and β in the second line of equation (6.3) have the same

definition as equation (6.2), and the quantities Fc1 and Fe1 stands for the correct and faulty output

number of the FE during the AE repair period, the (Fc2 , Fe2) stands for the correct and faulty

output number during the FE repair period and the n is number of reconfigurations of the FE.

Hence, the system availability under multiple faults, AMF, is given by:

()3.6
21

%100

2211

21
⎪
⎪
⎪

⎩

⎪
⎪
⎪

⎨

⎧

⋅++++
+
⋅++

=

faultsmultipleunderbothFEandAEif
nFFFF

FF

faultsmultipleunderFEif
F

F
faultsmultipleunderAEif

A

ecec

cc

c

c
MF

β

β

98

6.3.3. Hardware Prototype

The case study example shown in Fig. 38 was implemented on the Xilinx Virtex II Pro as proof

of concept to accompany other software simulations performed and presented in Section 5. Only

a small number of resources are utilized for the AE and FE. The OES architecture in this case

study consisting of a Full Adder FE unit with all of the elements in the AE Unit is realized using

HDL implementation on the Xilinx Virtex II Pro FPGA using the GNAT library along with the

MRRA framework and JTAG reconfiguration interface.

In Figure 32, the FE and AE units are shown in dashed boxes. The CS-LUT is shown in the

dotted box. The Evaluator consists of XOR gates to check for any discrepancy between the FE

units. There are three FE units of which only two are active during runtime, the third FE is a

standby, i.e. S-FE, and will only become activated once a discrepancy is detected on the FE

elements. Once a discrepancy is detected, the switching logic shown within the red box (contents

not shown) will be used to activate the standby FE. TMR will be used in this case for the

Evaluation Window during which Genetic Operators will be used to repair the faulty FE

individual. Once evolution achieves repair, the repaired FE will now becomes the S-FE. This

process is instantiated each time a FE discrepancy is detected.

99

 Figure 32: Gate Level Design of OES (Case study)

Notice that the inputs of the FE unit are connected to all FE units including the standby FE.

Discrepancy in the two FE elements is detected using XOR gates fed to an OR gate. The output

of the evaluator is fed to the Actuator that uses an XOR gate to send a signal labeled FE

Discrepancy Value (FE_DV) that will initiate GA operators on the FE unit once a discrepancy is

detected. The outputs of the two XORs checking the two outputs of the two FE elements along

with the Evaluator output and Actuator output are all fed to a checksum unit consisting of 4-to-2

compressor tree. In this particular case study only one 4-to-2 compressor is needed. To check for

any discrepancy between the Checksum element and the CS-LUT during runtime, a circuit

similar to the evaluator circuit is used. The outputs of the Checksum element and CS-LUT are

fed to XORs and the output of the XORs are fed to an OR gate. The output of the OR gate named

100

AE Discrepancy Value (AE_DV) will determine if a discrepancy is found between the two

elements at runtime. The AE_DV is fed to the AS unit (not shown in figure) where it will be used

along with CBE to confirm that the AE is in fact faulty and will cause the AS unit to initiate GA

operators on the faulty AE element. Figure 33 produced by Xilinx ISE shows the physical layout

of the design shown in Figure 32 on a Xilinx FPGA Virtex-II Pro.

 Figure 33: Physical Layout of OES system on FPGA with GNAT/JTAG shown

6.4. Result and Analysis

Three circuits were evaluated using the OES architecture, all of which are specified in Table 1

from the MCNC-91 benchmark [61]. The experiments implemented test the fault repair process

on both the FE and AE components simultaneously. As previously discussed in Section 6.2, this

will result in cascade of repair of both components via a single test scenario. In the FE fault

recovery process, only Mutation and Cell-Swap operators are applied and the unit evolved to the

fault-free state without utilization of population information. A fault was also induced on an

input of LUT within the AE unit. During the AE fault recovery process, all three genetic

101

operators along with CBE were applied to evolve the AE unit to a refurbished status. The use of

CBE along with GA operators proved to provide a large benefit in terms of number of repair

iterations compared to conventional offline GA-based design-from-scratch-approaches [14, 15,

31]. Each experiment was executed for 10 runs on each circuit. The GA parameters were set as

Mutation Rate=0.5, Cell-Swap rate=0.5 and Crossover rate=0.5 in all of the runs. The population

size for AE is five and FE there is 2 active and one spare. The GA tournament selection rate was

selected to be 2.

Table 10: MCNC-91 Benchmark Circuits Evaluated on OES Architecture

Circuit Name Circuit Function Inputs Outputs Approximate Gates
 z4ml 2-bit Add 7 4 20
cm85a logic 11 3 38

cm138a Logic 6 8 17

The evolution repair strategy results in some manipulated offspring of parents. Even if all of the

configurations are fault-free, faulty physical resources may inhibit the configurations from

generating the unexpected output. Therefore, the objective of the evolution is to obtain some

specific configuration which works around the faulty physical resource to eventually occlude it.

Figure 34 shows the fitness obtained for the cm85a circuit when a stuck-at-zero fault was

injected at 48 different locations. Specifically the circuit was synthesized using Xilinx ISE to

occupy 12 LUTs that each of which had 4 inputs, yielding 48 exclusive failure locations. The

fitness of each cm85a circuit under each test scenario ranges from zero outputs correct up

through a maximum of 211=2048 outputs correct because cm85a has 11 inputs.

102

0 10 20 30 40
0

500

1000

1500

2000

Fi
tn

es
s

Fault Locations of cm85a circuit

 Fitness

Figure 34: Fitness as a function of 12 LUTs with 48 fault locations tested

The three circuits’ experimental results are listed in Table 11 through Table 13 which lists the

system Availability during the repair phase. It is important to note that the system Availability

outside the repair phase is by definition 100%. The column n denotes the measured number of

reconfigurations for either the AE or the FE during the repair process during each test run. In

last three columns, we assume the βis equal to 103, 104, and 105 respectively, to anticipate the

system performance under different reconfiguration to computation ratios. The result presented

shows that even spanning 3 orders of magnitudes of difference, the system performance can still

be acceptable for some certain circumstances. When β=1000, the average system availability is

75.05% for the z4ml circuit and 82.21% for the cm85a and 65.21% for cm138a, all three may not

exhibit graceful degradation but can keep partial functionality under the fault impact. The values

of the redundancy for both FE (RFE) and AE (RAE) are calculated based on the ratio of unused

LUT inputs over the total number of LUT inputs used on both AE and FE designs, respectively.

103

 Table 11: z4ml Circuit Experiment Results

Fault-
Free AE
output

Fault-
Impact

 AE output
Circu

it
z4ml
Run

RAE=14.1
%

RFE=25%
n

Fc1 Fe1 Fc2 Fe2

System*
Availabili

ty
During
Rep.
β=103

System*
Availabili

ty
During
Rep.
β=104

System*
Availabili

ty
During
Rep.
β=105

AE 1
5 20856 2003

1
FE 2 1997

9
285

8 22
80.45% 50.00% 8.97%

AE 7 9403 917
2 FE 2 8914 130

2 10 72.99% 30.85% 4.24%

AE 1
7 24899 2215

3
FE 2 2366

4
338

0 8
81.48% 54.20% 10.43%

AE 1
1 14586 1702

4
FE 2 1423

4
199

2 8
78.10% 41.59% 6.59%

AE 1
1 15474 1375

5
FE 2 1476

4
203

6 2
78.53% 42.47% 6.81%

AE 3 3991 278 6 FE 2 3685 521 6
59.41% 15.58% 1.81%

AE 7 9612 767
7 FE 2 8929 128

7 4 73.10% 30.87% 4.25%

AE 5 6880 444 8 FE 2 6334 877 7 68.78% 24.07% 3.06%

AE 1
7 23201 2084

9
FE 2 2206

8
317

3 2
81.01% 52.46% 9.80%

AE 9 12622 1866
10 FE 2 1259

2
183

1 6 76.68% 38.65% 5.88%

Average System Availability During Rep. 75.05% 60.54% 6.18%

104

* = system Availability outside the repair phase always equal to 100%.

 Table 12: cm85a Circuit Experiment Results

Fault-Free
AE output

Fault-
Impact AE

output
Circuit
cm85a

Run
RAE=14.1%
RFE=16.67% n

Fc1 Fe1 Fc2 Fe2

System*
Availability

During
Rep.
β=103

System*
Availability

During
Rep.
β=104

System*
Availability

During
Rep.
β=105

AE 11 19479 1531 1 FE 2 16526 301 50 1 87.81% 44.95% 7.64%

AE 21 31371 3616 2 FE 2 28966 482 91 1 92.13% 58.65% 12.66%

AE 7 13092 1044 3 FE 2 11257 161 33 1 83.93% 35.90% 5.34%

AE 7 11202 1145 4 FE 2 11845 174 36 1 84.53% 37.06% 5.60%

AE 25 33405 2919 5 FE 2 36714 574 40 1 93.45% 64.11% 15.49%

AE 1 3724 96 6 FE 2 2358 45 35 1 53.91% 10.66% 1.18%

AE 11 16228 1341 7 FE 2 16543 284 52 1 87.90% 45.00% 7.65%

AE 7 10824 1127 8 FE 2 11219 199 47 1 83.66% 35.80% 5.33%

AE 3 4821 367 9 FE 2 4730 77 41 1 69.66% 19.20% 2.33%

AE 13 14438 2190 10 FE 2 13390 337 46 1 85.18% 39.78% 6.29%

Average System Availability During Rep. 82.21% 39.11% 6.95%

• = system Availability outside the repair phase always equal to 100%.

105

Table 13: cm138a Circuit Experiment Result

Fault-Free
AE output

Fault-
Impact AE

output Circuit
cm138a R

Run
AE=14.1%
RFE=20% n

Fc1 Fe1 Fc2 Fe2

System*
Availability

During
Rep.
β=103

System*
Availability

During
Rep.
β=10

System*

Availability
During
Rep.
β=104 5

AE 7 11696 1488 1 FE 2 11828 191 65 1 84.44% 37.07% 5.61%

AE 7 10071 759 2 FE 2 8484 2333 15 1 66.23% 27.56% 4.03%

AE 5 8296 754 3 FE 2 7057 1957 2 1 64.07% 24.33% 3.38%

AE 3 4624 450 4 FE 2 3724 1083 25 1 54.87% 15.10% 1.83%

AE 1 1849 94 5 FE 2 1404 398 24 1 37.31% 6.54% 0.71%

AE 7 11060 962 6 FE 2 9347 2672 3 1 66.68% 29.20% 4.41%

AE 23 31366 3067 7 FE 2 26732 7524 33 1 73.75% 49.30% 11.42%

AE 15 21769 1906 8 FE 2 18180 5258 28 1 71.50% 41.89% 8.15%

AE 9 12945 916 9 FE 2 10778 3044 20 1 68.16% 31.91% 5.05%

AE 7 9409 963 10 FE 2 7947 2269 25 1 65.12% 26.36% 3.79%

Average System Availability During Rep. 65.21% 28.93% 4.84%

* = system Availability outside the repair phase always equal to 100%.

Figure 35 shows the evolutionary process for the cm85a circuit which has 11 inputs and 3

outputs and a maximum fitness of 211=2048. During the repair process, only mutation and cell-

swap operators are implemented because there is only single instance of FE under repair. Even if

a random walk around the search space is achieved, then the results in the Fig.41 show that most

of the time the circuit’s fitness is above 1900 out of 2048 even during the existence of the fault

106

within the circuit resources. The reason of this phenomenon is either the inserted fault only

impacts the circuit to a minor degree or because fan-in exceeds fan-out in this circuit. To better

explain the concept behind Figure 35 and why the fitness and evolution behavior differs from a

conventional Genetic Algorithms which improves monotonically over time, consider that in the

OC case, the unit being evolved is always predefined at design time. What the GA in our system

does is to explore a limited search space near that existing design to identify alternate physical

resources to bypass a faulty input or faulty LUTs. Since the functionality of the unit is already

predefined then the search space is limited to identifying distinct physical resources for

occluding the fault to restore functionality. Hence, the GA is not exploring new designs from

scratch, but restoring the lost functionality of the failed design. This is also demonstrated in

Figure 35 where the stuck-at-zero fault is applied to all possible inputs of the FE, yet the fitness

of the unit was on average above 1900 out of a maximum fitness of 2048. Hence, the slightly

increasing non-monotonic curves in Figure 35 and Figure 36 can be observed.

0 20 40 60 80 100
800

1000

1200

1400

1600

1800

2000

2200

Fi
tn

es
s

Number of Evolution

 Run 1
 Run 2
 Run 3
 Run 4
 Run 5
 Run 6
 Run 7
 Run 8
 Run 9
 Run 10

 Figure 35: cm85a FE Evolutionary Recovery without CBE

107

 Figure 36: AE Evolutionary Repair for cm85a Circuit using CBE

Also in Figure 36, the cm85a AE evolutionary process is shown. The population information

helps repair the circuit. The difference of this evolutionary process with the traditional GA is that

the configurations are all correct, but the physical fault in the hardware resources that they utilize

produces the unexpected behavior of the circuit. Instead of generating a new design, the

evolution process only permutates the current design using different input line combination or

different logic that occupies different physical resources. Because of the inherent redundancy

which is generated by the synthesis tool, there is always a chance for new permutation occluding

the physical failure. Therefore, the repair process is not time-consuming like the traditional GA

process because of small search space.

When comparing Figure 35 and Figure 36, we clearly see the different benefit of the CBE-GA

approach in comparison with just the random GA operation approach, respectively. It should be

noted here that we are not applying the CBE-GA operator algorithm on the FE because in our

design we are only utilizing GA operator to achieve fault-tolerant FEs. The population

108

information assists the evolution not only during the repair process and for future repairs as well.

In the future, for any faults occurring in distinct physical locations but present in the same

functional unit, the repair the configuration can used as a repair reference during the crossover

which may help the reparation. Only the mutation and cell-swap operation explore the search

space and while maintaining most of the time a graceful degradation property for circuit

operation. However, such characteristics may not generally apply for all kinds of circuits. It may

only manifest on certain types of circuit and for certain types of fault inserted, however it does

apply for several different circuit types in the standard MCNC-91 benchmark.

109

CHAPTER 7: CONCLUSION

7.1. OVERVIEW

The original motivation of CBE approach combined conventional fault tolerance techniques and

newly emerging reconfigurable devices to obtain improved system reliability and availability

simultaneously. This dissertation is the first successful attempt to propose, design, implement

and evaluate such components and architectures. Even though TMR/Standby approaches have

been used separately, their benefits can be combined. Also because the characteristics of the

FPGA, the reutilized physical resources under fault impact and partial functionality become

feasible candidate solutions to increase mission lifetime. Furthermore, the EH approach enhances

CBE self-repair capacity make it more suitable for real applications.

Several advantages of the proposed CBE approach are presented in this dissertation. The

conventional TMR, Standby and dynamic TMRSB systems are limited by the hardware platform

which may not have automatic reconfiguration capacity and exhibit overhead with the standby

components. Without reconfiguration capacity, the standby components must not only use

mutually exclusive hardware resources from failed components, but also add specific extra

switch components which will decrease the system reliability. However, with the FPGA device,

all the previous obstacles can be considered as trivial factors because of inherent reconfigurable

characteristic of FPGAs. The bitstream files occupy less than several hundred Kilobyte storage

space which will configure a multimillion gate sized FPGA device to provide superior

performance over extra switching components. Overall inherent properties of the FPGA device

provide the TMRSB system a renewed opportunity as a fault tolerance technique.

110

7.2. Evolvable Hardware and CBE

Furthermore, partial online EH regeneration essentially defines a problem that is different from

offline EH design. A population of working designs can facilitate restoration of functionality by

providing diverse alternates since the alternative configurations are only occupy small area of the

memory. Conventional fitness evaluation associates a rigid individual-centric fitness measure

defined at design-time. CBE uses instead, a self-adapting population-centric assessment method

at run-time. Population-centric assessment methods such as CBE can provide an additional

degree of adaptability and autonomy. CBE relies on the consensus observed among a group of

individuals to evolve and adapt fitness criteria for individual members, thus providing graceful

degradation. By utilizing outlier detection techniques that work temporally without the need for

exhaustive testing, CBE provides a fault tolerance technique that maximizes device throughput

during the fault detection process.

Under CBE, the outlier detection mechanism worked as shown in Figure 18, the measured

performance of an individual over 28 iterations during the repair process for the z4ml circuit. In

this particular experiment, the reintroduction rate used was 0.20, with both the cell-swapping rate

and the input permutation rate set to 20%. As shown in Figure 18a, whenever the discrepancy of

the individual rises above the average discrepancy of the population, the individual is reloaded

onto the FPGA, as evidenced by Figure 18b. Conversely, when the individual discrepancy is

equal to, or less than the average discrepancy of the population, the individual is not reloaded, or

reloaded less than the average member of the population. This shows the autonomous behavior

capability of CBE.

111

 While the pre-existing methods focus on creating a single fully-fit configuration, CBE extends

this to maintaining a population of solutions that have a higher average fitness. This ensures that

the adaptability of a population of viable alternatives to a variety of unanticipated faults. An

additional benefit of maintaining a population of diverse partially-fit individuals is that when the

inputs to the system are localized to a subset of the set of all possible inputs, even partially-fit

individuals can assist in generating expected outputs, thereby improving the rate of viable

throughput. The population size evaluated was 20 and 30 for TMR/DUPLEX MCNC91

benchmark experiment where each branch has 10 candidates. Considering most benchmark

circuits are less than 100 equivalent gates, 10 should be appropriate number of alternative

possible designs.

CBE improves on existing fault tolerance techniques for reconfigurable devices by providing an

adaptive, evolutionary algorithm that leverages diversity inherent in a population of solutions to

evolve solutions at runtime with minimal downtime. The system availability shown in Table 11,

Table 12, and Table 13 are keeping the system executing even under the presence of a fault

impact. Finally, an additional benefit of CBE is that fitness evaluation becomes independent of

the application running on the FPGA enabling model-free assessment during evolutionary repair.

For example, experiments for the multiplier in section 5.3 show CBE did not require any

behavior model nor truth table for the fitness function which is superior for adaptive system.

Leveraging the property that even partially-fit individuals respond correctly to some subset of

inputs, CBE is shown to maintain adaptable levels of system availability in the presence of

defective configurations. This allows for graceful degradation using population characteristics

without requiring a circuit-specific fitness function. Additionally, the proposed approach

112

requires no specially constructed test vectors, as the response of individuals to real-time inputs

forms the basis for evaluation. In Table 9, the number of the iteration number for the repair all of

the faulty individuals by 50%. This recasts the emphasis in EHW for repair from exhaustive

testing to a focus on functionality based only on the relevant inputs which are encountered in the

embedded application.

Rather than trying to anticipate operating conditions, CBE utilizes runtime information to adapt

to the subset of possible faults which are actually present and being articulated. Even pervasive

faults that may completely deplete all viable spares from the dormant population are shown to be

recoverable, given adequate population size and diversity. We can see from Figure 19 and

Figure 20, the population size 20 and 30 for Duplex and TMR models respectively, are sufficient

to distinguish and isolate fault and repaired the faulty individual with operational throughput.

This focus on Recovery Complexity emphasizes use of a diverse population of previously correct

alternatives as compared to a single failed seed configuration. Current work includes the

development of a self-contained System-on-Chip implementation of self-healing EHW using the

Multi-Layer Runtime Reconfigurable architecture [64] as a partial reconfiguration framework for

Xilinx SRAM-based FPGAs.

7.3. Organic Computing Architecture

Even though model free circuits design are implemented and evaluated by CBE, this research

was taken further to construct an autonomous self-governing architecture in order to make the

whole CBE proposed applicable. In this dissertation, we developed an OES architecture for

sustainable performance of reconfigurable FPGA soft cores. The architecture was developed

113

using an OC observer/controller organization and regeneration with Genetic Operators. Other

innovations included provision of availability during regeneration, outlier-driven repair

assessment, and a uniform design for the AEs. The design objective of developing an

architecture that exhibits self-adaptation and self-healing properties can be attained using such

techniques for completely autonomic operation without human intervention. The OES

architecture is capable of handling many single fault scenarios and several multiple fault

scenarios.

Experimental results strongly supported our design objectives were met. Using logic circuits

from the MCNC-91 benchmark set, we assume the βis equal to 103, 104, and 105 respectively, to

anticipate the system performance under different reconfiguration to computation ratios. The

result presented shows that even spanning 3 orders of magnitudes of difference, the system

performance can still be acceptable for some certain circumstances. When β=1000, the average

system availability is 75.05% for the z4ml circuit and 82.21% for the cm85a and 65.21% for

cm138a, all three may not exhibit graceful degradation but can keep partial functionality under

the fault impact. The synthesized OES architecture was prototyped on Xilinx Virtex II Pro

FPGA device supporting partial reconfiguration to demonstrate the feasibility of the OES

architecture for intrinsic regeneration of the selected circuit. Through application of genetic

operators for mutation and crossover, the OES architecture successfully achieved full repair of

faulty element in the presence of stuck-at-zero and stuck-at-one faults. This integrated the use of

redundant LUTs inherited in the FPGAs design. This integrated approach provides an

innovation in fault-handling capability not only for the FEs, but also for the AEs as well.

114

The CBE-based approach developed herein can outperform conventional GA-based approaches

for self-healing due to its search in a smaller repair space as opposed to an unbounded design

space. The CBE-based approach relies heavily on population information and thus can be

applied to the AEs directly. The population information assists the evolution not only during the

repair process, but also for future repairs of a different AE as well. In particular, for future faults

occurring in distinct physical locations, but within units having the same functional behavior as a

previously handled fault, then the repaired configuration can provide a repair reference during

the crossover which may help the reparation. Only the mutation and cell-swap operation explore

the search space while maintaining the majority of the time a graceful degradation property for

circuit operation. However, such characteristics may not apply in general for all kinds of circuits

and for certain types of fault behaviors. However, it does apply to several different circuit types

in the standard MCNC-91 benchmark under single and multiple stuck-at faults.

7.4. Future Work

For future work, one area to investigate is to develop OES architecture space-based

reconfigurable embedded architectures. The most problem currently confronted in FPGA based

EH research is more platform support and more low level API support. In order to fully utilize

the reconfiguration capacity of the FPGA, new embedded GA oriented architectures are

demanded for those purposes. For examples, a complete working OES prototype on Xilinx

Virtex 4 and Virtex 5 FPGA chip which supports more advanced online reconfigurations is

considered for using more advanced GA operations. It’s also possible explore other GA

operators and develop more methodologies for fault-isolation and fault-correction. Another

115

obstacle is dynamic reload and recompile overhead where each newly evolved configuration

must be recompiled for reconfiguration which impact the CBE idea being implemented because

of the recompilation time and the reload time β also a factor of decreasing issue for further

utilization of the CBE approach. Those questions are excellent the research topics for future

development.

116

LIST OF REFERENCES

[1] J. H. Holland, Adaptation in Natural and Artificial Systems: An Introductory
Analysis with Applications to Biology, Control, and Artificial Intelligence
The MIT Press, 1992.

[2] D. M. Poole, Alan & Goebel, Randy, Computational Intelligence: A Logical
Approach: Oxford University Press, 1998.

[3] T. Jones, "Evolutionary Algorithms, Fitness Landscapes and Search," in
Computer Science. vol. Phd Albuquergue,NM: University of New Mexico,
1995.

[4] M. Phillip and K. V. Ganesh, "Evolving Combinational Logic Circuits Using
a Hybrid Quantum Evolution and Particle Swarm Inspired Algorithm," in
Proceedings of the 2005 NASA/DoD Conference on Evolvable Hardware,
2005.

[5] D. E. Goldenberg and R. Lingle, "Alleles, Loci, and the traveling salesman
problem," in Proceeding of the First International Conference on Genetic
Algorithms and Their Application, 1985, Pittsburgh, PA, pp. 154-159.1985.

[6] L. J. Fogel, Owens, A.J., Walsh, M.J., Artificial Intelligence through
Simulated Evolution: John Wiley, 1966.

[7] H.-G. Beyer, "The Theory of Evolution Strategies," Springer, 2001.

[8] J. F. Miller, D. Job, and V. K. Vassilev, "Principles in the Evolutionary
Design of Digital Circuits -- Part I " Journal of Genetic Programming and
Evolvable Machines, vol. 1, p. 28, 2000.

[9] J. F. Miller and P. Thomson, "Cartesian Genetic Programming," in Genetic
Programming, Proceedings of EuroGP'2000, 2000, Edinburgh, British pp.
121--132, 2000.

117

[10] J. F. Miller, D. Job, and V. K. Vassilev, "Principles in the Evolutionary
Design of Digital Circuits -- Part II " Journal of Genetic Programming and
Evolvable Machines, vol. 3, p. 30, 2000.

[11] W. a. S. Browne, D "Kernel-based, ellipsoidal conditions in the real-valued
XCS classifier system," in Proceedings of the 2005 conference on Genetic
and evolutionary computation, 2005, Washington DC, USA, pp. 1835-1842,
2005.

[12] M. D. T. "Stützle, Ant Colony Optimization," MIT Press, 2004.

[13] V. K. Vassilev and J. F. Miller, "Embedding landscape neutrality to build a
bridge from the conventional to a more ef-ficient three-bit multiplier
circuit," in Proceedings of the 2nd Genetic and Evolutionary Computation
Conference, 2000, San Francisco, CA, 2000.

[14] J. D. Lohn, G. Larchev, and R. F. DeMara, "A Genetic Representation for
Evolutionary Fault Recovery in Virtex FPGAs," in Proceedings of the5th
International Conference on Evolvable Systems (ICES), 2003, Trondheim,
Norway. March 17-20, 2003.

[15] J. D. Lohn, G. Larchev, and R. F. DeMara, "Evolutionary Fault Recovery in
a Virtex FPGA Using a Representation That Incorporates Routing," in
Proceedings of the17th International Parallel and Distributed Processing
Symposium, 2003, Nice, France, April 22-26, 2003.

[16] S. Vigander, "Evolutionary Fault Repair of Electronics in Space
Applications," in Computer and Information Science. vol. Master
Trondheim, Norway: Norwegian University of Science and Technology
(NTNU), 2001, p. 50.February 28, 2001.

[17] K. Zhang, R. F. DeMara, and C. A. Sharma, "Consensus-based Evaluation
for Fault Isolation and On-line Evolutionary Regeneration," in Proceedings
of the International Conference in Evolvable Systems (ICES'05), 2005,
Barcelona, Spain, pp. 12-24.September 12 - 14, 2005.

[18] M. Abramovici, J. M. Emmert, and C. E. Stroud, "Roving STARs: An
Integrated Approach To On-Line Testing, Diagnosis, And Fault Tolerance

118

For FPGAs In Adaptive Computing Systems," in The Third NASA/DoD
Workshop on Evolvable Hardware, 2001, Long Beach, Cailfornia, pp. 73-
92.July 12-14, 2001.

[19] J. v. Neumann, "Probabilistic logics and synthesis of reliable organisms
from unreliable components," in Automata Studies, C. S. a. J. McCarthy,
Ed.: Princeton University Press, 1956, pp. 43--98.

[20] I. Xilinx, "Development System Reference Guide v3.5.1," April, 2003.

[21] I. Xilinx, "Virtex-II Pro Platform FPGA User Guide v204," August 2004.

[22] I. Xilinx, "Virtex-II Pro and Virtex-II Pro X platform FPGAs: Complete
data sheet," October. 2005.

[23] H. Schmeck, "Organic Computing-A New vision for distributed Embedded
Systems," in Proceedings of Eighth IEEE International Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC’05), 2005,
Seattle, Washington, pp. 201-203.May 18-20, 2005.

[24] R. P. Würtz, "Organic Computing methods for face recognition," 2005.

[25] C. Müller-Schloer, "Organic computing: on the feasibility of controlled
emergence," in Proceedings of the 2nd IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis, 2004,
Stockholm Sweden, pp. 2-5.2004.

[26] J. Z. A. Bouajila , W. Stechele , A. Herkersdorf , A. Bernauer , O.
Bringmann , and W. Rosenstiel "Organic Computing at the System on Chip
Level," in Proceedings of the IFIP International Conference on Very Large
Scale Integration of System on Chip (VLSI-SoC 2006), 2006, pp. 338-
341.October 2006.

[27] H. Kasinger and B. Bauer, "Combining Multi-agent-system Methodologies
for Organic Computing Systems," in Proceedings of the 3rd International
Workshop on Self-Adaptive and Autonomic Computing Systems (SAACS 05),
2005, Copenhagen, Denmark, pp. 160-164.August 2005.

119

[28] J. Branke, M. Mnif, C. Müller-Schloer, H. Prothmann, U. Richter, F.
Rochner, and H. Schmeck, "Organic Computing - Addressing Complexity by
Controlled Self-organization," in Proceedings of ISoLA 2006, 2006, Paphos,
Cyprus, pp. 200-206.November 2006.

[29] G. Lipsa, A. Herkersdorf, W. Rosentiel, O. Bringmann, and W. Stechele,
"Towards a Framework and a Design Methodology for Autonomic SoC," in
Proceedings of the Second International Conference on Autonomic
Computing (ICAC’05), 2005, Washington, DC, pp. 391-392,June 2005.

[30] D. Keymeulen, R. S. Zebulu, Y. Jin, and A. Stoica, "Fault-Tolerant
Evolvable Hardware using Field Programmable Transistor Arrays," IEEE
Transaction on Reliabilty, vol. 49, p. 12, September 2000.

[31] J. D. Lohn and R. F. Demara, "A Co-evolutionary Genetic Algorithm for
Autonomous Fault-Handling in FPGAs," in Proceedings of the Sixth
International Conference on Military and Aerospace Programmable Logic
Devices (MAPLD-2002), 2002, Laurel, Maryland.September 10-12, 2002.

[32] O. B. A. Bernauer , W. Rosenstiel, A. Bouajila , W. Stechele , and A.
Herkersdorf, "An Architecture for Runtime Evaluation of SoC Reliability," in
INFORMATIK 2006 - Informatik für Menschen,Lecture Notes in
Informatics, Köllen Verlag, 2006, Köllen Verlag, pp. 177-185,2006

[33] A. B. A. Bouajila, A. Herkersdorf ,W. Rosenstiel , O. Bringmann , and W.
Stechele "Error Detection Techniques Applicable in an Architecture
Framework and Design Methodology for Autonomic SoCs," in 1st IFIP
International Conference on Biologically Inspired Cooperative Computing
(BICC 2006), 2006, Boston, MA, pp. 107-113.August 2006.

[34] N. Bergmann and J. WILLIAMS, "Egret: a platform for reconfigurable
system-on-chip," in Proceedings of 2003 IEEE International Conference on
Field-Programmable Technology (FPT), 2003, Tokyo, Japan, pp. 340-343,
December 2003.

[35] A. Avizienis, "Toward systematic design of fault-tolerant systems,"
Computer, vol. 30, pp. 51-58, 1997.

120

[36] J. Becker and M. Hübner, "Run-time Reconfigurability and other Future
Trends," in Proceedings of the 19th Annual Symposium on Integrated
Circuits and Systems, 2006, Design Ouro Preto, MG, Brazil, pp. 9-
11.August 2006.

[37] K. Paulsson, M. Hübner, and J. Becker, "Strategies to On-line Failure
Recovery in Self-Adaptive Systems based on Dynamic and Partial
Reconfiguration," in Proceedings of the First NASA/ESA Conference on
Adaptive Hardware and Systems (AHS’06), 2006, Istanbul, Turkey, pp. 288-
291,June 2006.

[38] C. Carmichael, M. Caffrey, and A. Salazar, "Correcting single-event upsets
through Virtex partial configuration," 2000.

[39] C. Stroud, J. Sunwoo, S. Garimella, and J. Harris, "Built-In Self-Test for
System-on-Chip: A Case Study. In Proceeding of the International Test
Conference (ITC’04)," in Proceeding of the International Test Conference
(ITC’04), Charlotte, NC, pp. 837-846, October 2004.

[40] K. Sekar, P. Sanchez, S. Dey, Y. Cheng, and L. Chen, "Embedded Hardware
and Software Self-Testing Methodologies for Processor Cores," in
Proceeding of the 37th Conference on Design Automation (DAC’00), 2000,
Los Angeles, Ca, pp. 625-630, 2000.

[41] F. L. Kastensmidt, L. Sterpone, L. Carro, and M. S. Reorda, "On the optimal
design of triple modular redundancy logic for SRAM-based FPGAs," in
Proceedings of Design, Automation and Test in Europe, 2005, 2005,
Washington, DC, pp. 1290-1295 Vol. 2, 2005.

[42] C. J. Milliord, C. A. Sharma, and R. F. Demara, "Dynamic Voting Schemes
to Enhance Evolutionary Repair in Reconfigurable Logic Devices," in
Proceedings of the International Conference on Reconfigurable Computing
and FPGAs (ReConFig'05), 2005, Puebla City, Mexico, pp. 8.1.1-
8.1.6.September 28 - 30, 2005.

[43] M. Toussaint and C. Igel, "Neutrality: A Necessity for Self-Adaptation,"
Natural Computing: an International Journal, vol. 2, pp. 117-132, June
2003.

121

[44] C. Carmichael, E. Fuller, P. Blain, and M. Caffrey, "SEU Mitigation
Techniqies for Virtex FPGAs in Space Applications," in The 2nd annual
Military and Aerospace Applications of Programmable Devices and
Technologies Conference, 1999, Laurel, Maryland, pp. 24-32.September 28-
30 1999.

[45] I. Xilinx, "Triple Module Redundancy Design Techniques for Virtex
FPGAs," November 2001.

[46] P. K. R. Samudrala, J.; Katkoori, S., "Selective triple Modular redundancy
(STMR) based single-event upset (SEU) tolerant synthesis for FPGAs,"
IEEE Transactions on Nuclear Science, vol. 51, p. 13, Oct 2004.

[47] L. Sterpone and M. Violante, "Analysis of the robustness of the TMR
architecture in SRAM-based FPGAs," Nuclear Science, IEEE Transactions
on, vol. 52, pp. 1545-1549, 2005.

[48] S. Habinc, "Functional Triple Modular Redundancy (FTMR): VHDL Design
Methodology for Redundancy in Combinatorial and Sequential Logic,"
Gaisler Research, Sweden December 2002.

[49] S. S. Gokhale and M. R.-T. Lyu, "A Simulation Approach to Structure-
Based Software Reliability Analysis," IEEE Transactions on Software
Engineering, vol. 31, pp. 643-656, August 2005.

[50] R. F. DeMara and C. A. Sharma, "Self-checking fault detection using
discrepancy mirrors," in Proceedings of the International Conference on
Parallel and Distributed Processing Techniques and Applications, 2005, Las
Vegas, Nevada, pp. 311-317.June 27 – 30, 2005.

[51] F. Lombardi, N. Park, M. Al-Hashimi, and H. H. Pu, "Modeling the
dependability of N-modular redundancy on demand under malicious
agreement," in Proceedings of the Pacific Rim International Symposium on
Dependable Computing, 2001, Washington, DC, p. 68.December 17 - 19,
2001.

122

[52] J. Khakbaz and E. J. McCluskey, "Concurrent error detection and testing for
large PLA's," Electron Devices, IEEE Transactions on, vol. 29, pp. 756-764,
1982.

[53] J. F. Bartlett, "A nonstop kernel," in Proceedings of the Eighth ACM
symposium on Operating systems Principles, 1981, Pacific Grove,
California, pp. 22-29.1981.

[54] S. Sharma, J. Chen, W. Li, K. Gopalan, and T.-c. Chiueh, "Duplex: A
Reusable Fault Tolerance Extension Framework for Network Access
Devices," in Proceedings of 2003 International Conference on Dependable
Systems and Networks (DSN 2003), San Francisco, CA, June 2003.

[55] A. I. J. Song, E. Levy, and D. Dias, "Architecture of a Web Server
Accelerator," Computer Networks (Amsterdam, Netherlands: 1999), vol. 38,
pp. 75-97, 2002.

[56] F. Lima, C. Carmichael, I. Fabula, R. Padovani, and R. Reis, "A fault
injection analysis of Virtex FPGA TMR design methodology," in Radiation
and Its Effects on Components and Systems 6th European Conference, 2001,
San Jose, CA, pp. 275- 282.Sept 10-14, 2001.

[57] K. S. Trivedi, "Probability and Statistics with Reliability, Queuing and
Computer Science Applications," 2nd ed, Wiley-Interscience, 1982, pp. 375-
378.

[58] S. Mitra and E. J. McCluskey, "Which concurrent error detection scheme to
choose ?," in Test Conference, 2000. Proceedings. International, 2000, pp.
985-994.

[59] P. J. Rousseuw and A. M. Leroy, Robust regression and outlier detection,
1st ed. New York: Wiley & Sons, 1987.

[60] D. A. Gwaltney and M. I. Ferguson, "Enabling the on-line intrinsic
evolution of analog controllers," in Evolvable Hardware, 2005.
Proceedings. 2005 NASA/DoD Conference on, 2005, pp. 3-11, 2005.

123

[61] S. Yang, "Logic Synthesis and Optimization Benchmarks, Version 3.0 Tech.
Report, Microelectronics.Centre of North Carolina," 1991.

[62] X. Yao and T. Higuchi, "Promises and Challenges of Evolvable Hardware,"
IEEE Transaction on Systems,Man, and Cybernetics- Part C: Applications
and Reviews, vol. 29, pp. 87-97, 1999.

[63] P. C. Haddow and G. Tufte, "Bridging the genotype-phenotype mapping for
digital FPGAs," in Evolvable Hardware, 2001. Proceedings. The Third
NASA/DoD Workshop on, 2001, Long Beach, CA, USA, pp. 109-115, July
12-14, 2001.

[64] H. Tan and R. F. DeMara, "A Multi-layer Framework Supporting
Autonomous Runtime Partial Reconfiguration," IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, vol. 16, issue 5, pp. 504-516, May
2008.

124

	ABSTRACT
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION
	1.1 Introduction to Genetic Algorithms
	1.2 Using Evolvable Hardware to Increase Reliability
	1.3 FPGA Architecture
	1.3.1 Xilinx FPGA Architecture
	1.3.2 Hypothetical FPGA Architecture

	1.4 Organic Computing Concept
	1.5 Contribution of Dissertation
	1.5.1 Integrate Fault Detection, Isolation, Diagnosis, and Recover
	1.5.2 Realize Adaptable Quality of Service (QoS) Levels for Reliab
	1.5.3 Realize Online Device Refurbishment
	1.5.4 Proposed Self-Recovery Architecture

	CHAPTER 2: PREVIOUS WORK
	2.1 Overview
	2.2 EHW Approaches to Increases Reliability
	2.3 Self-X properties on Organic Architecture
	2.4 TMR and Standby System Application on Improving Reliability

	CHAPTER 3: TMR, STANDBY AND TMRSB SYSTEM
	3.1 Overview of Traditional Fault Tolerance Strategy
	3.1.1 Embedded Device Properties Influencing Redundancy Strategies

	3.2 System Reliability Analysis
	3.2.1 Standby System
	3.2.1.1 Imperfect Switching
	3.2.1.2 Unknown Configurations Status

	3.2.2 NMR System
	3.2.3 Hybrid System

	3.3 Simulation Result

	CHAPTER4: AUTONOMOUS REPAIR USING COMPETITIVE RUNTIME RECONFIGURATION
	4.1 Detecting Faults using a Population of Alternatives
	4.2 CBE Approach
	4.3 Self-Adaptive Fitness Assessment using Outlier Identificatio
	4.4 Achieving Device Refurbishment

	CHAPTER 5: PERFORMANCE EVALUATION OF CBE APPROACH
	5.1 Circuit Representation and Benchmark Characteristics
	5.2 Quantifying Search Space Complexity under Fault
	5.3 Source of Redundancy in Digital Circuits
	5.4 Initial Circuit Population Design
	5.5 Effect of Reintroduction Rate on Refurbishment Performance
	5.6 Comparing Discrepancy Scoring Schemes
	5.7 Recovery from Pervasive Faults

	CHAPTER 6: FAULT MONITORING AND RECOVERING USING ORGANIC COMPUTING APPR
	6.1 Embedded Organic Computing Architecture
	6.1.1 Requirements and Architectural Overview
	6.1.2 System Operation
	6.1.2.1 System Initialization Phase
	6.1.2.2 FE Fault Detection/Recovery and AE monitoring Phase
	6.1.2.3 AE Fault Detection Phase

	6.1.3 CBE evaluation process and AE fault recovery Phase on the AS

	6.2 Evolutionary Process FE and AE
	6.2.1 Genotype Definition
	6.2.2 Genetic Operations
	6.2.2.1 Mutation Operation
	6.2.2.2 Cell-Swap Operation
	6.2.2.3 Partial Match Crossover Operation

	6.2.3 Consensus Based Evaluation (CBE)

	6.3 Experiment Configuration
	6.3.1 FE and AE Failure Coverage
	6.3.2 Single vs. Multiple Fault Coverage
	6.3.3 Hardware Prototype

	6.4 Result and Analysis

	CHAPTER 7: CONCLUSION
	7.1 OVERVIEW
	7.2 Evolvable Hardware and CBE
	7.3 Organic Computing Architecture
	7.4 Future Work

	LIST OF REFERENCES

