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ABSTRACT 

In this dissertation, a novel self-repair approach based on Consensus Based Evaluation 

(CBE) for autonomous repair of SRAM-based Field Programmable Gate Arrays (FPGAs) 

is developed, evaluated, and refined.  An initial population of functionally identical (same 

input-output behavior), yet physically distinct (alternative design or place-and-route 

realization) FPGA configurations is produced at design time. During run-time, the CBE 

approach ranks these alternative configurations after evaluating their discrepancy relative 

to the consensus formed by the population. Through runtime competition, faults in the 

logical resources become occluded from the visibility of subsequent FPGA operations.  

Meanwhile, offspring formed through crossover and mutation of faulty and viable 

configurations are selected at a controlled re-introduction rate for evaluation and 

refurbishment. Refurbishments are evolved in-situ, with online real-time input-based 

performance evaluation, enhancing system availability and sustainability, creating an 

Organic Embedded System (OES).   

A fault tolerance model called N Modular Redundancy with Standby (NMRSB) is 

developed which combines the two popular fault tolerance techniques of NMR and 

Standby fault tolerance in order to facilitate the CBE approach. This dissertation develops 

two of instances of the NMRSB system – Triple Modular Redundancy with Standby 

(TMRSB) and Duplex with Standby (DSB).  A hypothetical Xilinx Virtex-II Pro FPGA 

model demonstrates their viability for various applications including a 3-bit x 3-bit 

multiplier, and the MCNC91 benchmark circuits. Experiments conducted on the model 
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evaluate the performance of three new genetic operators and demonstrate progress 

towards a completely self-contained single-chip implementation so that the FPGA can 

refurbish itself without requiring a PC host to execute the Genetic Algorithm.   

This dissertation presents results from the simulations of multiple applications with a 

CBE model implemented in the C++ programming language.  Starting with an initial 

population of 20 and 30 viable configurations for TMRSB and DSB respectively, a single 

stuck-at fault is introduced in the logic resources.  Fault refurbishment experiments are 

conducted under supervision of CBE using a fitness state evaluation function based on 

competing outputs, fitness adjustment, and different level threshold.  The device remains 

online throughout the process by which a complete repair is realized with Hamming 

Distance and Bitweight voting schemes. The results indicate a Hamming Distance 

TMRSB approach can prevent the most pervasive fault impacts and realize complete 

refurbishment. Experimental results also show that the Autonomic Layer demonstrates 

100% faulty component isolation for both Functional Elements (FEs) and Autonomous 

Elements (AEs) with randomly injected single and multiple faults. Using logic circuits 

from the MCNC-91 benchmark set, availability during repair phases averaged 75.05%, 

82.21%, and 65.21% for the z4ml, cm85a, and cm138a circuits respectively under stated 

conditions. In addition to simulation, the proposed OES architecture synthesized from 

HDL was prototyped on a Xilinx Virtex II Pro FPGA device supporting partial 

reconfiguration to demonstrate the feasibility for intrinsic regeneration of the selected 

circuit. 
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CHAPTER 1: INTRODUCTION 

1.1. Introduction to Genetic Algorithms 

In computer science, Evolutionary Computation (EC) [1] is a subfield of Artificial 

Intelligence (AI) [2] that involves combinatorial optimization problems which uses iterative 

progress, such as growth or development in a population using guided random search to 

achieve the desired end. Two developed techniques involved in EC which are based on 

identical principles, but different biology behaviors are Evolutionary Algorithms (EAs) [3] 

and Swarm Intelligence (SI) [4].  They have been heavily researched and implemented in 

different problem solutions which start from limited available information about uncertain 

environment and eventually develop an approximated informative solution based on 

interaction of the population solutions themselves. EA emphasizes population-based meta-

heuristic optimization approach which is composed of Genetic Algorithms (GA) [5], 

Evolutionary Programming (EP) [6], Evolutionary Strategy (ES) [7], Genetic Programming 

(GP) [8-10] and Learning Classifier System (LCS) [11], while SI is more based around the 

study of collective behavior in decentralized system which composed of Ant Colony 

Optimization (ACO) [12] and Particle Swarm Optimization (PSO) [8]. This dissertation 

concentrates on developing EA-based approach for fault-handling methods.  

Genetic Algorithms (GAs) [1] are the most popular EA technique inspired by biological 

mechanisms of evolution used in finding exact or approximated solutions to either search 

problems or optimization problems originated by John H. Holland and his colleagues at the 

University of Michigan in the 1970s. A computer simulation, a population of individuals, 
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each of which represents a potential solution to the problem, explores and exploits the search 

space in response to the environment of the individuals undergoing adaptation. An individual 

is encoded by various computer manipulatable structures, and the typical structure is a binary 

string although the best representations are determined by the problem being solved. Problem 

representation is one of the key decisions to be made when applying a GA because it may 

affect the adaptation process in terms of shape of the solution space that a GA searches 

through as well as solution complexity and precision. Furthermore, a measurement of the 

performance of the population named the Fitness Function is implemented to select the 

candidate for the next generation for further operation. Figure 1 below shows a conventional 

GA flow. 

Yes

No

Implement (n)th Generation

Evaluation/Fitness Computing
(eg. Travel time,cost)

(n+1)th Generation

Mutation

Crossover

Reproduction

Stop

Initilization

Termination  

Figure 1: Genetic Algorithm Process 
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The GA repeats the above steps in Figure 1 iteratively in order to create better designs.  The 

procedure begins with the initialization of the individuals in the population. An evaluation 

mechanism for the assessing the suitability of each individual design in the population is utilized 

called a fitness function.   A fitness function computes how well a particular design performs in 

terms of some specific metrics.  Different operators like mutation and crossover will be used for 

new offspring generations until the stop condition can be achieved for termination the process. 

The application field of GA is focused on the optimization and search problems which appear in 

biogenetics, computer science, engineering, economics, chemistry, manufacturing, mathematics, 

and physics [3, 8, 10, 13-17]. Evolvable Hardware is one of emerging application fields which 

emphasizes digital circuit design and fault tolerance based on reprogrammable devices. 

1.2. Using Evolvable Hardware to Increase Reliability  

Reliable embedded computing systems are vital to every sector of our economy and daily 

personal lives.  Embedded systems using Field Programmable Gate Arrays (FPGAs) are 

frequently relied upon in mission-critical applications like deep space explore missions where the 

safety of human life and material assets are at risk. The recent availability of large multi-million 

gate-equivalent FPGAs provides the necessary resources facilitates the feasibility of using 

Genetic Algorithms (GAs) on these devices. GAs are used to evolve diverse and competitive 

solutions for a variety of problems, ranging from the general to the specific, by occluding the 

faults in the device at runtime. The reason GAs can be an appropriate adaptive mechanism for 

embedded systems are that they can adjust the solution quality without external control or 
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supervision. GAs can also adapt and respond to many unforeseen fluctuations in the operating 

environment.  

Evolvable Hardware (EHW) [10, 14, 18] combines the benefits of reconfigurable hardware with 

GAs to offer efficient solutions to fault-related problems. Conventionally, EHW can be classified 

into two categories depending on the method of simulation. In the Extrinsic Evolutionary 

method, the physical condition of real circuits is simulated and a user defined genotype is used to 

evolve each individual outside of the real chip. Finally, the best-fit individual is selected and 

programmed into the real chip. On the other hand, in the Intrinsic Evolutionary method, the 

fitness is evaluated at run-time by using the phenotypes of the individuals directly in the real 

chip.  

Depending on the application, EHW can be classified into two categories. One perspective is an 

alternative to traditional, specification-based manual circuit design techniques. In the other 

perspective, EHW is online device capability for autonomous reconfiguration.  This dissertation 

will view EHW along the lines of the second approach. A fundamental difference of these two 

views is the former places the emphasis on the design phase and the latter emphasizes the 

execution, or run-time phase. The evolutionary design approach has several advantages as 

compared to the manual approach. For example, no a-priori knowledge is required on the 

specific domain, and the availability of a wider search space may help exploration of novel 

solutions. 

With benefits of the EHW introduced in the previous section, still, there exist some substantial 

obstacles to overcome before there is wide utilization of this approach. First of all, the limited 
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number of optimal/suboptimal potential solutions within a large the gigantic search space always 

lead to excessive evolution time even under parallel search with multiple individuals in a 

population. This may not satisfy the cost-effective and efficiency of most problem solving 

criteria. For example, suppose there is a 2-bit adder composed of 10 gates and each gate can be 

implemented using 4 different functionalities (AND, OR, XOR, NOT). Without considering 

interconnection, there are 410 possible ways and whenever one more gate is added to current 

design, that will increase 4-fold the possible designs over the previous designs. Instead of 

starting from scratch, some heuristic approaches have to be used as auxiliary tools to assistance 

exploring and exploiting the search space. To address this problem, a diverse population is used 

to supply candidate solutions initially as described below. Previous work did not investigate the 

benefit of diversity.  

Secondly, each candidate problem is going to use specific application dependent fitness function 

to evaluate the new generated individuals for further evolution. Until now, no one has been 

proposed any universal fitness functions which can fit even similar classes of applications. 

However, without a versatile fitness function, it is difficult to assess how adaptive it will be for a 

GAs concept. Since a special fitness function must be dedicated for certain application in order 

to get accurate evaluation, knowing all of the circuit functionalities becomes a prerequisite 

system constraint which definitely decreases the feasibility of the GA utilization. To address this 

problem, this dissertation develops a standardized fitness assessment scheme based on 

discrepancy behavior suitable for any combinational logic circuit.  

Lastly, most current EHW research is focused on digital circuit design which use randomly 

generated configurations as seeds which are evolved further with new offspring individuals in 
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subsequent generations. Starting from scratch is one possible way for small design, but not 

appropriate for design scalability since current FPGA device have multi-million gate capacities.  

Unlike conventional fault tolerance technology such as Triple Module Redundancy (TMR) [19] 

which uses majority information to maintain the current output for the system, there is no 

previously proposed idea to utilize the majority of the operational information contained in the 

population to maintain the system performance.  

Consensus Based Evaluation (CBE) for autonomous repair of SRAM-based Field Programmable 

Gate Arrays (FPGAs) proposed in the dissertation is first implemented as a system using a 

general population consensus information to replace the specific fitness function based on a pre-

designed population of functionally identical (same input-output behavior), yet physically 

distinct (alternative design or place-and-route realization) FPGA configurations. Instead of 

exploring the entire search space for the solution, any surviving individuals under a fault 

condition will be used as starting point for evolution. Furthermore, even if there are no 

individuals that survive unaffected, the population still can maintain acceptable system 

availability using partial working configuration which may not generate all possible correct 

outputs, yet maintain a useful amount of correct outputs. 

For the CBE approach, the target applications are those mission-critical embedded systems 

which can utilize hundreds of field programmable devices with very limited capacity for spares. 

Another feature is that human intervention is infeasible for such applications in deep space or 

deep sea missions which required autonomy self-recovery as primary functionality. Also even 

they are mission-critical, using background evolution cycles, the system still provides attractive 

alternatives to device redundancy under graceful degradation except for catastrophic failures. 
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However, the system is not required to anticipate any specific environment it will experience and 

instead can dynamically adjust its configuration according to correspondent external conditions.   

Two experimental applications are presented in this dissertation. One is using standard 

benchmark circuits implemented on an FPGA software model for system reliability analysis and 

the other on a prototype of an Organic Computing model. Both applications are using Xilinx 

Virtex-II Pro architecture model as hardware platform which introduced in next two sections and 

detailed in Chapter 4 and 5. The last section of this chapter presented the research objectives of 

this dissertation in more detail. 

1.3. FPGA Architecture 

1.3.1. Xilinx FPGA Architecture 

The FPGA hypothetical model is inspired by Xilinx-style architecture [20-22].  
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Figure 2: Xilinx Virtex-II Pro device Generic Architecture Overview   

• Virtex-II Pro devices, as shown in Figure 2, are built on the Virtex-II FPGA 

architecture and are user-programmable gate arrays with various configurable 

elements and embedded cores optimized for high-density and high-performance 

system designs. The Virtex-II Pro family has the following features crucial to the 

design. 

• Up to 22,592 Configurable Logic Blocks (CLBs) provide abundant reconfigurable 

recourses [21] with strong functional elements for combinatorial and synchronous 

logic, including basic storage elements (distributed RAM), MUX, fast carry chains, 

arithmetic logic, and BUFTs (3-state buffers). 
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• Up to four Incorporated embedded PPC405 cores in a single Virtex-II Pro device 

operate up to 400+ MHz with specially designed interface logic integrates the core 

with the surrounding CLBs, block RAMs, and general routing resources, which not 

only makes the implementation of autonomous system possible but also brings more 

flexibility and possibility to carry out complex reconfiguration application, such as 

GAs, in an even faster way by reducing off-chip I/O. 

• A large amount of memory are available on-chip and on board, including the on-

chip block RAM, on-board SDRAM SODIMM, Mobile SDRAM, Asynchronous 

SRAM and Flash, which provides huge extension for large calculation and 

reconfigurations. 

The additional functionalities, such as Embedded 18-bit x 18-bit multipliers, Digital Clock 

Manager (DCM) blocks and multi-gigabit transceiver blocks, etc, [20], may greatly enhance 

programmable logic design and provide possible application extensions in the future as well. 

1.3.2. Hypothetical FPGA Architecture 

The hypothetical structure used in this dissertation is shown in Figure 3, which is similar to the 

architecture introduced in section 1.3.1.  The feed-forward combinational logic digital circuit 

uses a rectangular array of nodes with two inputs and one output. Each node represents a Look-

up Table (LUT) in the FGPA device, and a Configurable Logic Block (CLB) is composed of 

four LUTs. In the array, each CLB will be a row of the array and two LUTs are represented as 

four columns of the array. There are five dyadic functions -- OR, AND, XOR, NOR, NAND -- 
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and one unary-function NOT, each of which can be assigned to an LUT. The LUTs in the CLB 

array will be indexed from 1 to n. This linear labeling enforces a feed-forward property in the 

combinational digital circuit for the array interconnection and routing. 

Array routing is defined by the internal connectivity and the inputs/outputs of the array. Internal 

connectivity is specified by the connections between the array cells. The inputs of the cells can 

only be the outputs of cells with lower row numbers. Alternatively, the outputs of each cell are 

only allowed to be inputs of cells with higher row numbers. 

LUT0

LUT3LUT1

LUT2

I0

I5

I4

I3

I2

I1

O0

O5

O4

O3

O2

O1

Internal Connection

CLB 0 CLB # CLB #

CLB #

CLB #

CLB #

CLB #

CLB #

CLB #

CLB #

CLB #

CLB #
CLB n

CLB 1

CLB 2

CLB i

OutputInput

 

Figure 3: Genotype in a rectangular array cells 

A phenotype is any observable characteristic of an organism, such as its morphology, 

development, biochemical or physiological properties, or behavior. They can also be represented 

as a linear string of integers as shown in Figure 4. This scheme is comprised of multiple CLB 

fields as well as array input and output fields. Array input-output fields are at the beginning and 

at the end of the entire configuration. Each CLB field is composed of a number of component 
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LUTs whose functionality and interconnection is specified. The first bit of the CLB field is the 

CLB number that indicates the relative order of the CLB in the entire configuration. Each LUT 

field within the CLBs is composed of a bit which reflects the functionality and bits which reflect 

the two inputs of the LUT. The array input and output sections both have six input bits and six 

output bits at the beginning and the end of the configuration. 
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Figure 4: Genotype array representations 

1.4. Organic Computing Concept  

The realizations of systems that are capable of exhibiting such adaptive behaviors constitute the 

vision sought by Organic Computing (OC) [23].  OC self-x properties include self-configuration, 

self-reorganization, and self-healing which comprise the focus of this dissertation [23-26].  

Ideally, these objectives are maintained in an autonomous fashion, yet sufficiently constrained to 

avoid undesirable emergent behaviors.  In particular, OC systems rely on self-organization to 

respond to internal imbalances and changing environmental conditions using an 

Observer/Controller architecture [23, 27, 28]. 

To provide OC architectures with sufficient capability for exhibiting self-adaptive behavior, 

reconfigurable logic devices offer an attractive hardware platform. SRAM-based Field 
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Programmable Gate Arrays (FPGAs) logic devices can realize self-adaptation within their 

reconfigurable logic fabric using Evolvable Hardware techniques.  Since evolution is employed, 

the Observer/Controller has the task of detecting internal/external errors and well as initiating 

reconfiguration when necessary. 

A widely known generic OC platform called the Autonomous System-on-a-Chip (ASoC) 

architecture proposed in [29] is depicted in Figure 5. The ASoC platform consists of two layers: 

the Functional Layer and the Autonomic Layer. The Autonomic layer contains Autonomic 

Elements (AEs) that are responsible for correct operation of the corresponding Functional 

Elements (FEs) present on the Functional Layer.  Every FE such as CPU, RAM, and Network 

Interface has a counterpart Monitor, Evaluator, and Actuator component within the Autonomic 

Layer. The Autonomic Layer also consists of an Autonomic Supervisor (AS) that has no 

counterpart on the Functional Layer. The AS is responsible for the correct functionality of all 

AEs on the Autonomic Layer.  

 

Figure 5: Dual-Layer ASoC platform from Lipsa et al [29] 
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The Dual-Layer ASoC design approach in Figure 5 is extended herein to provide fault coverage 

at both the Functional Layer and Autonomic Layer.  This is achieved by assessing consensus 

among elements in a two-fold approach.  Consensus is used first to realize failure detection.  

Once identified, consensus provides an organic method for fitness evaluation of competing 

alternatives during evolution providing a self-regulating approach to fault resolution. The 

measured performance is analyzed as an integrated OC system for self-configuration and self-

healing. This demonstrates a generic OC architecture that can detect faults and refurbish itself 

while still providing a degraded level of valid throughput even during the online repair period.   

 

1.5. Contribution of Dissertation  

One point which comes through clearly from the previous discussion is that the fitness function 

is indispensable central composition of the GA process. It measurs the performance of different 

individual’s structure and makes a trajectory through the possible solution search space under the 

successive GA operations. Conventionally, most GA applications such as function optimization 

and scheduling problems perceived their ultimate objectives prior to the design time. However, 

for the real time electronic device, the operation environment is full of unknown factors which 

may not be apparent to the designers. Even worse, the devices may be affected by a fluctuating 

operational environment during long execution times. Apparently, the static Fitness function 

cannot provide sufficient support for such applications. With FPGA devices in most mission-

critical applications confront severe natural conditions, a new approach should be proposed and 

evaluated. 
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In response to the questions presented above, a consensus based Fitness evaluation approach is 

presented in this dissertation using population information and a new fault tolerance model 

which embedded both traditional TMR and Standby system and FPGA device reconfiguablity 

property in order to facilitate real-time competitive computing for autonomous regeneration of 

embedded reprogrammable model.  An analytical software model is constructed to simulate the 

large-scale reconfigurable on-chip resources. Failures will be occluded by iteratively developed 

adaptive reconfiguration techniques in Extrinsic Evolvable Hardware.  The most significant 

attributes and advantages are listed in Table 1. 

Table 1: Attributes of proposed technique  

Technique 
Terminology Problem Domain Attributes of Proposed 

Approach Significant Contribution  

Consensus 
Based 
Evaluation 
(CBE) 

Genetic algorithm fitness 
function 

Population-based 
evaluation which is driven  
by execution environment 

First use of fitness function 
that depends on explicitly 
global population 
information and implicitly 
environmental information 

Triple 
Modular 
Redundancy 
+ Standby 
Model 
(TMRSB) 

Reliability model 
TMR with standby 
individuals in component-
level 

First proposed reliability 
model which takes 
advantage of the 
reconfiguration capacity in 
FPGA device 

Evolutionary 
Organic 
Computing 
Architecture 
(OC) 

Self-organization 
architecture 

Autonomous fault-
detection and self-recovery 

New OC architecture with 
utilization of EHW idea 

Specific 
Genetic 
Operators 

Genetic operators 

Genetic operators which 
can manipulate the 
configuration of 
SRAM-based FPGA 

New operators which are 
specifically designed to 
facilitate SRAM-based 
FPGA genetic operation 

This novel self-regeneration approach for embedded systems is based on CBE.  Instead of using 

redundant spares to handle failures, it synthesizes fault-specific reconfigurations to regain lost 

functionality. Mechanisms of competitive computation are developed to achieve each Research 

Objective identified below. 
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1.5.1. Integrate Fault Detection, Isolation, Diagnosis, and Recovery phases 

Real-time competitive computing approaches for autonomous regeneration of embedded 

reprogrammable model are developed and evaluated in this dissertation. An analytical software 

model is constructed to simulate the large-scale reconfigurable on-chip resources. Failures are 

occluded by adaptive reconfiguration techniques for Extrinsic Evolvable Hardware.   

1.5.2. Realize Adaptable Quality of Service (QoS) Levels for Reliability 

A novel self-adaptive population-based mechanism for all fault-handling stages in embedded 

reconfigurable devices is developed.  This approach will detect faults by comparing outputs of 

competing configuration alternatives.  By comparing discrepancies from alternative 

configurations, it is possible to isolate the failed physical resource.  Remapping operators are 

then used to realize a failure-specific refurbishment during normal operations to make detailed 

physical failure mode diagnosis unnecessary.  The refurbishment procedure will be realized 

using established mechanisms of crossover, mutation, and deterministic guided search.  This 

objective will be realized with an experimental hardware-in-the loop research strategy.  

1.5.3. Realize Online Device Refurbishment 

By varying only an FEW parameters of the competition process, a wide range of reliability vs. 

overhead tradeoffs are obtained.  Under the CBE technique, the costs of FPGA resource space 
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overhead, additional power consumption, and throughput delay incurred to support regeneration 

are continuously variable.  Analytical modeling of these costs provides us not only a composite 

measure of system performance, but also feedback for adaptively reconfiguring FPGAs.  

Specifically, the Evaluation Window Interval and Re-introduction Rate can be updated according 

to recent discrepancy counts in order to maintain a suitable Mean-Time-To-Repair (MTTR) vs. 

Mean-Time-Between-Failures (MTBF) condition under adaptive and possibly hybrid control 

algorithms.  To ensure system availability, parts need to be regenerated at a faster rate than they 

are failing such that a MTTR < MTBF condition is maintained.  This objective of quantifying 

and optimizing the performance characteristics of the proposed CBE method will realize 

adaptive Quality of Service (QoS) levels for reliability via analytical modeling and advanced 

controls.  

1.5.4. Proposed Self-Recovery Architecture 

It is demonstrated, with the exception of catastrophic failures, how a device can be refurbished 

online without additional function or resource test vectors.  This will be achieved by integrating 

competition and refurbishment wholly within the FPGA’s normal data throughput processing 

flow.  Because a fitness adjustment function is used that favors fault-free behavior, the FPGA’s 

normal input data throughput stream can be used to evaluate fitness states while the device is 

under normal operation.  The benefits of fitness adjustment functions based on Binary 

Discrepancy and Hamming Distance will be determined.  This research will be conducted by 

developing a unified framework that involves techniques from three separate areas: 
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combinatorial analysis of the problem space and statistical analysis of fault occurrence versus 

population size. 
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CHAPTER 2: PREVIOUS WORK 

2.1. Overview  

This chapter will present a broad overview and survey of the techniques utilized in this 

dissertation including EHW applications under GAs, OC architectures, and fault tolerance 

strategies. The most advantage of above techniques is presented as well as the drawback in terms 

of their efficiency, overhead, and adaptive capacity. The successful EHW [14, 15, 18, 30] [16] 

applications are shown in Section 2.2 and the OC architecture [23] introduction follows and 

finally the TMR and Standby fault tolerance system are analyzed in terms of their own 

properties.  

2.2. EHW Approaches to Increases Reliability 

Several previous works describe other Regenerative Fault-Handling Techniques in EHW and 

how they attempt to actively restore mission-critical functionality in FPGA devices.  They 

provide attractive alternatives to device redundancy for permanent degradation due to thermal 

fatigue, oxide breakdown, electromigration, and radiation-induced stuck-at-faults. Benefits of 

regeneration include fault recovery without the increased weight and size normally associated 

with spares. Also, failures need not be precisely diagnosed through external means, due to the 

intrinsic assessment of the remaining functionality on the device itself.  Furthermore, a 

competitive regeneration approach enables failure-time synthesis of new FPGA configurations to 

handle failure scenarios that are unforeseen at design time. 
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Lohn, Larchev, and DeMara [14, 15, 31] develop an FPGA bit-string representation along with 

mutation and two-point crossover operators for actively refurbishing interconnection as well as 

logic resources.  This related work demonstrated the complete regeneration of a Quadrature 

Decoder on a Xilinx SRAM-based Virtex XCV1000 FPGA.  It shows that a stuck-at-fault on the 

input to a FPGA’s Configurable Logic Block (CLB) can be occluded through reconfiguration.  

The Genetic Algorithm (GA) developed synthesizes a new alternative configuration using 

evolution in a population of 40 competing configurations after a few hundred generations.  The 

GA is shown to recycle the damaged part as well.  It was observed that partially-damaged CLBs 

were reassigned to new functions based on the residual functionality that could be utilized in the 

refurbished configuration.  While achieving complete regeneration for modestly-sized circuits, 

refurbishment was performed offline and required exhaustive fitness test vectors. 

Lach’s deterministic approach segments the FPGA into static tiles at design time with a known 

functionality, some redundant resources, and a pre-designed alternate configuration.  Spare tiles 

can be selected when needed, but their functionality is predetermined and thus limited.  On the 

other hand, Roving STARS [18] is a resource-oriented dynamic online test approach that 

performs Built-in Self-Tests (BISTs) on roving sub-sections of the FPGA.  Each portion is 

continually taken offline in succession and tested while its functionality moved to a new 

location.  STARS’ detection latency can be excessive since the tests must sweep through all 

resources. Also, STARS’ power consumption and unavailability due to unnecessary 

reconfigurations when no faults have yet occurred can be prohibitive. 

An alternative approach is taken by Keymeulen, Stoica, and Zebulem [30] using a design-time 

emphasis.  They develop evolutionary techniques so that field programmable circuits are initially 
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designed to remain functional even in presence of various faults. Their population-based fault 

tolerant design method evolves circuits and then selects the most fault-insensitive individual.  

This method provides good resource coverage and passive runtime operation.  The technique 

may be applicable for constructing a diverse initial population under our proposed CBE 

approach. 

Table 2 addresses active Fault Recovery characteristics.  Ideally, recovery would be performed 

with the residual functionality in faulty device remaining online whenever possible, but only 

STARS and CBE attempt this. Vigander’s and Lohn’s methods exhibit likelihood of recovery 

related to the FPGA’s design complexity.  In other words, they try to design an original repair 

where only a single failed configuration is available from which to learn from.   Instead, CBE 

draws upon a diverse population to bias search towards regions of alternative configurations that 

are still operational.  While the quality of recovery under evolutionary approaches cannot be 

guaranteed, static redundancy approaches like Lach’s are either completely recovered or 

completely beyond recovery.  STARS’ quality of recovery is restricted by a fixed routing scheme 

that cannot adapt.   

As listed in Table 2, several active recovery approaches support resource recycling, including the 

CBE.  Under the CBE, the frequency of reconfiguration can be varied to tradeoff configuration 

overhead vs. recovery capability.  With regards to pre-determined system recovery limits, only 

dynamic competitive approaches are truly restriction-free.  While competitive and evolutionary 

recovery approaches have been demonstrated on small applications, the focus of this dissertation 

will be to extend the methods to larger, more useful circuits using improved techniques of the 

CBE with statistical, adaptive, and hybrid design methods of control.  
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In this dissertation, CBE utilizes an innovative temporal voting approach whereby the outputs of 

just two competing instances are compared.  The presence or absence of a discrepancy is used to 

adjust the fitness statues of both individuals without rendering any judgment at that instant on 

which individual is actually faulty.  The faulty, or later exonerated, configuration is determined 

over time when each individual is paired with other competing configurations under certain 

times.   The competitive process is applied repeatedly to form a strong consensus across a 

diverse pool of alternatives.   Under CBE, the FPGA’s outputs are compared before they leave 

the chip so fault detection occurs on the first erroneous output and detection latency is negligible.  

A unique advantage of this competition-based approach is that it also permits coverage for active 

elements of the fault comparator itself by embedding an instance of the fault checker in each 

configuration.  Fault isolation in the TMR, Vigander, and Lach approaches are restricted to 

coarse predefined granularities.  Meanwhile, STARS attempts to isolate resource faults at only 

the very finest granularity.  Alternatively, as in Vigander’s and Lohn/Larchev/DeMara’s 

approach, CBE does not require fault isolation of a particular granularity in order to achieve 

refurbishment. Under CBE, transients reduce instantaneous fitness values, but their effects are 

automatically attenuated over time so that unnecessary refurbishment is not triggered given a 

properly-selected Threshold. 
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Table 2: Fault Recovery Characteristics of Selected Approaches 

 

Approach Online 
Recovery 

Basis for 
Likelihood of 

Recovery 

Quality of 
Recovery Availability Externally-supplied 

Elements 

Potential for 
Faulty 

Resource 
Recycling 

Pre-
determined 
Recovery 

Limits 

      TMR No Not addressed 

Vigander No Design 
complexity 

Non-
deterministic 

Non-
deterministic

GA Controller, function 
test vectors 

Yes None 

Keymeulen, 
Stoica, Zebulum No 

Depends on 
characteristics 
at design time 

Non-
deterministic 

Not 
addressed 

None at runtime No Depends on 
characteristics 
at design time 

Lohn, 
Larchev, DeMara No Design 

complexity 
Non-
deterministic 

Non-
deterministic

GA Controller, function 
test vectors 

Yes None 

Lach No 

Available spares Either complete 
or none 

Either 
complete or 
none 

Device test vectors No Only one faulty 
CLB per tile 

STARS Yes 

Available spares Restricted by 
non-
optimizable re-
routing strategy

~93% for 
ORCA FPGA

Test Reconfiguration 
Controller + device test 
vectors 

Yes Free STARS 
available and 
fixed routing 
chokepoints 

CBE Yes 

Recovery 
complexity 

Optimized by 
second-order 
fitness metric 
scheme 

Adaptable Optional external RAM.  
Fault coverage for this 
RAM is intrinsic when 
configuration loaded. 
No test vectors used. 

Yes None 

2.3. Self-X properties on Organic Architecture 

Related works in the literature have explored techniques useful for development of an OC system 

from various theoretical and practical perspectives. A frequent focus among these has been the 

design of OC architectures and OC development methodologies for systems with potential for 

exhibiting increased reliability and sustainability. For example, in [32] a runtime reliability 
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evaluation of ASoC architectures was addressed. The objective was to design SoCs that can 

tolerate faults by introducing dynamic reliability, power management, and security tradeoffs, as 

well as adaptation to environmental changes and unpredictable failure scenarios. Under these 

conditions, a theoretical model for calculating error probability during run-time is presented. A 

related fault model in [26, 33] concentrated on transient and timing faults caused by ionizing 

radiation or variations at the technology or device level.  The C-program simulations executed on 

Leon-2 processor code resulted in a penalty of two cycles for the detection and correction of an 

error in the processor’s pipeline. Work has also been conducted on prototyping platforms capable 

of support OC architectures.  For instance, the Egret system provides a platform for 

reconfigurable SoC’s supporting applications such as OC [34].  The Design objectives of the 

Egret is to provide a platform that students can use to rapidly prototype new reconfigurable, 

embedded computing application and the second objective is to provide a straightforward path to 

commercialization of prototyped designs. The platform consists of modular functional elements 

that can be interconnected to design an embedded application for reconfigurable logic.  

From the design methodology perspective, various previously-proven agent concepts were 

combined into a system-level design approach for OC development.  This is presented in [27] 

which developed an adequate, model-driven software engineering methodology based on the 

Unified Modeling Language (UML) and Model Driven Architecture (MDA). The model was 

applied and tested on a manufacturing control system which exhibited various self-x properties. 

In [28], Observer/Controller architecture was developed to provide a generic template to develop 

OC systems. The template was used to implement the control of an urban traffic network.   
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While maintaining area/performance and power requirements, Avizienis [35] suggests 

integrating biology inspired concepts into the integrated circuit design process with the main 

objective being achievement of higher reliability. The immune system which was proposed 

continuously identifies and handles problems either internally or with the aid of external agents.  

In more a general study, identification of SoC system requirements for detecting faults and 

handling the faulty components is addressed in [26]. Fault tolerant error detection techniques are 

classified into three groups: hardware redundancy, information redundancy, and time 

redundancy. The three techniques and their combination are surveyed on Autonomous SoC 

design consisting of the two layers: the Functional Layer and Autonomic Layer. In this 

theoretical research framework, it is suggested that the Autonomic SoC would need a well-

tailored AE layer which would cope with malfunctioning subcomponents. The simulation 

consists of a paradigm with priori knowledge about the system’s behavior when an error occurs 

and examines setting a threshold for errors that can occur before the system goes into self-

organizing mode [26]. 

In order for an autonomous system to invoke its self-healing mode, it must be able on its own to 

detect errors during run-time [36, 37]. Reconfiguration and detection techniques explored 

include scrubbing which is the continuous reconfiguration of the bitstream to refresh the stored 

configuration [38], Built-In-Self-Test (BIST) techniques [39], on-chip hardware test benches 

[40] and Triple Modular Redundancy (TMR) [41]. Decentralized approaches to 

Observer/Controller units can be preferable in the design of fault-detection and self-healing 

systems due to the fact that the observer/controller system itself might be faulty [36, 37], and this 

is one focus of the OES Architecture described in Chapter four.   
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For realization of the recovery phase, Genetic Algorithms (GAs) have been applied to FPGA 

devices in various approaches.  In the cases of intrinsic hardware evolution, the GA is invoked to 

apply crossover and mutation on the FPGA bitstream to evolve a fault-specific repair in-situ on 

the device.  A software-simulation study of this approach was presented in [42].  It also explored 

the use of voting systems that operate in parallel despite imperfect GA solutions to refurbishment 

of local permanent damage in the FPGA fabric.  Results showed improvement in aggregate 

repair performance from several different incomplete repairs obtained by the GAs. In [28], an 

autonomous self-repair approach for SRAM-based FPGAs is developed based on Competitive 

Runtime Reconfigurability. This approach was applied to a FPGA-based multiplier design which 

demonstrated evolution of a complete repair for 3x3 multiplier from several stuck-at-faults 

within a few thousand iterations. Using conventional offline population based approaches, GAs 

were also explored in [31] and [14, 15] for evolutionary fault recovery in Virtex FPGAs using an 

external controller and an offline repair process. 

Other examples of OC architectural approaches include an OC system developed for face 

recognition [24]. The system utilizes some characteristics of an OC system such as self-

organization and robustness. Methods for recognition of an input face from variation of images 

based on learning from biological systems are discussed. Others have argued that neutrality is a 

necessity for optimal self-adaptation [43]. They emphasize the need to provide a unifying 

formalism to embed approaches to self-adaptation in evolutionary computation.    
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2.4. TMR and Standby System Application on Improving Reliability 

The TMR approach, first proposed by Von Neumann [19], is shown in Figure 1. It was widely 

used in software fault tolerance [3] and reliable hardware [30] applications. The primary 

drawback of the TMR approach is resource overhead. The TMR design triples the area and 

power consumption of physical resources over a simplex design. Duplex systems with a hot 

standby component based on a process pair [14] paradigm for fault tolerance are widely 

implemented in Network Access Devices (NAD) [15] and other uninterruptible operational 

systems.  

However, much of the superiority of TMR and Standby type systems hinges upon some critical 

components. The reliability (or lack or reliability) of the majority voter in TMR systems and the 

Standby system switch mechanism may be detrimental to the overall system reliability. There are 

other issues to consider including: the reliability of memory which stores the standby 

configurations, the capability of sensing improper operation to trigger a switch, or how the 

majority voter and the switch operation must maintain data consistency between the primary and 

backup components. 

Several previous works on TMR systems for FPGAs are introduced in [10] [30] and [13].  In 

[10], the TMR system with voting technique is combined with bitstream scrubbing implemented 

in a Virtex FPGA device in order to mitigate Single Event Upset (SEU) effects [44]. The voting 

mechanism identifies the faulty configuration based on single failure assumption and 

reconfigures (scrubs) the device with an alternative bitstream. However, the reconfiguration has 
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to take place off-line and can only deal with a transient faults which can be restrictive for use 

during deep space missions.  

Fault detection characteristics relevant to embedded FPGAs are presented in multiple 

approaches. A traditional approach to fault-handling such as Triple Modular Redundancy (TMR) 

utilizes a fixed pool of three identical device resources.  Under TMR, only the majority vote of 

three outputs is propagated, realizing online fault handling with negligible detection latency.  

Vigander’s [16] approach extends TMR-style voting to utilize faulty FPGAs that have been 

partially regenerated using evolutionary algorithms. He demonstrates that FPGA-based 

implementations of 4-bit x 4-bit multipliers can be automatically reconfigured to realize partial 

refurbishment. Yet since each partially refurbished multiplier is deficient with respect to only 

certain input pairs, a voting arrangement of partially refurbished parts exhibits complete 

regeneration of the lost functionality.  TMR, Vigander’s, and other n-plex spatial voting 

approaches can deliver real-time fault detection, but also increase power consumption n-fold 

during fault-free operation and insert a critical voting element into the reliability path.  

A TMR application for the Virtex series of Xilinx FPGA is described in [45]. The Majority voter 

is implemented with tri-State buffers based on the Virtex bus structures. Different types of data 

structures such as Throughput Logic, State-Machine Logic and I/O Logic are illustrated in terms 

of a TMR technique. Some special features provided by the Virtex architecture are also 

mentioned.  

Another analysis of the TMR with mitigation of SEU effects in the Xilinx FPGA device is [46]. 

A selective TMR architecture is implemented for sensitive portions of the circuit in order to 
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harden against the SEU effects. However, as the authors mentioned in the conclusion section, the 

result of STMR is based on the input signal probabilities and nature of the circuit and may only 

be beneficial to the circuit with input environments where the size of the SEU sensitive portion is 

smaller than the original one. Such an approach narrows down the application range and can not 

be viewed as useful for general utilization in different kinds of circuit design. 

Furthermore, an analysis of the SEU effects in the TMR architecture in [47] shows that TMR 

may not be sufficient to harden a circuit. The results presented show most of the faults escape the 

TMR architecture. They proposed a smart floorplan for the placement and routing which may 

improve mitigation of SEU effects using TMR.  

A VHDL design methodology for redundancy in combinatorial and sequential logic research is 

developed in [48]. A VHDL approach has been developed for automatic TMR insertion and 

demonstration in order to mitigate the SEU effects. Both module level mitigation and gate level 

mitigation are discussed.  

All the above enumerated techniques or architectures based on electronic embedded system have 

their own advantage and restriction in terms of different applications and different system 

performance requirement. Based on current techniques and architectures, we proposed a new 

technique CBE approach in order to cover some of disadvantage of previous approaches such as 

constant fitness evaluation, online repair, and specific architecture-oriented GA operations 

through evaluation multiple benchmark circuits. Also a new proposed OC architecture is shown 

in this dissertation to utilize either the Lispa’s layered OC concept [29] in conjunction with the 

CBE technique.   
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CHAPTER 3: TMR, STANDBY AND TMRSB SYSTEM 

Despite continued improvements in reliability at the component level, fault tolerance strategies 

still retain an essential role for applications that require high reliability in environments with 

unpredictable adverse effects. Fault tolerance strategy utilizing redundant components have a 

variety of architectures that can be used to obtain higher system reliability. Many previous fault 

tolerance approaches such as Triple Modular Redundancy (TMR), Simplex/TMR and Standby 

systems were extensively covered in literature [19] [35] [49] [50] starting in the 1950s. In recent 

decades new types of electronic devices have become available, such as reconfigurable hardware 

that has allowed some inefficient strategies, which were never considered or implemented 

before, to become viable due to the unique characteristics of such devices. 

Consider the variety of embedded computing environments which frequently occupy harsh and 

difficult-to-regulate surroundings with thermal, mechanical or acoustical stress. In addition, 

space or avionic applications may also face very high levels of radiation exposure. Higher 

reliability systems required for long duration missions have, in most cases, limited capabilities 

for interactive diagnosis, repair and onboard spares. These systems must count on system level 

fault tolerance strategies even though implemented with high reliability components. 

Furthermore, along with the finer granularity of the electronic device, the measurement of the 

system/component reliability may not satisfy the evaluation of the current implementation 

scenario and restrict ad-hoc repair strategy as well. The concepts of residual functionality after 

fault and autonomous repair are receiving increasing affection beyond traditional fault tolerance 
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techniques. Addressing these new considerations may improve not only the system reliability, 

but can be achieved in parallel with the system throughput without human intervention. 

3.1. Overview of Traditional Fault Tolerance Strategy  

The TMR approach, first proposed by Von Neumann [19] is shown in Figure 6. It was widely 

used in software fault tolerance [49] and reliable computer architecture [35] and Evolvable 

Hardware design[50]. The utmost drawback of the TMR approach is resource overhead which 

will increase by 200% the area and power consumption of physical resources over a simplex 

design and introduce the extra voting components which introduce new the vulnerability of the 

system. This may be infeasible to a system with limited payload capacity such as space 

application.  

Voter

Functional Input
Data Operands

Output Output

Output

Validated Output

M1 M2 M3

Functional Output

Voter

Functional Input
Data Operands

Output Output

Output

Validated Output

M1 M2 M3

Functional Output  

Figure 6: TMR System 

The approach combines time and spatial redundancy by applying time redundancy to TMR 

systems. For the permanent fault, a reconfiguration will be implemented on either all of three 
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instances or just the failed module. For the transient fault, a data roll-back will be implemented 

by re-computing the task without replacement. However, in order to obtain accurate detection, 

the TMR system needs an extra vote which induces higher overhead. The Markov Chain model 

was utilized in this dissertation to analyze the system reliability and availability.   

The conventional N modular Redundancy (NMR) [51] system provides a powerful approach of 

improving reliability and fault tolerance capacity of digital systems. N functional modules, 

N=2m-1 and m>1, implemented identically, are given concurrent computation tasks and utilize a 

majority voter on the output to obtain the final result whenever at least m modules are 

functioning correctly. Each module is identical in functionality, but fault independent and may 

have a different physical implementation or design in order to minimize fault impacts such as 

Common Mode Failure (CMF) [52].  The arbitrary fault can be masked by the majority voter 

without sudden performance degradation except in the case of catastrophic failure. Among NMR 

approaches, TMR [19] [41] has been one of the most popular fault-tolerance schemes using 

spatial redundancy in a practical system. In Figure 6, the three functionally identical modules 

M1, M2, M3 are deployed in parallel and the outputs converge at the majority voter to obtain the 

validated output for the system.   

Another fault tolerance strategy is a Standby System (SB) arrangement.  A Standby Model refers 

to the case in which a primary component (or system) has one or more identical backup 

components in an "off" or "off-line" state. When the original active component fails, a switch 

mechanism selects one of the "Standby" backup components and makes it the new active 

component. The system continues to operate with execution effected only by switching 

overhead.  
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Duplex systems with a hot standby component based on process pair [53] paradigm for fault 

tolerance are widely implemented in Network Access Devices (NAD) [54], Web Server Systems 

(WSS) [55] and other uninterruptible operational systems. However, the “Hot” standby 

component will be active and have same fault probability as the current operating component 

even though the switch may have less impact on the system performance.  

According to the backup component states, three varied types of standby system are defined. The 

“Hot” standby is keeping the primary and secondary (backup) components running 

simultaneously with the backup tracking the primary system in real time. This will allow a 

seamless switch when a fault in the primary component is detected. The “Cold” standby system 

is a method in which the secondary component is only called upon when the primary component 

fails. Between the “Hot” and “Warm” standby system, the “Warm” standby system will 

periodically mirror the primary component which means that there are times when both 

components do not contain the exact same data. As shown in Figure 7, the standby configuration 

can be in Hot, Cold, and Warm states depends on the specific system design.  

However, much of the superiority of TMR and Standby type systems depends on some key 

components. The reliability (or lack or reliability) of the majority voter in TMR systems and the 

Standby system switch mechanism may be detrimental to the overall system reliability. There are 

other issues to consider like the reliability of memory which stores the standby configurations, 

the system power supply, the capability of sensing improper operation to trigger a switch, or how 

the majority voter and the switch operation must keep data integration between the primary and 

backup components. 
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Redundancy techniques are widely used in different applications. One example would be 

improving transmission rates of a communication system by expecting packet loss, duplicating, 

and reordering the corrupted data. Power plant stations and the power supply grid use redundant 

generators or power supply networks to continue to provide power in case of an emergency.  It is 

also well known the reliability of digital system can be improved through the appropriate 

arrangement of additional components. High reliability and availability are particularly sought 

after in mission critical system.   
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Figure 7: Standby System 

3.1.1. Embedded Device Properties Influencing Redundancy Strategies 

As the application scope of digital system have extended into science and engineering fields, a 

strong desire for operational fault tolerance has developed especially in mission-critical 

equipment. The particular requirement of fault tolerance and fault repair has to be compatible 

with the specific characteristics of a digital device in order to obtain the practical benefit. On the 
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other hand, new up-to-date devices which have unique characteristics can also be catalysts to 

develop new fault tolerance structures as is the case in this chapter.  
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 Figure 8: FPGA Configuration and Readback Mechanism 

SRAM-based reprogrammable devices known as a Field Programmable Gate Arrays (FPGAs) 

are large multi-million gate-equivalent devices that employ these technologies extensively. Over 

100 FPGA devices can be embedded in a mission-critical system. The FPGA configuration is 

stored in bitstream format in the PROM and loaded into or read back from the FPGA chip 

through Configuration Logic Interface shown in Figure 8. The different connections on the 

FPGA chip integrate the Configuration Logic Blocks (CLBs) or Look Up Tables (LUTs) to 

implement computation logic tasks.  

Environmental challenges to reliability in space applications can be modeled as having a uniform 

failure rate exposure despite status and locations of device activity in the system. Therefore, the 

impact of device wear-out (active components vs. cold spares) is small relative to radiation 

exposures, which makes ambiguous the active vs. standby role in terms of reliability in the 
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various standby models. In other words the radiation effects far outweigh device aging effects 

and because both active and standby components are exposed to radiation equally their lifespan 

is primarily and equally determined by the effects of the radiation environment.  

The pertinent reliability exposures for embedded FPGA’s include hot carrier aging, ultra-thin 

gate oxide breakdown, and electromigration effects.  FPGA’s now utilize deep submicrometer 

(0.13 µm) CMOS technology. As geometries and supply voltages shrink and electric current 

densities raise, increasing interconnect failure rates caused by high current electromigration can 

be observed over long product deployments.  

Several previous works on TMR system in the FPGA are introduced in [56]. In [56] 

[45],[46],[47] and [48], the TMR system with voting technique combine with bitstream 

scrubbing implemented in a Virtex FPGA device in order to mitigate Single Event Upset (SEU) 

effects. The voting mechanism identifies the faulty configuration based on single configuration 

failure assumption and reconfigures (scrubs) the device with an alternative bitstream. However, 

the reconfiguration has to take place off-line and can only deal with a transient fault which 

maybe inappropriate for a practical system.  

A TMR logic generation control log for the Virtex  series of Xilinx FPGA is described in [45]. 

The Majority voter is implemented with tri-State buffers based on the Virtex bus structures. 

Different types of data structures such as Throughput Logic, State-Machine Logic and I/O Logic 

are illustrated in terms of TMR technique. Some special features provided by the Virtex 

architecture are also mentioned. The attached example uses the XVRWARE synthesis library 
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which provides macros and synthesis for constructing TMR circuits in VHDL for the Virtex 

architecture.  

Another analysis of the TMR with mitigation of SEU effects in the Xilinx FPGA device is [46]. 

A selective TMR architecture is implemented for sensitive portions of the circuit in order to 

harden against the SEU effects. However, as the authors mentioned in the conclusion, the result 

of Selective TMR (STMR) is based on the input signal probabilities and nature of the circuit and 

may only be beneficial to the circuit with input environments where the size of the SEU sensitive 

portion is smaller than the original one. Such an approach narrows down the application range 

and can not be viewed as a general approach in different kinds of circuit design. 

Radiation-induced Single Event Upsets (SEUs) can produce soft failures in both the 

configuration memory itself and in the mapped circuit on the throughput data-path. In addition, 

changes induced to the configuration memory not only change the circuit memory but can 

change the functionality of the mapped circuit as well.  Given the architecture of FPGAs, the two 

different types of failures can have equivalent effects. The result of a SEU that makes the device 

totally or partially lose functionality is generally defined as Single Event Functional Interrupt 

(SEFI) [44]. In order to accurately evaluate the SEU effect, a stuck-at fault model is used in this 

dissertation for simulating single and multiple failure scenarios. 

FPGAs are the ideal platform for reliability models like NMR and SB.  Their unlimited 

reprogrammable property makes the standby components switches feasible with low delay and 

overhead. Furthermore, the reprogrammability enables designers to consider the appropriate 

recovery mechanisms which can extend mission lifetime compared to the non-repair system. 
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After all, the millions gates capacity makes more physical resources reusable and provides more 

alternative space for rearranging the routing.    

Autonomous repair of FPGAs is of particular interest in aerospace applications for both in-flight 

and Ground Support Equipment devices.  Several advantages drive the FPGA as an appropriate 

platform for the spacecraft electronics. First of all, high flexibility in achieving multiple 

requirements such as high performance, low Non-Recurring Engineering (NRE) costs and fast 

turnaround allow systems to be made in a more efficient manner. Second, FPGA devices can be 

utilized in remote hard to maintain systems such as satellites and space probes and can allow for 

remote reconfiguration and repair without too much overhead while maintaining performance.  

The emerging field of autonomous repair has essentially impacted deployable systems for deeper 

space exploration mission and other high availability, sustainability and serviceability 

application that need to survive and perform at optimal functionality during long duration in 

unknown, harsh and/or changing environment. Many techniques have been developed to 

generate the pre-complied alternative fault tolerance configurations and stored in memory or 

generate new fault tolerance configurations after a permanent fault is detected in order to 

reconfigure when a fault occurs.   

Frequently, such systems have limited capacity for spares yet still have requirements for reliable 

operation over long lifetimes [50].  This dissertation approach in this chapter is to design and 

implement a hybrid system redundant architecture to handle a wide range of transient faults 

through automatic FPGA reconfiguration and also permanent failures though automatic selection 
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from a diverse set of standby components, which implement identical functionality, but may use 

different physical resources, and dynamic update of these alternative configurations. 

3.2. System Reliability Analysis 

3.2.1. Standby System 

Consider the SB system configuration depicted in Figure 7.  It contains m+1 identical component 

of which exactly one is active at any time and the remaining m components act as switchable 

spares.  Up to m of these spares may provide feasible alternative standby configurations in order 

to extend the mission time. 

A simple Standby system with only one component Xi (i=0, 1, 2…m, which include one active 

and m standby components) will be investigated in this case.  The components are modeled with 

an exponential failure rate λ.  Assuming that the de-energized components do not operate until a 

fault is detected on the active component, or otherwise dictated by the reloading schedule, the 

lifetime which is time to failure, Z, of such system can be characterized in term of the lifetime, 

Xi, of each individual configuration .   ∑
=

=
i

iXZ
0

m

Initially, assume the switch mechanism is completely reliable and all of the standby 

configurations are fault-free. To model the reliability of a standby redundancy system with a 

total m+1 independent configurations, we first identify the probability distribution by 

considering the case when m=1 where each component has an exponential distributed lifetime 

with parameter λ.  
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Let Xi and Xj≠i be random variables denoting the independent failure of each component.  

Assuming an exponential distribution given by the parameter λ, then pdf function 

is . Since Z = X( ) 0, >= − tetf t
Xi

λλ i + Xj, the density of the sum of two non-negative independent 

random variables is given by the convolution of the individual densities [57], we have: 
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Thus Z has a two-stage Erlang distribution [57] for the m=1 case and m-stage Erlang distribution, 

in general.  Thus, for the m=1 case, the failure distribution function of Z is given by:  
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Then the m>1 reliability function is obtained by 
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In Equation (3.3),  term represents the reliability of the initially-selected active component.  

The subsequent summation term in Equation (3.3) represents the probability that each standby 

component will provide a viable alternative.  For example, suppose the initial active component 

fails and one of the standby components becomes energized to maintain the system availability. 

In this case, the summation of the reliabilities of all such replacements plus the initial component 

reliability determines the system reliability. 

te λ−

3.2.1.1.Imperfect Switching 

Because the standby configurations are stored in non-volatile memory (e.g. EEPROM) and the 

circuits they describe are mapped into SRAM based FPGA architecture, we need to assume the 

standby individual failure status is unknown until they are selected for operation.  Such a system 

is known to possess standby redundancy [54] in contrast to a system with parallel redundancy. 

In cold standby mode, the alternative configurations are in a power-off condition.  In warm 

standby mode, they undergo periodic reloading and inspection.  

There are varied distinct kinds of scenarios for the imperfect switching mechanism based on 

distinct standby strategies. For the cold standby system, the detection and switching function 

only works at time of failure and for the warm and hot standby system, the system is bound to 

have continual or periodic monitoring and detection.  

However, the specific characteristics of the space application mentioned eliminate the variety on 

the different standby approaches. Two distinct scenarios should be considered in the FPGA case. 
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The first is unknown states of the standby configurations, the second is the imperfect switching 

case.  

A few assumptions have to be made before further analysis since failure of the switch 

mechanism will cause the whole standby system cease operation permanently. Faults in an active 

configuration will simultaneously disable that configuration and trigger one switch.Each switch 

can cause a recovery from one or more failures. There are always enough fault-free standby 

configurations in the standby pool. 

For the imperfect switching scenario, we introduce the term q as an observed success probability 

of switching to accommodate the reconfiguration process and u as the number of the successful 

switches before the switch failed. Prior to switch failure, all required switches were successful, 

and after switch failure, no switch function will work anymore. The probability that the entire 

system fails due to switching failure, in response to the component failure, can be model as a 

geometric random variable with probability mass function of ( )qqu −1 . 

Therefore, the reliability function of a standby system with an imperfect switch includes the 

influence of the probability q of each standby being successfully selected:  

   ( ) ( )
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Thus, only after a failure in the initial active configuration is detected, can switching be 

implemented and the switch probability will add into the second term of the Equation (3) to 

obtain the Equation (3.4).    

The number of the successful switches determines the system feasibility and, according to the 

assumption 3 above, u will always less than m, which will make m-u number of standby 

configurations without any impact on the Equation (3.4). Therefore, we can draw figure4 based 

on u=m to show the RStSw(t). 

According to the Figure 9, the reliability of imperfect switching is not a linear increased with the 

number of the standby configurations. That is because the more configurations may bring more 

switching overhead when more fault occurred in the system. So in the later analysis, we use 

u=0.9 and m=4 as the optimization data set.  
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Figure 9: Reliability of Imperfect Switching Standby System 

3.2.1.2.Unknown Configurations Status 

Wherever the standby configurations are stored and whatever state they are in, radiation may 

cause the same affect on them same as on the active elements. Even with the perfect switching, a 

faulty standby configuration will generate an unexpected output. Faulty standby configurations 

will be detected when they are online and the switch mechanism will keep loading alternative 

backup configurations out of the standby pool until a fault-free one is running. When the fault-

free configuration is loaded as active the one, the selection will be end until next fault occurs and 

impacts the current active one.  
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Because of the unknown status of standby configurations the probability that the system fails due 

to a switch to a standby configuration with a faulty configuration is follow the number of failures 

before the first success, supported on the set { 0, 1, 2, 3, ... }. It can be modeled as a geometric 

random variable with probability mass function of ( )vpp −1  in which v is the number of the 

failure selection trails (v<m) and p is the probability of success on each trial. 

Assuming the survival rate p follows an exponential distribution and the selection process is a 

binomial distribution, and based on equation (3.4), the reliability for standby switching RStSw is 

given by: 
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The number u of the standby configurations will yield to the dominator of the successful switch 

number in the Equation (3.5). Therefore, the Equation (3.5) becomes: 
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As the number of standby configuration m is increased, will continue to decrease and converge to 

some constant value as depicted in Figure 10. The setting is set u=4, p=0.9, q=0.9.  Figure 10 

shows RStSw as the time to failure, is increased for various values of m is increased.   Once u is 

increased to a certain level, the improvement in system reliability levels off, implying that a 

sufficient pool of standby modules can provide adequate performance compared to using an 

infinite number of standby modules.  
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Figure 10: The Standby System with Imperfect switching and Unknown Configuration Status 

3.2.2. NMR System 

A general treatment of NMR system was developed starting in the 1950s [19]. Most of them 

assume a perfect voter in the system, and the reliability expression is based on binomial 

distribution given by: 
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If each component follow an exponential distribution , then the  tep λ−=
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In which RNMR is equal to the system reliability R.  Then, the Reliability of TMR system is 

. In Figure 11, the different NMR system based on exponential distribution 

is presented.  The cross point in figure is 

tt
TMR eeR λλ 32 23 −− −=

7.0=tλ  which is obtain from let3 . ttt eee λλλ −−− =− 32 2
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Figure 11: NMR System 
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3.2.3. Hybrid System 

The TMRSD system in Figure 12 embeds the Standby system into the TMR framework in order 

to achieve the higher reliability and maintainability for the design. The system can be viewed as 

three functionally identical parallel subsystems with a majority voter, and each subsystem has m-

1 number of standby components. Components in this case are defined as functionally identical 

subsystems that utilize varied physical resources. To simplify the computation, we only consider 

the same number of standby components for TMR subsystems.    
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Figure 12: TMRSB System 
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The relabilities of different types of redundant systems are presented in Figure 13. Compare 

TMR vs Simplex and TMRSD vs Standby system, the similar comparison result are presented on 

the Figure 13. The TMRSD system improves the reliability only for the limited period time 

which can be utilized in short time mission. 
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Figure 13: Comparison of Simplex,TRM,Two-Parallel-Redundancy,Standby,TMRSD 
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However, because x=λt, when the λ is very small, the time t can be varied. This means the 

component reliability is essential factor of the system performance. Furthermore, this analysis 

shows that the system level reliability is based on the basically reliable components. In another 

word, the redundancy technique may not improve or even worse, the system reliability based on 

unreliable components.  

 

Table 3 Performance Characteristics of FPGA-based Fault Tolerance technique 

 
Resource 

Utilization 

Power 

Consumption 

Additional 

Latency 

Failure 

Tolerance 

TMR 3n 3n+voter voter 1/3 

Standby n + S n+switch(m) switch m/n 

Simplex n n None n 

TMRSB 3n+S 3n+voter+switch(3m) 
voter + 

switch 
3m/3n 
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In Table 3, n represents the active resource set and S is the set of resources required to hold the 

standby configurations. So, for example, three active sets of resources are required for TMR 

configurations and one active resource plus m number of standbys held in S are required for 

standby. For the power consumption, TMR will require the power for the three sets of resources, 

n, plus consumption for the voter. For Standby the power requirements will be for the single 

active resource and possible m times switching if fault occurs. Different approaches may add 

different latency in term of the variety mechanism, for TMR the voter is vulnerable but critical 

path on the computation and cause the evitable latency, and the switch latency is a conditional 

latency based on the occurred fault numbers.  

3.3. Simulation Result 

BlockSim 6 offered by ReliaSoft was used in the dissertation. It allows you to analyze any 

process or product to obtain exact system reliability results (including system reliabilities, mean 

times, failure rates, etc.), to calculate the optimum scenario to meet system reliability goals and 

to obtain maintainability, availability and throughput results through discrete event simulation. 

BlockSim's blocks can be defined with the reliability characteristics of each component of the 

process or product. You can then configure these blocks into a reliability block diagram (RBD) 

that represents the reliability-wise configuration of the system and analyze the diagram in order 

to determine the reliability function (cumulative density function or cdf) of the entire system.  

Another feature in BlockSim is use container to emulate the Standby scenario with Switch 

Probability on per request.  In most cases, the reliability of a switch is to be included in the 

analysis the probability of the switch performing the action (i.e. switching) when requested to do 
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so. This is called "Switch Probability per Request" in BlockSim and is expressed as a static 

probability (e.g. 90%). 

On the simulation, the exponential distribution is used in the experiment. According to the above 

discussion, we assign the same distribution on the both active and standby configurations. 

According to the Table 4, we can see the simulation results are corresponded to the section 3.2 

analysis, even with the standby configurations number m increased, the system reliability may 

not improve. Meanwhile the system reliability will improve with the higher configuration 

reliability. 

Table 4 Stadnby System Simulation Result 

Simulation 
50000hours Perfect Switch Imperfect Switch (90%) 

Standby # (m) MTTF(hours) System Reliability MTTF(hours) System Reliability 
10000 78.89% 10000 51.54% 
20000 84.71% 20000 78.40% 
30000 93.29% 30000 87.18% 

m=2 

40000 97.05% 40000 91.94% 
10000 87.22% 10000 62.76% 
20000 93.97% 20000 85.18% 
30000 98,29% 30000 91.94% 

m=3 

40000 99.56% 40000 94.36% 
10000 83.20% 10000 69.76% 
20000 97.90% 20000 87.67% 
30000 99.80% 30000 92.71% 

m=4 

40000 99.98% 40000 94.76% 
10000 99.83% 10000 78.47% 
20000 99.97% 20000 89.10% 
30000 100.00% 30000 92.90% 

m=10 

40000 100.00% 40000 94.87% 
10000 99.92% 10000 78.60% 
20000 100.00% 20000 89.00% 
30000 100.00% 30000 92.90% 

m=15 

40000 100.00% 40000 94.87% 
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The TMRSB approach is also simulated in the BlockSim and the result listed below in Table 5. 

The result shows TMRSB improve the reliability compare with the single standby system and the 

higher component reliability; the higher improvement can be achieved 

 

 

Table 5 TMRSB Simulation Result 

Simulation 50000hours Imperfect Switch (90%) 
Standby # (m) MTTR(hours) System Reliability 

10000 74.50% 
20000 96.71% 
30000 99.47% 

m=2 

40000 99.80% 
10000 86.30% 
20000 99.02% 
30000 99.68% 

m=3 

40000 99.97% 
10000 93.73% 
20000 99.45% 
30000 99.83% 

m=4 

40000 99.99% 

Based on the analysis and simulation, we can reach the conclusion that the TMRSB system can 

benefit the system reliability with lower storage overhead in the specific reconfiguration device. 

The reliability of standby system may not be linearly increased with the number of standby 

configurations. The reliability of the configurations both active and standby will be an essential 

factor on the reliability issue. The higher configuration reliability, the more reliability benefit is 

shown on system performance.  
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The following two chapters present how to utilize the TMRSB model to address the autonomous 

repair problem in EHW applications and OC systems. Chapter 4 introduces the CBE approach 

for EHW which normally do not have full self-repair capacity. Chapter 5 present the 

performance and measurement of the CBE approach using combinational logic circuits from the 

MCNC91 benchmark suite as an experimental sample. However, the inherent limitation of the 

hardware resource is going to be exhausted for a small circuit eventually and may not support the 

ultimate objective of space application which required sustainability a long mission. The OC 

architecture are presented in chapter 6 use multiple AE components with identical designs to 

self-regulate the system performance FE components which handle fault detection and repair. 

Therefore, there are no golden elements of the GA in the case of EHW.   
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CHAPTER 4: AUTONOMOUS REPAIR USING COMPETITIVE 
RUNTIME RECONFIGURATION 

The proposed CBE scheme realizes regeneration by integrating all phases of fault handling 

within an evolutionary algorithm process flow.  It employs population diversity information, 

partially online recovery of failed resources, and resource recycling with adaptable overheads.  

Two innovations are realized for self-adaptive EHW regeneration: elimination of additional test 

vectors and temporal assessment based on relative fitness assessment. 

4.1. Detecting Faults using a Population of Alternatives 

CBE detects and classifies faults using a temporal voting approach.  In the Duplex mode, the 

outputs of two competing active L and R half-configurations, are compared to detect 

discrepancies.  Alternative pairings are considered over time to provide the robust consensus 

described below.  Each individual in the population is represented as a configuration bitstream 

[22] that defines the physical resources it uses and their interconnections when it is loaded onto 

the FPGA.  An initial population of known-good individuals is created at design-time.  These 

primordial configurations are functionally-identical, yet they utilize physically-distinct resources 

by having alternative design or place-and-route implementations.  In the Duplex Mode, two of 

these competing half-configurations are instantiated on the reconfigurable FPGA device by 

downloading their configuration bit streams.  This realizes a conventional Concurrent Error 

Detection (CED) [58] arrangement to detect at least any single resource fault with certainty.  As 

in traditional CED approaches, comparison of the outputs of the two resident half-configurations 
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will produce either discrepant or matching outputs to indicate the presence or absence of faulty 

resources in the utilized FPGA hardware [50].  Maintaining exclusive resource utilization for 

half-configurations belonging to either half ensures that under a single fault assumption, the 

presence of a fault implies the fault-free nature of all the half-configurations designed for the 

other half.  An additional advantage of using pre-designed configurations is that system 

downtime is reduced to a minimum as potentially viable alternatives are available. Also, the use 

of L and R half-configurations enables the use of runtime reconfiguration technology to 

reconfigure a portion of the device without taking other portions offline.  

The CBE process is described below using Duplex Mode depicted in Figure 1.  After the device 

is configured with the competing configurations, the same input vector is applied to both of the 

functionally-equivalent logic instances.  Fault detection is accomplished when there is a disparity 

between the outputs of the active configurations, as ascertained by the discrepancy detector.  The 

presence or absence of discrepancy is used to adjust the Discrepancy Values (DVs) of both 

individuals without rendering any judgment at that time as to which individual is actually faulty.  

Succeeding pairings of alternate combinations identify those individual(s) that utilize faulty 

physical resources through consensus formation.  Meanwhile, the fault-free configurations 

become exonerated over time.  This is because the DV of a faulty configuration always increases 

regardless of its pairing, yet the DV of fault-free half-configurations which are paired together 

are not increased.  This temporal testing scheme enables the use of pseudo-exhaustive testing 

over a period of time without the reduced availability imposed by exhaustive testing. 
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4.2. CBE Approach 

Competition among a diverse pool of individuals can generate robust information about their 

relative competence and reliability.  In particular, the fitness states and health transitions of 

competing FPGA half-configurations during online operation are depicted in Figure 14: States in 

the Lifetime of the ith Half-Configuration.  At any instant, each individual configuration is 

labeled with one of four states {Pristine (CP), Suspect (CS), Under Repair (CU), Refurbished 

(CR)} as governed by the transitions indicated by the numbered arcs in Figure 14: States in the 

Lifetime of the ith Half-Configuration.  Initially, all of the individuals in the population begin in 

the Pristine state.   

If output discrepancies are detected among the half-configurations in the FPGA then the 

competing L and R half-configurations undergo indicated health state transitions.  A comparison 

can lead to one of two results, “L=R” or “L≠R.”  When L=R occurs, both individuals retain their 

Pristine state, as shown by transition event “1”.  However, when their outputs disagree, then 

transition “2” occurs whereby both of the configurations are demoted to the Suspect pool and 

their DV is increased.  The determination of a configuration’s fitness state for subsequent 

transitions is based on its cumulative DV relative to DV of the other individuals in the population 

evaluated over an Evaluation Window, denoted by E 
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Figure 14: States in the Lifetime of the ith Half-Configuration 

The period E defines a fixed number of evaluations at the end of which an individual’s fitness 

state is updated depending on its observed discrepancy history.  Only after an individual has 

undergone such testing is its fitness state updated.  The reintroduction rate, denoted by λR, 

controls the rate at which individuals are rotated for instantiation on the FPGA.  By varying λR, a 

tradeoff between the throughput and the rate of refurbishment can be obtained.  In particular, the 

re-introduction rate denotes the probability that an instantiated functional configuration is 

replaced by another from the competing pool, regardless of whether it has completed its 

evaluation window, or exhibits a discrepancy.  Higher throughput and availability can be ensured 

via a low reintroduction rate which will maintain individuals that perform well on the FPGA for 

the length of their evaluation window, at the cost of slower refurbishment of the individuals 
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undergoing refurbishment. Individuals that have been instantiated on the FPGA are replaced in 

one of three ways.  They will be replaced when they articulate a discrepancy, when they have 

completed their evaluation window, or as dictated by the reintroduction rate.   

The ith half-configuration is marked as Under Repair if its DV increases beyond the repair 

threshold denoted by DVR  as shown in transition 4 in Figure 14.  DVR is determined by the 

relative fitness of the operational elements among the population, i.e. those in the Pristine, 

Suspect and Refurbished states.  After successive evolutionary refurbishment operations, if an 

Under Repair individual’s DV returns to the range of the outlier threshold value DVO as a 

consequence of transition 6, then the configuration is Refurbished.  Over a period of time, the DV 

of an individual could approach zero achieving complete regeneration.  Without exhaustive 

testing however, it is not possible to completely distinguish partial regeneration from complete 

regeneration.  Competing half-configurations remain Refurbished unless their DV rises above the 

Repair threshold DVR, at which time they are again demoted to the Under Repair state.  DVO is 

lower than DVR to ensure that only individuals with DV significantly lower than DVR are 

recognized as refurbished enough to be operational. 

 

4.3. Self-Adaptive Fitness Assessment using Outlier Identification 

Instead of using an absolute fitness function with exhaustive testing, outlier identification is 

achieved using statistical techniques such as the hat matrix [59], H, where the diagonal elements 

Hii are used to identify the threshold to isolate faulty individuals as outliers.  The hat matrix H 

defines the Least Squares projection matrix and is so named since it is denoted by a hat on the 
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column vector y=(y1,……,yn)t such that ŷ=H*y and ŷ is the LS prediction for y.  The hat matrix 

H is defined as follows: consider that there are p explanatory variables and one response variable 

which will have n observations.  The n-by-1 vector of responses is denoted by y=(y1,……,yn)t.  

The linear model states that y=X×θ+e, where θ is the vector of unknown parameters, e is the 

error vector and X is the n-by-p matrix: 
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Then, the H matrix is composed from X as follows:        t1t X)XX(XH −=

The diagonal elements of H have a direct interpretation as the effect exerted by the ith 

observation on the expectation of response variable because they equal .  The average 

value of the diagonal element Hii is p/n and it follows that 0

ii y/y ∂∂
∧

1≤≤ iiH  for all i.  In the CBE 

approach, the DV of each individual can be viewed as one observation or one explanatory 

variable, and the observation interval can be set as the size of the entire population.  Fortunately, 

since the X matrix consists of only one column in our application, we can see that the result of 

the XtX product is a single-element vector matrix, and its inverse can be computed using a 

straightforward computation.  In general, the computation complexity of the H matrix approach 

is 2n2+1.  In CBE, the threshold value is determined by an analysis of the diagonal elements Hii 

of the hat matrix generated from population statistics accumulated over an evaluation window.  
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In order to accelerate the identification of outliers, a Sliding Window, S, defines the period with 

which the global discrepancies consensus, to which all individual values are compared, is 

updated.  Typically, S is selected to be an integer multiple of E such that S=q*E, where 1<q<|C| 

and |C| is the population size. 
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Figure 15: Fitness State Adjustment Process in the CBE Technique 

Figure 15 depicts the Fitness State Adjustment process in CBE.  Whenever a discrepancy is 

detected, the discrepancy values of the individuals involved are updated.  The new discrepancy 

values are then compared to DVR and DVO to determine whether the individuals transition from 

one fitness state to another.  Ideally, the repair and operational discrepancy values are updated 
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after a sliding window width of evaluations have been completed.  Under ideal conditions, as 

soon as all the individuals in the population have completed at least E comparisons each, new 

values of these thresholds are obtained.  Since it may be impractical to wait for all individuals to 

complete the requisite iterations, the sliding window width S reduces the latency involved in 

updating DVR and DVO by considering a subset of individuals instead of the entire population.  

The thresholds are updated as soon as a number of individuals, as defined by the sliding window 

width, have completed E iterations.   

4.4. Achieving Device Refurbishment 

Conventional GAs frequently use static fitness functions to search for pre-defined globally 

optimal criteria in analog [60] or digital [9] circuits.  On the other hand, CBE uses a self-adaptive 

fitness measure that is based on consensus formation.  This allows for adaptation throughout the 

process of solution construction involved with evolving a repair.  If the realtime inputs are 

limited to a subset of the input space temporarily, then the relative fitness measure directs the 

GA towards creating individuals that perform best for this subset.  However, there still remain 

other individuals in the population that perform optimally for other subsets.  In the presence of 

viable alternative configurations, such Recovery Complexity of seeded search can be more 

tractable than Design Complexity using a blank slate..   

Coarse-grained functional elements are recombined into candidate repairs using CBE’s inter-

module crossover operator.  For crossover to occur such that offspring are guaranteed to utilize 

only mutually-exclusive physical resources within each L and R half configuration, a two-point 

crossover operation is carried out with another randomly selected Pristine, Suspect or 
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Refurbished individual belonging to the same L or R half, respectively.  By enforcing speciation, 

breeding occurs exclusively in L or R, and non-interfering resource use is maintained.  Crossover 

points are chosen along the boundaries of the FPGA’s Configuration Logic Blocks (CLBs) so that 

intra-CLB crossover does not incur logic hazards.  To encourage diversity and prevent stasis, an 

intra-modular input permutation operation performs alterations to logic cell functionality.  The 

input permutation operator randomly changes the CLB’s functionality or reconnects one of its 

inputs to a new randomly selected output.  The input permutation rate defines the probability of 

changing the input connections and the logic functions of an LUT when the input permutation 

operator is applied. 
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CHAPTER 5: PERFORMANCE EVALUATION OF CBE APPROACH  

The search-space complexity of a refurbishment problem is quantitatively compared to the 

complexity of the design problem using exhaustive analysis of the output space.  Furthermore, 

refurbishment experiments were conducted using two classes of benchmark circuits.  The first 

class consists of circuits where the fan-in exceeds fan-out and the second class includes two 

circuits where the converse applies.  The performance of CBE in TMR and Duplex modes are 

analyzed for both kinds of circuits.  In all experiments, performance is evaluated using two 

different schemes which are based on the bit-weight tabulation and the hamming-distance 

scoring of the observed outputs, respectively.  

5.1. Circuit Representation and Benchmark Characteristics 

The FPGA structure used in the following experiments is similar to that used by Miller and 

Thompson for GA-based arithmetic circuit design [9].  The feed-forward combinational logic 

circuit uses a rectangular array of nodes with four inputs and one output.  Each node represents a 

Look-up Table (LUT) in the FGPA device, and a Configurable Logic Block (CLB) is composed 

of four LUTs.  There are five dyadic operators OR, AND, XOR, NOR, NAND along with the 

unary operator NOT, from which a function may be composed within an LUT.  The LUTs in the 

CLB array are indexed linearly from 1 to n.  Array routing is defined by the internal connectivity 

and the inputs/outputs of the array.  Internal connectivity is specified by the connections between 

the array cells.  The inputs of the cells can only be the outputs of cells with lower row numbers.  
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Thus, the linear labeling and connection restrictions impose a feed-forward structure on the 

combinational circuit. 

                                                            

 

Figure 16: Generation of Alternate Configurations by –  

a) Input Permutation (shown on left) and b) Cell Swapping (shown on right)  

Each of the benchmark circuits was converted into a Verilog representation that preserved the 

described functionality.  The design was then instantiated on the FPGA using Xilinx ISE version 

9.1i.  A diverse population of configurations was created from the single Xilinx tool synthesized 

design using input permutation and cell swapping operators.  Figure 16 shows these operators, 

where F1 is the Least Significant Bit (LSB) of the input to an LUT and F4 is the Most 

Significant Bit (MSB).  As shown in Figure 16a, input permutation leverages low-level 

redundancy by utilizing the unused inputs of LUTs to modify the input sequence of a single LUT 

as well as corresponding LUT functionality to maintain identical output behavior.  The cell 

swapping operation, shown in Figure 16b, changes interconnection sequences among LUTs. The 

cell-swapping operation maintains the feed forward property and re-connects the LUTs to 
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preserve the functional logic.  Together, these operations produce diverse circuits with different 

behavior under single or multiple physical resource failures.  These circuit modification 

operators are also used later by the genetic algorithm to realize refurbished configurations during 

the repair process. 

Benchmark circuits from the MCNC91 benchmark suite [61] were used to analyze CBE 

performance.  Table 6 lists the characteristics of these circuits.  As listed in Table 6, the z4ml and 

cm85a circuits have a fan-in greater than the fan-out, and the cm138a and 2x-decod circuits have 

a fan-out greater than the fan-in value.  To verify CBE performance on a circuit that utilizes 

more resources than the circuits provided by the MCNC91 suite, the 2x-decod circuit was created 

by appending multiple copies of the decod benchmark circuit.  The resulting 2x-decod circuit 

utilizes approximately four times the LUTs used by the other circuits.  The circuits were 

described using VHDL for synthesis on a Xilinx Virtex-II Pro VP7 FPGA to estimate the gate 

count and the number of LUTs used.  The input pin redundancy is calculated as the ratio of the 

number of unused LUT input pins to the total number of LUT input pins.  Table 6 also lists the 

percentage of aberrant outputs produced by each circuit under a single stuck-at fault for the 

entire output space, across all possible fault locations to indicate the demands of each 

refurbishment task. Results from experiments conducted on the MCNC91 circuits also provide 

insights into the relative merits of operating CBE in the Duplex and TMR modes, and the effect 

of the performance evaluation method used.  To examine more demanding failure scenarios the 

following experiments consider multiple resource faults. 
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Table 6: Characteristics of Benchmark Circuits 

Type of 
Circuit Circuit Functionality No. of 

Inputs 
No. of 

Outputs 
Gate 

Count 
LUT 
Count 

Input Pin 
Redundancy 

(%) 

Aberrant 
Outputs 

(%) 
z4ml 2-bit adder 6 4 20 8 25 28.6 Fan-in > 

Fan-out cm85a Logic 11 3 38 12 16.7 19.9 
cm138a Logic 6 8 17 10 22.5 6.6 Fan-out 

> Fan-in 2x-decod Decoder 10 32 44 40 25 3.7 

5.2. Quantifying Search Space Complexity under Fault 

In order to evaluate the effect of a single stuck-at fault at the inputs of a circuit, the Correctness-

Under-Fault (CUF) search space characteristics for the various circuits are generated.  The CUF 

characteristics for a circuit are obtained by inserting a single stuck-at fault at each of the inputs 

of the circuit, and then applying all possible input combinations to the instantiated circuit.  The 

deviation of the observed output from the correct, expected output completely describes the 

response of the circuit to all possible stuck-at faults for its entire input space.  Using this data, a 

three-dimensional representation of the refurbishment search space can be plotted as shown in 

Figure 17. 
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Figure 17: MCNC91 Benchmark Circuit Sensitivity to Stuck-at Faults 

a) cm85a, b) cm138a and c) 2x-decod Circuit 

The single stuck-at fault CUF search space of the benchmark circuits are shown in Figure 17, 

which show the Root Mean Squared discrepancy observed for all combinations of input and 

stuck-at-fault locations.  Vertical bars depict representative aberrant outputs, with one sample 

taken from every 300 data points of the entire search space to enhance readability. In the above 

figures, the x-axis represents a particular stuck-at fault identified by the input pin at which the 

fault is introduced, and the y-axis represents the input combination applied to the circuit.  The 

z=0 plane represents input combinations for which the output response of the circuit is ideal, in 

the presence of a stuck-at-fault.  The percentage of aberrant outputs for the various circuits listed 

in Table 6 are obtained as the percentage of such points in the output space that are affected by 

the various stuck-at faults.  The peaks and troughs in the 3-dimensional plot represent deviations 

from the expected output due to the presence of a fault.  The search space may be sparse, as in 

Figure 19c, which represents the CUF space of the 2x-decod circuit, or dense as in the case of the 

cm85a circuit shown in Figure 17a.   
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In the case of a refurbishment problem, the evolutionary algorithm is assisted a-priori by the 

presence of points in the search space where the deviation from the expected behavior is null, as 

represented by the set of points for which Normalized Aberrant Output is zero.  For example, if a 

particular LUT input is unused, a stuck-at fault at this pin will not adversely affect the outputs of 

the circuit.  This characteristic can be used by the cell-swapping and input permutation operator 

during the search for a refurbished configuration.  In a design problem, the search for a solution 

starts from a population of arbitrary individuals which provide no such partial functionality.  Yet, 

a refurbishment problem can leverage diversity of partially working spares. 

5.3. Source of Redundancy in Digital Circuits 

Under CBE, individuals are prioritized for refurbishment operations based on their discrepancies.  

In particular, individuals whose DV’s deviate the most from the average DV of the population 

are given more opportunities to undergo refurbishment.  This is implemented by reloading the 

individual under repair with a frequency exceeding that of individuals who have a higher relative 

fitness.  Figure 18 shows the measured performance of an individual over 28 iterations during the 

repair process for the z4ml circuit.  In this particular experiment, the reintroduction rate used was 

20%, with both the cell-swapping rate and the input permutation rate set to 20%.  As shown in 

Figure 18a, whenever the discrepancy of the individual rises above the average discrepancy of 

the population, the individual is reloaded onto the FPGA, as evidenced by Figure 18b.  This can 

be clearly seen for the first and the next to last iterations shown in Figure 18a and Figure 18b.  

Conversely, when the individual discrepancy is equal to, or less than the average discrepancy of 

the population, the individual is not reloaded, or reloaded less than the average member of the 
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population.  This ensures steady improvement in the average fitness of the population, while 

ensuring that individuals are prioritized for refurbishment operations based on their relative 

fitness arrived at by using a consensus-based evaluation method. 

                                                                    

 

Figure 18: Prioritizing Individuals for Refurbishment 
a) Discrepancy Values, and b) Number of Iterations the Individual is Reloaded 

5.4. Initial Circuit Population Design 

Figure 19 and Figure 20 show the performance of CBE under the Duplex and TMR modes when 

using bit-weights to calculate the fitness of individuals.  Figure 19 shows the results of 

refurbishing circuits in a population of 20 individuals in the Duplex mode, with ten individuals 

each comprising the Left- and Right-half configuration populations.  The Duplex experiment 

begins when a fault is inserted into two resources, one on the Left-half and one on the Right-half, 

which impact 18 of the 0.20 individuals in the population.  In the TMR mode, a population of 30 

individuals is used, with three resource faults distributed across each voting component affecting 

27 out of the 30 individuals.  However, as opposed to the Duplex mode, in the TMR mode, 
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outputs from three individuals are compared for the input vector applied to realize throughput, 

and the majority outcome is asserted as the output of the system.   

 

Figure 19: Effective Throughput ηE during Regeneration Under Duplex and TMR Modes of 

Operation 

 
Figure 20: Comparison of Performance Characteristics under Duplex and TMR Modes 
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In all these experiments, the cell-swap rate and the input permutation operation rate were 

maintained at 80%.  In Figure 20, performance metrics from the experiment refurbishing the 

population with re-introduction rate λR = 0.4 are presented, in order to compare the overheads of 

the two modes.  Detailed results obtained from the implementation of the two modes are listed in 

Table11 which tabulates several parameters listed in Equation 5.1.  The effective throughput, ηE 

is measured using the following relationship: 

)1.5(
)(

E
total

reloadreloadincorrectreloadevolutiontotal

N
NNNNN β

η
×−−−−

=  

where,  is the total number of iterations required to refurbish the population,  totalN

      is the number of iterations in which the genetic recovery operators are invoked,  evolutionN

      is the number of iterations where the individuals currently evaluated are replaced 

by other     members from the population,  

reloadN

      is the number of iterations yielding discrepant outputs verified during the 

experiment to be incorrect,  

incorrectN

      reloadβ is the reload penalty, which is the ratio of the time taken to reload a configurations 

and the time taken to compute the outputs for a single input.   

Thus, ηE  measures effective throughput during refurbishment by accounting for the number 

of iterations, and the time spent in refurbishment-related operations.   
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 As shown in Figure 19, for low values of λR, 0.2 ≤ λR ≤ 0.4, the effective throughput of CBE in 

the Duplex mode is only 2% to 6% lower than TMR mode.  For example, with the z4ml 

benchmark circuit, from Table 7, CBE in TMR mode provides 2.9% higher effective throughput 

when compared to the Duplex mode.  The difference in effective throughput is greater across 

different values of λR for the cm138a circuit.  Performance varies depending on the fan-in / fan-

out ratio of circuit as shown by the z4ml circuit, where fan-in > fan-out, and the cm138a circuit 

where fan-in is less than fan-out. 

Table 7: CBE Performance under Duplex and TMR Modes for Two Different Circuits 

Circuit Mode λR Nevolution Nincorrect Nreload Ntotal ηE

Fully 
Refurbished 
Individuals 

0.2 144 3.9 × 104 1594 4.4 × 105 87.1 5 
0.4 166 5.7 × 104 1674 5.4 × 105 86.2 11 
0.6 133 5.3 × 104 1671 3.3 × 105 78.3 13 

Duplex 

0.8 131 5.7 × 104 1907 2.2 × 105 64.5 12 
0.2 132 3.9 × 103 1554 2.1 × 105 90.0 5 
0.4 150 5.9 × 103 1422 1.8 × 105 87.9 12 
0.6 125 1.5 × 103 1002 1.5 × 105 91.7 13 

Z4ml 

TMR 

0.8 121 2.3 × 103 1237 1.6 × 105 89.9 13 
0.2 187 1.1 × 105 4771 8.7 × 105 80.6 4 
0.4 231 1.7 × 105 5011 1.1 × 106 79.3 11 
0.6 165 1.6 × 105 5002 6.5 × 105 67.3 12 

Duplex 

0.8 161 1.7 × 105 5710 4.3 × 105 45.9 12 
0.2 1362 1.2 × 104 4229 4.3 × 105 86.6 5 
0.4 1398 1.8 × 104 3965 3.7 × 105 83.6 11 
0.6 1348 4.6 × 103 3125 3.2 × 105 88.0 13 

Cm138a 

TMR 

0.8 1340 6.8 × 103 3595 3.2 × 105 86.0 14 

However for λR ≥ 0.6, the difference in the effective throughput becomes pronounced in favor of 

the TMR mode.  This occurs because a higher re-introduction rate replaces active configurations 

with configurations from the under repair pool more frequently. TMR throughput is less 

72 



adversely affected because it ensures throughput whenever any two of three configurations’ 

outputs agree, giving ⎟⎟
⎠

⎜⎜
⎝

⎞
2
3⎛  = 3 ways for agreement, as opposed to the Duplex mode where there is 

only one combination to realize agreement.  In both Duplex and TMR modes, disagreements 

trigger reloading of configurations as well as re-computation of the outputs. 

Figure 20 quantifies the time vs. space tradeoff during recovery when utilizing 50% fewer 

physical resources in Duplex mode as opposed to TMR.  It shows the number of reloads and the 

total number of iterations required to refurbish the population for the z4ml and cm138a circuits 

when λR = 0.4.  Under Duplex mode, up to 1.6 times as many reloads and 1.3 to 3 fold total 

iterations are required to achieve refurbishment of the population.  This correlates with the lower 

effective throughput observed under the Duplex mode.  From Table III, with higher values of λR, 

such as λR = 0.8, the increased number of reloads required for Duplex mode skews throughput in 

favor of TMR mode. 

5.5. Effect of Reintroduction Rate on Refurbishment Performance 

Table 8 lists the number of individuals that were fully refurbished from adverse effects of a 

single fault inserted into 18 out of 20 individuals under CBE in Duplex mode.  A Refurbished 

individual might be partially or fully refurbished.  An individual is fully refurbished if and only 

if its output response to the entire set of possible input vectors implements the correct truth-table 

in its entirety.  The fitness of the individuals was evaluated using a bit-weight scoring scheme.  

The stopping criterion for all refurbishment experiments was the condition wherein none of the 

individuals remain in the Under-Repair pool.  Nonetheless, the effectiveness of the refurbishment 
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can also be measured by exhaustively testing each individual under all possible input 

combinations.  Such exhaustive testing is not required for CBE to refurbish individuals; it was 

conducted only to evaluate performance at the end of a refurbishment cycle.  

Table 8: Number of Fully Refurbished Individuals vs. Effect of Reintroduction Rate (λR) for 

Four Circuits  

Reintroduction 
rate (λR) 

Circuit Fully Refurbished 
Individuals 

z4ml 8 
cm85a 6 

cm138a 5 
20 

2x-decod 12 
z4ml 11 

cm85a 12 
cm138a 12 

40 

2x-decod 14 

Table 12 indicates that as λR increases from 0.2 to 0.4, the number of individuals that are fully 

refurbished in the population rises, irrespective of the circuit used.  The improvement depends on 

not just the fan-in to fan-out ratio, but also on the particular circuit.  The cm138a circuit shows 

the best improvement – from three recovered individuals with the lower re-introduction rate to 

10 fully refurbished individuals. In the 2x-decod circuit, which is also a circuit with a fan-in 

greater than the fan-out, there is an improvement of only two additional fully refurbished 

individuals.  

A higher reintroduction rate increases the probability that more individuals are evaluated, 

evolved, and therefore improved.  This improvement occurs at the cost of the greater number of 
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re-computations and re-loads necessitated by individuals under repair which are instantiated on 

the FPGA for evaluation, leading to an increased number of discrepancies.  If any individual in 

the population expresses very low fitness as expressed by a higher discrepancy count, the 

individual will be demoted to the Under Repair pool to be improved.  This refurbishes 

individuals with low fitness, leading to a higher number of fully recovered individuals. 

An additional insight provided by these results is that even though all individuals are not fully 

recovered, after successive evaluation, the individuals in the population were promoted from the 

Under Repair pool to the Refurbished pool by virtue of their fitness to inputs observed in 

practicality.  In this manner, CBE emphasizes sustainability by improving the robustness of the 

entire population in the process of achieving complete recovery. 

5.6. Comparing Discrepancy Scoring Schemes 

Figure 21 and Figure 22 show the relative performance of two different discrepancy scoring 

schemes.  In the Hamming distance method, the fitness of individual configurations was 

measured using the Hamming distance of the outputs produced by the competing individuals.  

The bit-weight scheme measures the arithmetic difference between outputs produced by the 

individuals.  Experiments were conducted under the Duplex mode for the cm85a circuit and the 

2x-decod circuit.  Results from the experiments, both of which were conducted with CBE in the 

Duplex Mode, are listed in Table 9. 
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Figure 21: Effective Throughput with Hamming Distance and Bit-weight Schemes 

 
Figure 22: CBE Performance Characteristics with Hamming Distance and Bit-weight Schemes 

As shown in Figure 21, the bit-weight evaluation scheme leads to higher effective 

throughput for the cm85a circuit for both values of λR, while for the 2x-decod circuit, the 

hamming-distance based evaluation scheme seems to lead to a higher throughput.  This is due to 

the fact that unlike the cm85a circuit, the fan-out of the 2x-decod circuit is greater than the fan-

in.  Thus, a fault nearer the inputs of the circuit will affect a larger number of outputs for the 2x-
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decod circuit.  Under these circumstances, the Hamming distance of the output from the ideal 

output will provide a much better indicator of the fitness of an individual configuration.  From 

Figure 22, it can be seen that the Hamming-distance scheme reports a greater discrepancy value 

resulting in more refurbishment operations than the bit-weight scheme.  As listed in Table V for 

either performance evaluation scheme, the effective throughput as well as the number of 

individuals that are fully refurbished for a constant λR do not vary significantly.  From the results 

in Table 9, it is clear that refurbishment can benefit from the selection of an appropriate fitness-

evaluation scheme for the target circuit. 

Table 9: CBE Performance under Hamming Distance and Bit-weight Performance Evaluation 

Schemes 

Circuit 
Performance 
Evaluation 

Scheme 
λR Nevolution Nincorrect Nreload Ntotal ηE

Fully 
Refurbished 
Individuals 

0.2 1987 2.8 × 105 70387 8.0 × 106 87.5 5 Hamming 
Distance 0.4 2120 3.6 × 105 19593 3.5 × 106 83.6 10 

0.2 1913 3.3 × 105 7270 4.1 × 106 87.9 4 
cm85a 

Bit-weight 
0.4 1684 2.4 × 105 7300 3.3 × 106 88.7 10 

0.2 13100 4.4 × 105 16676 5.1 × 106 88.0 11 Hamming 
Distance 0.4 14420 3.2 × 105 18821 5.3 × 106 90.0 13 

0.2 10115 5.9 × 105 13362 3.7 × 106 79.0 10 
2x-decod 

Bit-weight 
0.4 12750 1.2 × 105 14429 3.0 × 106 91.0 12 
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5.7. Recovery from Pervasive Faults 

The impact of simultaneous resource failures may completely deplete all viable spares from the 

dormant population.  The worst case scenario occurs when all individuals in the N mutually 

exclusive resource pools allocated to each module are affected, creating a pervasive hardware 

failure.  However, the residual functionality of each individual can be utilized by the CBE 

approach to fully refurbish one or more individuals.  The CUF search space characteristics of the 

circuits demonstrate the viability of refurbishing individuals using the genetic operators.  When 

affected by pervasive faults, the functionality of each of the diverse individuals remains partially 

intact.  The less affected individuals will then be favored by CBE to remain on board longer and 

used to generate the consensus output.  Conversely, the worst affected individuals will, by virtue 

of their discrepancy with the majority vote, be forced to undergo evolutionary repair to improve 

their performance.   

The diverse failure behavior under a pervasive fault can be exploited to generate a completely 

functional individual even if all individuals in the population are faulty.  Experiments conducted 

on the 2x-decod circuit, which is the most resource-intensive of the benchmark circuits yield 

completely refurbished individuals.  The Hamming distance based fitness metric produces a 

majority-indicative vote when the outputs of the three modules are compared on a bit-by-bit 

basis.  In these experiments, all of the 30 individuals across the three modules are negatively 

affected by a single fault in the resources used by each of the TMR modules.  In a sample 

experiment, CBE realizes three completely refurbished individuals after Ntotal = 6 × 105 iterations 

with a reintroduction rate λR = 0.4.  To realize refurbishment, the configurations were reloaded 
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Nreload = 1121 times, and a total of Nevolution = 552 evolutionary operations were completed by 

CBE.   

In all the experiments, the majority voted output produced by the three modules was asserted as 

the output.  The throughput was observed to be maintained at 95% throughout the refurbishment 

experiment.  High throughput is maintained during refurbishment because even partially-fit 

individuals can arrive at the correct result for many subsets of inputs encountered at runtime.  

For measuring throughput and evaluating the absolute fitness of the individuals, the outputs were 

verified against the truth table of the circuit.  However, the correctness information provided by 

these comparisons was not made available to the refurbishment process.  Of course, successful 

resolution of a pervasive fault still relies on having a population large enough and diverse 

enough to make recovery tractable by consensus. 
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CHAPTER 6: FAULT MONITORING AND RECOVERING USING 
ORGANIC COMPUTING APPROACH 

6.1. Embedded Organic Computing Architecture 

New trends in architecture and investigations for run-time adaptive systems have begun to 

explore the possibility of autonomous run-time reconfiguration for increased reliability and 

power awareness [35]. The Organic Embedded System (OES) architecture developed herein 

utilizes Evolvable Hardware [62] approaches based on a variety of genetic techniques. 

6.1.1. Requirements and Architectural Overview 

Requirements are summarized below for the ASoC-style architecture in Figure 23 which is 

partitioned into two logical layers.  The functional layer houses the Intellectual Property (IP) 

core component or Functional Elements (FEs).  FEs can be any functional element from general 

purpose CPUs, memories, on-chip busses, special purpose processing units or network 

interfaces. The Autonomic layer consists of Autonomic Elements (AEs) and an interconnect  

structure among the AEs. The following properties are inherent: 

1. FEs and AEs both reside on two distinct layers with an interconnection  

    structure between them.  

2. The AEs and FEs can either be realized in hardware, software, or through 

hardware/software co-design, 
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3. The AE layer should supervise the functionality of the FE elements in the FE layer 

while requiring no application-specific algorithms on the AE layer to be developed to 

realize this fault-tolerant  functionality.  

4. The Observer/Controller architecture includes an AS element which had no 

counterpart to evaluate if the AS fault-free, so in the OES design we address reducing the 

vulnerability of the AS by emphasizing its simplicity as part of our approach.  

As shown in Fig 29, the separate layers of the OC architecture implemented in the OES are 

mapped to alternating vertical columns of logic slices on the Xilinx Virtex II Pro FPGA device.  

This column-oriented structure permits the architecture to take advantage of Xilinx partial 

reconfiguration technology to manipulate the bitstreams of either the AEs or FEs configurations 

for the fault recovery. 

 

Figure 23: Column-oriented OES on Xilinx Virtex II Pro FPGA platform 

Even a small size system composed of large numbers of various functionalities will need to 

occupy differing amounts of physical resources for each FE as well as require a different number 
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of I/O resources.  Thus as shown in Figure 23, each FE is placed in single or multiple contiguous 

columns of the FPGA chip.  The number of columns for each FE can be allocated as necessary 

according to the area requirements of the system being designed.  Xilinx bus macros [21] are 

used to provide relocatable reconfigurable interfaces between FEs and AEs, AEs and the AS, and 

between FEs via a user-defined interconnection network module. 

 

Figure 24: AE architecture in OES 

Furthermore, controllability and maintainability demands can become substantial because of the 

overhead associated with scheduling, coordinating, and communication among the large number 

of interacting components. In order to evenly distribute this burden, the decentralization of the 

Observer/Controller components is proposed.  In OES, the AEs reduce the demand for 

centralized controllability as shown in Figure 24.  It consists of a Concurrent Error Detection 

(CED) [52] unit to collect and Evaluate outputs from 2 FEs, a Checksum for AE fault detection 

which are checked against Stored Checksum values and  an Actuator.  Each AE will monitor the 

operation of the corresponding FE component, evaluate the performance of the FE and render a 

local assessment on the failure status of FE.  An important architectural property of the OES is 

that all AE components are identical in structure despite the fact that they monitor different types 
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of FEs. The homogeneous characteristics of the AE components deliver a uniform-behavior 

property which is leveraged to realize a consensus-based evaluation fault-detection methodology.   

The AE layer will constrain the fault impact under consensus-based control mechanisms in a 

fashion that can improve system autonomy level while not needing application-specific 

information about the FEs nor extensive details of their functional behavior.  Even though the 

AE components will add an additional layer to the design, this will ease modification difficulties 

inherent with current commercial IP cores while reducing the failure impact as results show in 

Section 4.3. 

In addition to the AE and FE layers, the OES architecture also contains an AS.  The AS 

implements the consensus mechanism to evaluate the behavior of all the AEs in the system and 

distinguish the abnormal individuals whose behavior may be distinguished from the rest of the 

members in the AE population. GA operators are implemented here to achieve fault recovery.  

All other factors being equal, the likelihood of local permanent fault of any component is 

proportional to the device area required for its realization.  The AS is kept as simple as possible 

to reduce its complexity and reduce its likelihood of experiencing a fault proportionally.  

6.1.2. System Operation 

The OES architecture supports several operational phases of interaction between the FEs, AEs, 

and AS.    The initial state of all components is fault-free. Figure 25 shows a diagram of the flow 

of operations in the OES architecture as described below. 
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Figure 25: OES Integrated FE and AE Failure Detection Procedure 

6.1.2.1.System Initialization Phase 

FE Initialization step 

Three functionally identical FE configurations labeled FE, FE, and S-FE are instantiated on 

different physical locations. Initially, only the two FEs are active and the S-FE acts a cold spare 

FE.  The FEs supply the output for each set of inputs applied in parallel in a Concurrent Error 

Detection configuration to the AE for the fault detection.   

Compute Checksum step 
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Each AE contains a Checksum Component which uses the stored outputs of the AE along with 

the small finite number of possible input combinations to the Evaluator and Actuator to populate 

the Check Sum Lookup Table (CS-LUT) in the AE. This feature in the AE will be utilized to 

detect if the current AE is faulty in a consensus-based approach. For the benchmark circuit 

selected a carry and sum, the CS-LUT required a 16-entry x 4-bit memory. 

6.1.2.2.FE Fault Detection/Recovery and AE monitoring Phase 

As depicted in Fig 31, at runtime the inputs destined to the FE are applied to both active ones 

under a CED strategy. After allowing for FE inputs propagation time through the AE, the 

expected output will be supplied to AE-CED for the fault detection. The output of the FE is then 

compared in the AE-CED module and any discrepancy between the two values will indicate that 

a fault has occurred either of one the FE or the AE-CED itself.  Further detection will be required 

to distinguish which of the two is faulty. 

If the AE component is identified as innocent then the fault which occurred in this output will be 

discarded and control will branch to a fault identification phase which will wakeup the cold 

standby FE and construct a temporary TMR system which can articulate the faulty FE under the 

new supplied external input. Furthermore, as described in Section 6.2, the actuator will initiate a 

repair cycle which may require automatic evolutionary repair of the identified faulty FE which 

will be set as standby-under-repair and the AE-CED will return to receive the remaining two 

active FEs’ inputs. The decision-making procedure causes at least one throughput-delay penalty.  
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The AE supports two exclusive modes: FE monitor mode as described above and AE self-repair 

mode described in Section 6.2.2. Whenever the AS identifies that an AE is faulty then the AE 

will relinquish observation of its FE and focus on its own self-repair. Under FE monitor state, 

AE will keep observing the FE behavior and issue control instructions through the actuator. 

The recovery procedure entails the use of alternative designs for the AE that have identical 

functionality but distinct physical resources. GA operation will manipulate the representation of 

the AE bitstream and evaluate each new generated offspring until the fault is occluded. This 

evolution may be time-consuming and halt the faulty FE operation, yet it is entirely automatic 

repair without any human intervention.  

6.1.2.3.AE Fault Detection Phase 

Three possible faulty scenarios may occur inside the AE: 

• A fault may exist in the CED, Actuator, or Evaluator, 

• A fault may exist in Check Sum component, or 

• A fault may exist in the Stored CS-LUT. 

All three scenarios are detected under the proposed approach.  To detect if the CED, actuator, or 

evaluator are faulty we apply the outputs of the three components to the checksum circuit while 

simultaneously the inputs of the three components are applied to a parallel search circuit that will 

locate the input combination and its corresponding output in the CS-LUT.  By the time the inputs 

propagate through the checksum circuit, the output from CS-LUT will be available, the two 

values are then compared and any discrepancy will detect a fault. The second and third scenarios 
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will also generate a discrepancy between the Checksum component and Stored Checksum 

component.  

Furthermore, the dissertation reveals that the design would operate even under multiple faults as 

long as multiple faults generate the same faulty behaviors among different sub-components of 

the AE which is impossible in this design because each sub-component is implemented with 

distinct logic/arithmetic functionality. Nonetheless, we have observed in experiments that GA 

mutation operator described in Section 4.3 applied to AE unit and using cell swap can sometimes 

self-heal the AE unit even if more than one of its components is faulty. 

6.1.3. CBE evaluation process and AE fault recovery Phase on the AS 

A Consensus-Based Evaluation (CBE) approach is utilized for assessing the performance of 

individuals based on broad consensus of the AE population instead of a conventional fitness 

function defined for GAs. Adoption of CBE enables information contained in the population to 

not only enrich the evolutionary process, but also support fault detection and isolation. The AS 

component will collect all of AEs outputs and distinguish the abnormal individuals from the 

population instead of using traditional threshold, the population information will assist the outlier 

identification as well as fault recovery. 

The automatic fault recovery utilizes the homogeneous characteristic of the AE components; 

each fault impact on any AE can mirror the health of the AE configuration which may reveal 

some inherent fault immunity property.  Even though each AE occupies different physical 
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locations, they are implemented using identical logic functionality which can be used to 

overcome physical failure as explained in Sections 6.2. 

6.2. Evolutionary Process FE and AE 

The evolutionary process generates improved bitstreams which can be used to configure the 

logic fabric within a pre-defined genotype to phenotype mapping [63]. The phenotype is defined 

as the FE or AE circuit manifestation of a particular genotype.   The physical realization is based 

on the specific configuration bitstream which is generated by the Xilinx synthesis tools and is 

readable by the FPGAs in that device family. In order to reflect the identical logic functionality, 

the logical chromosome of the AE will be uniform despite the physical configuration. 

6.2.1. Genotype Definition 

Genotype changes during evolution must adhere to the Xilinx-defined format of the bitstream. 

Even though not all bitstream information can be manipulated, there is still adequate 

evolutionary potential in the key fields of the bitstream.  To prevent undesirable conditions that 

may damage the FPGA such as a mutation which might tie together two logic outputs 

inadvertently, a logical genotype is used for evolution.  The proposed logical genotype in this 

chapter is an LUT vector which contains logic and physical ordering information plus the 

configuration I/O information as shown in Figure 26. The LUT is the basic building block of the 

genotype and contains both logic ordering numbers (Logic #) and physical ordering numbers 

(Col # and Row #) which identify both physical location and the functionality sequence of the 

LUT.  Each LUT has 4 single-bit input lines in Xilinx FPGA architectures and each input line 
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contains the 2-tuple (Col # and Row #). The functionality of the LUT describes the logic 

function which is implemented and the content of the LUT stores the 24=16 bits which are the 

actual content of the LUT in the hardware. 

 

 Figure 26: Genotype Chromosomes of GA Operation 

Based on the genotype, three genetic operators are developed in this dissertation for 

manipulation, each of which emphasize a different aspect of information for the configuration 

and fault recovery process. The operators are implemented in the software simulator and in the 

FPGA prototype as described in Section 6.3. 

The basic principle of evolutionary recovery approach advocated is on maintaining the integrity 

of the functionality of the configurations throughout evolutionary process. Instead of exploring 

completely random search space, the proposed approach will move outwards from the original 

design space by trying permutations of the existing logic and interconnection for occluding the 

physical failure. The reason is that feasible repairs may be expected to require less computational 

complexity than realizing a completely new design.  Simulation and experimental results have 

borne this out this relationship between repair and design complexity [42]. 

89 



6.2.2. Genetic Operations 

6.2.2.1.Mutation Operation 

The mutation operator is modified in order to fit the FPGA architecture which varied with 

traditionally defined mutation. Instead of the inverse binary bit approach, the objects of mutated 

are input interconnection of LUTs. The mutation will rearrange the input interconnection to each 

input pin of LUTs in order to search the potential unused resources for occulted the fault impact 

resource. In this way, the functionalities of LUTs are undistorted and explored in the search 

space.  

Figure 27 and Figure 28 show how mutation works on both genotype and phenotype in the 

proposed GA design. Both figures show that after the permutation of input pins of the LUT, the 

new interconnection may use some inherent redundancy resource existing in the original design 

which is the result of the logic synthesis. The mutation also modifies the content of the LUT 

because of input changing. As shown in Figure 27, the original functionality is F = 

F1·(F3＋F4) and input F2 is unassigned by the synthesis tool. The mutation operator will 

change the input arrangement to F4 as unused input and the function changed to F = 

F1·(F3＋F2) and the shadow on the Before F2 and After F4 stand for the rearrangement of 

input lines as well as the LUT content update according to changed functionality. From Figure 

28, you can see the detail update in both input lines and content of LUT according to the shadow 

show on each component. This operator will provide some opportunity for fault correction 

strategy for either input stuck-at fault or LUT content stuck-at fault. The process can be 

implemented without human interference and indispensable for the evolutionary procedure. 

90 



 

 Figure 27: Mutation on the Genotype Chromosomes 

 

 Figure 28: Mutation on the Phenotype 

6.2.2.2.Cell-Swap Operation 

The Cell-Swap operator is swaps two distinct LUTs’ blocks and meanwhile maintaining correct 

the logic order and functionalities in the genotype. The swap will exchange all the LUT input 
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interconnections, LUT content and physical 2-tuple (Col#, Row#) as well as the logic sequence. 

As shown in Figure 29 and Figure 30, two LUTs swap all the information except the LUT 

sequence information which is fixed correspondent to hardware location. After swapping, the 

two LUTs will implemented the different functionality and have different input lines as the 

shadow in the figures. In this way, some fully occupied LUT may swap to some partially 

occupied LUT and find some alternative physical resource to recover from the fault impact. 

Another update issue in the configuration which should be considered but not shown in the 

figures is the output line update according to the swapping. Since the logic sequence now located 

in different LUT, the interconnection of output vector should also get current 2-tuple (Col #, 

Row #) to keep the integrated functionality of the entire configuration.    

 

 Figure 29: Cell-Swap operation on Genotype chromosomes 
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 Figure 30: Cell-Swap operation on Phenotype chromosomes 

6.2.2.3.Partial Match Crossover Operation 

Partial Match Crossover (PMX) is proposed by [5] and maintains the crossover information as 

well as order information. In our design, the logic orders of each LUT are fixed and thus limit the 

possible search space of the initial design. Under PMX, two configurations are aligned, and a 

crossover site is picked uniformly at random along the boundary of the LUTs in genotype. This 
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crossover point defines a mating section that is used to affect a cross through LUT-by-LUT 

exchange operations. 

 

 Figure 31: PMX operation on Genotype chromosomes 

Figure 31 shows the crossover point that occurs in the position 4 of the LUT vector where PMX 

is implemented by position-wise exchange. The first step is to map configuration B to 

configuration A by exchanging the following aligned LUTs {(4,7),(5,2),(6,1),(7,5)}. This results 

in both configuration having duplicate elements and similar replacement mutation reoccurs to 

clean such correct functionality behavior. Applying PMX results in two new configurations A’ 

and B’. 

94 



6.2.3. Consensus Based Evaluation (CBE) 

An innovation of the OES architecture over conventional fault detection, diagnosis, and recovery 

strategies for the fault detection and fault recovery, Consensus Based Evaluation (CBE) 

approach was developed for fault detection and a GA approach was applied for fault repair in 

order to design an embedded system that exhibits some of the self-x properties essential for OC 

designs.   

The GA used in the FPGA aforementioned in section 4.2 present some successful applications 

and demonstrates the benefit of both GA and reconfigurable device. The entities of GA used in 

this dissertation are analogical with the FPGA architecture but simpler than the real bitstream 

file. In other words, we only encode the information that can be manipulated in the bitstream to 

our genotype and apply specifically designed GA operators the bitstream. 

The difference between repair and design is the difference in search space. The evolution repair 

strategy presented does not damage any functionality of the configurations. Actually the 

evolution results in some manipulated offspring of parents. Even if all of the configurations are 

fault-free, faulty physical resources may inhibit the configurations from generating the expected 

output. Therefore, the objective of the evolution is to obtain some specific configuration which 

works around faulty physical resource. 
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6.3. Experiment Configuration 

6.3.1. FE and AE Failure Coverage 

In the experiments, coverage and resolution of faults in the FE and faults in the AE are 

evaluated.  The FE fault-handling experiments inject a stuck-at-zero or stuck-at-one fault at one 

of the FE’s LUT input pins and the resolution process proceeds as described in Section 6.1.  The 

AE fault-handling experiment utilizes a CBE-based approach to detect the faulty AE in the 

population.  Once the fault is detected, the AS generates a new population for identified AEs, 

reconfigures them on the logic fabric sequentially in order to evaluate their correctness. After all 

the configurations are evaluated, CBE keeps detecting faults in that AE under repair, until the 

number of newly created configuration evaluations reach Ew.  During the AE repair, the FE will 

reside on the chip and generate output even under fault impact conditions. The AE units are said 

to be functionally identical yet physically distinct due to the fact that they all contain the same 

functional elements with a constraint of identical number of I/O pins.  This implies that as long 

as the AE is designed for the largest output word-width output by any FE, then all of the FEs can 

differ in function and even differ in output word-width by just tying any unused input pins of the 

AE to ground without any loss of generality.   

6.3.2. Single vs. Multiple Fault Coverage 

In order to determine the fault handling mechanism in the proposed system, two different fault 

models Single-Failure Model and Multiple-Failure Model are introduced.  If Single-Failure 

Model is applied to the proposed system then the fault will be located either in a FE or an AE 
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component, but not simultaneously. Therefore the analysis of the evolutionary recovery 

operation will only focus on the faulty component without considering the other component’s 

status.  Whenever the AE component is undergoing an observable fault impact, the system will 

lose the monitoring functionality of the corresponding FE component.  However, under Single-

Failure Model, the FE component will be fault-free and maintain data throughput without error 

during that time period.  

Alternatively, if the FE component is under the impact of the fault then the AE component 

notifies the AS that the wrong output came from the output of the FE component.  Even when 

the FE component is under fault impact, the cold spare can provide a ready replacement for 

reconfiguration.  Under the FE fault case there is no unavailability once the switch to TMR to 

identify the failed resource is completed.  The failed FE can be repaired in the background via 

the GA as a refurbished CED mode has been restored. 

For a single FE fault, the system availability, ASF, is given by Equation (6.2).  Let the number of 

correct behaviors of the FE that have been observed during the evolutionary recovery phase be 

denoted by Fc while the number of errant or discrepant behaviors of the FE is denoted by Fe.  

The quantity 1 represents the number of faulty outputs, i.e. exactly one output required to detect 

the fault during the original CED configuration.  The coefficient 2 is the number of the 

reconfigurations required, i.e. one from CED to TMR, and one back from TMR to CED.  The 

quantity β represents reconfiguration time expressed in the same time units as the computation 

time units, yielding: 
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6.3.3. Hardware Prototype 

The case study example shown in Fig. 38 was implemented on the Xilinx Virtex II Pro as proof 

of concept to accompany other software simulations performed and presented in Section 5.  Only 

a small number of resources are utilized for the AE and FE. The OES architecture in this case 

study consisting of a Full Adder FE unit with all of the elements in the AE Unit is realized using 

HDL implementation on the Xilinx Virtex II Pro FPGA using the GNAT library along with the 

MRRA framework and JTAG reconfiguration interface. 

In Figure 32, the FE and AE units are shown in dashed boxes. The CS-LUT is shown in the 

dotted box. The Evaluator consists of XOR gates to check for any discrepancy between the FE 

units.  There are three FE units of which only two are active during runtime, the third FE is a 

standby, i.e. S-FE, and will only become activated once a discrepancy is detected on the FE 

elements. Once a discrepancy is detected, the switching logic shown within the red box (contents 

not shown) will be used to activate the standby FE.  TMR will be used in this case for the 

Evaluation Window during which Genetic Operators will be used to repair the faulty FE 

individual.  Once evolution achieves repair, the repaired FE will now becomes the S-FE. This 

process is instantiated each time a FE discrepancy is detected. 
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 Figure 32: Gate Level Design of OES (Case study) 

Notice that the inputs of the FE unit are connected to all FE units including the standby FE.  

Discrepancy in the two FE elements is detected using XOR gates fed to an OR gate. The output 

of the evaluator is fed to the Actuator that uses an XOR gate to send a signal labeled FE 

Discrepancy Value (FE_DV) that will initiate GA operators on the FE unit once a discrepancy is 

detected.  The outputs of the two XORs checking the two outputs of the two FE elements along 

with the Evaluator output and Actuator output are all fed to a checksum unit consisting of 4-to-2 

compressor tree.  In this particular case study only one 4-to-2 compressor is needed. To check for 

any discrepancy between the Checksum element and the CS-LUT during runtime, a circuit 

similar to the evaluator circuit is used. The outputs of the Checksum element and CS-LUT are 

fed to XORs and the output of the XORs are fed to an OR gate. The output of the OR gate named 
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AE Discrepancy Value (AE_DV) will determine if a discrepancy is found between the two 

elements at runtime. The AE_DV is fed to the AS unit (not shown in figure) where it will be used 

along with CBE to confirm that the AE is in fact faulty and will cause the AS unit to initiate GA 

operators on the faulty AE element.  Figure 33 produced by Xilinx ISE shows the physical layout 

of the design shown in Figure 32 on a Xilinx FPGA Virtex-II Pro. 

 

 

  

 

 Figure 33: Physical Layout of OES system on FPGA with GNAT/JTAG shown 

6.4. Result and Analysis 

Three circuits were evaluated using the OES architecture, all of which are specified in Table 1 

from the MCNC-91 benchmark [61]. The experiments implemented test the fault repair process 

on both the FE and AE components simultaneously.  As previously discussed in Section 6.2, this 

will result in cascade of repair of both components via a single test scenario.  In the FE fault 

recovery process, only Mutation and Cell-Swap operators are applied and the unit evolved to the 

fault-free state without utilization of population information.  A fault was also induced on an 

input of LUT within the AE unit.  During the AE fault recovery process, all three genetic 
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operators along with CBE were applied to evolve the AE unit to a refurbished status. The use of 

CBE along with GA operators proved to provide a large benefit in terms of number of repair 

iterations compared to conventional offline GA-based design-from-scratch-approaches [14, 15, 

31].  Each experiment was executed for 10 runs on each circuit.  The GA parameters were set as 

Mutation Rate=0.5, Cell-Swap rate=0.5 and Crossover rate=0.5 in all of the runs. The population 

size for AE is five and FE there is 2 active and one spare. The GA tournament selection rate was 

selected to be 2. 

Table 10: MCNC-91 Benchmark Circuits Evaluated on OES Architecture 

Circuit Name Circuit Function Inputs Outputs Approximate Gates 
 z4ml 2-bit Add 7 4 20 
cm85a logic 11 3 38 

cm138a Logic 6 8 17 

The evolution repair strategy results in some manipulated offspring of parents. Even if all of the 

configurations are fault-free, faulty physical resources may inhibit the configurations from 

generating the unexpected output. Therefore, the objective of the evolution is to obtain some 

specific configuration which works around the faulty physical resource to eventually occlude it. 

Figure 34 shows the fitness obtained for the cm85a circuit when a stuck-at-zero fault was 

injected at 48 different locations.  Specifically the circuit was synthesized using Xilinx ISE to 

occupy 12 LUTs that each of which had 4 inputs, yielding 48 exclusive failure locations. The 

fitness of each cm85a circuit under each test scenario ranges from zero outputs correct up 

through a maximum of 211=2048 outputs correct because cm85a has 11 inputs. 
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Figure 34: Fitness as a function of 12 LUTs with 48 fault locations tested 

The three circuits’ experimental results are listed in Table 11 through Table 13 which lists the 

system Availability during the repair phase. It is important to note that the system Availability 

outside the repair phase is by definition 100%.  The column n denotes the measured number of 

reconfigurations for either the AE or the FE during the repair process during each test run.  In 

last three columns, we assume the βis equal to 103, 104, and 105 respectively, to anticipate the 

system performance under different reconfiguration to computation ratios. The result presented 

shows that even spanning 3 orders of magnitudes of difference, the system performance can still 

be acceptable for some certain circumstances. When β=1000, the average system availability is 

75.05% for the z4ml circuit and 82.21% for the cm85a and 65.21% for cm138a, all three may not 

exhibit graceful degradation but can keep partial functionality under the fault impact. The values 

of the redundancy for both FE (RFE) and AE (RAE) are calculated based on the ratio of unused 

LUT inputs over the total number of LUT inputs used on both AE and FE designs, respectively. 
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 Table 11: z4ml Circuit Experiment Results 

Fault-
Free AE 
output 

Fault-
Impact 

 AE output
Circu

it 
z4ml 
Run  

RAE=14.1
% 

RFE=25% 
n 

Fc1 Fe1 Fc2 Fe2

System* 
Availabili

ty 
During 
Rep. 
β=103

System* 
Availabili

ty 
During 
Rep. 
β=104

System* 
Availabili

ty 
During 
Rep. 
β=105

AE 1
5 20856 2003 

1 
FE 2 1997

9 
285

8 22  
80.45% 50.00% 8.97% 

AE 7 9403 917 
2 FE 2 8914 130

2 10  72.99% 30.85% 4.24% 

AE 1
7 24899 2215 

3 
FE 2 2366

4 
338

0 8  
81.48% 54.20% 10.43% 

AE 1
1 14586 1702 

4 
FE 2 1423

4 
199

2 8  
78.10% 41.59% 6.59% 

AE 1
1 15474 1375 

5 
FE 2 1476

4 
203

6 2  
78.53% 42.47% 6.81% 

AE 3 3991 278 6 FE 2 3685 521 6  
59.41% 15.58% 1.81% 

AE 7 9612 767 
7 FE 2 8929 128

7 4  73.10% 30.87% 4.25% 

AE 5 6880 444 8 FE 2 6334 877 7  68.78% 24.07% 3.06% 

AE 1
7 23201 2084 

9 
FE 2 2206

8 
317

3 2  
81.01% 52.46% 9.80% 

AE 9 12622 1866 
10 FE 2 1259

2 
183

1 6  76.68% 38.65% 5.88% 

Average System Availability During Rep. 75.05% 60.54% 6.18% 
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* = system Availability outside the repair phase always equal to 100%.   

 Table 12: cm85a Circuit Experiment Results 

Fault-Free 
AE output

Fault-
Impact AE 

output 
Circuit 
cm85a 

Run 
RAE=14.1% 
RFE=16.67% n 

Fc1 Fe1 Fc2 Fe2

System* 
Availability

During 
Rep. 
β=103

System* 
Availability 

During 
Rep. 
β=104

System* 
Availability

During 
Rep. 
β=105

AE 11 19479 1531 1 FE 2 16526 301 50 1 87.81% 44.95% 7.64% 

AE 21 31371 3616 2 FE 2 28966 482 91 1 92.13% 58.65% 12.66% 

AE 7 13092 1044 3 FE 2 11257 161 33 1 83.93% 35.90% 5.34% 

AE 7 11202 1145 4 FE 2 11845 174 36 1 84.53% 37.06% 5.60% 

AE 25 33405 2919 5 FE 2 36714 574 40 1 93.45% 64.11% 15.49% 

AE 1 3724 96 6 FE 2 2358 45 35 1 53.91% 10.66% 1.18% 

AE 11 16228 1341 7 FE 2 16543 284 52 1 87.90% 45.00% 7.65% 

AE 7 10824 1127 8 FE 2 11219 199 47 1 83.66% 35.80% 5.33% 

AE 3 4821 367 9 FE 2 4730 77 41 1 69.66% 19.20% 2.33% 

AE 13 14438 2190 10 FE 2 13390 337 46 1 85.18% 39.78% 6.29% 

Average System Availability During Rep. 82.21% 39.11% 6.95% 

• = system Availability outside the repair phase always equal to 100%. 
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Table 13: cm138a Circuit Experiment Result 

Fault-Free 
AE output

Fault-
Impact AE 

output Circuit 
cm138a R

Run 
AE=14.1% 
RFE=20% n 

Fc1 Fe1 Fc2 Fe2

System* 
Availability

During 
Rep. 
β=103

System* 
Availability

During 
Rep. 
β=10

 
System* 

Availability
During 
Rep. 
β=104 5

AE 7 11696 1488 1 FE 2 11828 191 65 1 84.44% 37.07% 5.61% 

AE 7 10071 759 2 FE 2 8484 2333 15 1 66.23% 27.56% 4.03% 

AE 5 8296 754 3 FE 2 7057 1957 2 1 64.07% 24.33% 3.38% 

AE 3 4624 450 4 FE 2 3724 1083 25 1 54.87% 15.10% 1.83% 

AE 1 1849 94 5 FE 2 1404 398 24 1 37.31% 6.54% 0.71% 

AE 7 11060 962 6 FE 2 9347 2672 3 1 66.68% 29.20% 4.41% 

AE 23 31366 3067 7 FE 2 26732 7524 33 1 73.75% 49.30% 11.42% 

AE 15 21769 1906 8 FE 2 18180 5258 28 1 71.50% 41.89% 8.15% 

AE 9 12945 916 9 FE 2 10778 3044 20 1 68.16% 31.91% 5.05% 

AE 7 9409 963 10 FE 2 7947 2269 25 1 65.12% 26.36% 3.79% 

Average System Availability During Rep. 65.21% 28.93% 4.84% 

* = system Availability outside the repair phase always equal to 100%. 

Figure 35 shows the evolutionary process for the cm85a circuit which has 11 inputs and 3 

outputs and a maximum fitness of 211=2048.  During the repair process, only mutation and cell-

swap operators are implemented because there is only single instance of FE under repair. Even if 

a random walk around the search space is achieved, then the results in the Fig.41 show that most 

of the time the circuit’s fitness is above 1900 out of 2048 even during the existence of the fault 
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within the circuit resources.  The reason of this phenomenon is either the inserted fault only 

impacts the circuit to a minor degree or because fan-in exceeds fan-out in this circuit.  To better 

explain the concept behind Figure 35 and why the fitness and evolution behavior differs from a 

conventional Genetic Algorithms which improves monotonically over time, consider that in the 

OC case, the unit being evolved is always predefined at design time. What the GA in our system 

does is to explore a limited search space near that existing design to identify alternate physical 

resources to bypass a faulty input or faulty LUTs.  Since the functionality of the unit is already 

predefined then the search space is limited to identifying distinct physical resources for 

occluding the fault to restore functionality. Hence, the GA is not exploring new designs from 

scratch, but restoring the lost functionality of the failed design. This is also demonstrated in 

Figure 35 where the stuck-at-zero fault is applied to all possible inputs of the FE, yet the fitness 

of the unit was on average above 1900 out of a maximum fitness of 2048.   Hence, the slightly 

increasing non-monotonic curves in Figure 35 and Figure 36 can be observed. 
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 Figure 35: cm85a FE Evolutionary Recovery without CBE 
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 Figure 36: AE Evolutionary Repair for cm85a Circuit using CBE 

Also in Figure 36, the cm85a AE evolutionary process is shown. The population information 

helps repair the circuit. The difference of this evolutionary process with the traditional GA is that 

the configurations are all correct, but the physical fault in the hardware resources that they utilize 

produces the unexpected behavior of the circuit. Instead of generating a new design, the 

evolution process only permutates the current design using different input line combination or 

different logic that occupies different physical resources. Because of the inherent redundancy 

which is generated by the synthesis tool, there is always a chance for new permutation occluding 

the physical failure. Therefore, the repair process is not time-consuming like the traditional GA 

process because of small search space.  

When comparing Figure 35 and Figure 36, we clearly see the different benefit of the CBE-GA 

approach in comparison with just the random GA operation approach, respectively. It should be 

noted here that we are not applying the CBE-GA operator algorithm on the FE because in our 

design we are only utilizing GA operator to achieve fault-tolerant FEs. The population 
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information assists the evolution not only during the repair process and for future repairs as well. 

In the future, for any faults occurring in distinct physical locations but present in the same 

functional unit, the repair the configuration can used as a repair reference during the crossover 

which may help the reparation.  Only the mutation and cell-swap operation explore the search 

space and while maintaining most of the time a graceful degradation property for circuit 

operation. However, such characteristics may not generally apply for all kinds of circuits. It may 

only manifest on certain types of circuit and for certain types of fault inserted, however it does 

apply for several different circuit types in the standard MCNC-91 benchmark. 
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CHAPTER 7: CONCLUSION  

7.1. OVERVIEW 

The original motivation of CBE approach combined conventional fault tolerance techniques and 

newly emerging reconfigurable devices to obtain improved system reliability and availability 

simultaneously. This dissertation is the first successful attempt to propose, design, implement 

and evaluate such components and architectures.  Even though TMR/Standby approaches have 

been used separately, their benefits can be combined. Also because the characteristics of the 

FPGA, the reutilized physical resources under fault impact and partial functionality become 

feasible candidate solutions to increase mission lifetime. Furthermore, the EH approach enhances 

CBE self-repair capacity make it more suitable for real applications. 

Several advantages of the proposed CBE approach are presented in this dissertation. The 

conventional TMR, Standby and dynamic TMRSB systems are limited by the hardware platform 

which may not have automatic reconfiguration capacity and exhibit overhead with the standby 

components. Without reconfiguration capacity, the standby components must not only use 

mutually exclusive hardware resources from failed components, but also add specific extra 

switch components which will decrease the system reliability. However, with the FPGA device, 

all the previous obstacles can be considered as trivial factors because of inherent reconfigurable 

characteristic of FPGAs. The bitstream files occupy less than several hundred Kilobyte storage 

space which will configure a multimillion gate sized FPGA device to provide superior 

performance over extra switching components. Overall inherent properties of the FPGA device 

provide the TMRSB system a renewed opportunity as a fault tolerance technique.  
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7.2. Evolvable Hardware and CBE 

Furthermore, partial online EH regeneration essentially defines a problem that is different from 

offline EH design.  A population of working designs can facilitate restoration of functionality by 

providing diverse alternates since the alternative configurations are only occupy small area of the 

memory.  Conventional fitness evaluation associates a rigid individual-centric fitness measure 

defined at design-time.  CBE uses instead, a self-adapting population-centric assessment method 

at run-time. Population-centric assessment methods such as CBE can provide an additional 

degree of adaptability and autonomy.  CBE relies on the consensus observed among a group of 

individuals to evolve and adapt fitness criteria for individual members, thus providing graceful 

degradation.  By utilizing outlier detection techniques that work temporally without the need for 

exhaustive testing, CBE provides a fault tolerance technique that maximizes device throughput 

during the fault detection process.   

Under CBE, the outlier detection mechanism worked as shown in Figure 18, the measured 

performance of an individual over 28 iterations during the repair process for the z4ml circuit.  In 

this particular experiment, the reintroduction rate used was 0.20, with both the cell-swapping rate 

and the input permutation rate set to 20%.  As shown in Figure 18a, whenever the discrepancy of 

the individual rises above the average discrepancy of the population, the individual is reloaded 

onto the FPGA, as evidenced by Figure 18b. Conversely, when the individual discrepancy is 

equal to, or less than the average discrepancy of the population, the individual is not reloaded, or 

reloaded less than the average member of the population. This shows the autonomous behavior 

capability of CBE. 
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  While the pre-existing methods focus on creating a single fully-fit configuration, CBE extends 

this to maintaining a population of solutions that have a higher average fitness.  This ensures that 

the adaptability of a population of viable alternatives to a variety of unanticipated faults. An 

additional benefit of maintaining a population of diverse partially-fit individuals is that when the 

inputs to the system are localized to a subset of the set of all possible inputs, even partially-fit 

individuals can assist in generating expected outputs, thereby improving the rate of viable 

throughput. The population size evaluated was 20 and 30 for TMR/DUPLEX MCNC91 

benchmark experiment where each branch has 10 candidates. Considering most benchmark 

circuits are less than 100 equivalent gates, 10 should be appropriate number of alternative 

possible designs. 

CBE improves on existing fault tolerance techniques for reconfigurable devices by providing an 

adaptive, evolutionary algorithm that leverages diversity inherent in a population of solutions to 

evolve solutions at runtime with minimal downtime. The system availability shown in Table 11, 

Table 12, and Table 13 are keeping the system executing even under the presence of a fault 

impact. Finally, an additional benefit of CBE is that fitness evaluation becomes independent of 

the application running on the FPGA enabling model-free assessment during evolutionary repair. 

For example, experiments for the multiplier in section 5.3 show CBE did not require any 

behavior model nor truth table for the fitness function which is superior for adaptive system. 

Leveraging the property that even partially-fit individuals respond correctly to some subset of 

inputs, CBE is shown to maintain adaptable levels of system availability in the presence of 

defective configurations.  This allows for graceful degradation using population characteristics 

without requiring a circuit-specific fitness function.  Additionally, the proposed approach 
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requires no specially constructed test vectors, as the response of individuals to real-time inputs 

forms the basis for evaluation. In Table 9, the number of the iteration number for the repair all of 

the faulty individuals by 50%. This recasts the emphasis in EHW for repair from exhaustive 

testing to a focus on functionality based only on the relevant inputs which are encountered in the 

embedded application.   

Rather than trying to anticipate operating conditions, CBE utilizes runtime information to adapt 

to the subset of possible faults which are actually present and being articulated. Even pervasive 

faults that may completely deplete all viable spares from the dormant population are shown to be 

recoverable, given adequate population size and diversity.  We can see from Figure 19 and 

Figure 20, the population size 20 and 30 for Duplex and TMR models respectively, are sufficient 

to distinguish and isolate fault and repaired the faulty individual with operational throughput. 

This focus on Recovery Complexity emphasizes use of a diverse population of previously correct 

alternatives as compared to a single failed seed configuration. Current work includes the 

development of a self-contained System-on-Chip implementation of self-healing EHW using the 

Multi-Layer Runtime Reconfigurable architecture [64] as a partial reconfiguration framework for 

Xilinx SRAM-based FPGAs. 

7.3. Organic Computing Architecture 

Even though model free circuits design are implemented and evaluated by CBE, this research 

was taken further to construct an autonomous self-governing architecture in order to make the 

whole CBE proposed applicable. In this dissertation, we developed an OES architecture for 

sustainable performance of reconfigurable FPGA soft cores. The architecture was developed 
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using an OC observer/controller organization and regeneration with Genetic Operators.  Other 

innovations included provision of availability during regeneration, outlier-driven repair 

assessment, and a uniform design for the AEs. The design objective of developing an 

architecture that exhibits self-adaptation and self-healing properties can be attained using such 

techniques for completely autonomic operation without human intervention.  The OES 

architecture is capable of handling many single fault scenarios and several multiple fault 

scenarios.     

Experimental results strongly supported our design objectives were met.  Using logic circuits 

from the MCNC-91 benchmark set, we assume the βis equal to 103, 104, and 105 respectively, to 

anticipate the system performance under different reconfiguration to computation ratios. The 

result presented shows that even spanning 3 orders of magnitudes of difference, the system 

performance can still be acceptable for some certain circumstances. When β=1000, the average 

system availability is 75.05% for the z4ml circuit and 82.21% for the cm85a and 65.21% for 

cm138a, all three may not exhibit graceful degradation but can keep partial functionality under 

the fault impact.  The synthesized OES architecture was prototyped on Xilinx Virtex II Pro 

FPGA device supporting partial reconfiguration to demonstrate the feasibility of the OES 

architecture for intrinsic regeneration of the selected circuit. Through application of genetic 

operators for mutation and crossover, the OES architecture successfully achieved full repair of 

faulty element in the presence of stuck-at-zero and stuck-at-one faults. This integrated the use of 

redundant LUTs inherited in the FPGAs design.  This integrated approach provides an 

innovation in fault-handling capability not only for the FEs, but also for the AEs as well. 
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The CBE-based approach developed herein can outperform conventional GA-based approaches 

for self-healing due to its search in a smaller repair space as opposed to an unbounded design 

space.  The CBE-based approach relies heavily on population information and thus can be 

applied to the AEs directly.  The population information assists the evolution not only during the 

repair process, but also for future repairs of a different AE as well.  In particular, for future faults 

occurring in distinct physical locations, but within units having the same functional behavior as a 

previously handled fault, then the repaired configuration can provide a repair reference during 

the crossover which may help the reparation.  Only the mutation and cell-swap operation explore 

the search space while maintaining the majority of the time a graceful degradation property for 

circuit operation. However, such characteristics may not apply in general for all kinds of circuits 

and for certain types of fault behaviors.  However, it does apply to several different circuit types 

in the standard MCNC-91 benchmark under single and multiple stuck-at faults. 

7.4.  Future Work 

For future work, one area to investigate is to develop OES architecture space-based 

reconfigurable embedded architectures. The most problem currently confronted in FPGA based 

EH research is more platform support and more low level API support. In order to fully utilize 

the reconfiguration capacity of the FPGA, new embedded GA oriented architectures are 

demanded for those purposes. For examples, a complete working OES prototype on Xilinx 

Virtex 4 and Virtex 5 FPGA chip which supports more advanced online reconfigurations is 

considered for using more advanced GA operations. It’s also possible explore other GA 

operators and develop more methodologies for fault-isolation and fault-correction. Another 
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obstacle is dynamic reload and recompile overhead where each newly evolved configuration 

must be recompiled for reconfiguration which impact the CBE idea being implemented because 

of the recompilation time and the reload time β also a factor of decreasing issue for further 

utilization of the CBE approach. Those questions are excellent the research topics for future 

development.  
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