
Page 1 of 4

Analyzing RNG Computation-Based Designs and
Calculating the Simulated Energy Consumption

Nicholas Alban
Department of Electrical and Computer Engineering

University of Central Florida
Orlando, FL 32816-2362

Abstract—This paper explores Project 3 - Analyzing RNG
Computation-Based Designs and Calculating the Simulated
Energy Consumption, which involved creating a program in MIPS
to count the number of occurrences of an inputted word string
within a larger inputted statement string. The program would
then output the total number of occurrences and the indexes these
occurrences appeared. The fundamental metrics of energy
consumption were measured based on different design option that
all utilized random number generation and stochastic
computation to more efficiently perform ALU instructions. The
general topic of random number generation was explored, and the
energy consumption of the program created for Project 3 was
calculated using each presented design method. The design that
used p-bit MRAM cells to produce random numbers was the most
energy efficient as it had the lowest energy consumption of all
other design alternatives, consuming 323521.68 pJ.

Keywords— Random Number Generator (RNG), Probabilistic
Spin Logic Device (p-bit), Processing In Memory (PIM), Memristor,
Phase Change Memory (PCM), Stochastic Number Generator
(SNG), True Random Number Generator (TRNG), Volatile Memory,
Gaussian digital-to-analog converter (GDAC), Linear Feedback
Shift Register (LFSR)

I. INTRODUCTION
The objective of this program was to search a given

statement for a given word, count the number of occurrences,
and show the indexes of these occurrences. The program
accomplished this by parsing through every character of the
statement string and checking if any series of characters matched
the desired word. Every time a sequence of characters in the
statement matched the sequence of characters in the word, it
would increment the count and save the index. If the sequence
of characters were interrupted with a character that did not
belong, the program would restart the sequence checking for the
first character in the word. The program would end once the null
terminator of the statement string was reached.

Test cases were chosen to test basic functionality and tricky
edge cases. The first test case was the given test case of the lab,
which acted as a benchmark for the program and passing it
would prove program functionality. The other testcases used
tricky sequences of characters to test the program’s ability to
parse and properly follow the required steps given a wide variety
of unique character sequences.

A. Project Design
 This program starts by loading the Statement string and the
desired Word string into address registers. The program parses
through the word to remove any newline character that might
have been added to the word string when the user pressed the
“Enter” key to input the word. The word counter and word
character counter are initialized to 1. Once this is done, the
program loads the word and statement strings into registers and
then begins its loop to search the statement for occurrences of
the word.

 First, a character from the word is loaded into a register and
the program checks if the ascii value is equal to zero, which
would be a NULL character. If this is true, the program
branches; the last character of the word has been visited and the
program has found a sequence of characters in the statement
which matched the sequence of characters making up the word.
The address pointer of the word is brought back to the first
character by subtracting the word character counter, the word
character counter is set to zero, and the word counter in
incremented by 1. However, if this is not true, it will continue to
the next step of loading the character from the Statement string
address into a register.

 After this, it will check if the ascii value of the character from
the statement string is zero. If this is true, it will branch, as the
program has visited all characters in the statement. If this is not
true, it will subtract the ascii value from the two characters
currently stored in different registers and store the resulting
difference in a third register. The value of this register is checked
whether it is 0, 32, or -32 , which would mean these two
characters were either the same, or one was an uppercase and the
other was a lowercase. If this is true, the program will branch to
another line to increment the pointer to the next character
address of the statement string, do the same for the word string,
and increment the word character counter by 1, then jump back
to the start of the loop. If none of these three conditions are true,
branch if the word character counter is equal to zero. At this
branch, increment the statement string pointer and jump to the
top of the loop.

 If not true, continue to return to the first character in the word
by subtracting the word character counter from the address
pointer, and set the word character counter back to zero. Then,
jump to the top of the loop. If the condition to branch was met
where the last character of the statement string was found, then

it will branch to the next loop to do the same process, except
outputting the indexes as the program continues. First, it outputs
the number of word occurrences, then load the first addresses
back into address registers, and initialized index count to 1, word
character count to zero, and the saved index to 0.

 Starting the second loop, the program loads the character
from the word into a register and branches if this character’s
ascii value is zero. If true, it adds 1 to the word count, returns to
the first character of the word, sets the word character count to
zero, and prints the current saved index value. Then, it jumps
back to the top of the loop. The program loads the ascii value of
the character from the statement string into a register and
branches if it is equal to zero. If true, it branches to the end of

the program, and the program terminates. Otherwise, it branches
if the value of this is 32 – a space. If true, it increments the
statement index address by 1, returns to the first character of the
word, sets the word character counter equal to zero, and
increment to the next character address in the statement string.
Then, jump to the top of the loop.

 Otherwise, subtract the values of the two characters and store
it into a register. Branch if this value is equal to 0, 32, or -32. If

true, increment the address of the statement string, check if the
word character counter is on the first character still. If true,
branch and store the current value of the index into a register and
jump to the top of the loop, otherwise, increment the word
character counter by 1.

 If the two characters did not match, then check if the word
character counter is equal to zero. If true, branch, increment the
address of the statement string, and jump to the top of the loop.
Otherwise, reset the word address back to the first character by
subtracting the word character counter, set the word character
counter back to zero, and jump back to the top of the loop. At
the end of this second loop, there should be a series of indexes
printed and the program will be terminated.

B. Test Cases
 The first test case was given by the lab. This included a long
statement string set up with ordinary sentence structure and the
program was specifically asked to look for the word “knights”.
This testcase proved the functionality of the program in more
ordinary circumstances that would normally be encountered in
regular sentence structure, therefore if it worked, it would prove
general functionality.

Fig.1: Flowchart of the assembly program.

Fig.2: Sample outputs of assembly program.

Testcase #1:

Testcase #2:

Testcase #3:

 The second test case was focused on testing the program’s
ability to reset checking the sequence and counting the number
of occurrences appropriately, and also its ability to match the
word to strings of varying capitalization. There were many of
the same characters in particular sequences that would just
barely match the sequence of characters of the word but slightly
different. This was to test the program’s ability to run progress
part way through matching the word to characters in the string
but stopping part way, without failing and losing accuracy.

 The third test was to test the program’s ability to essentially
only pay attention to the alphabetical characters and not get
stuck from these. The third test case included many random
characters sprinkled among the statement string, testing the
ability of the program to parse through these non-important
characters. Also, special circumstances such as

 All of these testcases were tested with multiple different
inputs with varying capitalization, e.g. “Knight”, “KNIgHt”,
“knight”, etc. All tests were successful, as proven in the
screenshots in Fig. 2.

II. P-BIT CIRCUIT
Random Number Generation (RNG) has important

applications in multiple fields of computer science and
architecture, ranging from security to processing [1][2][3].
Processing in Memory (PIM) is a stochastic based computer
architecture that implements complex computations in main
memory, providing massive parallelism and higher energy
efficiency [2].Stochastic based computing has been found to be
extremely relevant in brain-inspired computer architecture [1].
RNG is critical for an effective stochastic based computer
system, and there are several ways to produce stochastic
numbers with randomness. One example is Memristor neural
networks, which uses volatile memory and switches to a low-
resistance state under a voltage after a random time delay.
Using this time delay can provide stochastic source for RNG
[4] and output a randomly generated bitstream.

Another possibility is using Phase Change Memory
(PCM) which utilizes cells of special material which can exist
in one of two states of matter, crystalline or amorphous each
one representing SET (bitwise 1) or RESET (bitwise 0)
respectively. Introducing a reference voltage and current can
cause a 50% chance of cells already in SET to change to a
RESET state. By starting with an array of cells in SET, this can
be leveraged to control the PCM and design a Stochastic
Number Generator (SNG) [2] which given an input of N bits
can produce an output of 2^N stochastic bitstream. This is
implemented in the Gaussian digital-to-analog converter
(GDAC), which in superior to the Linear Feedback Shift
Register (LFSR). Another suggested method for SGN is the use
of a probabilistic spin logic device (p-bit). The p-bit acts as a
neuron and using voltages and currents to alter the energy
barrier, a bitstream can be generated with randomness.

The final method explored is a Full-Entropy true
random number generator (TRNG), which takes inputs from
multiple independent entropy sources and creates one TRNG
bitstream. Overall, RNG is critical for stochastic based PIM

architectures. There are a variety of designs to realize this
functionality to varying degrees of energy consumption.

III. RESULTS AND DISCUSSION
In this section, it is assumed an RNG circuit is used in

the implementation of the ALU. This implies that the energy
consumption of any ALU instruction in the program will be
calculated with the energy consumption amounts from the
different designs reported in references [1-3]. The energy
consumption of each design can be found in Table I.
 Using the given energy consumption per non-ALU
instruction values:

1) ALU = refer to Table I
2) Branch = 4 pJ
3) Jump = 3 pJ
4) Memory = 100 pJ
5) Other = 5 pJ

For Testcase 1, there were a total of 19342 instructions,
with a total of 6496 ALU instructions, 1428 jump instructions,
8552 branch instructions, 2844 memory instructions, and 22
other types. Assuming that for all designs the jump, branch,
memory, and other type instructions all had the same energy
consumption, the energy consumption of these four types
could be calculated and added to each design’s energy
consumption for each ALU instruction.
 For the non-ALU instruction energy consumption:

(4 pJ)*(8552) + (3 pJ)*(1428) + (100 pJ)*(2844) + (5 pJ)*(22)
= 323002 pJ

The total energy consumption for each design can be seen in
the Table II.

Table II: Total Energy consumption for the assembly
program using designs provided in [1-3].

Design Total Energy Consumption

[1] 323521.68 pJ
LFSR [2] 328848.4 pJ
GDAC [2] 907642 pJ

[3] 556858 pJ
Memristors [4] 472410 pJ

Table I: Energy consumption for a single ALU Instruction
in the designs provided in [1-3].

Design Energy Consumption
For Each ALU Instruction

[1] 0.08 pJ
LFSR [2] 0.9 pJ
GDAC [2] 90 pJ

[3] 36 pJ
Memristors [4] 23 pJ

IV. CONCLUSION
 Implementation of RNG has the potential to improve
processing efficiency and speed and reduce energy
consumption. This can be achieved through several different
methods involving RNG using a variety of methods involving
probabilistic bit generation. This probabilistic generation is
utilized to generate stochastic numbers for stochastic based
computer architecture systems which closer represent brain
architecture. This architecture has the potential to more efficient
energy consumption for ALU instructions than traditional
computer systems.

List of technical topics explored in this project:

1. RNG and the critical importance of random number
generation

2. Phase Change Memory devices and the functionality of
them

3. Stochastic computing and its importance in brain-
inspired computer architecture

4. P-bits and how to use their properties to generate
random numbers

5. Effectiveness of brain-inspired computer hardware
design

 The program designed for this project had approximately a
third of its total instructions as ALU instructions. Therefore, the
design with the lowest ALU power consumption would have a
significant impact on the program’s overall power consumption.
This means that the design from paper [1] using p-bits as
stochastic neurons, consuming a total of 323521.68 pJ.

REFERENCES
[1] H. Pourmeidani, S. Sheikhfaal, R. Zand, and R. F. DeMara, "Probabilistic

Interpolation Recoder for Energy-Error-Product Efficient DBNs with p-bit
Devices," IEEE Transactions on Emerging Topics in Computing, 2020.

[2] S. M. Shivanandamurthy, I. G. Thakkar, and S. A. Salehi, “Work-in-
Progress: A Scalable Stochastic Number Generator for Phase Change
Memory Based In-Memory Stochastic Processing,” in Proceedings of the
International Conference on Hardware/Software Codesign and System
Synthesis Companion, pp. 1-2, October 2019.

[3] S. K. Mathew, D. Johnston, S. Satpathy, V. Suresh, P. Newman, M. A.
Anders, H. Kaul, A. Agarwal, S. K. Hsu. G. Chen, and R. K. Krishnamurthy,
“μRNG: A 300–950 mV, 323 Gbps/W all-digital full-entropy true random
number generator in 14 nm FinFET CMOS,” in IEEE Journal of Solid-State
Circuits, vol. 51, no. 7, pp. 1695-1704, 2016.

[4] Jiang, H., Belkin, D., Savel’ev, S.E. et al. A novel true random number
generator based on a stochastic diffusive memristor. Nat Commun 8, 882
(2017). https://doi.org/10.1038/s41467-017-00869-x.

[5] Yang, K. et al. A 23Mb/s 23pJ/b fully synthesized true-random-number
generator in 28 nm and 65 nm CMOS. IEEE International Solid-State
Circuits Conference Digest of Technical Papers (ISSCC) 280–281 (San
Francisco, CA, USA, 2014).

[6] Srinivasan, S. et al. 2.4GHz 7mW all-digital PVT-variation tolerant true
random number generator in 45nm CMOS. Symposium on VLSI
Circuits 203–204 (Honolulu, HI, USA, 2010).

	I. Introduction
	A. Project Design
	B. Test Cases

	II. p-bit circuit
	III. Results and Discussion
	IV. Conclusion
	References

