
Page 1 of 3

Deep Belief Networks with synchronal calculations of
Energy Consumptions, and MIPS Assembly Programs

amongst robust designs
Paul Amoruso

Department of Electrical and Computer Engineering
University of Central Florida

Orlando, FL 32816-2362

Abstract— Many important topics regarding the assembly
code and Deep Belief Networks will be the focus. The assembly
program written will find all the instances of a certain word that
appears in an input statement and at what locations. By providing
significant workings of strings, addresses, data, and memory
contents this program successfully filters out the specific word in
the input statement. With the ability to loop through the registers
that store the individual letters of each word in order to find the
specific word in the input statement. With the program also
checking for capital and lowercase letters that keeps track of
indexes based on words rather than spaces. This paper highlights
novice ideas on Deep Belief Networks (DBNs) and what they are
comprised of. By looking at the reference papers, a picture can be
painted on what Deep Belief Networks are, and why they contain
Restricted Boltzmann machine (RBM).

Keywords—Deep Belief Network (DBN), Neural Network,
Restricted Boltzmann machine (RBM), deep Convolutional Neural
Networks, FPGA, Generative Adversarial Network algorithms,
generative models, VLSI.

I. INTRODUCTION

A. Project Design
In this MIPS code, the objective was to increase

understanding of strings, addresses, data, and memory contents.
With a goal of string manipulation in order to find the number
of times a specific word appears in an input statement and at
what indexes the specific word appears. While it is not needed,
this code requires a user input of an input statement, rather than
having a hard-coded input statement to parse through. The
program starts off by printing a string that requests the user to
input a statement, then the input statement is stored in a space of
1000 called “string.” Next, the program asks for a specific word
to search for in the input statement and is stored in space of 11
called “words.” Once the statement and specified word are
collected the program moves onto a label called
“StoreCharOfWord” which stores all the letters from the word
to individual ten registers from $t6 to $s5. By storing each of
the possible letters in individual registers, there is an ability to
manipulate the letters for checking upper or lowercase letters
without changing the original word given and use of extra loops

to parse through an array. After storing all the letters of the
word, the focus jumps to the code that loops the input statement
one character at a time using $t2 and comparing the current letter
in $t2 with the registers $t6 through $s5. In overview, the
program traverses the input statement till it finds the first letter
in the word (in either upper case or lowercase form), then it
moves to the next letter in the input statement and the word to
see if they match as well. If so, the process continues until it hits
the end of the word, which prompts the program to jump to the
label “Count”, which stores the current index and increments the
number of times the word has been found at the moment. This
process of looking for the word repeats till the end of the input
statement, where it is then at the printing stage. There are three
printing labels that print the first part of the output all the way to
the end of the word searched for, a second label that contains the
code to print the end of the sentence " " was found in the input
statement: " and the string that leads up to the indexes the word
was found at. Then the second to last label, loops through the
space “indexesvals” allocated for all the indexes the specific
word appears in the input statement. As it reaches the end of
printing all the indexes, the program jumps to label “end” where
it prints a period at the end of the indexes and load the value 10
to $v0 to end the program. A, concise and clear high-quality
flowchart of the program can be seen in Fig. 1.

Fig.1: Flowchart of the assembly program.

Page 2 of 3

B. Test Cases
 In the testing process of this code, the program was

stress tested with multiple words with various lengths ranging
from one letter to ten letters. It was also tested with searching
for words with capital and lowercase letters to ensure that the
program can find all possible words no matter the length or case.
Some of the cases that were tested with the program was with
the input statement “The Knights Graduation and Grant
Initiative is a UCF award to help undergraduate students who
cannot pay their tuition and their difficulty would not allow them
to finish their degree. The Knights Success Grant is the most
well-known program inside the Knights Graduation and Grant
Initiative. In order to be awarded the Knights Success Grant,
you need to be referred but it does not mean that all students
who are referred will be awarded the grant. The students who
want to apply for the Knights Success Grant need to submit a
required application and complete the Knights Success Grant
web course. For more information, you can stop by their office
in the Registrar’s Office on the main campus of UCF.” And with
the search words: “KnIgHt”, “Ucf”, and “GRADUATION”. By
using that specific input statement, since that is the input
statement given in the assignment. Given the word “KnIgHt” it
can be checked that it appears 6 times with indexes at 2, 32, 42,
53, 85, 97, and the word “Ucf" appears two times at indexes 9,
and 120. Using the all Caps ten letter word “GRADUATION”,
it has been proved that the code can find it located twice in
indexes 3, and 43. A, concise and clear high-quality output of
the program can be seen in Fig. 2.

II. DBN CIRCUIT
 At first glance the study of Deep Belief Networks

(DBN), for anyone familiar with the topic of neural networks, it
is evident that it is a graphical model aka a deep neural network
composed of many layers that are “hidden” with connection
from one layer to the next without any connections in the same
layer. According to the reference [1], they utilized a 784 x 200
x 10 DBN circuit in SPICE for a pattern recognition application

using the MNIST dataset. The idea of DBN’s are comprised of
different parts, such as in this case where reference [1]
implements Restricted Boltzmann machine (RBM) in order to
have DBN with impressive learning abilities.

 Similar to reference [1], reference [3] introduces Deep Belief
Networks as a network made of RBMs. Due to the fact that
DBNs are made of RBMs, reference [3] explains many aspects
of the machine from the size of the nodes such as 2000 X 500
nodes, as well as explaining how the RBMs can take weeks to
train on a regular desktop computer. In response to relatively
slow training networks, there has been a push for a hardware
RBM framework of a semiconductor device with programmable
logic (a Field Programmable Gate Arrays). Reference [3] also
points out how many of the common approaches for parallelism
in neural networks to get high-performance, systems are faced
with limited resolution and small networks. However, FPGAs
bring the advantage of arrangement of processing elements to
customize the abilities and performances of the networks.

 In Reference [4], the authors go into further detail compared
to the other references on Deep Belief Networks and their
composition to better explain how they consume more power
and high resource utilizations. As a common description
delivered by most research papers, it is clear that DBNs are made
of RBMs consisting of many layers of nodes. And by using
RBMs, pretrained machines are obtained using Gradient based
Contrastive Divergence (GCD) algorithms, gradient descent,
and backpropagation for fine-tuned results. With the main
computation kernel consisting of nearly hundreds of vector-
matrix multiplications. Each of these multiplications can get
costly when it comes to employing in hardware, as the networks
experiences high silicon area and power consumption with VLSI
parallel implementations

 With continuous information on machine learning and
improvements, it is clear that the topic is synonymous with
topics of DBNs, deep Convolutional Neural Networks, RBMs,
and Generative Adversarial Network algorithms. Many of these
are known by their famous applications in computer vision, such
as deep Convolutional Neural Networks which replicate a very
close representation human perception. Boosted Deep Belief
Network in reference [5] are known by their three training stages
iteratively within a unified framework of loops. And
convolutional deep belief networks, known for their
unsupervised learning hierarchical generative models, are so
closely similar to DBNs.

III. RESULTS AND DISCUSSION
In this section, the following tables contain the energy

consumption for the branch instruction that refer to the
individual references, and table 2 contains the total energy
consumption with reference to the following energy per
instruction values:

1) ALU = 2 pJ
2) Branch = Refer to Table I
3) Jump = 4 pJ

Fig.2: Sample outputs of the assembly program.

Page 3 of 3

4) Memory = 100 pJ
5) Other = 5 pJ

By implementing the DBN circuits from reference [1] to [4]

into the code written to find a word in an input statement, it is
seen how these circuits affect the total energy consumption of
the code. The below table lists the required energy
consumption to perform each branch prediction based on the
different technologies proposed in [1-4].

The following table was calculated by the MARS4.5 tool
named “Instruction Statistics” to calculate the number of times
a certain instruction was performed. Once the number of times
the instruction was performed, multiply the energy for the
specific instruction by the number of times it appeared and
sum it up to get the total energy consumption. Using the input
statement from the test case, and the search word “KnIgHt”,
the following is the total energy consumption seen in table II:

IV. CONCLUSION
This paper has brought many important topics to light and at

its best to describe the MARS program and DBNs. In summary,
the assembly program written to find all the instances a certain
word appears in an input statement and at what locations,
provides significant workings of strings, addresses, data, and
memory contents. By allocating space for the input statement
and the specific searched word, it gives the ability to loop
through the registers that store the individual letters of each word
in the input statement, and the search word to check for capital
and lowercase letters in order to find the instances of the specific
word. By having a way to check for a space and loop till the
next word in the input statement, and increment of the index all
played an important role in having a successful program that
keeps track of the indexes based on the words rather than spaces

and incrementing the register value or decrementing the register
value by 32 to check for capital or lower case letters. While it
might take a novice familiarity of neural networks to understand
DBNs, it can be seen as no more than a deep neural network,
comprised of many layers each connected to the next however
none of the nodes connected to each other in the same layer. It
can be noticed that many of the papers that refer to Deep Belief
Networks contain Restricted Boltzmann machine (RBM), which
allow for their reported impressive learning abilities. DBNs are
also formally known as generative graphical models. Many of
these papers on DBNs circuits focus on pointing out common
flaws and improvements that can lead to better more equipped
machines that deal with the energy needs of DBNs. It is also
shown that the total energy consumption is proportional to the
energy consumption for the branch instruction. For instance, it
can be seen that the total energy consumption using the energy
consumption for the branch instruction from reference [1] is
110237pJ compared to any of the larger total values calculated
with their larger energy consumption for the branch instruction.

V. ACKNOWLEDGMENT
 I would like to thank all the readers for their time
spent reading this paper. I also would like to thank Dr.
DeMara, Mousam, and Meghana for the opportunity to do this
report topic and in aiding in the accomplishment of this paper.

REFERENCES
[1] H. Pourmeidani, S. Sheikhfaal, R. Zand, and R. F. DeMara, "Probabilistic

Interpolation Recoder for Energy-Error-Product Efficient DBNs with p-bit
Devices," IEEE Transactions on Emerging Topics in Computing, 2020.

[2] A. Roohi, S. Sheikhfaal, S. Angizi, D. Fan, and R. F. DeMara, “ApGAN:
Approximate GAN for Robust Low Energy Learning from Imprecise
Components,” IEEE Transaction on Computer, vol. 69, no. 3, 2020.

[3] D. Le Ly and P. Chow, “High-performance reconfigurable hardware
architecture for restricted boltzmann machines,” IEEE Transactions on
Neural Networks, vol. 21, no. 11, pp. 1780–1792, 2010.

[4] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and W. J. Gross,
“Vlsi implementation of deep neural network using integral stochastic
computing,” IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, vol. 25, no. 10, pp. 2688–2699, 2017.

[5] P. Liu, S. Han, Z. Meng, and Y. Tong, “Facial Expression Recognition via
a Boosted Deep Belief Network,” 2014 IEEE Conference on Computer
Vision and Pattern Recognition, 2014.

[6] H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng, “Convolutional deep belief
networks for scalable unsupervised learning of hierarchical representations,”
Proceedings of the 26th Annual International Conference on Machine
Learning - ICML 09, 2009.

Table II: Total Energy consumption for the assembly
program using designs provided in [1-4].

Design Total Energy Consumption

[1] 110237pJ
[2] 1.51512E7pJ
[3] 3.00851E9pJ
[4] 2.50711E9pJ

Table I: Energy consumption for a branch instruction in
the designs provided in [1-4].

Design Energy Consumption
For Each Branch Instruction

[1] 0.2 pJ
[2] 0.03e+5 pJ
[3] 6e+5 pJ
[4] 5e+5 pJ

	I. Introduction
	A. Project Design
	B. Test Cases

	II. DBN Circuit
	Similar to reference [1], reference [3] introduces Deep Belief Networks as a network made of RBMs. Due to the fact that DBNs are made of RBMs, reference [3] explains many aspects of the machine from the size of the nodes such as 2000 X 500 nodes, a...
	In Reference [4], the authors go into further detail compared to the other references on Deep Belief Networks and their composition to better explain how they consume more power and high resource utilizations. As a common description delivered by mo...
	With continuous information on machine learning and improvements, it is clear that the topic is synonymous with topics of DBNs, deep Convolutional Neural Networks, RBMs, and Generative Adversarial Network algorithms. Many of these are known by their...
	III. Results and Discussion
	1) ALU = 2 pJ
	2) Branch = Refer to Table I
	3) Jump = 4 pJ
	4) Memory = 100 pJ
	5) Other = 5 pJ

	IV. Conclusion
	V. Acknowledgment
	References

