
Page 1 of 3

Energy consumption of Assembly Language Code in
MIPS using Deep Belief Networks

Helen Diaz
Department of Electrical and Computer Engineering

University of Central Florida
Orlando, FL 32816-2362

Abstract—The scope of this paper is to examine the
project design of an assembly language program used to
count the number of occurrences of a word inputted by a
user in a given statement, and that also outputs the indexes
of the matches found. The total energy consumed by this
program is also calculated by using the energy consumed
for its branch instruction from four different Deep Belief
Networks circuits designs. The four final results are
compared to determine the total energy consumption of the
best design, which is the design with the least amount of
energy consumed, Design 1.

Keywords—Deep Belief Network, Restricted Boltzmann
Machines, Probabilistic Generative Models, Dynamic
Instructions, Energy Consumption, Syscalls, Assembler
Directives, MIPS.

I. INTRODUCTION
String manipulation has become an important functionality

that allows the user to perform more tasks on saved data. Over
the years it has proven to be a useful tool to parse through data,
compare it, and extract information from it.

A program was written to find the number of occurrences of
a word in a given statement. Furthermore, the index of where
each word match is found within the statement should be
returned to the user, taking the first word of the text as index ‘1’.

For this program, a sample statement was hardcoded, from
which the user was prompted to input one or two different words
-with less than ten characters each. The program should output
an integer number describing how many times the word(s) was
used in the statement. Additionally, the indexes of the matches
found should be outputted to the screen.

This task was accomplished by applying selected MIPS
Assembly language instructions, assembler directives and
system calls sufficient enough to handle string manipulation
tasks.

A. Project Design
 The program design for counting the number of

occurrences of the word(s) inputted by the user was based on a
main routing with loops and branch statements. The code was
hardcoded to have an initial statement, which was stored as a
string and then copied to a register. The first step was to

Fig.1: Flowchart of the assembly program.

Fig.2: Sample outputs of the assembly program.

successfully read a string with the desired words from the user,
which was achieved by applying the corresponding syscall.
After that, the string was copied into a different register so
operations could be performed, and the information wouldn’t be
lost. Because the main goal of the project was to count the
amount of times that the desired word appeared within the string,
lb (load byte) instruction was used to analyze character by
character.

This process was contained inside of the main loop of the
program: after the user typed in the string, the first byte was
loaded and this procedure would continue until the null character
was found (use a branch statement for this, when “null” break
out of the loop). Once inside the loop and through the use of
multiple branch statements, the byte being analyzed was
compared to the characters of the initial statement which were
stored in a different register. If it each character from the string
the user inputted matched the characters stored in the original
string, it would branch to a label where a register, holding the
counting number for the match word, would be incremented and
it would also increment the register holding the string by 1,
pointing to the next byte. If the character of the inputted string
was not equal to the character from the saved string, then it
would increment the register holding the string by 1, pointing to
the next byte. After reaching the null character, the appropriate
syscalls were made for printing the desired word(s) with its
number of occurrences. Per project’s instructions, the code
should not be case sensitive, therefore additional branch
statements were added to convert all the characters to upper case
before the comparison.

To find the indexes at which the found words were located
an array was created by using ‘.word’. Each word from the initial
hardcoded text received an index and a flag was used to mark
the index of a word every time the match word was found. The
flowchart for this code is found in Figure 1.

B. Test Cases
To properly test this code, different combinations of the

word “Knights” have been used. These three cases have been
selected because they provide enough variation to ensure that
the code is working properly and to confirm that the program is
not case sensitive, as it should. Test cases and expected output
are listed in Figure 2.

II. DBN CIRCUIT
Deep Belief Networks are probabilistic generative models

[4] consisting of undirected and directed layers of latent
variables. These layers contain stacked Restricted Boltzmann
Machines (RBMs) that learn through pre-training of the network
and backpropagation mechanisms. The hidden layer of one
RBM is the visible layer of succeeding layer. Each layer learns
its entire input.

To describe its structure an analogy of a person opening his
eyes can be used. When a person, that has been with his eyes
closed in a dark room for a long period of time, steps outside and
opens his eyes, the image does not come all at once, instead his
eyes slowly adapt to the new environment to form the whole
picture. Deep Belief Networks are trained a similar way; the
hidden layer of the first RBM becomes the visible layer for the
second one, which is trained using the outputs from the first one.

This method continues until all the layers are trained which
further allows pattern recognition in the data. Deep Belief
Networks (DBN) have been used in an array of research areas:
identifying hand-written digits, reducing the dimensionality of
data and creating motion capture data [3].

 An example of a DBN could be a 784×200×10 DBN for
MNIST pattern recognition tasks. Its inputs could be digits, and
its outputs, voltages of the neurons where each neuron
represents an output class [1].

III. RESULTS AND DISCUSSION
In this section, the energy consumption of the assembly

program introduced in Project Design is calculated using the
below energy consumption per instruction values:

1. ALU = 2 pJ
2. Branch = Refer to Table I
3. Jump = 4 pJ
4. Memory = 100 pJ
5. Other = 5 pJ

It is assumed that the branch prediction is implemented

using DBN circuit. In this paper, the energy consumption
values reported in references [1-4] are used to calculate the total
energy consumption of the assembly program. The below table
lists the required energy consumption to perform each branch
prediction based on the different technologies proposed in [1-
4].

Table II contains the total energy consumption for the

assembly program using designs provided in [1-4]. This table
uses the energy values mentioned in Table I and the dynamic
instruction count obtained in the MIPS Instructions
(MARS4.5ToolsInstruction Statistics, Figure 3). To
calculate the total energy, the number of different types
instructions is multiplied by its corresponding energy
consumption per instruction value and all the values are
added.

Design [1]

• Energy = (2 x 2972) + (0.2 x 2683) + (4 x 1306) +
(100 x 797) + (5 x 11) = 91.5 nJ

Design [2]
• Energy = (2 x 2972) + (0.03e5 x 2683) + (4 x 1306)

+ (100 x 797) + (5 x 11) = 8.1e+3 nJ

Table I: Energy consumption for a branch instruction in
the designs provided in [1-4].

Design Energy Consumption
For Each Branch Instruction

[1] 0.2 pJ
[2] 0.03e+5 pJ
[3] 6e+5 pJ
[4] 5e+5 pJ

Design [3]
• Energy = (2 x 2972) + (6e5 x 2683) + (4 x 1306) +

(100 x 797) + (5 x 11) = 1.6e+6 nJ
Design [4]

• Energy = (2 x 2972) + (5e5 x 2683) + (4 x 1306) +
(100 x 797) + (5 x 11) = 1.3e+6 nJ

Fig 3: Instruction
statistics from
Assembly language
program

 The results from Table II indicate that Design 1 used the
least amount of energy, 91.5 nJ, while Design 3 used the most,
1.6e+6 nJ. Analyzing the findings from Table I and II, it can be
observed that, while the energy consumed for all other
instructions, the greatest energy consumption for each branch
instruction, the greatest the total energy that will be consumed
by the program. Table I also shows that Design 1 had the most
efficient DBN circuit for having consumed the least energy for
its branch instruction.

IV. CONCLUSION
Over the years, string manipulation have become an

essential factor in handling data. It has made tasks easier and
more efficient than ever before. A useful practice can be an
assembly language code that counts the number of occurrences
of a word inputted by a user in a given statement. Through the
use of assembler directives and syscalls it was possible to write
such a program in MIPS.

This paper also evaluates the total energy consumed by such
program when calculated by using the energy consumed for its
branch instruction from four different Deep Belief Networks
circuits designs. Deep Belief Networks are various Boltzmann
Machines stacked together. A Boltzmann Machine is nothing
else than a learning algorithm used for numerous fields.

 The four final results were compared to determine the total
energy consumption of the best design, which is the design with
the least amount of energy consumed, Design 1.

REFERENCES
[1] H. Pourmeidani, S. Sheikhfaal, R. Zand, and R. F. DeMara,

"Probabilistic Interpolation Recoder for Energy-Error-
Product Efficient DBNs with p-bit Devices," IEEE
Transactions on Emerging Topics in Computing, 2020.

[2] A. Roohi, S. Sheikhfaal, S. Angizi, D. Fan, and R. F.
DeMara, “ApGAN: Approximate GAN for Robust Low
Energy Learning from Imprecise Components,” IEEE
Transaction on Computer, vol. 69, no. 3, 2020.

[3] D. Le Ly and P. Chow, “High-performance reconfigurable
hardware architecture for restricted boltzmann machines,”
IEEE Transactions on Neural Networks, vol. 21, no. 11, pp.
1780–1792, 2010.

[4] A. Ardakani, F. Leduc-Primeau, N. Onizawa, T. Hanyu, and
W. J. Gross, “Vlsi implementation of deep neural network
using integral stochastic computing,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, vol. 25, no.
10, pp. 2688–2699, 2017.

[5] Hinton, G. E. (n.d.). Deep belief networks. Retrieved from
http://scholarpedia.org/article/Deep_belief_networks

[6] Generative Model. (n.d.). Retrieved from
https://www.sciencedirect.com/topics/engineering/generativ
e-model

Table II: Total Energy consumption for the assembly
program using designs provided in [1-4].

Design Total Energy Consumption

[1] 91.5 nJ
[2] 8.1e+3 nJ
[3] 1.6e+6 nJ
[4] 1.3e+6 nJ

http://scholarpedia.org/article/Deep_belief_networks

	I. Introduction
	A. Project Design
	B. Test Cases

	II. DBN Circuit
	III. Results and Discussion
	1. ALU = 2 pJ
	2. Branch = Refer to Table I
	3. Jump = 4 pJ
	4. Memory = 100 pJ
	5. Other = 5 pJ

	IV. Conclusion
	References

