
Page 1 of 3

A Comparison of Proposed Full Adder Designs and
Their Impacts on the Energy Consumption of an

Assembly Program
Rachel Goodman

Department of Electrical and Computer Engineering
University of Central Florida

Orlando, FL 32816-2362

Abstract—The objective of “A Comparison of Proposed Full
Adder Designs and Their Impacts on the Energy Consumption of
an Assembly Program” is to evaluate a few different proposed Full
Adder designs. First, an assembly program was designed that
counts the number of occurrences of an input word in an input
statement and outputs that number and where the words are
located in the statement. Then, the dynamic instruction count of
that program was used to calculate the total energy consumption
of that program for each individual full adder design. Finally,
based on those calculations, it was concluded that the program
consumed the least amount of energy (174,937.6 pJ) when the
Majority Gate-based Full Adder from [1] was implemented in the
ALU.

Keywords—Boolean gates, Majority Gate-based Full Adder,
Magnetic Adder, Non-Volatile Full Adder, SLIM-AD, Domain Wall,
Magnetic Tunnel Junction, Energy Consumption

I. INTRODUCTION

A. Project Design
 First, the program prompts the user for an input statement
and a word (up to 10 characters) that the user would like it to
search for in the statement. It then converts both the statement
and the word to all lowercase so that the word can be found even
if it occurs in the statement or word with different letters
capitalized. All counters are initialized. Next, each character in
the input word is stored into its own register. The program then
begins to iterate through the long statement, checking conditions
as it goes. If it encounters a space or a new line, the index counter
is incremented by 1, indicating the start of the next word in the
statement. If the character matches the first character of the input
word, it checks each of the following characters to see if they
match also. If it encounters a letter that does not match, it
continues iterating through the statement searching for the first
character again. If all the characters match and the end of the
word is reached, the word counter is incremented by 1, and the
value in the index counter is stored in an index array. At the end,
the program prints the word counter and the index array,
informing the user of the amount of times the word occurs in the
statement, and the indexes it occurs at. Finally, the program
exits.

Fig.1: Flowchart of the assembly program.

Page 2 of 3

B. Test Cases
 For the first input, I used the statement about the Knights
Graduation and Grant Initiative given in the task description,
and I input the word “knight.” I then compared it to the given
correct result to ensure that my code worked as it should. This
was a good way to test the code on a longer statement without
having to count all of the words myself, because the correct
count was provided in the assignment.

For the second input, I input a statement I made up. It goes as
follows: “ My name is Rachel. My friends call me Rachel, my
parents call me Rachel, my extended family calls me Rachel. No
nicknames, just Rachel.” I input the word “RAcHeL.” This was
a good test to make sure that the code would work no matter if
the capitalization differed between the word and the statement.
Also, since it was a short statement, it was easy to count the
words to make sure the numbers being output were correct.

 For the third input, I input another short statement I made up:
“ucf UCF uCf UcF UCf knights UCF uCF.” This was another
good test to make sure that the word would be counted correctly
no matter the capitalization. It also made sure that the word
would still be counted correctly even if it occurred over and over
again, and if it occurred at the end of the statement.

Test 1:

Test 2:

Test 3:

Fig.2: Sample outputs of the assembly program.

Page 3 of 3

II. FULL-ADDER CIRCUIT
Full adders are an extremely important component

used in processors. A basic full adder takes 3 inputs and
produces 2 outputs. The three inputs are the two bits to be
added, as well as the carry in (CI) bit. The two outputs
produced are the sum bit and the carry out (Co) bit [3]. Inside
the full adder, Boolean gates perform the addition of the input
bits.
The full adder designs discussed in this paper are a Majority
Gate-based Full Adder [1], a Magnetic Adder [2], and a Non-
Volatile Full Adder [3].
 Each design performs the function of a full adder in
its own way. The Majority Gate Full Adder performs its
addition using majority gates, which output the value of the
majority of their inputs. When it is implemented using the
SLIM-ADC device proposed in [1], it outperforms other full
adder designs in the areas of reduced power dissipation and
delay. The Magnetic Adder in [2] is designed based on
domain wall (DW) motion. Its inputs and outputs are stored in
DW shift registers, which are non-volatile. This means that the
circuit containing the adder can be powered on and off as
needed without the adder losing its data. The Non-Volatile
Full Adder discussed in [3] is designed using Magnetic Tunnel
Junction and is faster than the proposed Magnetic Adder.

III. RESULTS AND DISCUSSION

In MARS, I ran my assembly program with the Test 1 input
and obtained the dynamic instruction count. The total count was
12,884 instructions, with 5,031 ALU, 1,418 Jump, 4,920
Branch, 1,478 Memory, and 37 Other instruction types. Then,
assuming that the ALU was implemented using a full adder, I
calculated the total energy consumption of my program for each
design using the given amounts for each type of instruction and
the ALU energy amounts given in Table I. The results are given
in Table II below.

According to the calculations, the design from [1], the
Majority Gate-based Full Adder, was the most energy
efficient. The Non-Volatile Full Adder designs from [3] used
some more energy, while the Magnetic Adder design from [2]
used the most by the largest margin.

IV. CONCLUSION
According to the source material and the calculations

conducted within this report, the Majority Gate-based Full
Adder proposed in [1] outperforms the other proposed designs
in the area of energy consumption. It consumes 174,937.6 pJ
when calculated using the dynamic instruction count of the Test
1 input to the assembly program described in Section I. The
designs proposed in [3] come in a close second place, and the
design proposed in [2] uses up the most energy of them all.

Technical topics I have learned from this project include:

• There are several different kinds of full adders, and
many different ways they can be designed, each
with its own pros and cons.

• An adjustment to a single component in a circuit
can make a big difference in the amount of energy
consumed by the circuit.

• I learned how to calculate total energy
consumption using dynamic instruction count of a
MIPS assembly program run in MARS.

• Non-Volatile Adders are the most convenient to
use if the data within needs to be retained even
when the circuit is powered off.

• I learned how to store an array of numbers as they
were being counted and print the array using MIPS
assembly code.

REFERENCES
[1] S. Salehi and R. F. DeMara, "SLIM-ADC: Spin-based Logic-In-Memory

Analog to Digital Converter Leveraging SHE-enabled Domain Wall Motion
Devices," Microelectronics Journal, Vol. 81, pp. 137–143, November 2018.

[2] H. P. Trinh, W. S. Zhao, J. O. Klein, Y. Zhang, D. Ravelsona, and C.
Chappert, “Magnetic adder based on racetrack memory,” IEEE Trans.
Circuits Syst. I, Reg. Papers, vol. 60, no. 6, pp. 1469–1477, Jun. 2013.

[3] K. Huang, R. Zhao and Y. Lian, "A Low Power and High Sensing Margin
Non-Volatile Full Adder Using Racetrack Memory," in IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 62, no. 4, pp. 1109-1116,
April 2015.

Table II: Total Energy consumption for the assembly
program using designs provided in [1-3].

Design Total Energy Consumption

[1] 174,937.6 pJ
[2] 203,614.3 pJ

RTM-based [3] 180,320.77 pJ
STT-based [3] 180,019.91 pJ

Table I: Energy consumption for a single ALU Instruction
in the designs provided in [1-3].

Design Energy Consumption
For Each ALU Instruction

[1] 0.6 pJ
[2] 6.3 pJ

RTM-based [3] 1.67 pJ
STT-based [3] 1.61 pJ

	I. Introduction
	A. Project Design
	B. Test Cases

	II. Full-Adder Circuit
	III. Results and Discussion
	IV. Conclusion
	References

