
Page 1 of 8

MIPS ALU Energy Consumption Calculation in
Reference to Various RNG Circuit Designs

Muhammad Gudaro
Department of Electrical and Computer Engineering

University of Central Florida
Orlando, FL 32816-2362

Abstract - This paper studies various different random number and stochastic
number generator circuits using p-bit designs. The ALU energy consumption
from these designs is then utilized to calculate the total energy of a program,

which detects the number of times two words, entered by the user, occurs in a
user-entered string. Furthermore, the project design also calculates the index at

which the word is matched. The lowest energy consuming design is reference [1]
at 0.49 micro joules.

Keywords – RNG, SNG, ALU, Magnetic Tunnel Junction (MTJ), Phase Change
Memory (PCM), P-bit

I. INTRODUCTION
The objective of this project was to identify the occurrence of two

specific words in a string entered by the user utilizing MIPS assembly code
in the MARS simulator. The program also returns the index of where the
words were found within the string. Three different sentences, that include
different inputs will be utilized to test the program’s outputs. Furthermore,
the program’s energy consumption will be calculated utilizing provided
references.

A. Project Design
The program will be designed to identify how many times two specific

words occur in a string entered by the user and also returns the index at
where it was found. The program will first ask the user to enter a string
utilizing a syscall and then asks the user to enter two different words, word1
and word2, to be found in the string. The program first focuses on
determining the occurrences of the first word and then replicates the
method using the same registers with the second word. The first byte from
Word1 and the first word of the string are loaded and stored into registers
$t0 and $t2. Word1 and the first word of the string are then converted to
either upper or lowercase. These two bytes are checked to see if they match.
If they match the program increments to the next byte of word1 and checks
if it matches again with the next byte of string. However, if the bytes do not
match, word1 is reset to its initial byte and continues to search for a match
of its first byte or first letter. When all matches are found of the word1,
which means that all letters match with a letter in the string, a counter is
incremented. This counter will be utilized to determine the occurrences. If,
for example, 6 matches are found, the counter, initialized at zero, will be

2

incremented 6 times. This will be how many matches are found.
Furthermore, in order to determine the index of where the word is found,
we can implement a counter that continuously counts the number of spaces
after each word. This counter keeps track of which word it is on. The
counter can be printed when a match is found, thus returning the location
or index of where the matched word is located. The same process is
replicated using word2 and then the values are printed.

3

Figure 1: Flowchart of Project Design

4

B. Test Cases
The first input I am deciding to go with is a simple string, consisting of 8 words,

to test the basic functionality of the design. I will enter the string “The dog is faster
than the other dog” I will search for the words “dog” and “fast.”

The second input will be a longer string consisting of 26 words. with more
words that are the same. The next input string will be “A peck of pickled peppers
Peter Piper picked; If Peter Piper picked a peck of pickled peppers, Where's the
peck of pickled peppers Peter Piper picked?” I will search for the repeated words
of “peck” and “pick.”

The third input will be a large string consisting of 122 words: “The Knights
Graduation and Grant Initiative is a UCF award to help undergraduate students
who cannot pay their tuition and their difficulty would not allow them to finish
their degree. The Knights Success Grant is the most well-known program inside
the Knights Graduation and Grant Initiative. In order to be awarded the Knights
Success Grant, you need to be referred but it does not mean that all students who
are referred will be awarded the grant. The students who want to apply for the
Knights Success Grant need to submit a required application and complete the
Knights Success Grant web course. For more information, you can stop by their
office in the Registrar’s Office on the main campus of UCF.” I will search for the
words kNigHt and UcF. This time, we will see if the design adjusts the casing of
the input words entered and match them to the words from the string.

Figure 2: Test Outputs of Design

5

6

II. P-BIT CIRCUIT

 Three references each discuss a method of creating a Random Number
Generator (RNG) or Stochastic Number Generator (SNG); both utilize P-bit or
probabilistic bit, which fluctuates between the 0 state and 1 state, to function as a
program that produces a string of random bits. The program relies on an intrinsic
stochasticity in physical variables, which is the source for the generated
randomness. Three different designs that produce random bits are showcased
 The first p-bit design [Reference 1] discusses an energy-efficient SNG design
used for spin-based neuromorphic circuits. The design utilizes a transistor and a
magnetic tunnel junction (MTJ). The MTJ resistance fluctuates two resistive
states, this causes the output voltage to fluctuate as well. The transistor allows the
input voltage to amplify from the threshold voltage, which produces a stochastic
sigmoidal output. This SNG design is used for nanomagnetic devices within
neuromorphic structures.

 The second method [Reference 2], discusses an SNG circuit design for Phase
Change Memory (PCM). The inherent stochasticity of PCM is used to design a
scalable and energy efficient circuit by reducing its area. The University of
Kentucky’s design has roughly up to 300 times lower area, which leads to a 250
times decrease in energy consumption. This is all in comparison to a Linear
Feedback Shift Register. The design takes an N-bit input, which is converted into
a 2^N bit stochastic bit-vector. Furthermore, the design utilizes a PCM-based
Gaussian digital-to-analog converter, which aids the reference voltage in reading a
full row of 2^N PCM cells. The block diagram showcases the functionality of
utilizing a 3-bit binary input (B2 B1 B0); however, the design can be generalized
for any bit binary input (BN-1, B1 B0). When the N number of bits enter the
GDAC, the N number of switches help connect the bits to their respective N
number of voltage sources. The voltage source Vx equal to the current pulse (I
READ) multiplied by the inverse of the cumulative distribution function. This
allows the resistance value Rx to be obtained for the given probability number.

 The third p-bit circuit [Reference 3] discusses a lightweight and energy-efficient
true micro random number generator [uRNG] design. This design combines three
entropy inputs A, B, and C to produce an output bit stream. These three entropy
sources are linked to their respective voltages and clock grids, producing a total of
3 random bits/clock. Furthermore, this design utilizes multiple cycles of data-
whitening, which allows the individual true random number generators [TRNG] to
converge at their respective steady-states. This combined approach of using
entropy sources along with data-whitening proves to be quite compact and energy
efficient; the design has a 6.5 times reduction in total gate count and 5.4 times
lower energy consumption when compared to conventional entropy extractors,
which rely on only one entropy source.

7

III. RESULTS AND DISCUSSION

In this section, the energy consumption of the program design will be calculated
using the below energy consumption per instruction values.

1. ALU = Refer to Table I
2. Branch = 4 pJ
3. Jump = 3 pJ
4. Memory = 100 pJ
5. Other = 5 pJ

It is assumed that an RNG circuit is used in the implementation of ALU. The

energy consumption of the RNG circuit is used as the energy consumption of a
single ALU instruction. The energy consumption values reported from references
[1-3] will be used to calculate the total energy consumption of our program
design. The below table lists the required energy consumption to perform each
ALU instruction based on the different technologies proposed in [1-3].

IV. CONCLUSION
 A Three different RNG/SNG circuits using P-bit were analyzed. Their
respective ALU energy consumption values were incorporated in the total
energy calculation of the program design at hand. The most energy efficient
design was reference 1 at 0.49 μJ.

Table II: Total Energy consumption for the assembly
program using designs provided in [1-3].

Design Total Energy Consumption

[1] 0.49 μJ
LFSR [2] 0.5 μJ
GDAC [2] 2.35 μJ

[3] 1.23 μJ

Table I: Energy consumption for a single ALU Instruction
in the designs provided in [1-3].

Design Energy Consumption
For Each ALU Instruction

[1] 0.08 pJ
LFSR [2] 0.9 pJ
GDAC [2] 90 pJ

[3] 36 pJ

8

Technical Topics Learned

• RNG CIRCUIT DESIGN

• ALU ENERGY CALCULATION

• STOCHASTIC DESIGN

• COMPARING BYTES IN MIPS

• NEUROMORPHIC CIRCUITS

REFERENCES

[1] H. Pourmeidani, S. Sheikhfaal, R. Zand, and R. F. DeMara, "Probabilistic Interpolation Recoder

for Energy-Error-Product Efficient DBNs with p-bit Devices," IEEE Transactions on Emerging
Topics in Computing, 2020.

[2] S. M. Shivanandamurthy, I. G. Thakkar, and S. A. Salehi, “Work-in-Progress: A Scalable
Stochastic Number Generator for Phase Change Memory Based In-Memory Stochastic
Processing,” in Proceedings of the International Conference on Hardware/Software Codesign and
System Synthesis Companion, pp. 1-2, October 2019.

[3] S. K. Mathew, D. Johnston, S. Satpathy, V. Suresh, P. Newman, M. A. Anders, H. Kaul, A.
Agarwal, S. K. Hsu. G. Chen, and R. K. Krishnamurthy, “μRNG: A 300–950 mV, 323 Gbps/W all-
digital full-entropy true random number generator in 14 nm FinFET CMOS,” in IEEE Journal of
Solid-State Circuits, vol. 51, no. 7, pp. 1695-1704, 2016.

	I. Introduction
	A. Project Design
	B. Test Cases

	II. p-bit circuit
	Three references each discuss a method of creating a Random Number Generator (RNG) or Stochastic Number Generator (SNG); both utilize P-bit or probabilistic bit, which fluctuates between the 0 state and 1 state, to function as a program that produces...
	The second method [Reference 2], discusses an SNG circuit design for Phase Change Memory (PCM). The inherent stochasticity of PCM is used to design a scalable and energy efficient circuit by reducing its area. The University of Kentucky’s design has ...
	The third p-bit circuit [Reference 3] discusses a lightweight and energy-efficient true micro random number generator [uRNG] design. This design combines three entropy inputs A, B, and C to produce an output bit stream. These three entropy sources ar...
	1. ALU = Refer to Table I
	2. Branch = 4 pJ
	3. Jump = 3 pJ
	4. Memory = 100 pJ
	5. Other = 5 pJ

	IV. Conclusion
	 RNG Circuit Design
	 ALU energy calculation
	 Stochastic Design
	 Comparing Bytes in MIPS
	 Neuromorphic Circuits
	References

