
Page 1 of 2

User Statement & Input Automated Word Design
Schnieder A. Maxime

Department of Electrical and Computer Engineering
University of Central Florida

Orlando, FL 32816-2362

Abstract—In this paper, I will be sharing some observations and
results I have analyzed from my Project 3 Capstone Report. The task
from the project was to develop a program that finds how many times
a word is used in a given statement and the index of each word found.
Thus for the title of this paper came, User Statement & Input
Automated Word Design. Test cases for this project was simple to
choose. By creating sentences of different character sizes I was able to
test my code. First test case came from the GTA with a character count
of 790, then I came up with two more test cases of character count 176
and 71. Given an output to generate made the code simple, prompting
for a statement and word to find, displaying how many times the word
was found and lastly the index of each word found.

Keywords—data, arrays, address, memory contents, string,
indexes, null, and loops

I. INTRODUCTION
 Tasked to develop a program that finds how many
times a word is used in a given statement and the index of
each word found, I used MIPS assembly language to do such
that.

A. Project Design
 To complete such a task, first look at the information given.
Having a predetermined input and output we know exactly how
we went the code to begin and end. First, prompt the user to
input a statement. Here we capture the user input after allocating
enough space for the user and saving it in a register. Next, we
prompt for a word the user would like to find in the statement of
up to 10 characters, which would be captured and also stored in
another register. This is when the real gears of the code begin. It
takes the loaded registers and goes to each bit address to check
not only if the word is found in the statement, but how
manytimes it is found and at what index it was found at.
Thankfully this program account for all cases, upper case and
lower case, so feel free to test out any “wOrD”. It will take the
funky word and return back to the user in the correct form. It is
able to let the user know how many times a word is found
because after each times the word is found the counter would
increment by 1. This is where we can also save an index of where
that word was found in an array. Finally, the program will
terminate when it finds its null character, and print out to the
user how many times the word was seen and the index, thus
completely our task.

B. Test Cases
 Having already a sample input and output given, this is first
tested. After getting the first test complete we can now try other
test cases of different characters and word sizes as seen in figure

2. Using words Knight, team, and chuck passed through, we now
check if these selected words would output the correct found
word and index.

Fig.1: See Below

Fig.2: Sample outputs

II. RELIABILITY BIT-CELLS

 Triple modular redundancy (TMR) is a form of N-modular
redundancy. Which there are three systems that are tasked to
process a majority-voting system to a single vote output. There
are three systems because if one fails the other two will pick up
with the task. Reliability with the TMR is if the none of the three
modules fail or if only one fails. Since two event are mutually
exclusive the system is equal to the sum of probabilities of the
two events. When compared to other systems such as dual
module redundancy the energy consumption can be high. When
handled correctly TMR can be at a much smaller fraction energy
usage then duplex and even hamming error correction.

III. RESULTS AND DISCUSSION
 Using keywords Knight, team and chuck these are the
energy consumption through MIPS.

Result for Test Case 1

(1 × 6963) + (3 × 3548) + (2 × 6207)
+ (. 88 × 1431) + (5 × 5541)
= 183654 𝑓𝑓𝑓𝑓

Result for Test Case 2
(1 × 1844) + (3 × 957) + (2 × 1671) + (. 88 × 397)

+ (5 × 1515) = 15981 𝑓𝑓𝑓𝑓
Result for Test Case 3

(1 × 739) + (3 × 388) + (2 × 652) + (. 88 × 164)
+ (5 × 602) = 6361 𝑓𝑓𝑓𝑓

IV. CONCLUSION
In a nutshell, from the results seen in section III, as the
character count gets smaller for the word being looked in a
statement the less energy is consumed. This is because the
code is being loop through less times since it does not have to
go through a long character count. Extra test cases were made
to see what would happen if using the same statement and
passing smaller, larger or no word to search for. It was shown
that the smaller the word or if there wasn’t a word to search
(e.g. not a word in the statement) then the program would run
the fastest. My best design happens to be the result for test
case 3 with an energy consumption of 6361 fJ. Using the DNU
latch appeared to have a much faster energy consumption over
SEU.

Topics learned:
• Using loops in MIPS assembly

• Calculation of energy consumed by a program using
dynamic instruction count

• Using Instruction Statistics and Instruction Counter tools in
MARS

• Converting letters to uppercase/lower case using ASCII
values

• Learning of TMR and other voting type systems

REFERENCES
[1] Berg, M., & Label, K. (2015, February 9). “Verification of Triple Modular

Redundancy (TMR) Insertion for Reliable and Trusted Systems.” Retrieved
April82020,from
https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20160001756.pdf

[2] F. S. Alghareb, R. Zand and R. F. Demara, "Non-Volatile Spintronic Flip-
Flop Design for Energy-Efficient SEU and DNU Resilience," in IEEE
Transactions on Magnetics, vol. 55, no. 3, pp. 1-11, March 2019, Art no.
3400611.

[3] H. Pourmeidani and M. Habibi, "Hierarchical defect tolerance technique for
NRAM repairing with range matching CAM," 2013 21st Iranian Conference
on Electrical Engineering (ICEE), Mashhad, 2013, pp. 1-6.

[4] K. Katsarou and Y. Tsiatouhas, "Double node charge sharing SEU tolerant
latch design," 2014 IEEE 20th International On-Line Testing Symposium
(IOLTS), Platja d'Aro, Girona, 2014, pp. 1

[5] R. E. Lyons and W. Vanderkulk. "The Use of Triple-Modular Redundancy
to Improve Computer Reliability".IBM Journal.1962

[6] Sheble, N. (2003, October 1). “More is always better when it's critical”.
Retrieved April 8, 2020, from https://www.isa.org/standards-and-
publications/isa-publications/intech-magazine/2003/october/more-is-
always-better-when-its-critical/

Table II: Total Energy consumption for the assembly
program using designs provided in [1-3].

Design Total Energy Consumption

SEU-Latch [1] 6361
DNU-Latch [1] 6262

[2] 7358
[3] 6464

Table I: Energy consumption for a single bit-cell memory
in the designs provided in [1-3].

Design Energy consumption of a Single Bit-
Cell Memory

SEU-Latch [1] 0.88 fJ
DNU-Latch [1] 0.28 fJ

[2] 6.96 fJ
[3] 1.51 fJ

	I. Introduction
	A. Project Design
	B. Test Cases

	II. Reliability Bit-Cells
	Triple modular redundancy (TMR) is a form of N-modular redundancy. Which there are three systems that are tasked to process a majority-voting system to a single vote output. There are three systems because if one fails the other two will pick up with...
	III. Results and Discussion
	IV. Conclusion
	References

