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Abstract—This paper works to examine the effects of different 
designs of full adder circuits on the energy consumption and 
efficiency of the arithmetic logic unit (ALU) of assembly programs 
in MIPS. The full adder is the base unit of the ALU since it is 
capable of executing many of the arithmetic and logic functions 
that are necessary in the MIPS operational set. The different forms 
of the full adder being compared are the Spin Hall Effect driven 
Domain Wall Motion adder (SHE-DWM), the Spin-Torque 
Transfer in Magnetic Tunnel Junctions adder (STT-MTJ), the 
Racetrack Memory (RTM)-based Non-Volatile Full Adder 
(NVFA), and the Spin-Torque Transfer (STT)-based NVFA. The 
program used to test the energy efficiency of the ALUs based on 
the above full adders uses a code with two user-input integers. The 
first output will be a hexadecimal representation of the 
concatenation of the lesser value of each of the eight 4-bit 
groupings in the 32-bit version of the input integers. The second 
output is an array of the count of the occurrences of each 
hexadecimal value in the first output. In the end, it was found that 
the SHE-DWM adder was the most efficient adder to implement 
in the ALU because it had the lowest energy consumption value 
per ALU instruction, which was 0.6 pJ/ALU instruction. With the 
test case used, it was found that the total energy consumed with 
the SHE-DWM based adder was 3775.8 pJ. 
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I. INTRODUCTION 
The program is designed to load, store, and modify an 

array inside of a MIPS program. The first section of the code is 
to design a function that would get through two separate 32-bit 
numbers and pick out the lowest of each byte and provide the 
output from all the lowest bytes between the two numbers. To 
implement this in the most energy efficient way possible, only 
one loop was used for this function. The second part of the code 
was to design a function that would count each byte of the new 
number and would report the amount of each hexadecimal 
value and store the count numbers in an array created in the 
program. To stay as energy efficient as possible, this part of the 
code includes one loop.  
      The test inputs of this code are only two numbers that go 
through each part of the code. The methodology for testing 
must include test cases that test for shorter, longer, and average 
length words. The primary test case was the one provided in the 
project description. To be thorough in testing, multiple different 
test cases were used. The outputs are both the new numbers 
after running through the first part of the code, and the array 
with the counted numbers from the second part of the code. 

A. Project Design 
      As stated in the introduction, the code has two required parts. 
The first part is the QuadMinMixer function. This separate 
function takes in two different 32-bit numbers as inputs and then 
return one number with the lowest byte of each number in each 
place. For example, if the two input numbers were 0x34D5 and 
0x41CF, the resulting output would give 0x31C5. To implement 
this function with energy consumption in mind, a single loop is 
needed. In the start of the function, the inputs are to be stored in 
the $a0 and $a1 registers. Outside of the loop use registers to 
hold the count of the loop and the masking number 0xF for the 
purpose of finding the lowest byte. Inside the loop, the code uses 
the technique of masking to evaluate both numbers. To mask, 
the code uses a register containing all ones (0xF) and the “and” 
function to separate one specific byte in our 32-bit numbers. 
Once one byte is obtained for each number, we can run a simple 
logic branch to determine which byte holds a smaller number. 
Once the smaller byte is determined, the code then adds it to the 
output register. This is done eight times for each of the eight 
bytes in the input numbers. After the code executes, the output 
should contain a 32-bit number composed of the lowest bytes 
between the two inputs. 

  

 
 

Fig. 1: Flowchart of QuadMinMixer function in 
QuadBitCipher assembly program. 
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The second part of the code contains the number obtained 
from the first part as the input and an array of counts. The 
purpose of this code is to count the occurrence of each specific 
byte and store each of those counts in an array that has the 
counts for each hexadecimal digit. For example, if our output 
from part A was 0x31C3, then our count array will have a 1 in 
the 1’s and C’s place in the array and a 2 in the 3’s spot in the 
array. There are several ways to do this, but the code 
implements a more energy and instruction count efficient 
method than many others. To run the code with as little energy 
as possible, the array needs to be directly accessed to store and 
load each byte from the array as recorded. To implement this 
code, an unrolled loop was used to go through the input 
number by each byte. To register a single byte from the input 
number, bit masking was used to isolate each byte. Once 
isolated from the input number and stored into another 
register, the code determines the address of that byte in our 
array and loads the current count number from the array. Once 
that number is loaded, the number is incremented and stored 
back into its proper spot in the count array. After the new 
value is stored in the count array, the final step is to shift the 
input number to begin to mask the next byte of the number. 
This loop process will run for each byte in the input. To print 
the array for the final output, the code has to print the contents 
of the array separately. To do this, load the syscall code for 
printing a base ten integer into $v0, load the value at each 
index into $a0 and then perform a syscall. 

B. Test Cases 
      To test the code thoroughly, several different test cases must 
be used for specific reasons. The most obvious test cases will 
be the ones provided in the project description. The first of these 
test cases uses the 32-bit versions of numbers x=1792801454 
and y=2016082984. These two numbers work well because 
they are both full 32-bit numbers that only take the code about 
8 loops for each loop in the code to execute. The second test 
case provided uses x=1277564965 and y=735994003. 
Functionally, this test case is similar to the first, but tests the 
program over a larger range included in the 32-bit versions of 
these numbers to verify that the program is consistent when the 
difference in the bit groups is both large and small. One last 
special case should be tested, when both inputs have the same 
number. For this test case, the number 0x77777777, or 
2004318071 in base 10, will be given as both inputs. The output 
should be the same number and contain an array that has a count 
of 8 at the index of the array that corresponds to the 7 digit.  
 

 
 

 

 
 

Fig. 2: Flowchart of main section of QuadBitCipher 
assembly program. 

 

 

 

 
Fig. 3: Sample outputs of the QuadMinMixer and 
QuadBitCipher programs using the three test cases 

described in section I part B. 
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II. FULL-ADDER CIRCUIT 
 A full adder is a circuit that adds three input bits: one bit per 

place value per number for each of two numbers a and b, added 
to one bit carried in cin. The full adder will output two bits to 
represent the sum s and the value cout carried out after execution 
of the addition of a, b, and cin. 

Full adder cells can be combined to add numbers with more 
than two bits. A ripple carry adder, for example, cascades full 
adder cells with one full adder cell representing each bit of the 
addends and the carry out of the nth full adder cell being the carry 
in for the (n+1)th  full adder cell. Since full adders are able to add 
numbers, they are also able to subtract numbers because 
subtraction of two numbers is the equivalent of adding the 
negative of the second number to the first number. Having the 
capability to add and subtract numbers makes multiplication and 
division possible as well, since multiplication is essentially 
repeated addition and division is essentially repeated subtraction 
[5]. The truth table of a full adder shows that, in addition to the 
arithmetic operations of addition, subtraction, multiplication, 
and division, the full adder can execute Boolean logic operations 
such as AND, OR, XOR, and XNOR. These functions perform 
the operation on the a and b inputs while using the cin input as a 
control line to switch between AND and OR, and XNOR and 
XOR. AND and OR are represented on the cout output by a cin 
value of 1 and 0 respectively.  A value of 1 or 0 (respectively) 
on the cin input will provide the XNOR or XOR operations as 
the sum output [4]. Since full adders are capable of performing 
basic arithmetic and logic operations, they are considered to be 
the bases of the Arithmetic Logic Unit, or ALU [6]. 

Traditionally, full adders have been comprised of Boolean 
logic gates. Recently, however, new devices are becoming 
promising options for the future of full adder implementation. 
One of these new options is Spin-based Logic-in Memory, 
which utilizes the torque of the electron spin accumulated on the 
surface of conductive material, as determined by the Spin-Hall 
Effect, to drive the motion of the domain wall, and therefore 
drive the changes in magnitude and sign of the domain wall [1]. 
Another promising option is based on the “magnetic RAM 
(MRAM)” seen in magnetic tunnel junctions (MTJs) that make 
up magnetic adders driving the motion of the domain wall. This 
MRAM uses “racetrack memory” which is based on the storage 
of regions of opposing magnetic polarity in nanowires, or 
“racetracks” [2]. Non-Volatile Full Adders (NVFAs) can utilize 
Racetrack Memory (RTM) or Spin-Torque transfer (STT) 
techniques to store their “Logic-In” memory. Because of their 
unique storage of magnetic polarity on ferromagnetic strips, 
RTM devices have the benefits of low power and density with 
high speed. STT devices also use MRAM to store data and 
perform operations. However, unlike RTM devices, STT 
devices connect their write circuit directly to the read circuit. 
This results in possible additional effort needed to isolate read 
and write devices, but simplified versions of the timing portions 
and lower addition cycle times in the circuit [3].  

 
 

III. RESULTS AND DISCUSSION 
Each of the designs of adders for a single ALU instruction 

require different amounts of energy to execute. Each of the 
specific values are located in table I. This value only changes the 
total energy calculations of the code for the specific logic-based 
instructions. The memory, branch, jump, and other instruction 
types are unaffected by the switch in full-adder design. The 
energy consumption for each instruction is given by 

1) ALU = Refer to Table I 
2) Branch = 3 pJ 
3) Jump = 2 pJ 
4) Memory = 100 pJ 
5) Other = 5 pJ 

 
To calculate total energy consumption of the program, the 

MIPS instruction statistics tool will be used. The test case to 
calculate this energy total will be the default test case given in 
the project description. The code has a total dynamic instruction 
count of 261 instructions, which can be divided into 147 ALU 
instructions, 10 jump instructions, 17 branch instructions, 32 
memory instructions, and 55 other instructions. Based on the 
instructions for this test case and the amount of energy required 
for each instruction, the total energy equation for this test is: 

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 = (147 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) + (10 ∗ 2) + (17 ∗ 3)
+ (32 ∗ 100) + (55 ∗ 5) 

Table I: Energy consumption for a single ALU Instruction 
in the designs provided in [1-3]. 

 

Design Energy Consumption 
For Each ALU Instruction 

SHE-DWM [1] 0.6 pJ 
STT-MTJ [2] 6.3 pJ 
RTM-based 
NVFA [3] 1.67 pJ 

STT-based 
NVFA [3] 1.31 pJ 

 

Table II: Total energy consumption for the assembly 
program using designs provided in [1-3]. 

 

Design Total Energy Consumption 

SHE-DWM [1] 3634.2 pJ 
STT-MTJ [2] 4472.1 pJ 
RTM-based 
NVFA [3] 3791.5 pJ 

STT-based 
NVFA [3] 3738.6 pJ 
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This energy equation was used to produce the results of table II 
based off of the individual full adder technologies in table I. 
From the amount of energy consumed, the SHE-DWM design 
is the most energy efficient as it completes arithmemtic 
instructions at only 0.6 pJ/instruction. The least efficient design 
is the STT-MTJ design with 6.3 pJ per instruction. Although 
this design does consume more energy, it may use less space or 
be a faster system.  

 

IV. CONCLUSION 
Using each of the designs for the full adder, the code was 

able to use less energy depending on whichever adder used the 
least or most energy. Whenever the adder used less energy, the 
total energy used for the code went down. This caused the most 
energy efficient system to be the SHE-DWM adder because it 
used the least amount of energy per instruction. Using the same 
logic, the most inefficient system was the STT-MTJ based adder 
because it used the most energy per instruction. This conclusion 
makes logical since because the total energy is a direct variation 
with the amount of energy used for one part, with the other parts 
remaining constant. Technical topics learned from this project 
include different designs and operations of full adders, 
manipulating and storing values into MIPS arrays, calculating 
total energy consumed based from instruction statistics in MIPS, 
implementation of full adder based ALU designs, and bit 
masking to isolate an individual byte from a 32-bit number. As 
stated before, the best design included the SHE-DWM full 
adder. The total energy consumption of the program with that 
adder design was 3.6342 nanojoules. 
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