
Page 1 of 4

The Impact of Full Adder Designs on ALU
Performance and Energy Efficiency

Joseph De La Pascua, Natesha Ramdhani

Department of Electrical and Computer Engineering
University of Central Florida

Orlando, FL 32816-2362

Abstract—This paper works to examine the effects of different
designs of full adder circuits on the energy consumption and
efficiency of the arithmetic logic unit (ALU) of assembly programs
in MIPS. The full adder is the base unit of the ALU since it is
capable of executing many of the arithmetic and logic functions
that are necessary in the MIPS operational set. The different forms
of the full adder being compared are the Spin Hall Effect driven
Domain Wall Motion adder (SHE-DWM), the Spin-Torque
Transfer in Magnetic Tunnel Junctions adder (STT-MTJ), the
Racetrack Memory (RTM)-based Non-Volatile Full Adder
(NVFA), and the Spin-Torque Transfer (STT)-based NVFA. The
program used to test the energy efficiency of the ALUs based on
the above full adders uses a code with two user-input integers. The
first output will be a hexadecimal representation of the
concatenation of the lesser value of each of the eight 4-bit
groupings in the 32-bit version of the input integers. The second
output is an array of the count of the occurrences of each
hexadecimal value in the first output. In the end, it was found that
the SHE-DWM adder was the most efficient adder to implement
in the ALU because it had the lowest energy consumption value
per ALU instruction, which was 0.6 pJ/ALU instruction. With the
test case used, it was found that the total energy consumed with
the SHE-DWM based adder was 3775.8 pJ.

Keywords— Full Adder, Arithmetic Logic Unit (ALU), Energy
Consumption, Energy Efficiency

I. INTRODUCTION
The program is designed to load, store, and modify an

array inside of a MIPS program. The first section of the code is
to design a function that would get through two separate 32-bit
numbers and pick out the lowest of each byte and provide the
output from all the lowest bytes between the two numbers. To
implement this in the most energy efficient way possible, only
one loop was used for this function. The second part of the code
was to design a function that would count each byte of the new
number and would report the amount of each hexadecimal
value and store the count numbers in an array created in the
program. To stay as energy efficient as possible, this part of the
code includes one loop.
 The test inputs of this code are only two numbers that go
through each part of the code. The methodology for testing
must include test cases that test for shorter, longer, and average
length words. The primary test case was the one provided in the
project description. To be thorough in testing, multiple different
test cases were used. The outputs are both the new numbers
after running through the first part of the code, and the array
with the counted numbers from the second part of the code.

A. Project Design
 As stated in the introduction, the code has two required parts.
The first part is the QuadMinMixer function. This separate
function takes in two different 32-bit numbers as inputs and then
return one number with the lowest byte of each number in each
place. For example, if the two input numbers were 0x34D5 and
0x41CF, the resulting output would give 0x31C5. To implement
this function with energy consumption in mind, a single loop is
needed. In the start of the function, the inputs are to be stored in
the $a0 and $a1 registers. Outside of the loop use registers to
hold the count of the loop and the masking number 0xF for the
purpose of finding the lowest byte. Inside the loop, the code uses
the technique of masking to evaluate both numbers. To mask,
the code uses a register containing all ones (0xF) and the “and”
function to separate one specific byte in our 32-bit numbers.
Once one byte is obtained for each number, we can run a simple
logic branch to determine which byte holds a smaller number.
Once the smaller byte is determined, the code then adds it to the
output register. This is done eight times for each of the eight
bytes in the input numbers. After the code executes, the output
should contain a 32-bit number composed of the lowest bytes
between the two inputs.

Fig. 1: Flowchart of QuadMinMixer function in
QuadBitCipher assembly program.

Page 2 of 4

The second part of the code contains the number obtained
from the first part as the input and an array of counts. The
purpose of this code is to count the occurrence of each specific
byte and store each of those counts in an array that has the
counts for each hexadecimal digit. For example, if our output
from part A was 0x31C3, then our count array will have a 1 in
the 1’s and C’s place in the array and a 2 in the 3’s spot in the
array. There are several ways to do this, but the code
implements a more energy and instruction count efficient
method than many others. To run the code with as little energy
as possible, the array needs to be directly accessed to store and
load each byte from the array as recorded. To implement this
code, an unrolled loop was used to go through the input
number by each byte. To register a single byte from the input
number, bit masking was used to isolate each byte. Once
isolated from the input number and stored into another
register, the code determines the address of that byte in our
array and loads the current count number from the array. Once
that number is loaded, the number is incremented and stored
back into its proper spot in the count array. After the new
value is stored in the count array, the final step is to shift the
input number to begin to mask the next byte of the number.
This loop process will run for each byte in the input. To print
the array for the final output, the code has to print the contents
of the array separately. To do this, load the syscall code for
printing a base ten integer into $v0, load the value at each
index into $a0 and then perform a syscall.

B. Test Cases
 To test the code thoroughly, several different test cases must
be used for specific reasons. The most obvious test cases will
be the ones provided in the project description. The first of these
test cases uses the 32-bit versions of numbers x=1792801454
and y=2016082984. These two numbers work well because
they are both full 32-bit numbers that only take the code about
8 loops for each loop in the code to execute. The second test
case provided uses x=1277564965 and y=735994003.
Functionally, this test case is similar to the first, but tests the
program over a larger range included in the 32-bit versions of
these numbers to verify that the program is consistent when the
difference in the bit groups is both large and small. One last
special case should be tested, when both inputs have the same
number. For this test case, the number 0x77777777, or
2004318071 in base 10, will be given as both inputs. The output
should be the same number and contain an array that has a count
of 8 at the index of the array that corresponds to the 7 digit.

Fig. 2: Flowchart of main section of QuadBitCipher
assembly program.

Fig. 3: Sample outputs of the QuadMinMixer and
QuadBitCipher programs using the three test cases

described in section I part B.

Page 3 of 4

II. FULL-ADDER CIRCUIT
 A full adder is a circuit that adds three input bits: one bit per

place value per number for each of two numbers a and b, added
to one bit carried in cin. The full adder will output two bits to
represent the sum s and the value cout carried out after execution
of the addition of a, b, and cin.

Full adder cells can be combined to add numbers with more
than two bits. A ripple carry adder, for example, cascades full
adder cells with one full adder cell representing each bit of the
addends and the carry out of the nth full adder cell being the carry
in for the (n+1)th full adder cell. Since full adders are able to add
numbers, they are also able to subtract numbers because
subtraction of two numbers is the equivalent of adding the
negative of the second number to the first number. Having the
capability to add and subtract numbers makes multiplication and
division possible as well, since multiplication is essentially
repeated addition and division is essentially repeated subtraction
[5]. The truth table of a full adder shows that, in addition to the
arithmetic operations of addition, subtraction, multiplication,
and division, the full adder can execute Boolean logic operations
such as AND, OR, XOR, and XNOR. These functions perform
the operation on the a and b inputs while using the cin input as a
control line to switch between AND and OR, and XNOR and
XOR. AND and OR are represented on the cout output by a cin
value of 1 and 0 respectively. A value of 1 or 0 (respectively)
on the cin input will provide the XNOR or XOR operations as
the sum output [4]. Since full adders are capable of performing
basic arithmetic and logic operations, they are considered to be
the bases of the Arithmetic Logic Unit, or ALU [6].

Traditionally, full adders have been comprised of Boolean
logic gates. Recently, however, new devices are becoming
promising options for the future of full adder implementation.
One of these new options is Spin-based Logic-in Memory,
which utilizes the torque of the electron spin accumulated on the
surface of conductive material, as determined by the Spin-Hall
Effect, to drive the motion of the domain wall, and therefore
drive the changes in magnitude and sign of the domain wall [1].
Another promising option is based on the “magnetic RAM
(MRAM)” seen in magnetic tunnel junctions (MTJs) that make
up magnetic adders driving the motion of the domain wall. This
MRAM uses “racetrack memory” which is based on the storage
of regions of opposing magnetic polarity in nanowires, or
“racetracks” [2]. Non-Volatile Full Adders (NVFAs) can utilize
Racetrack Memory (RTM) or Spin-Torque transfer (STT)
techniques to store their “Logic-In” memory. Because of their
unique storage of magnetic polarity on ferromagnetic strips,
RTM devices have the benefits of low power and density with
high speed. STT devices also use MRAM to store data and
perform operations. However, unlike RTM devices, STT
devices connect their write circuit directly to the read circuit.
This results in possible additional effort needed to isolate read
and write devices, but simplified versions of the timing portions
and lower addition cycle times in the circuit [3].

III. RESULTS AND DISCUSSION
Each of the designs of adders for a single ALU instruction

require different amounts of energy to execute. Each of the
specific values are located in table I. This value only changes the
total energy calculations of the code for the specific logic-based
instructions. The memory, branch, jump, and other instruction
types are unaffected by the switch in full-adder design. The
energy consumption for each instruction is given by

1) ALU = Refer to Table I
2) Branch = 3 pJ
3) Jump = 2 pJ
4) Memory = 100 pJ
5) Other = 5 pJ

To calculate total energy consumption of the program, the

MIPS instruction statistics tool will be used. The test case to
calculate this energy total will be the default test case given in
the project description. The code has a total dynamic instruction
count of 261 instructions, which can be divided into 147 ALU
instructions, 10 jump instructions, 17 branch instructions, 32
memory instructions, and 55 other instructions. Based on the
instructions for this test case and the amount of energy required
for each instruction, the total energy equation for this test is:

𝐸𝐸𝑡𝑡𝑡𝑡𝑡𝑡 = (147 ∗ 𝐴𝐴𝐴𝐴𝐴𝐴 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸) + (10 ∗ 2) + (17 ∗ 3)
+ (32 ∗ 100) + (55 ∗ 5)

Table I: Energy consumption for a single ALU Instruction
in the designs provided in [1-3].

Design Energy Consumption
For Each ALU Instruction

SHE-DWM [1] 0.6 pJ
STT-MTJ [2] 6.3 pJ
RTM-based
NVFA [3] 1.67 pJ

STT-based
NVFA [3] 1.31 pJ

Table II: Total energy consumption for the assembly
program using designs provided in [1-3].

Design Total Energy Consumption

SHE-DWM [1] 3634.2 pJ
STT-MTJ [2] 4472.1 pJ
RTM-based
NVFA [3] 3791.5 pJ

STT-based
NVFA [3] 3738.6 pJ

Page 4 of 4

This energy equation was used to produce the results of table II
based off of the individual full adder technologies in table I.
From the amount of energy consumed, the SHE-DWM design
is the most energy efficient as it completes arithmemtic
instructions at only 0.6 pJ/instruction. The least efficient design
is the STT-MTJ design with 6.3 pJ per instruction. Although
this design does consume more energy, it may use less space or
be a faster system.

IV. CONCLUSION
Using each of the designs for the full adder, the code was

able to use less energy depending on whichever adder used the
least or most energy. Whenever the adder used less energy, the
total energy used for the code went down. This caused the most
energy efficient system to be the SHE-DWM adder because it
used the least amount of energy per instruction. Using the same
logic, the most inefficient system was the STT-MTJ based adder
because it used the most energy per instruction. This conclusion
makes logical since because the total energy is a direct variation
with the amount of energy used for one part, with the other parts
remaining constant. Technical topics learned from this project
include different designs and operations of full adders,
manipulating and storing values into MIPS arrays, calculating
total energy consumed based from instruction statistics in MIPS,
implementation of full adder based ALU designs, and bit
masking to isolate an individual byte from a 32-bit number. As
stated before, the best design included the SHE-DWM full
adder. The total energy consumption of the program with that
adder design was 3.6342 nanojoules.

REFERENCES
[1] S. Salehi and R. F. DeMara, "SLIM-ADC: Spin-based Logic-In-Memory

Analog to Digital Converter Leveraging SHE-enabled Domain Wall Motion
Devices," Microelectronics Journal, Vol. 81, pp. 137–143, November 2018.

[2] H. P. Trinh et al., “Magnetic adder based on racetrack memory,” IEEE
Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 6, pp. 1469–1477, June
2013.

[3] K. Huang, R. Zhao and Y. Lian, "A Low Power and High Sensing Margin
Non-Volatile Full Adder Using Racetrack Memory," in IEEE Transactions
on Circuits and Systems I: Regular Papers, vol. 62, no. 4, pp. 1109-1116,
April 2015.

[4] B. Lokesh and M. Malathi, "Full adder based reconfigurable spintronic ALU
using STT-MTJ," 2013 Annual IEEE India Conference (INDICON), pp. 1-
5, December 2013.

[5] Patel and Fung, "Concurrent Error Detection in Multiply and Divide
Arrays," in IEEE Transactions on Computers, vol. C-32, no. 4, pp. 417-422,
April 1983.

[6] C. H. Chang, J. Gu and M. Zhang, "A review of 0.18-/spl mu/m full adder
performances for tree structured arithmetic circuits," in IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, vol. 13, no. 6, pp. 686-
695, June 2005.

	I. Introduction
	A. Project Design
	B. Test Cases

	II. Full-Adder Circuit
	III. Results and Discussion
	1) ALU = Refer to Table I
	2) Branch = 3 pJ
	3) Jump = 2 pJ
	4) Memory = 100 pJ
	5) Other = 5 pJ

	This energy equation was used to produce the results of table II based off of the individual full adder technologies in table I. From the amount of energy consumed, the SHE-DWM design is the most energy efficient as it completes arithmemtic instructio...
	IV. Conclusion
	References

