
Page 1 of 4

Reliable Nanometer Tech with Addresses and Index
Tommy Rodriguez

Department of Electrical and Computer Engineering
University of Central Florida

Orlando, FL 32816-2362

Abstract— This essay report goes over an assembly program
created to find a user’s word inside of a given phrase. The program
reports back to the user how many times it appeared in the user
and the indexes that it appeared in using the help of arrays. In this
project we used the words Knight, UCF and grants. We did this to
have some difference in the amount of characters. We will later
figure out that the more characters a word has the more it makes
the design use less memory consumption. We use the DNU (Double
Node Upset) to show that it is the best in memory consumption just
as it is in speed. This project was made to find a ‘Reliable
Nanometer Tech with Addresses and Index” using the assembly
code and the given individual energy consumptions from sources
[1-3]. Showing how the DNU indeed beats the designs presents in
the report in section III.

Keywords— Triple Modular Redundancy, addresses, arrays,
null, index, Nonometer Technology, Double Node Upset (DNU),
Reliability.

I. INTRODUCTION
Using MARS/MIPS coding we are able to achieve a goal of

having the user input a statement, and then asked for a word to
be found in that statement. That word is counted and shown to
the user how many times it appears. The code also tells the user
what index this word appeared in the statement.

A. Project Design
In order to have the project to function we must first give
enough space for the user to input their statement. We also
need a space for the word that the user will input to find
within their given statement to the program. The user will
start off by being asked for their statement, following after
the user inputs the statement the program will then ask for
the word, where the coder must specify how many characters
it can be. In our case we specify to the user to input a word
like ‘KnIgHt’ being maximum 10 characters. The program
will then load the statement into a registers address. The
program goes to each bit of the address to check if the word
matches. The program accounts for capital and lower-case
letters by converting it to the given word and returning it
back to normal for the user. If the word is a match, then a
counter will increment to tell the user at the end how many
times the word appeared. At the same time, the program has
a counter for the indexes. There is a counter increasing for
each index, and when the word is a match the current count
of the index is inputted into an array. Once the program finds
the null, the end of the statement, it will output to the user

the number of times a word appeared and what index the
word appeared by the help of out putting the array to the user.

B. Test Cases
To test out our project we are recommended by our graduate

teaching assistant (GTA) to input the following statement: “The
Knights Graduation and Grant Initiative is a UCF award to help
undergraduate students who cannot pay their tuition and their
difficulty would not allow them to finish their degree. The
Knights Success Grant is the most well-known program inside
the Knights Graduation and Grant Initiative. In order to be
awarded the Knights Success Grant, you need to be referred but
it does not mean that all students who are referred will be
awarded the grant. The students who want to apply for the
Knights Success Grant need to submit a required application and
complete the Knights Success Grant web course. For more
information, you can stop by their office in the Registrar’s
Office on the main campus of UCF.” To test our input, we give
the program another input, which is the word. We use the
following words to test the project, (Knights, UCF, and Grants)
all in 3 different runs of the project. The following output that
came from the written MIPS coding is displayed out in Fig.2.

Fig.1: Flowchart of the assembly program.

 FOUND ON PAGE 3 BELOW

Fig.2: Sample outputs of the program.

FOUND ON PAGE 4 BELOW

Page 2 of 4

II. RELIABILITY BIT-CELLS
Nanometer technology is a developing technology that is
promising us an increase in device density. However, with such
great development there is a great defect on nanometer
technology and that is the reliability decrease using nanometer
technology. The implementation of triple module redundancy
(TMR) to help with the reliability levels of nanometer
technology. This implements three identical latches and a voter
circuit. With this, the majority of the outputs return correctly
even if there is a failure in one of the latches. But this also
comes with a cost, this method will impose significant areas,
and also power consumption overheads.

With the TMR we also have the voter circuit. The voter is
typically more reliable than most components in TMR. There
usually is just one voter circuit at the end for the outputs, just
as a simple circuit. There are cases where there are multiple
voter circuits throughout the TMR where in this case has a
higher probability of failing because we are adding more
reliability to the voters. Voters are crucial parts of the TMR
system. If there is a failure of a voter, and this TMR only has
one voter at the end, then more than likely then the entire system
will fail as it is no longer storing the outputs for us. However,
adding more voters, even though more complicated, it does
raise its reliability because if the error detection and automatic
switching mechanism, if one fails, switching over to the others
to back up the outputs kept on the other voter, making this
system more reliable.

III. RESULTS AND DISCUSSION
After testing my program using the energy consumption per
instruction values, my program gave me the following
results below. The results are displayed using the key word
Knight, UCF, and Grant:

1) ALU = 7086 fJ (30%)
2) Branch = 6310 fJ (26%)
3) Jump = 3611fJ (15%)
4) Memory = 1456 fJ (6%) Refer to Table I
5) Other =5633 fJ (24%)
Energy Consumption: 239428fJ

1) ALU = 8686 fJ (34%)

2) Branch = 6455 fJ (24%)
3) Jump = 3695fJ (14%)
4) Memory = 1482 fJ (6%) Refer to Table I
5) Other =5758 fJ (22%)
Energy Consumption: 248471fJ

1) ALU = 7123 fJ (30%)

2) Branch = 6384 fJ (26%)
3) Jump = 3650fJ (15%)
4) Memory = 1478 fJ (6%) Refer to Table I
5) Other =5713 fJ (24%)
Energy Consumption: 242667fJ

Using Table I we can find the total energy consumption for the
designs that were used in references [1-3]. We will use the best
energy consumption calculated for my code to test it along with
the designs of references [1-3]. You can find these results in
Table II.

IV. CONCLUSION
In conclusion, from our results in section III we can observe
that more energy consumed as the word we are looking for has
less characters in it. It seems like the memory for each test
subject we used appeared different and increased as our word
decreased. More than likely this came from having to jump less,
holding less memory, and having to branch less contributed to
this. With memory making the biggest impact to energy
consumption, even with a few digits changes it will give us a
drastic change in energy consumption. This is the reason in
Table II we observed such high changes in energy consumption
among the designs. With Table II we can assess that the DNU-
Latch was the most reliable in energy consumption. This is
expected as the DNU has a remarkable high-speed application,
but this does come with a cost of higher power consumptions.

REFERENCES
[1] F. S. Alghareb, R. Zand and R. F. Demara, "Non-Volatile Spintronic Flip-

Flop Design for Energy-Efficient SEU and DNU Resilience," in IEEE
Transactions on Magnetics, vol. 55, no. 3, pp. 1-11, March 2019, Art no.
3400611.

[2] H. Pourmeidani and M. Habibi, "Hierarchical defect tolerance technique for
NRAM repairing with range matching CAM," 2013 21st Iranian Conference
on Electrical Engineering (ICEE), Mashhad, 2013, pp. 1-6.

Table II: Total Energy consumption for the assembly
program using designs provided in [1-3].

Design Total Energy Consumption

SEU-Latch [1] 221928 fJ
DNU-Latch [1] 134528 fJ

[2] 1107228 fJ
[3] 313728 fJ

Table I: Energy consumption for a single bit-cell memory
in the designs provided in [1-3].

Design Energy consumption of a Single Bit-
Cell Memory

SEU-Latch [1] 0.88 fJ
DNU-Latch [1] 0.28 fJ

[2] 6.96 fJ
[3] 1.51 fJ

Page 3 of 4

[3] K. Katsarou and Y. Tsiatouhas, "Double node charge sharing SEU tolerant
latch design," 2014 IEEE 20th International On-Line Testing Symposium
(IOLTS), Platja d'Aro, Girona, 2014, pp. 122-127.

[4] M. Radu, D. Pitica and C. Posteuca, "Reliability and failure analysis of
voting circuits in hardware redundant design," International Symposium on
Electronic Materials and Packaging (EMAP2000) (Cat. No.00EX458),
Hong Kong, China, 2000, pp. 421-423.

[5] S. Mitra and E. J. McCluskey, "Word-voter: a new voter design for triple
modular redundant systems," Proceedings 18th IEEE VLSI Test
Symposium, Montreal, Quebec, Canada, 2000, pp. 465-470.

[6] J. F. Wakerly, "Microcomputer reliability improvement using triple-
modular redundancy," in Proceedings of the IEEE, vol. 64, no. 6, pp. 889-
895, June 1976.

Figure. 1

Page 4 of 4

Figure 2

	I. Introduction
	A. Project Design
	B. Test Cases

	II. Reliability Bit-Cells
	III. Results and Discussion
	After testing my program using the energy consumption per instruction values, my program gave me the following results below. The results are displayed using the key word Knight, UCF, and Grant:
	1) ALU = 7086 fJ (30%)
	2) Branch = 6310 fJ (26%)
	3) Jump = 3611fJ (15%)
	4) Memory = 1456 fJ (6%) Refer to Table I
	5) Other =5633 fJ (24%)
	Energy Consumption: 239428fJ
	1) ALU = 8686 fJ (34%)
	2) Branch = 6455 fJ (24%)
	3) Jump = 3695fJ (14%)
	4) Memory = 1482 fJ (6%) Refer to Table I
	5) Other =5758 fJ (22%)
	Energy Consumption: 248471fJ
	1) ALU = 7123 fJ (30%)
	2) Branch = 6384 fJ (26%)
	3) Jump = 3650fJ (15%)
	4) Memory = 1478 fJ (6%) Refer to Table I
	5) Other =5713 fJ (24%)
	Energy Consumption: 242667fJ

	IV. Conclusion
	References

