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Abstract—This report, “Evaluating Energy Consumption in 
Memory Hardware with Respect to Memory Write Operations,” 
looks at the energy consumption of different memory systems 
using phase-change memory and optimized spin torque transfer 
devices. In order to evaluate the best model for reducing energy 
leakage, this report looks at the energy use to write data into 
memory for PCM, optimized STT, and STT with a BGIM cell. The 
program used to test the memory energy consumption searches for 
a user defined key word in a user defined phrase. After finding the 
amount of energy used in the memory write operations of each 
model and the number of dynamic instructions count for the 
experimental program, it is possible to calculate the total energy 
used for each of the hardware models. This report finds that the 
BGIM cell offers the best energy reduction of all the models 
consuming only 171898.88 fJ, or 171.89pJ in total. The BGIM cell 
also offers faster memory access and use bidirectionality to reduce 
the hardware used in previous models. 

Keywords—Non-Volitile Memory, Memory Write, Magnetic 
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I. INTRODUCTION 
The program for this project was to take two inputs from the 

user: a phrase and a key word. The program searches for the 
occurrences of the key word in the given phrase and reports the 
number of occurrences and the indices at which they occurr to 
the console in formatted output. The program should match the 
keyword with any occurrence regardless of case or if the key 
word occurs within a larger word. The code for the program 
consists of a block of code to scan input from the user, a block 
to serve as the main body of the code, three blocks that execute 
instructions based on the conditions tested in the main block, and 
the final block of code should print out the formatted output. 

The first inputs were the search phrase, “knight,” and the 
search word, “knight.” These represented a simple case that 
would test the basic functionality of the program. The 
corresponding output was 1 occurrence at index 1 as shown in 
Figure 2. The second test inputs were the phrase and word given 
in the project description in order to test the basic test case given 
to the students. The output for this case was 6 occurrences as 
indices 27, 29, 42, 75, 96, and 100. The third test case used the 
test phrase, “Knight knight KnIgHt kNiGhT,” and the test word, 
“knight” in order to test the case insensitivity of the program to 

ensure it would run without regard for the case of the input 
strings. The output should be 4 occurrences at indices 1, 2, 3, 
and 4. 

A. Project Design 
 The project code was made of three parts: scanning input, 
the main body of the code, and printing the output. 

 The first part uses syscall to print the prompt to ask the user 
to “Please type in your input statement:”. The syscall in this 
program can take a phrase up to 800 characters in allocated 
memory. It then prints the prompt to ask “Please type in a word 
(up to 10 characters) that you are looking for (e.g. Knight or 
KnIGhT, knight, …):” which is scanned into allocated memory 
space for the word. This is followed by the initialization of the 
address registers at the address of the phrase in s1, word in s0, 
and the index array in s2. Also, the occurrence counter, index 
counter, and test variable are initialized. 

 The second part is the main body of the code. This block 
tests the various conditions of the code to perform the 
appropriate actions. The t0 and t1 registers are loaded with s0 
and s1 respectively. Each register should contain one byte which 
is one letter from the key word and one letter from the search 
phrase.  

 The program first checks for the enter character. If t0 equals 
10, the program increases the occurrence counter, t3, stores the 
index number in the index array, increment the address of the 
array by 4 for the next word, and loads the address of the word 
into the address register again to reset the register and search for 
the next occurrence of the key word. then it jumps back to the 
main block. If t1 equals 10, then the program should jump to the 
printing block.  

 This program also looks for spaces in order to count the 
indices. When t1 equals 32, there is a space in the phrase, so the 
program jumps to the index counter, increases the index number 
in t2, increases the address register a1, and jumps back to the 
main block. 

 Else, the program should subtract the values in t0 and t1, then 
store the value in t4 to test for equality. If the values are equal, 
then the t4 register is zero. If t0 is a capital letter, then t4 is -32. 
If t1 is a capital letter, then t4 is 32. In any of these cases, the 
program should jump to the “next” label to compare the rest of 
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the characters. The address registers a0 and a1 are increased by 
one to move to the next bit and then return to the main block.  

 The last block is the printing block. Here, the output 
message, “Number of times the word was found in the input 
statement:” is printed, then the number of occurrences in the t3 
register is printed. Then, the index message, “Indexes of the 
matches found:” is printed. In order to print all elements in the 
index array, a loop is used to print a byte from the array, print a 
comma, and then increment the address of the index array to 
print the next byte. When the byte equals zero, the program 
branches from the loop and prints a period. Once the output is 
printed, the program closes. 

 
B. Test Cases 

The three test cases used on this program include simple 
inputs, sample inputs, and inputs with different capitalizations (, 
a mix of capital and lowercase letters). The first test case used 
the test phrase, “knight,” and the key word, “knight.” This case 
tested the program to see if it would run on its most simple level 
of recognizing the same word. The output of the program, as 
shown in Figure 2a, is 1 occurrence at index 1. The second case 
tested the sample output that was given with the project 
assignment. The test phrase was, “UCF, its athletic program, and 
the university’s alumni and sports fans are sometimes jointly 
referred to as the UCF Nation, and are represented by the mascot 
Knightro.  The Knight was chosen as the university mascot in 

1970 by student election. The Knights of Pegasus was a   
submission put forth by students, staff, and faculty, who wished 
to replace UCF’s original mascot, the Citronaut, which was a 
mix between an orange and an astronaut.  The Knights were also 
chosen over Vincent the Vulture, which was a popular unofficial 
mascot among students at the time.  In 1994, Knightro debuted 
as the Knights official athletic mascot.” and the key word was, 
“KnIgHt.” This case tested an input phrase that was longer, 
including full sentences, and the case insensitivity of the 
program for the key word. The program output, as shown in 
Figure 2b, counted 6 occurrences as indices, 27, 29, 42, 75, 96, 
and 100. The third test case used the test phrase, “Knight knight 
KnIgHt kNiGhT,” and the test word, “knight.” This case tested 
the case insensitivity of the test phrase and a simple key word. 
The output of the program, as shown in Figure 2c, counted 4 
occurrences at indices 1, 2, 3, and 4. 

 

II. MEMORY BIT-CELLS 
 The hardware for memory access has three states: standby, 
read, and write [6]. The bit and word lines help determine which 
state the hardware should execute. In the case of write, the word 

Fig.1: Flowchart of the assembly program. 

 

 

Fig.2: Sample outputs of the assembly program. 

a) Case 1 

 
b) Case 2 

 
c) Case 3 
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line enables the transistors and allows the data in the bit line to 
be written into memory [6]. In the case of read, the data from 
the bit line goes to output instead of the memory cell. Memory 
access is one of the most energy intensive operations a device 
can perform, especially with the continual efforts of tech 
companies to increase memory capacity. From the different 
models that were developed to reduce energy leakage, phase-
change memory (PCM) and spin-torque transfer technology 
(STT) present the best options for development [3]. PCM uses 
a phase-change material which can take on a crystalline or 
amorphous state depending on the temperature. These states 
correspond to logical “1” or “0” [3]. The bit and word lines of 
PCM function the same as with previous technology. The draw-
back of PCM is that the temperature sensitive components 
make it less durable than STT [1]. 

 STT is based on the magnetic orientation of the materials 
used in its circuits [1]. STT devices use magnetic tunneling 
junctions (MTJ). An MTJ consists of a layer of fixed magnetic 
material on top of an insulating layer on top of a free magnetic 
layer which rest on a conductor [2]. Depending on the flow of 
the current, the magnetic orientation will be parallel or anti-
parallel [2]. This way, the data is stored in the magnetic 
resistance instead of the voltage of the capacitor [2]. This also 
means that the data storage is non-volatile, or that it won’t 
degrade over time [1]. In addition to the bit and word line, STT 
devices also have a sensor line to detect the magnetic 
orientation [1]. While STT offers a faster and more durable than 
PCM, it requires more current to change the magnetic 
orientation, so methods for optimizing STT have been 
developed [2]. 

 One solution is to use power gating (PG) to reduce energy 
leakage during idle operations, or stand by mode [6]. In 2-
macro architecture, memory is transferred between RAM and 
Flash [6]. Between memory transfers, there is idle time where 
the energy is still flowing and, therefore, leaking [6]. PG shuts 
the power off when the device in in stand by and turns it back 
on again when needed [6]. Another optimization design for STT 
devices includes the Bit-Grained Instant-on Memory (BGIM) 
cell. BGIM gets rid of the sensor line and instead uses 
bidirectionality as a way of determining the state of the memory 
device [4]. It also gets rid of the 2-macro design which gets rid 
of the data transfers between structures [4]. This solves the 
energy leakage issue from the previous model and no additional 
energy is needed for the sensor line. 

III. RESULTS AND DISCUSSION 
In this section, the energy consumption of the program is 

calculated using the below energy consumption per instruction 
values: 

1) ALU = 1 fJ 
2) Branch = 3 fJ 
3) Jump = 2 fJ 
4) Memory = Read Energy (1 fJ) + Write Energy (Refer to 

Table I) 
5) Other = 5 fJ 

Using inputs from test case 2, the total energy of the 
program was calculated. The total ALU instructions was 
5274. The total number of branch instructions was 642. The 
total number of jump instructions was 3431. The total 
number of memory instructions was 1288. The total number 
of other instructions was 27. So, using these numbers and 
the energy values from Table I, the values in Table II were 
calculated.  

 

 

IV. CONCLUSION 
With the increases in memory capacity, it is important now 

more than ever to reduce the amount of energy leakage from 
memory write operations. Two models of interest are PCM and 
STT. PCM offers an energy saving alternative but at the cost of 
durability and speed. STT is a model based on magnetic 
orientation. It requires a high current to change the magnetic 
orientation, but it offers non-volatile memory, high speed 
memory access, and reduces the energy consumption of memory 
devices. So, to further optimize the STT device, power gating 
and BGIM cells can be used to further reduce the leakage. 
Topics researched and explained in this report include the 
circuitry involved in memory systems, magnetic methods for 
post-CMOS devices, using memory write as a metric for energy 
consumption comparisons, the use of search strings in assembly 
code, and memory allocation in the .data field of assembly code. 
BGIM cell offer the most savings as evidenced in the results by 
the lowest total energy of the program from Table II and the 
lowest energy per instruction in Table I. 
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