
Page 1 of 4

Evaluating Energy Consumption in Memory
Hardware with Respect to Memory Write Operations

Andre Samaroo
Department of Electrical and Computer Engineering

University of Central Florida
Orlando, FL 32816-2362

Abstract—This report, “Evaluating Energy Consumption in
Memory Hardware with Respect to Memory Write Operations,”
looks at the energy consumption of different memory systems
using phase-change memory and optimized spin torque transfer
devices. In order to evaluate the best model for reducing energy
leakage, this report looks at the energy use to write data into
memory for PCM, optimized STT, and STT with a BGIM cell. The
program used to test the memory energy consumption searches for
a user defined key word in a user defined phrase. After finding the
amount of energy used in the memory write operations of each
model and the number of dynamic instructions count for the
experimental program, it is possible to calculate the total energy
used for each of the hardware models. This report finds that the
BGIM cell offers the best energy reduction of all the models
consuming only 171898.88 fJ, or 171.89pJ in total. The BGIM cell
also offers faster memory access and use bidirectionality to reduce
the hardware used in previous models.

Keywords—Non-Volitile Memory, Memory Write, Magnetic
Tunneling Junction, Phase-Change Memory, Energy Leakage,
Power Gating

I. INTRODUCTION
The program for this project was to take two inputs from the

user: a phrase and a key word. The program searches for the
occurrences of the key word in the given phrase and reports the
number of occurrences and the indices at which they occurr to
the console in formatted output. The program should match the
keyword with any occurrence regardless of case or if the key
word occurs within a larger word. The code for the program
consists of a block of code to scan input from the user, a block
to serve as the main body of the code, three blocks that execute
instructions based on the conditions tested in the main block, and
the final block of code should print out the formatted output.

The first inputs were the search phrase, “knight,” and the
search word, “knight.” These represented a simple case that
would test the basic functionality of the program. The
corresponding output was 1 occurrence at index 1 as shown in
Figure 2. The second test inputs were the phrase and word given
in the project description in order to test the basic test case given
to the students. The output for this case was 6 occurrences as
indices 27, 29, 42, 75, 96, and 100. The third test case used the
test phrase, “Knight knight KnIgHt kNiGhT,” and the test word,
“knight” in order to test the case insensitivity of the program to

ensure it would run without regard for the case of the input
strings. The output should be 4 occurrences at indices 1, 2, 3,
and 4.

A. Project Design
 The project code was made of three parts: scanning input,
the main body of the code, and printing the output.

 The first part uses syscall to print the prompt to ask the user
to “Please type in your input statement:”. The syscall in this
program can take a phrase up to 800 characters in allocated
memory. It then prints the prompt to ask “Please type in a word
(up to 10 characters) that you are looking for (e.g. Knight or
KnIGhT, knight, …):” which is scanned into allocated memory
space for the word. This is followed by the initialization of the
address registers at the address of the phrase in s1, word in s0,
and the index array in s2. Also, the occurrence counter, index
counter, and test variable are initialized.

 The second part is the main body of the code. This block
tests the various conditions of the code to perform the
appropriate actions. The t0 and t1 registers are loaded with s0
and s1 respectively. Each register should contain one byte which
is one letter from the key word and one letter from the search
phrase.

 The program first checks for the enter character. If t0 equals
10, the program increases the occurrence counter, t3, stores the
index number in the index array, increment the address of the
array by 4 for the next word, and loads the address of the word
into the address register again to reset the register and search for
the next occurrence of the key word. then it jumps back to the
main block. If t1 equals 10, then the program should jump to the
printing block.

 This program also looks for spaces in order to count the
indices. When t1 equals 32, there is a space in the phrase, so the
program jumps to the index counter, increases the index number
in t2, increases the address register a1, and jumps back to the
main block.

 Else, the program should subtract the values in t0 and t1, then
store the value in t4 to test for equality. If the values are equal,
then the t4 register is zero. If t0 is a capital letter, then t4 is -32.
If t1 is a capital letter, then t4 is 32. In any of these cases, the
program should jump to the “next” label to compare the rest of

Page 2 of 4

the characters. The address registers a0 and a1 are increased by
one to move to the next bit and then return to the main block.

 The last block is the printing block. Here, the output
message, “Number of times the word was found in the input
statement:” is printed, then the number of occurrences in the t3
register is printed. Then, the index message, “Indexes of the
matches found:” is printed. In order to print all elements in the
index array, a loop is used to print a byte from the array, print a
comma, and then increment the address of the index array to
print the next byte. When the byte equals zero, the program
branches from the loop and prints a period. Once the output is
printed, the program closes.

B. Test Cases

The three test cases used on this program include simple
inputs, sample inputs, and inputs with different capitalizations (,
a mix of capital and lowercase letters). The first test case used
the test phrase, “knight,” and the key word, “knight.” This case
tested the program to see if it would run on its most simple level
of recognizing the same word. The output of the program, as
shown in Figure 2a, is 1 occurrence at index 1. The second case
tested the sample output that was given with the project
assignment. The test phrase was, “UCF, its athletic program, and
the university’s alumni and sports fans are sometimes jointly
referred to as the UCF Nation, and are represented by the mascot
Knightro. The Knight was chosen as the university mascot in

1970 by student election. The Knights of Pegasus was a
submission put forth by students, staff, and faculty, who wished
to replace UCF’s original mascot, the Citronaut, which was a
mix between an orange and an astronaut. The Knights were also
chosen over Vincent the Vulture, which was a popular unofficial
mascot among students at the time. In 1994, Knightro debuted
as the Knights official athletic mascot.” and the key word was,
“KnIgHt.” This case tested an input phrase that was longer,
including full sentences, and the case insensitivity of the
program for the key word. The program output, as shown in
Figure 2b, counted 6 occurrences as indices, 27, 29, 42, 75, 96,
and 100. The third test case used the test phrase, “Knight knight
KnIgHt kNiGhT,” and the test word, “knight.” This case tested
the case insensitivity of the test phrase and a simple key word.
The output of the program, as shown in Figure 2c, counted 4
occurrences at indices 1, 2, 3, and 4.

II. MEMORY BIT-CELLS
 The hardware for memory access has three states: standby,
read, and write [6]. The bit and word lines help determine which
state the hardware should execute. In the case of write, the word

Fig.1: Flowchart of the assembly program.

Fig.2: Sample outputs of the assembly program.

a) Case 1

b) Case 2

c) Case 3

Page 3 of 4

line enables the transistors and allows the data in the bit line to
be written into memory [6]. In the case of read, the data from
the bit line goes to output instead of the memory cell. Memory
access is one of the most energy intensive operations a device
can perform, especially with the continual efforts of tech
companies to increase memory capacity. From the different
models that were developed to reduce energy leakage, phase-
change memory (PCM) and spin-torque transfer technology
(STT) present the best options for development [3]. PCM uses
a phase-change material which can take on a crystalline or
amorphous state depending on the temperature. These states
correspond to logical “1” or “0” [3]. The bit and word lines of
PCM function the same as with previous technology. The draw-
back of PCM is that the temperature sensitive components
make it less durable than STT [1].

 STT is based on the magnetic orientation of the materials
used in its circuits [1]. STT devices use magnetic tunneling
junctions (MTJ). An MTJ consists of a layer of fixed magnetic
material on top of an insulating layer on top of a free magnetic
layer which rest on a conductor [2]. Depending on the flow of
the current, the magnetic orientation will be parallel or anti-
parallel [2]. This way, the data is stored in the magnetic
resistance instead of the voltage of the capacitor [2]. This also
means that the data storage is non-volatile, or that it won’t
degrade over time [1]. In addition to the bit and word line, STT
devices also have a sensor line to detect the magnetic
orientation [1]. While STT offers a faster and more durable than
PCM, it requires more current to change the magnetic
orientation, so methods for optimizing STT have been
developed [2].

 One solution is to use power gating (PG) to reduce energy
leakage during idle operations, or stand by mode [6]. In 2-
macro architecture, memory is transferred between RAM and
Flash [6]. Between memory transfers, there is idle time where
the energy is still flowing and, therefore, leaking [6]. PG shuts
the power off when the device in in stand by and turns it back
on again when needed [6]. Another optimization design for STT
devices includes the Bit-Grained Instant-on Memory (BGIM)
cell. BGIM gets rid of the sensor line and instead uses
bidirectionality as a way of determining the state of the memory
device [4]. It also gets rid of the 2-macro design which gets rid
of the data transfers between structures [4]. This solves the
energy leakage issue from the previous model and no additional
energy is needed for the sensor line.

III. RESULTS AND DISCUSSION
In this section, the energy consumption of the program is

calculated using the below energy consumption per instruction
values:

1) ALU = 1 fJ
2) Branch = 3 fJ
3) Jump = 2 fJ
4) Memory = Read Energy (1 fJ) + Write Energy (Refer to

Table I)
5) Other = 5 fJ

Using inputs from test case 2, the total energy of the
program was calculated. The total ALU instructions was
5274. The total number of branch instructions was 642. The
total number of jump instructions was 3431. The total
number of memory instructions was 1288. The total number
of other instructions was 27. So, using these numbers and
the energy values from Table I, the values in Table II were
calculated.

IV. CONCLUSION
With the increases in memory capacity, it is important now

more than ever to reduce the amount of energy leakage from
memory write operations. Two models of interest are PCM and
STT. PCM offers an energy saving alternative but at the cost of
durability and speed. STT is a model based on magnetic
orientation. It requires a high current to change the magnetic
orientation, but it offers non-volatile memory, high speed
memory access, and reduces the energy consumption of memory
devices. So, to further optimize the STT device, power gating
and BGIM cells can be used to further reduce the leakage.
Topics researched and explained in this report include the
circuitry involved in memory systems, magnetic methods for
post-CMOS devices, using memory write as a metric for energy
consumption comparisons, the use of search strings in assembly
code, and memory allocation in the .data field of assembly code.
BGIM cell offer the most savings as evidenced in the results by
the lowest total energy of the program from Table II and the
lowest energy per instruction in Table I.

REFERENCES
[1] E. Kultursay et al., “Evaluating STT-RAM as an Energy-Efficient Main

Memory Alternative,” 2013 IEEE International Symposium on Performance
Analysis of Systems and Software, pp. 256-267, Apr 2013.

[2] P. Chiu et al., "Low Store Energy, Low VDDmin, 8T2R Nonvolatile Latch
and SRAM With Vertical-Stacked Resistive Memory (Memristor) Devices
for Low Power Mobile Applications," in IEEE Journal of Solid-State
Circuits, vol. 47, no. 6, pp. 1483-1496, June 2012.

Table I: Energy consumption for a single bit-cell write
operation in the designs provided in [1-3].

Design Energy Consumption
For Each ALU Instruction

[1] 121.51 fJ
SHE-iMTJ [2] 189.7 fJ
SHE-pMTJ [2] 252.4 fJ

[3] 836.2 fJ

Table II: Total Energy consumption for the assembly
program using designs provided in [1-3].

Design Total Energy Consumption

[1] 171989.88 fJ
SHE-iMTJ [2] 259818.6 fJ
SHE-pMTJ [2] 340576.2 fJ

[3] 1092510.6 fJ

Page 4 of 4

[3] P. Zhou, B. Zhao, J. Yang, Y. Zhang, “A durable and energy efficient main
memory using phase change memory technology,” in ACM SIGARCH
Computer Architecture News, vol. 37, Issue 3, pp. 14-23, June 2009.

[4] S. Salehi and R. F. DeMara, "BGIM: Bit-Grained Instant-on Memory Cell
for Sleep Power Critical Mobile Applications," 2018 IEEE 36th
International Conference on Computer Design (ICCD), Orlando, FL, USA,
2018, pp. 342-345.

[5] S. Singh, and V. Lakhmani, “Read and Write Stability of 6T SRAM,” in
International Journal of Advanced Research in Electronics and
Communication Engineering (IJARECE), Volume 3, Issue 5, May 2014.

[6] W. Kang, W. Lv, Y. Zhang and W. Zhao, "Low Store Power High-Speed
High-Density Nonvolatile SRAM Design with Spin Hall Effect-Driven
Magnetic Tunnel Junctions," in IEEE Transactions on Nanotechnology, vol.
16, no. 1, pp. 148-154, Jan. 2017.

	I. Introduction
	A. Project Design
	B. Test Cases

	II. Memory Bit-Cells
	III. Results and Discussion
	1) ALU = 1 fJ
	2) Branch = 3 fJ
	3) Jump = 2 fJ
	4) Memory = Read Energy (1 fJ) + Write Energy (Refer to Table I)
	5) Other = 5 fJ

	IV. Conclusion
	References

