
Page 1 of 4

Non-Case Sensitive Keyword Frequency and
Indexing Data Counter for User Defined

Statements

Daryl Thomas
Department of Electrical and Computer Engineering

University of Central Florida
Orlando, FL 32816-2362

Abstract— The purpose of this paper is to give a detailed
evaluation on how this program was constructed to achieve the
specified functionality. Through the manipulation of strings
arrays, and registers, the use of system call directives, branching
instructions and other MIPS instruction, the program can realize
the desired functionality. Specifically, the program accepts a user
defined statement (limit: 2000 characters), and a keyword to
search for matches in the statement. The output provides user
with index location and the number of times the phrase appears in
the input statement, while disregarding case discrimination. Also
is a detailed analysis of demand on the hardware utilized, in terms
of instruction count and energy demand using single bit memory
cells. Each of these memory cells utilize four latches resulting in
varying energy consumption. Thes latches are used in various
technology to provide soft error hardening. Comparison of the
various latches support the use of DNU-Latch for memory storage
which consumes the least amount of energy of latches analyzed.

Keywords— assembly code, Double node upset (DNU), energy
efficiency, indexing, Memory, MIPS, Single Event Upset (SEU),
reliability, Triple Modular Redundancy (TMR), reliability,

I. INTRODUCTION
The coding strategy was implementing by utilizing a

modular style featuring sections that performed a specific set of
instructions to achieve design specifications.

A. Project Design
 Design specification detailed that a user input statement and
key word be entered. Using system call function “8” user
defined input statement and key word can be accepted. Next
addresses of input statement and key word are loaded in to
registers. To manipulate the text for comparison the bytes
were also loaded in registers $s0, $s1. For indexing locations
to be stored a third address pointing to label “index_save” was
also loaded to a register.
To satisfy design specification that key word not be case
sensitive to be counted as a match, it was important to:
a. Define an instruction statement identifying if a character

is upper or lower case

Figure1: Flowchart of the assembly

Figure 2: Program Output Results

This was executed using slti instruction. By comparing
byte loaded in $s0 and 96 it and storing the value in a
temporary register there is a set not set condition created.
If set meaning value is one the character loaded in $s0
must be upper case. ASCII upper case values [65 - 90].
The unset case implies a lower-case value in $s0. [97 -
122]. After evaluation a decision to branch to
“lowercase_check” or “uppercase_check” is executed.

b. Check equality of the key word character ASCII value
with a test statement value currently loaded in $s1. A
match is determined using MIPS instruction beq, which
compares the integer values stored in byte address loaded
in $s0 and $s1. If equality is found between these two
registers program branches back to character check to
check next character, however if equality is not found
comparison for opposite case must be performed. In this
program this was executed by adding (for upper-case
characters) or subtracting (for lower-case character) by
32.

In the program these two partitions of instructions are labeled
lowercase_check and uppercase_check which perform the
appropriate instruction for each case respectively.

For program to effectively identify key word contained in the
input statement, branch labels
“next_statement_character_nomatch” and
“next_statement_character_match” where created after
discerning whether character case was upper or lower and
matched or did not match. Each label implied a different set
of program behaviors to advance through user input statement
and key word, as well as operations to record match results for
indexing.

next_statement_character_nomatch:
The processes to handle the programs behavior for characters
that did not match was different from those that did. When
characters loaded in $s0 (key word byte) and $s1 (statement
byte) didn’t match the first thing to do was to reset the loaded
key word byte, signifying a restarting the check from the first
character in the word. Meanwhile the program continues to
advance thru the input statement, and count spaces.

next_statement_character_match:

While still advancing through characters in the user’s input
statement, when equality was found between characters the
next step was to test if the next two characters were also equal.
This again, was done by advancing through both input
statement, and keyword. In MIPS this can be achieved by
adding 1 to the register where the respective addresses are
stored. In this case it was $t6 and $t7. This step followed by
reloading the contents of the new address to temporary
registers. Also, a word match was counted after a check
confirming that there were no more characters to match in the
keyword string.

The exit condition for the program was that all the characters
in user input statement was equivalent to ASCII value 10.

Instead of the null character, in this case 10 which is
enter\next space in ASCII value signified that there were no
more characters to check in both keyword and user input
statement.

Indexing was accomplished by counting the spaces between
each word in user input statement. A branch option checking
the equivalency saved the number of spaces in temporary
register $t5 after counting a space. After a keyword was
found, the number stored un $t5 was stored in memory, so it
could be recalled and printed in the “print results” portion of
the code. Using spaces to count indexing progress could
output incorrect results if more than one space is input
between words. A solution to this would be to add an
additional condition that the character following the index be
something other than a space for it to count as an indexing
space. This solution however would cost a dramatic increase
in energy demand due to its requirement to repeatedly access
memory. This feature was not specified in program design
and was not added as a result.

B. Test Cases
Testing was done using the following test statements and
keywords. Each test helped to confirm the program worked
according to specification, by verifying the following design
objectives:

1. Keyword is NOT case sensitive
2. Keyword can me contained and in a word and still be

counted (Ex. Night in Nightmare counts as match)
3. Program accepts user input statement and 10-

character keyword search
4. Program counts and outputs an accurate match count
5. Program exercises an accurate mechanism to count

and output count index

Keyword: “ME”
Test Statement 1:
“Hello, my name is Daryl, I'm currently a student at UCF
studying Electrical engineering. In My spare time I enjoy
cooking, working out, and playing basketball. I’m currently a
junior and hope to graduate in 2020. I’ve been in school for a
very long time so I hope to graduate as soon as possible, but at
this moment I am a little exhausted, mentally. Often, I’m
experiencing a lot of pressure. Navigating that, makes
completing school work harder for me.”

Keyword: “wE”
Test Statement 2:
“Our universe is incredibly vast, mostly mysterious, and
generally confusing. We're surrounded by perplexing questions
on scales both great and small. We have some answers, for
sure, like the Standard Model of particle physics, that help us
(physicists, at least) understand fundamental subatomic
interactions, and the Big Bang theory of how the universe
began, which weaves together a cosmic story over the past 13.8
billion years. But despite the successes of these models, we still
have plenty of work to do.”

Keyword: “AsSembl”
Test Statement 3:
“Assembly language usually has one statement per machine
instruction, but statements that are assembler directives,
macros, and symbolic labels of program and memory
locations are often also supported. Assembly code is
converted into executable machine code by a utility program
referred to as an assembler.”

II. MEMORY BIT-CELLS
With the advent of nanotechnology, processing capacity is
expected to increase. This is largely an effect of the ability to
improve transistor density in processing materials. However,
with arrival of these new techniques arise new problems. One
of those problems is an increased sensitivity to error which in
affect raise reliability concerns. Single event upsets (SEUs)
occur as a result of particle radiation. These radiated particles
can stimulate transistor nodes, and cause voltage to peak, in
affect producing a false signal. As that signal propagates
through the circuit it can create issues with the output,
memory and control signal.

Triple Modular Redundancy (TMR) provide protection from
SEUs. As the name implies, they there are three devices
signal is passed to which utilize a voter to verify unity in the
signal. If there is a fault in one of the devices the vote cast by
the remaining devices out vote the fault occurrence. In this
way, TMR serves as a method of soft error tolerance. TMR
however does have high spatial and energy demand (relative
to alternatives) and is not totally fault proof [3]. A failure of
the voter TMR uses could have a cascading effect on all
outputs.

The dual interlocking storage cell (DICE) is SEU hardening
latch configuration. Some of the benefits the design provides
are identification and isolation of SEU vulnerable nodes [3].
It also provides a reduction in area consumption, output delay,
and power consumption. A weakness of DICE design is it
cannot provide multiple node faults occurring simultaneously.
To circumvent this weakness one a combinational redundancy
model utilizing two DICE latches, C-element, and a weak
keeper has been discussed.[2].

Spin hall effect (SHE), Magnetic tunnel junction(MTI), non-
volatile flip-flops (NVFF) , and CMOS based latches, are
another way of addressing SEUs, and dual node upset (DNU)
soft error. Each technology, and associated configuration
focus on fault hardening in multiple areas while addressing
energy consumption, spatial concerns, output delay and
severity of fault occurrence at a variety of levels[1]. To
address demand for high performance, low energy, and DNU
tolerance CMOS based latches. An NVFF using SHE MTJs
can be configured to provide fault tolerance while single , and
multiple node upsets occur[1].

III. RESULTS AND DISCUSSION
Assuming the following energy consumption profile for each
respective instruction the MIPS assembly code uses. The
following energy consumption for a single bit-cell memory
design is detailed in Table I. Table II features energy for each
design. These results reflect the program performance using
baseline input statement and keyword. Using the number of
instructions per type multiplied by energy consumed and added
together the total energy consumption was calculated. Energy
consumption is often time an indicant of soft error tolerance for
that design.

Instruction Type Energy Concumed
ALU 1fj

Branch 3fj
Jump 2fj
Other 5fj

Memory Refer to Table I.

Table II: Total Energy consumption for the assembly
program using designs provided in [1-3].

Design Total Energy Consumption

SEU-Latch [1] 17362.44fj
DNU-Latch [1] 16589.64fj

TMR[2] 25193.48fj
DNCS-SEU[3] 18173.88fj

Table I: Energy consumption for a single bit-cell memory
in the designs provided in [1-3].

Design Energy consumption of a Single Bit-
Cell Memory

SEU-Latch [1] 0.88 fJ
DNU-Latch [1] 0.28 fJ

TMR[2] 6.96 fJ
DNCS-SEU[3] 1.51 fJ

IV. CONCLUSION
Manipulation of branching, memory read and write,

branching and arithmetic instructions were used to realize the
program design. The program achieved all design specifications
for multiple input phrases, and keywords regardless of case.
Testing showed that keyword found in side of words as well as
exact words were counted effectively. Testing also
demonstrated that for longer statements and numerous keyword
matches the program took more time to run, and used more
energy. For this reason, it can be concluded that for this program
the DNU-Latch can be utilized to not only provide hardening for
single event upsets (SEU), but also dual node upsets. DNU-
latch also uses the least amount of energy while performing read
and write memory instructions. Memory bit-cells utilize
multiple design features in combination and stand alone to
achieve an optimal performance based on device priorities.
Each design demonstrates a dual economy characterized by
favorable soft error protection vs. performance, spatial, and
energy tradeoffs. No one solution provides a universal solution,
rather each design can be applied base upon hardware or
software demand.

REFERENCES
[1] F. S. Alghareb, R. Zand and R. F. Demara, "Non-Volatile Spintronic Flip-

Flop Design for Energy-Efficient SEU and DNU Resilience," in IEEE
Transactions on Magnetics, vol. 55, no. 3, pp. 1-11, March 2019, Art no.
3400611.

[2] H. Pourmeidani and M. Habibi, "Hierarchical defect tolerance technique for
NRAM repairing with range matching CAM," 2013 21st Iranian Conference
on Electrical Engineering (ICEE), Mashhad, 2013, pp. 1-6.

[3] K. Katsarou and Y. Tsiatouhas, "Double node charge sharing SEU tolerant
latch design," 2014 IEEE 20th International On-Line Testing Symposium
(IOLTS), Platja d'Aro, Girona, 2014, pp. 122-127.

[4] X. Wang, Y. Chen, H. Xi, H. Li, D. Dimitrov, "Spintronic memristor through
spin-torque-induced magnetization motion", IEEE Elect. Dev. Lett., vol. 30,
no. 3, pp. 5-7, 127-129, Mar. 2009

[5] Jahanzeb Anwer, Marco Platzner, "Boolean Difference Based Reliability
Evaluation of Fault-Tolerant Circuit Structures on FPGAs", Digital System
Design (DSD) 2016 Euromicro Conference on, pp. 1-8, 2016.

	I. Introduction
	A. Project Design
	B. Test Cases

	II. Memory Bit-Cells
	III. Results and Discussion
	Energy Concumed
	Instruction Type
	1fj
	ALU
	3fj
	Branch
	2fj
	Jump
	5fj
	Other
	Refer to Table I.
	Memory
	IV. Conclusion
	References

