
Page 1 of 3

Reliability Methods of Modern Computer Software
and Bit-Cell Hardware

Isaiah Williams
Department of Electrical and Computer Engineering

University of Central Florida
Orlando, FL 32816-2362

Abstract— The level of reliability of bit-cells within a digital
system is crucial to its ability to properly carry out tasks when it
is met with errors or upsets, otherwise such upsets can cause
catastrophic failure within an entire system. Types of errors
include SEU’s AND DNU’s, and within this paper we will
investigate the methods that are being explored to be able to
ensure higher reliability of bit-cell and digital systems, such as
radiation hardening, and in particular triple modular redundancy
(TMR). A program (Project 3 code) has also been created that will
count the appearance of two user input words within a paragraph
string and output the number of occurrences of them. This
program will be analyzed, and the methods behind it explained.
The program will also be examined and used in determining the
energy consumption of different types of error-resistant latches.
And we have found that the DNU-latch is the most energy efficient
option at 117,834.04fj when calculating energy for this program.

Keywords—Single-event upset (SEU), Double-Node upset,
reliability, Triple Modular Redundancy (TMR), bit-cell, Content
addressable memory (CAM),radiation hardening, DNU-latch, SEU-
latch, Spin-transfer torque

I. INTRODUCTION.

A. Project Design
The goal of the MIPS program in this paper was to take two
user input words, with a maximum length of 10 characters and
check to see how many times that word occurred within a string
(in our test cases it was a paragraph. The design of this program
was based mainly on the use of arrays (accessing memory
addresses in MIPS). The design of this program was based on
matching the individual characters between the paragraph
string with the characters of the user input words. Firstly, this
program will request and then store up to two user input words
that are to be used for searching in the paragraph. Once these
inputs are stored the searching algorithm can begin. Next the
first byte(array index) will be loaded into two separate
variables after this there will be contingency checks to check to
see if the end of either string is reached, if the end of the user
input is reached then it will increment a counter that counts the
number of occurrences, and at the same time if the end of the
paragraph is reached the program will print the results. After
the checks occur, to make the checking process simpler the
inputs and searching string are converted to lowercase ascii
character for conversion using a ‘jal’ instruction that jumps to

1.

2.

3.

an ascii conversion function below main function and will
return the lowercase value of the register that held the upper
case prior. Then it will branch if there is no match between the
two characters and go to a “move on” label which will
increment the paragraph address to move one character over to
continue the search, but will reset the user input array index to
the beginning of the word by storing the original user input back
into it before iterating the next loop.
If matches are found up to the null terminating character in the
user input then we have a successful match and can increment
a counter $t7, used to count occurrences of words within the
string .This will continue until the end of the searchable string
is reached, then it will branch to label useroutp1 which will
print out our required output and for the second word the
process functions exactly the same then it will exit the program.
To find the indices of where these matches were found, one way
to go about it would be to have a label that holds the addresses
of the matches in another label to print after matches are
confirmed. This process is also shown in the above Flowchart.

B. Test Cases
Three test cases were chosen, in the first test case the words
“TUITION” and “grant” were chosen. These specific cases
were chosen to not only check if the whole code was working
but to check that the ascii conversion function completes its job
in making comparison easier, which it did by changing all of
“TUITION” to lowercase. The Second test case input “Knights,
was to test to make sure that if only one word was entered that
the code would still function. The third and final test case inputs
“Knights” and “Knights” were chosen to see how identical
inputs would affect the output as well as to make sure that the
1st and second loops are independent of each other.
These test cases all test different outcomes and possibilities and
ensure the program is functional across the parameters we have
chosen.

II. RELIABILITY BIT-CELLS
When referring to Computer Architecture reliability is a crucial
part to the performance and function of components (hardware
and software),because if a component can continue to work
correctly for a longer time, despite SEU’s, or DNU’s it is seen
as more reliable, and in the business world is more valuable to
a consumer. Within the scope of computer architecture however
reliability is really shown by a machine, or circuit’s ability to
withstand random error failures and continue to keep working.
Increasing and ensuring higher fault tolerance rates can help
increase the reliability of new technologies, reliability is
increased by acts of radiation hardening to avoid radiation
based failures, bug-fixing in software, and for cluster defects
using range-matching CAM to fix issues, and Triple Modular
Redundancy (TMR).More aspects of increasing reliability is
using spin-transfer Torque in RAM, developing higher density
memories, and scalability of said methods.

TMR will be the focus of this discussion, and TMR is
the implementation of logic gates in a fashion that allows for
the failure of 1 out of 3 components, that is corrected by the
other 2 components in the logic circuit sending their signals to
a voter gate. The reliability of this voter gate is the most

important aspect, so to further increase reliability the TMR can
be made even more secure by adding another level of triple
redundancy. This method increases reliability by accounting for
more and more possible single-point failures and makes up for
it. While it is a very good method for increasing reliability, it
does have the drawbacks of consuming more energy due to the
increased number of logic circuits, as well as increased usage
of area in the component are some drawbacks.
As discussed before the voter gate is the most crucial gate
because it dictates the final output and is meant to be kept in
check by at least 2/3 of the inputs being correct, if for some
reason this voter fails it could result in catastrophic failure of a
component, which is why the method of doubling up the TMR
mentioned before can really reduce the failure rate by having
an increased number of sub-voters all feeding to the voter
variables. Even within the software written for this topic,
methods of increasing reliability of the program were
introduced such as making sure that the two outputs are not
dependent on each other and making them modular was
important so that no “cross contamination” of code happens
and allows the code to run for many software iterations and is
resistant to single event upset errors. And of course, testing
many cases allows the programmer to identify where some
holes in the program might be. Furthermore an important aspect
of reliability is its ability to be used in many applications. This
is where scalability comes into play. It has been observed that
the use of a magnetic hard disk is a way of making higher
density memories. This leads into the use of techniques such as,
Spin-transfer torque as an efficient upset tolerant mode of
reliability. This implementation can be used in systems of
varying sizes, and this leaves it as an important technique of
reliability.

III. RESULTS AND DISCUSSION
To determine the total energy consumed by the Word

searching program, it was necessary to ensure some form of
uniformity among calculations the first test case we used in
section I (First input: “Tuition”, Second input: “grant”) will be
our sample for energy consumption. Using the instruction value
figures mentioned below, the total energy consumption of the
program was calculated as such for each form of single-bit
memory:

Table I: Energy consumption for a single bit-cell memory
in the designs provided in [1-3].

Design Energy consumption of a Single Bit-
Cell Memory

SEU-Latch [1] 0.88 fJ
DNU-Latch [1] 0.28 fJ

[2] 6.96 fJ
[3] 1.51 fJ

Instruction Statistics (Only using test case #1):

For the instruction types we use the following for each value:
1) ALU = 1 fJ
2) Branch = 3 fJ
3) Jump = 2 fJ
4) Memory = Refer to Table I for memory values
5) Other = 5 fJ

SEU-Latch:

(1 ∗ 15,089) + (3 ∗ 10,890) + (2 ∗ 7048) + (0.88 ∗ 2836) + (5 ∗ 11037)
= 119,535.68𝑓𝑓𝑓𝑓

DNU-Latch:
(1 ∗ 15,089) + (3 ∗ 10,890) + (2 ∗ 7048) + (0.28 ∗ 2836) + (5 ∗ 11037)

= 117,834.04𝑓𝑓𝑓𝑓
Figure [2]:

(1 ∗ 15,089) + (3 ∗ 10,890) + (2 ∗ 7048) + (6.96 ∗ 2836) + (5 ∗ 11037)
= 136,778.56𝑓𝑓𝑓𝑓

Figure [3]:
(1 ∗ 15,089) + (3 ∗ 10,890) + (2 ∗ 7048) + (1.51 ∗ 2836) + (5 ∗ 11037)

= 121,322.36𝑓𝑓𝑓𝑓

These final figures are listed in Table II below:

From the above data it is also suffice to say that the use of a

DNU-Latch will result in the lowest energy consumption at a
value of 117,834.04 fJ and therefore makes for the most
efficient mode of memory for executing this code, as well as it
provides a better reliability than an SEU-latch which will only
protect against single-event-upsets in circuit.

IV. CONCLUSION
In this paper, a program has been written that will identify and
display the number of times a user-chosen word is found to

occur in a hardcoded string. We have analyzed this program in
depth and viewed several test cases to test the range of this
program, and in all of our test cases it has successfully run. We
have also discussed how reliability within machines can be
improved, by delving into the matter of TMR(Triple Modular
Redundancy), and furthermore we have further looked at the
energy consumption of several reliability increasing
circuits/latches, to observe how a tradeoff for reliability and
energy consumption impacts real-world usage of a computer
system. In our findings in Section III we see that the DNU-latch
was found to be the most energy efficient Single bit-cell
memory options

5 technical topics:
1-Learned about how Triple modular Redundancy’s
implementation can improve digital system’s reliability

2-Learned about different types of logic errors (SEU’s,
DNU’s, radiation-based errors, nano-cluster defects)

3-Learning how to use and implement MIPS coding methods
(such as jal, loop design, memory address manipulation, etc.)

4-I’ve learned how scientific research papers are methodically
carried out, by completing this project and reading through the
reference papers.

5-I’ve learned about how to find energy calculations of a
program in Mars, which can be useful when making programs
in real-world applications, and I need to conserve energy for a
project.

REFERENCES
[1] F. S. Alghareb, R. Zand and R. F. Demara, “Non-Volatile Spintronic Flip-

Flop Design for Energy-Efficient SEU and DNU Resilience,” in IEEE
Transactions on Magnetics, vol. 55, no. 3, pp. 1-11, March 2019, Art no.
3400611.

[2] H. Pourmeidani and M. Habibi, “Hierarchical defect tolerance technique
for NRAM repairing with range matching CAM," 2013 21st Iranian
Conference on Electrical Engineering (ICEE), Mashhad, 2013, pp. 1-6.

[3] K. Katsarou and Y. Tsiatouhas, “Double node charge sharing SEU tolerant
latch design,” 2014 IEEE 20th International On-Line Testing Symposium
(IOLTS), Platja d’Aro, Girona, 2014, pp. 122-127.

[4] Kim, Y., Gupta, S. K., Park, S. P., Panagopoulos, G., & Roy, K. (2012).
Write-optimized reliable design of STT MRAM. In ISLPED'12 -
Proceedings of the International Symposium on Low Power Electronics
and Design (pp. 3-8). (Proceedings of the International Symposium on
Low Power Electronics and Design).
https://doi.org/10.1145/2333660.2333664

[5] Yixin Luo, Sriram Govindan, Bikash Sharma, Mark Santaniello, Justin
Meza, Aman Kansal, Jie Liu, Badriddine Khessib, Kushagra Vaid, and Onur
Mutlu. 2014. Characterizing Application Memory Error Vulnerability to
Optimize Datacenter Cost via Heterogeneous-Reliability Memory. In
Proceedings of the 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN ’14). IEEE Computer Society,
USA, 467–478. DOI: https://doi.org/10.1109/DSN.2014.50

[6] S. Aritome, R. Shirota, G. Hemink, T. Endoh and F. Masuoka, "Reliability
issues of flash memory cells," in Proceedings of the IEEE, vol. 81, no. 5, pp.
776-788, May 1993.

Table II: Total Energy consumption for the assembly
program using designs provided in [1-3].

Design Total Energy Consumption of
program

SEU-Latch [1] 119,535.68 fJ
DNU-Latch [1] 117,834.04 fJ

[2] 136,778.56 fJ
[3] 121,322.36 fJ

	I. Introduction.
	A. Project Design
	B. Test Cases

	II. Reliability Bit-Cells
	III. Results and Discussion
	IV. Conclusion
	References

