
University of Central Florida University of Central Florida

STARS STARS

Electronic Theses and Dissertations, 2020-

2023

Leveraging Signal Transfer Characteristics and Parasitics of Leveraging Signal Transfer Characteristics and Parasitics of

Spintronic Circuits for Area and Energy-Optimized Hybrid Digital Spintronic Circuits for Area and Energy-Optimized Hybrid Digital

and Analog Arithmetic and Analog Arithmetic

Adrian Tatulian
University of Central Florida

 Part of the Computer Engineering Commons

Find similar works at: https://stars.library.ucf.edu/etd2020

University of Central Florida Libraries http://library.ucf.edu

This Doctoral Dissertation (Open Access) is brought to you for free and open access by STARS. It has been accepted

for inclusion in Electronic Theses and Dissertations, 2020- by an authorized administrator of STARS. For more

information, please contact STARS@ucf.edu.

STARS Citation STARS Citation
Tatulian, Adrian, "Leveraging Signal Transfer Characteristics and Parasitics of Spintronic Circuits for Area
and Energy-Optimized Hybrid Digital and Analog Arithmetic" (2023). Electronic Theses and Dissertations,
2020-. 1677.
https://stars.library.ucf.edu/etd2020/1677

https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/etd2020
https://network.bepress.com/hgg/discipline/258?utm_source=stars.library.ucf.edu%2Fetd2020%2F1677&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/etd2020
http://library.ucf.edu/
mailto:STARS@ucf.edu
https://stars.library.ucf.edu/etd2020/1677?utm_source=stars.library.ucf.edu%2Fetd2020%2F1677&utm_medium=PDF&utm_campaign=PDFCoverPages
https://stars.library.ucf.edu/
https://stars.library.ucf.edu/

LEVERAGING SIGNAL TRANSFER CHARACTERISTICS AND PARASITICS OF

SPINTRONIC CIRCUITS FOR AREA AND ENERGY-OPTIMIZED HYBRD DIGITAL AND

ANALOG ARITHMETIC

by

ADRIAN TATULIAN

M.S. University of Central Florida, 2020

B.S. University of Central Florida, 2013

A dissertation submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy

in the Department of Electrical and Computer Engineering

in the College of Engineering and Computer Science

at the University of Central Florida

Orlando, Florida

Spring Term

2023

Major Professor: Ronald F. DeMara

ii

© 2023 Adrian Tatulian

iii

ABSTRACT

While Internet of Things (IoT) sensors offer numerous benefits in diverse applications, they are

limited by stringent constraints in energy, processing area and memory. These constraints are

especially challenging within applications such as Compressive Sensing (CS) and Machine

Learning (ML) via Deep Neural Networks (DNNs), which require dot product computations on

large data sets. A solution to these challenges has been offered by the development of crossbar

array architectures, enabled by recent advances in spintronic devices such as Magnetic Tunnel

Junctions (MTJs). Crossbar arrays offer a compact, low-energy and in-memory approach to dot

product computation in the analog domain by leveraging intrinsic signal-transfer characteristics of

the embedded MTJ devices. The first phase of this dissertation research seeks to build on these

benefits by optimizing resource allocation within spintronic crossbar arrays. A hardware approach

to non-uniform CS is developed, which dynamically configures sampling rates by deriving

necessary control signals using circuit parasitics. Next, an alternate approach to non-uniform CS

based on adaptive quantization is developed, which reduces circuit area in addition to energy

consumption. Adaptive quantization is then applied to DNNs by developing an architecture

allowing for layer-wise quantization based on relative robustness levels. The second phase of this

research focuses on extension of the analog computation paradigm by development of an

operational amplifier-based arithmetic unit for generalized scalar operations. This approach allows

for 95% area reduction in scalar multiplications, compared to the state-of-the-art digital alternative.

Moreover, analog computation of enhanced activation functions allows for significant

improvement in DNN accuracy, which can be harnessed through triple modular redundancy to

yield 81.2% reduction in power at the cost of only 4% accuracy loss, compared to a larger network.

iv

Together these results substantiate promising approaches to several challenges facing the design

of future IoT sensors within the targeted applications of CS and ML.

v

ACKNOWLEDGEMENTS

This work was supported by the NSF through ECCS-1810256.

I would like to express my gratitude to Dr. DeMara for welcoming me into the Computer

Architecture Lab and supporting me throughout this journey. His teachings and helpful advice

have kept me on the right course in my research, leading me to professional growth and several

publications. I would also like to thank my committee members, Dr. Nazanin Rahnavard, Dr.

Mingjie Lin, Dr. Rickard Ewetz, and Dr. Enrique del Barco, for taking the time to offer their

support.

vi

TABLE OF CONTENTS

LIST OF FIGURES ... xi

LIST OF TABLES ... xvi

CHAPTER 1: INTRODUCTION AND MOTIVATION ... 1

1.1 Research Motivation ... 1

1.2 Need for Adaptive Mixed-Signal Computation .. 2

1.3 Contributions of this Dissertation ... 4

1.3.1 Region-of-Interest Implementation via Ohmic Voltage Degradation 4

1.3.2 Area-Efficient Image Compression via Adaptive Quantization 6

1.3.3 Spin-Based Computational Analog Block .. 7

1.3.4 Layer-wise Adaptive Quantization ... 9

CHAPTER 2: BACKGROUND AND RELATED WORK ... 11

2.1 Spin-Based Devices... 11

2.1.1 Magnetic Tunnel Junction (MTJ) Fundamentals.. 11

2.1.2 MTJ Switching Characteristics ... 12

2.1.3 MTJ I-V Characteristics ... 13

2.1.4 MTJ Temperature Dependence .. 16

2.1.5 Spin Hall Effect-based MTJs (SHE-MTJs) .. 16

2.1.6 Probabilistic Spin Logic using Low-Barrier MTJs... 17

2.2 Memristive Crossbar Arrays (MCAs) ... 19

vii

2.2.1 MCA Fundamentals .. 19

2.2.2 Sneak Currents and Parasitic Voltage Degradation .. 20

2.2.3 Multi-Bit Crossbar Arrays .. 22

2.3 Mixed-Signal Computing .. 24

2.3.1 Analog Computing: Motivation and Related Works .. 24

2.3.2 Mixed-Signal Field Programmable Array (MFPA).. 26

2.4 Compressive Sensing (CS) .. 29

2.4.1 Sparse Representation of Signals ... 29

2.4.2 Undersampling Sparse Signals ... 30

2.4.3 Non-uniform Sampling ... 34

2.4.4 An Overview of Reconstruction Algorithms .. 35

2.4.5 Hardware Implementation of CS .. 37

2.5 Deep Belief Network (DBN)... 39

2.5.1 Restricted Boltzmann Machine (RBM) .. 39

2.5.2 Probabilistic Inference Network Simulator (Pin-Sim) ... 41

2.5.3 Probabilistic Interpolation Recoder (PIR) .. 43

CHAPTER 3: NON-UNIFORM CS VIA OHMIC VOLTAGE ATTENUATION 46

3.1 Voltage Degradation in MRAM-based Crossbars .. 46

3.2 Non-Uniform Measurement Matrix Implementation .. 48

3.3 Simulation Results... 50

viii

3.4 Analysis of Size Dependence of Energy Consumption .. 55

3.5 Summary ... 57

CHAPTER 4: AREA-EFFICIENT IMAGE COMPRESSION VIA MEMRISTIVE CROSSBARS

LEVERAGING ADAPTIVE QUANTIZATION... 58

4.1 Crossbar Memory Allocation via Adaptive Quantization ... 58

4.2 AQ for Area-Optimized Image Compression.. 59

4.3 Application to DCT ... 60

4.4 Application to CS .. 62

4.5 Summary ... 66

CHAPTER 5: EXPONENTIATION USING STT MAGNETIC TUNNEL JUNCTIONS 68

5.1 Analog Circuit Design ... 68

5.1.1 Op-Amp Design .. 68

5.1.2 Three-Stage Analog Circuit .. 69

5.2 Analog Multiplication ... 72

5.3 Generalized Exponentiation .. 73

5.3.1 Circuit Performance .. 73

5.3.2 Process Variation of MTJ Devices ... 76

5.3.3 Variation in Diode Saturation Voltage ... 77

5.3.4 Temperature Dependence ... 79

5.4 Generalized Functions ... 81

ix

5.5 Summary ... 82

CHAPTER 6: APPLICATIONS OF SPIN-BASED ANALOG COMPUTATION..................... 83

6.1 Spintronically Configurable Adaptive in-memory Processing Environment (SCAPE) 83

6.2 Application to CS Signal Reconstruction ... 83

6.2.1 Implementation of AMP ... 83

6.2.2 Performance of AMP .. 86

6.3 Application to MNIST Digit Recognition ... 89

6.3.1 Gradient Decay Problem .. 89

6.3.2 Impact of Activation Function .. 90

6.3.3 Mapping Larger Networks .. 94

6.4 DBN Accuracy Enhancement via Triple Modular Redundancy ... 94

6.4.1 Redundant Computing .. 94

6.4.2 Performance of STMR and PTMR ... 96

6.5 Summary ... 101

CHAPTER 7: LAYER-WISE QUANTIZATION OF DEEP BELIEF NETWORKS 102

7.1 DNN Precision Analysis ... 102

7.2 Architecture for Layer-wise Quantization ... 103

7.3 Optimization using Genetic Algorithm ... 105

7.4 Simulation Results... 108

7.5 Summary ... 114

x

CHAPTER 8: CONCLUSION ... 115

8.1 Technical Summary... 115

8.2 Future Directions ... 117

APPENDIX: COPYRIGHT PERMISSIONS ... 119

LIST OF REFERENCES .. 124

xi

LIST OF FIGURES

Figure 1.1: Contributions of this dissertation as solutions to challenges in IoT sensor design. 4

Figure 2.1: Simplified structure of two-terminal MTJ operating under STT switching. 11

Figure 2.2: SHE-MRAM device in the P state (left) and AP state (right). The device switches states

based on charge current passing through the heavy metal strip. ... 17

Figure 2.3: Structure of a p-bit device consisting of a voltage divider between a low-barrier MTJ

device and NMOS transistor (a); probability of a logic 1 output value (b). 18

Figure 2.4: Spin-based MCA, consisting of 1) p-bit, 2) Memristive Device (MD) implemented via

MRAM or RRAM, 3) op-amp and 4) integrator... 19

Figure 2.5: Sneak currents, represented by red arrows, introduced in writing to the top-right device

in a 2×2 MCA. Also shown is the parasitic line resistance. ... 21

Figure 2.6: Hybrid spin/charge device realization as configurable blocks within the MFPA fabric.

... 27

Figure 2.7: Bipartite graph representation of sampling phase of CS. ... 30

Figure 2.8: IoT signal compression flow, consisting of compressive sampling in the DCT domain,

transmission, and reconstruction by the receiver. ... 33

Figure 2.9: Measurement matrix partitioned into t sub-matrices, where sub-matrix densities are

determined by signal importance levels. ... 34

Figure 2.10: Salehi’s implementation of the non-uniform measurement matrix using an MRAM-

based crossbar populated by p-bit devices in each column [20]. .. 38

Figure 2.11: DBN structure consisting of one visible layer and two hidden layers [124]. 40

Figure 2.12: 784 × 10 DBN implemented using crossbar for MNIST digit recognition [123]. ... 41

xii

Figure 2.13: Logical flow of PIN-Sim, including the five main modules involved in DBN

simulation. ... 42

Figure 2.14: Interpolation of neuron outputs using a) ADC, b) 3-bit SC-PIR circuit, and c) 3-bit

SS-PIR circuit [124]. ... 44

Figure 3.1: Voltage difference across elements of 128×128 MRAM-based crossbar with each

element set to a resistance of 5600. ... 46

Figure 3.2: Relative voltage attenuation along the top word line of an MCA, for a variety of array

sizes, n, and line resistance values, r. .. 47

Figure 3.3: a) Stochastic Bitstream Generator (SBG) providing m output bits, with the fraction of

1’s determined by the input voltage; one SBG is present per MCA column. b) Implementation of

a 2×2 MRAM-based MCA. .. 49

Figure 3.4: Input and bias voltage necessary to maintain constant measurement matrix parameters

for line resistance values in the range from 1 per cell to 5 per cell, for a 64×64 and 128×128

array. ... 51

Figure 3.5: CS measurement matrix mapped to MCA crossbar array for a) a 64×64 and b) a

128×128 array size, demonstrating achievement of target parameters given in Table 3.1. Yellow

and blue cells represent on-state and off-state devices, respectively. ... 52

Figure 3.6: Timing diagram showing (from top to bottom): CTRL signal, CTRL̅̅ ̅̅ ̅̅ ̅ signal, voltage on

SBG capacitor in 1st column, and voltage on SBG capacitor in 128th column. Data shown is for a

128×128 array with 0.12V applied along the uppermost word line, and a bias voltage of 0.28V.

... 54

Figure 3.7: Model of top row of an n×n crossbar array, with parasitic resistance along the top word

line labeled as r, and memristive devices labeled as R. .. 56

xiii

Figure 4.1: ACCLAIM architecture, including transimedance amplifiers shown in green, ADCs

shown in blue and Shift and Add units shown in yellow. ... 60

Figure 4.2: DCT reconstruction of compressed Lena image attained using 24 bits per column

allocated a) uniformly, and b) adaptively among rows of 8×8 blocks in the frequency domain.. 62

Figure 4.3: CS reconstruction of compressed Lena image partitioned into 10×10 blocks, each

sampled using a 40×100 measurement matrix with 200 bits per row allocated a) uniformly and b)

adaptively. ... 63

Figure 4.4: Sampling energy and area per block necessary to achieve a set CS reconstruction

accuracy for the Lena image, partitioned into 10×10 blocks and sampled using a 40×100 matrix.

... 66

Figure 5.1: Op-amp comprised of 10 MOSFETs offering high speed and compact area. 68

Figure 5.2: a) Layout of op-amp used in this dissertation versus b) a CMOS NAND gate. 69

Figure 5.3: FPAA fabric comprised of active and passive analog devices such as NMOS/PMOS

transistors, capacitors and diodes, along with spin-based Magnetic Tunnel Junction (MTJ) devices.

... 70

Figure 5.4: Analog circuit for generalized exponentiation. The first, second, and third stages are

outlined in red, blue, and green, respectively. .. 71

Figure 5.5: DC transfer characteristics for the proposed multiplier, with one input fixed and the

second input varying across the operational range. .. 74

Figure 5.6: Frequency response, with one input fixed and the other input sinusoidal with offset of

0.45V and amplitude of 0.25V. ... 74

Figure 5.7: DC transfer characteristics for analog squaring circuit, considering three different

parameters for the first-stage diode saturation current, Is. .. 78

xiv

Figure 5.8: Frequency response for analog squaring circuit, considering three different parameters

for the first-stage diode saturation current, Is, with an input voltage magnitude of 0.4V. 78

Figure 5.9: Approximation of a 5th order polynomial function using the proposed hardware,

showing agreement with an error-free implementation. ... 81

Figure 6.1: An analog design for thresholding operations. The functions y = sign(x), y = sign1(x,0)

and y = sign2(x,0) are illustrated in the top panel by the leftmost, middle and rightmost graphs,

respectively. .. 85

Figure 6.2: Hardware implementation of AMP algorithm.. 85

Figure 6.3: Signal reconstruction error of the AMP algorithm as a function of number of

measurements, where square and square root operations are performed exactly (blue circles), with

approximation error of the presented hardware (red circles), and with approximation error

including process variation (yellow circles). .. 87

Figure 6.4: Normalized error rate for image classification, based on various DBN topologies and

activation functions. .. 92

Figure 6.5: Technique for splitting a VMM operation, y = Ax, between smaller crossbar arrays. In

this case, an 8×2 VMM operation is split between 4×2 crossbars... 93

Figure 6.6 Spatial Triple Modular Redundancy (STMR) architecture. .. 95

Figure 6.7: Progressive Triple Modular Redundancy (PTMR) architecture. 95

Figure 6.8: PTMR power consumption for various DBN network topologies. 99

Figure 6.9: PTMR image classification error rate for various DBN network topologies. 99

Figure 6.10: PTMR Power-Error-Product for various DBN network topologies. 100

Figure 7.1: Architecture for layer-wise quantization of DBNs. .. 104

Figure 7.2: Illustration of GA methodology. .. 106

xv

Figure 7.3: Illustration of crossover. ... 106

Figure 7.4: Relative area for various layer-wise bit configurations for three-layer topology. ... 109

Figure 7.5: Error for various layer-wise bit configurations for three-layer topology. 109

Figure 7.6: Area-error-product for various layer-wise bit configurations for three-layer topology.

... 110

Figure 7.7: Relative area for various layer-wise bit configurations for four-layer topology. 110

Figure 7.8: Error for various layer-wise bit configurations for four-layer topology. 111

Figure 7.9: Area-error-product for various layer-wise bit configurations for four-layer topology.

... 111

xvi

LIST OF TABLES

Table 2.1: Summary of analog computation architectures, including hardware overhead. 26

Table 3.1: Simulation parameters for a crossbar representing two sub-matrices, including

measurement matrix parameters n, m, L,  p1; MTJ P- state resistance, R; line resistance, r;

capacitance, C; initial word line input voltage, Vinput; and bias voltage, Vbias. 53

Table 3.2: Parameters of the three-terminal MTJ device. ... 53

Table 3.3: Simulation results for writing a CS measurement matrix with RoI. 53

Table 3.4: Comparison of our presented architecture with the alternative of using a 4-bit lookup

table and digital-to-analog converter for signal acquisition in a 64×64 array. 53

Table 3.5: Mean square voltage values for 64×64 and 128×128 arrays. Units are V2. 56

Table 4.1: Impact of AQ on DCT Reconstruction. ... 62

Table 4.2: Impact of AQ on CS Reconstruction. .. 63

Table 4.3: Hardware Simulation Parameters. ... 65

Table 5.1: Error, bandwidth, and delay data. .. 75

Table 5.2: THD with one DC and one sinusoidal input. ... 75

Table 5.3: Comparison of area, power, and accuracy of STT-MTJ based generalized

exponentiation with alternate recent approaches. ... 76

Table 5.4: Error rate due to MTJ process variation. ... 77

Table 5.5: Effect of diode saturation current on error and bandwidth of analog squaring circuit. 79

Table 5.6: Mean error of analog squaring circuit as a function of temperature, T. 80

Table 6.1: Breakdown of AMP Circuit Energy Consumption. ... 88

Table 6.2: Comparison of AMP Energy Consumption. .. 88

Table 6.3: MTJ simulation parameters. .. 92

xvii

Table 6.4: Error rate, average DBN power consumption and Power-Error-Product (PEP) for

various network topologies and activation functions. ... 93

Table 6.5: SHE-MTJ and CMOS Device Simulation Parameters. ... 97

Table 6.6: Evaluation of STMR and PTMR based on error, power, delay and area. 97

Table 7.1: GA Performance in selecting optimal bit configuration for four-layer DBN. 113

1

CHAPTER 1: INTRODUCTION AND MOTIVATION1

1.1 Research Motivation

The growing ubiquity of satellite, cellular and WiFi communications networks has led to the

emergence of Internet of Things (IoT), a new computing paradigm offering challenges as well as

opportunities [1]. The IoT vision consists of a global network of interconnected objects [2], serving

a wide range of functions, including smart home, traffic management, vehicle safety and

autonomous driving, water quality management, and health monitoring [1, 3]. Communication

between IoT devices is commonly established through Wireless Sensor Networks (WSNs); in this

scheme, sensor nodes communicate with each other directly, and with a centralized base station,

through a multi-hop path [3].

WSN sensor nodes typically consist of a sensing unit, processing unit, transceiver unit and

power supply unit [1, 3]. Power supply units commonly consist of batteries which are costly to

replace once a sensor is in the field; thus, energy-efficiency is a critical feature in IoT. Area

efficiency of sensors is also critical [2] to maintain costs within a feasible range. Compressive

Sensing (CS) is one possible solution to these challenges: given an input signal sparse in a certain

basis, CS reduces the number of samples taken per frame to attain a reduced set of measurements

that enable accurate reconstruction of the original signal [3]. By delegating signal reconstruction

to the base station, CS achieves a reduction in energy, storage and data transmission overheads in

the IoT sensors.

1 ©IEEE. Part of this chapter is reprinted, with permission, from [132, 136, 137].

2

A further challenge in IoT design is the need for adaptability: WSN sensors are often placed

in dangerous, unreachable, unpredictable and dynamic environments where either no mathematical

model to describe the system behavior is available, or manual re-calibration of the devices is not

feasible [4]. Thus, WSNs often require smart sensors which use machine learning to adapt to

changing conditions, e.g., a change in the signal’s region of interest in the context of CS sampling.

It is thus desirable to have multi-functional sensors, simultaneously capable of signal sampling,

machine learning, data conversion and data transmission. This challenging combination of

requirements and constraints necessitates innovations in hardware design within IoT devices.

1.2 Need for Adaptive Mixed-Signal Computation

 While CS and machine intelligence offer logical solutions to fundamental constraints of IoT,

their implementation in hardware presents additional challenges. First, both rely heavily on

Vector-Matrix Multiplication (VMM), which requires memory for storing matrix elements, as well

as power for writing memory and performing computations. In-memory computing approaches,

such as crossbar arrays based on Non-Volatile Memory (NVM) devices, have shown promise as a

potential solution to this problem. Crossbar arrays offer compact, single-cycle and energy-efficient

VMM through an analog approach leveraging signal transfer characteristics of NVM circuits,

allowing for parallel execution of multiply and accumulate operations. Moreover, NVM crossbar

arrays allow for in-memory computing, thus eliminating significant overheads associated with data

storage and transfer. Crossbar arrays can be further optimized through an adaptive approach, i.e.,

focusing resources on more critical subsets within the input space. Previous CMOS-only based

approaches to autonomy and adaptability in FPGAs have concentrated on embedding or

encapsulating the FPGA devices with a runtime reconfiguration management system [5-11], or

self-aware throughput sustainment based on dynamic operating conditions [12-17].

3

 Vector output components of VMM operations are commonly post-processed via scalar, often

non-linear transformations. While this can entail significant overheads within the digital domain,

an analog approach can once again reduce costs and complexity by leveraging intrinsic properties

of embedded devices to perform the necessary computations. A pure analog approach to both

VMM and scalar post-processing is especially beneficial for signal processing applications, where

the input signal itself is analog.

 After processing, IoT sensors must transmit data to the receiver; energy efficiency is especially

critical for data transmission, which can contribute to 80% of power consumption in a sensor node

[18]. Thus, adaptability is essential for reducing the size of data sets that must be transferred. One

way of achieving this is through an adaptive quantization program, whereby subsets of data are

communicated at mixed resolutions depending on relative importance levels.

 A final hardware challenge is limited read margin of NVM devices. Read margin is particularly

problematic in the case of Multi-Level Cells (MLCs), i.e., devices holding multiple bits. MLCs

suffer not only from reduced read margin, but also incur more power and area costs than single-

bit devices [19]. A layer-wise adaptive quantization approach can eliminate the need for MLCs by

reducing the precision level necessary to represent a given model.

 In this dissertation, we present a solution integrating these solutions by demonstrating a hybrid

digital-analog, in-memory computing architecture for energy and area-efficient CS and machine

learning. A Deep Neural Network (DNN) implementation of machine learning entails multiple

crossbar arrays stacked in layers, with additional hardware for scalar computations at the output

of each layer. The same hardware architecture can also be used for CS sampling; the approach

taken in this research is to individually optimize various aspects of this architecture to reduce

overheads and improve performance. The first objective is to reduce area and power costs of VMM

4

 Figure 1.1: Contributions of this dissertation as solutions to challenges in IoT sensor design.

by adapting either density or precision of matrix elements to relative importance levels of

corresponding input coefficients. The second objective focuses on reduction of costs associated

with scalar computations by performing these computations exclusively in the analog domain. The

final objective is cost reduction and performance improvement within DNNs through layer-wise

adaptive quantization. These objectives and their context are illustrated in Figure 1.1 and explained

in further detail in the following section.

1.3 Contributions of this Dissertation

1.3.1 Region-of-Interest Implementation via Ohmic Voltage Degradation

 New data path designs that alleviate the von-Neumann bottleneck remain an intriguing and

promising approach to embedded signal processing. For this design, we consider how the recent

commercialization of spintronic devices such as Magnetic Tunnel Junctions (MTJs) can offer a

5

promising approach towards this goal. Specifically, a compact and energy-efficient architecture is

sought for in-memory execution of non-uniform CS.

 CS is a means of reducing the number of samples taken per frame in the transmission of

spectrally-sparse and wideband data by sampling at the information rate rather than the Nyquist rate

[20]. As such, CS provides a solution to unprecedented challenges associated with 5G

communication, including complexity and power consumption associated with increased

bandwidths [21]. In addition, CS is applicable to areas such as data collection, data recovery,

distribution networks and channel estimation [22], among other fields. Through a linear

transformation, CS limits the number of samples taken per frame to reduce power, storage and data

transmission costs. Non-uniform CS is particularly advantageous for signals containing a Region

of Interest (RoI), in which a subset of the signal may be more dense in information and thus more

critical to reconstruct accurately. Besides having a single RoI, a signal of length n can consist of up

to n distinct importance levels. Non-uniform CS reduces reconstruction error by differentially

allocating sampling energy in accordance with the relative importance levels of the input signal

[23].

 Implementing CS sampling in hardware presents unique challenges. One challenge is the need

for VMM operations, which can be costly when the sample size is large. Previous work [24, 25]

has sought to address these challenges by assigning VMM operations to a Memristive Crossbar

Array (MCA). An MCA architecture consists of bit lines running vertically and word lines running

horizontally to realize a grid structure, with a memristive device providing a connection between

the corresponding bit line and word line in each cell. The memristive device is a variable resistor

which changes its resistive state after a certain critical current passes through in either direction.

6

 MCAs are first programmed such that the conductance of each memristive device represents the

matrix element at that location. Thus, as voltages representing the input vector components are

applied to the rows of the array, currents representing the VMM resultant vector components are

read along each column as a result of Kirchhoff’s Current Law. The output currents are then

converted to voltage levels by Trans-Impedance Amplifiers (TIAs). The MCA allows for single-

cycle VMM using a dense and area-efficient architecture.

 Recently, researchers have investigated methods for generating randomness without the use of

Linear Feedback Shift Registers (LFSRs), e.g., through the use of probabilistic bit (p-bit) devices

to write tunable random values into each column based on an analog input to the device. The ability

to generate tunable randomness allows for non-uniform CS, whereby the signal sampling rate,

determined by the frequency of non-zero elements in each column of the measurement matrix, is

adapted to the relative importance levels present in the signal. In this approach, sampling rates are

set via power gating [20], which not only reduces power but can also mitigate aging within CMOS

transistors [26].

 Conventionally, a dedicated hardware unit [27] would be utilized for: a) storing the mapping

between signal importance levels and the corresponding configuration flow, and b) converting the

output data to analog for subsequent voltage-to-frequency conversion by the p-bit devices. We

reduce these hardware overheads by acquiring the necessary circuit-switched configuration settings

directly from the MCA word lines.

1.3.2 Area-Efficient Image Compression via Adaptive Quantization

 Image compression techniques such as Discrete Cosine Transform (DCT) and CS are feasible

solutions to area and energy challenges of IoT: DCT compresses data through a change of basis to

the frequency domain; given sparse and wideband data, CS reduces the number of samples taken

7

per frame via a linear transformation. DCT and CS can be used in conjunction to reduce data storage

and transmission overheads within IoT systems; hardware solutions to such techniques have

recently been a subject of active research [20, 28].

 The wide disparity in significance levels between coefficients in the frequency domain allows

for optimized hardware approaches concentrating resources to more important coefficients. For

example, Imran et al. [29] proposed a dynamic mapping approach, assigning more significant

coefficients to healthier processing elements within an FPGA. Moreover, Salehi et al. [20]

demonstrated improvements using a crossbar design approach whereby more important coefficients

are sampled at a higher rate. Finally, Adaptive Quantization (AQ) techniques have shown benefits

for both DCT [30] and CS [31]. While implementation of AQ in hardware is intriguing considering

the area constraints of IoT devices, conventional crossbar architectures are not well-suited for such

an approach.

 Herein, a novel Magnetoresistive Random Access Memory (MRAM)-based crossbar design [20]

is presented to implement AQ in hardware by allowing for mixed-precision representation of matrix

elements. Furthermore, we extend the AQ approach to CS sampling, by dynamically varying

quantization levels across matrix elements to sample more important signal coefficients at a higher

precision. Hardware implementations of CS as well as DCT are given on the proposed hardware.

1.3.3 Spin-Based Computational Analog Block

 Multiplication and exponentiation operations are critical for a variety of applications, including

computer vision [32], signal processing [27, 33] and machine learning [34, 35]. Square and square

root, for example, are commonly used for normalizing vectors in signal processing applications,

and square root may serve as an activation function for neural networks [34]. Despite their

ubiquity, a traditional digital implementation of such functions can incur significant area and delay

8

overheads in the digital domain, requiring 12 or more clock cycles to execute [36] and hundreds

of logic gates [37]. As a result, there has recently been renewed interest in pursuing an analog

approach to operations such as multiplication, square and square root [38, 39].

 Analog circuits trade off computational accuracy for reduction in overheads such as power and

area; this is an attractive tradeoff for error-tolerant applications where power and area are

constrained, e.g., IoT devices. The benefits offered by analog computation are magnified when

used with vector-valued data, since the output data can be transferred to a crossbar array for further

processing without the need for digital-to-analog conversion [27]. One example of an ideal use

case is CS. CS entails compression and transmission of a spectrally-sparse signal, and then

reconstruction of the signal at the receiving end. Machine learning via neural networks is another

relevant application.

 In recent years, Field Programmable Analog Arrays (FPAAs) have been proposed as a

counterpart to traditional digital-only FPGAs, particularly for computations involving sensor

interfacing and signal processing [40]. FPAAs consist of a set of analog components, such as Field-

Effect Transistors (FETs), capacitors, resistors and diodes integrated into a reconfigurable fabric

architecture. While a lack of software for FPAA programmability has been a challenge, recent

developments including the RASP and associated high-level tools have provided a pathway for

system-level analog design [41].

 Analog computation can provide vast energy improvements, up to a 1000-fold improvement in

computational energy efficiency [42] and thus FPAA technology has already been implemented

in ultra-low power IoT sensing applications, including temperature sensors and heart rate alarms

[43].

 Herein, we present an analog design for performing generalized nth root and power operations.

9

The use of Taylor series allows for computation of generalized functions as well. Area overhead

is minimized by a) performing computations in the analog domain based on intrinsic properties of

the embedded op-amps, and b) a reconfigurable architecture allowing for the realization of

multiple functionalities within a single fabric. Our design is ideal for area and energy-limited

applications and allows for computations which may not be efficient in the digital domain for such

applications, such as computation of DNN activation functions for machine learning. In addition

to common analog components, our fabric embeds state-of-the-art MTJ devices for added area

benefits and intrinsic stochasticity.

1.3.4 Layer-wise Adaptive Quantization

 A crossbar-based hardware architecture can be readily applied to Artificial Intelligence (AI)

through DNNs. DNNs consist of multiple crossbar layers which perform a series of linear

transformations on the input data, with a scalar activation function applied at the output of each

layer. A simple use case of DNNs is classification of handwritten digits, while more complex tasks

can include generalized image recognition. These use cases are applicable for IoT sensors, for

example, in determination of RoI. Previous approaches to scaling up AI processing include

Marker-Passing wherein the processing activity migrates to where the data resides rather than vice-

versa [44] as realized on the SNAP-1 Parallel AI Prototype [45].

 DNNs are first trained on a set of sample inputs to determine a model for further recognition

tasks. The model consists of matrix elements, i.e., weights, assigned to each layer. Weights are

commonly stored using a multi-bit representation implemented through MLC devices. Due to the

increased costs and reduced reliability of MLCs [19, 46, 47], this architecture can be optimized

through a layer-wise adaptive quantization program, whereby a genetic algorithm is used to

optimize the bit configuration such that high precision is only assigned to layers which require it.

10

Moreover, the high-precision layers are implemented using a combination of single-bit MRAM

devices to eliminate the need for MLCs.

 Herein, we investigate the efficacy of such an approach in terms of improvements in area.

Layer-wise adaptive quantization is explored as a pathway for decreasing overheads within

machine learning architectures without degrading accuracy.

11

CHAPTER 2: BACKGROUND AND RELATED WORK2

2.1 Spin-Based Devices

2.1.1 Magnetic Tunnel Junction (MTJ) Fundamentals

 Magnetoresistive Random Access Memory (MRAM) based on Magnetic Tunnel Junctions

(MTJs) has recently been researched as a class of Non-Volatile Memory (NVM) device delivering

numerous advantages, including near-zero standby power dissipation [27], high endurance [48]

and vertical integration capabilities resulting in high density [49]. MTJs are composed of two

ferromagnetic layers: a fixed layer and free layer, separated by a thin oxide barrier, as Figure 2.1.

shows. The two stable states of the MTJ, the Parallel (P) state and Anti-Parallel (AP) state, are

determined by the relative orientation of the free-layer magnetization with respect to the fixed

layer. Device resistance is significantly higher in the AP state.

 While various materials may be chosen for MTJ fabrication, one common choice is the use of

Fe for ferromagnetic layers and MgO for the oxide barrier. This structure may be achieved using

Figure 2.1: Simplified structure of two-terminal MTJ operating under STT switching.

2 ©IEEE. Part of this chapter is reprinted, with permission, from [27, 132, 136, 137].

12

existing fabrication methods, e.g., molecular beam epitaxy for preparation of the Fe layer, followed

by growth of the MgO layer using e-beam evaporation and patterning using photolithography [50].

The fabricated device is then placed on chip at the fourth metal line, in a CMOS backend process

[51]. MTJs are commonly vertically integrated with CMOS technology using through-silicon vias

in a 3D architecture, thus maximizing area efficiency and simultaneously minimizing data transfer

overheads [52, 53]. As the building block of MRAM technology, MTJs have been proposed as an

alternative to SRAM in cache memory [54]. Further applications benefiting from a hybrid

CMOS/MRAM approach include full adders [51] and analog-to-digital converters [55].

 MTJ resistance is commonly modeled [56-58] using the following equations:

 𝑅𝑝 =
𝑡

𝐹𝑎𝑐𝑡𝑜𝑟×𝐴𝑟𝑒𝑎×√𝜑
exp(1.025𝑡√𝜑) (2.1)

 𝑅𝑎𝑝 = 𝑅𝑝(1 + 𝑇𝑀𝑅) (2.2)

 𝑇𝑀𝑅 =
𝑇𝑀𝑅0

1+(
𝑉

𝑉ℎ
)2

 (2.3)

where Rp is P-state resistance, Rap is AP-state resistance, t is the oxide thickness, 𝜑 is the oxide

potential, Factor is a material-dependent constant, Area is the device surface area, TMR is the

tunnel magnetoresistance ratio, V is bias voltage and Vh is the empirically-determined bias voltage

at which the TMR is half of its initial value. This model is an approximation which neither

considers voltage dependence of P-state resistance nor temperature dependence of resistance.

2.1.2 MTJ Switching Characteristics

 MTJ switching can occur through the Spin Transfer Torque (STT) mechanism, whereby a spin-

polarized current passing through the device reverses the magnetization orientation of the free

layer [59]. The MTJ is a two-terminal device when configured for STT switching, as Figure 2.1

13

shows. The free-layer magnetization in an MTJ is governed by the Landau-Lifshitz Gilbert (LLG)

equation [58]:

𝑑𝒎

𝑑𝑡
= −𝛾𝒎×𝑯𝒆𝒇𝒇 + 𝛼𝒎×

𝑑𝒎

𝑑𝑡
− 𝜌𝑠𝑡𝑡𝒎× (𝒎 ×𝒎𝑟) (2.4)

where Heff is the effective magnetic field,  is gyromagnetic ratio,  is a damping coefficient, m

and mr are magnetizations of the free and fixed layers respectively, and stt is the spin transfer

torque coefficient and is directly proportional to the current passing through the device. MTJs are

commonly composed of uniaxial ferromagnets, i.e., there is only one easy axis, and thus two

directions, along which the magnetization is stable, though an energy barrier must be overcome in

order to switch between the two states. The time it takes the free layer to switch between these two

stable states is determined by solving the LLG equation. In spintronic circuit design, switching is

typically driven by the last term in Eq. 2.4, which is directly proportional to the spin-polarized

current density passing through the device.

2.1.3 MTJ I-V Characteristics

 In 1963, Simmons [60] examined the problem of electron tunneling between two metals

separated by an insulating film. Simmons considered linear variation of potential through the film

and conducted his analysis for different ranges of bias voltage. Brinkman’s 1970 publication [61]

extended this work by also accounting for electronic band structure. Brinkman determined the rate

of electrons tunneling through the film by integrating the density of states in the metals comprising

the two electrodes, the Fermi distribution function and the tunneling probability. He thereby

determined the tunneling current density, and then the conductance through the film, which he

expanded to second order in voltage to get:

14

𝐺(𝑉) = 𝐺0[1 − (
𝐴0∆𝜑

16𝜑
3
2

)𝑒𝑉 + (
9

128

𝐴0
2

𝜑
)(𝑒𝑉)2] (2.5)

 𝐺0 = (3.16 × 1010
√𝜑

𝑡
) exp(−1.025𝑡√𝜑) (2.6)

 𝐴0 =
4√2𝑚𝑡

3ħ
 (2.7)

where G is conductance, V is bias voltage, ∆𝜑 is the potential barrier through the film, 𝜑 is average

potential in the film, e is electron charge, t is film thickness, m is the electron mass and ħ is the

reduced Planck constant. According to Brinkman’s analysis, Eq. 2.5 is accurate to within 10%

when the film thickness is at least 1 nm and
∆𝜑

𝜑
 is less than 1.

 While Brinkman’s model treated film conductance as a function of bias voltage, he did not

consider any magnetic properties of the metals sandwiching the film and hence did not give any

analysis of conductance as a function of relative magnetization orientation. The first MTJ was

considered in 1975 by Julliere [62] who considered a junction composed of Fe-Ge-Co. Julliere

determined that the conductance variation through the germanium layer separating the two

ferromagnets was given by the relation:

𝐺𝑝−𝐺𝑎𝑝

𝐺𝑝
=

2𝑃𝑃′

1+𝑃𝑃′
 (2.8)

where 𝐺 is conductance and P and P’ are spin polarization factors for the two ferromagnetic layers

given by P = 2a – 1 and P’ = 2a’ – 1, where a and a’ are the fractions of tunneling electrons

entering iron and cobalt, respectively, whose magnetic moments are parallel to the magnetization.

 Further analysis by Slonczewski in 1989 yielded the following equation for conductance [63]:

 𝐺(𝜃) = 𝐺̅(1 + 𝑃𝑃′𝑐𝑜𝑠𝜃). (2.9)

15

where 𝐺̅ =
𝐺𝑝+𝐺𝑎𝑝

2
 and 𝜃 is the angle between magnetization vectors in the two ferromagnetic

layers.

 Slonczewski’s 1996 publication [64] went further to propose the STT switching mechanism for

MTJs, wherein he predicted a critical current that must be reached in order for the device to switch

from the P state to the AP state and vice-versa. This current, Ic, can be expressed as [65]:

𝐼𝑐 =
2𝛼𝛾𝑒𝐸

𝜇𝐵𝑔
 (2.10)

where 𝛼 is the same damping constant that appears in the LLG equation, 𝛾 is the gyromagnetic

ratio, e is the electron charge, 𝐸 is the energy barrier between P and AP states, 𝜇𝐵 is the Bohr

magneton, and g is the spin polarization efficiency factor. In general, the device will switch when

a positive current equal to Ic+ passes through it; when the current is removed, the device will retain

its state and only switch back when a negative current Ic- passes through it. Thus, the state of the

device follows a hysteresis curve. The presence of the hysteresis curve gives the device its memory

properties.

While Ic+ and Ic- are both given by Eq. 2.10, their value may be different due to the state-

dependence of the g parameter in that equation. Furthermore, both critical current values may be

lowered at the cost of higher switching delay, giving a tradeoff between power and performance.

 Since Slonczewski’s 1996 publication, many MTJ resistance models, both physical and

empirical, have been explored. One common approach [56-58] is to express the P state resistance

as a zero-order Brinkman model, i.e., using just the first term of Eq. 2.5 and then defining the

tunnel magnetoresistance ratio as 𝑇𝑀𝑅 =
𝑅𝑎𝑝−𝑅𝑝

𝑅𝑝
 so that the AP state resistance may be expressed

16

as: 𝑅𝑎𝑝 = 𝑅𝑝(1 + 𝑇𝑀𝑅). This is the same model which was presented earlier through Eq. 2.1 –

2.3; since the only parameter in this model is the TMR, it may be referred to as the TMR model.

2.1.4 MTJ Temperature Dependence

 Experimental evidence [66] has shown that MTJ conductance varies with temperature. Thus,

temperature dependence is a characteristic shared between electronics and spintronics. A

temperature-dependent model for MTJs, proposed by Shang [67], is:

𝐺(𝑇, 𝜃) = 𝐺𝑇(𝑇){1 + 𝑃(𝑇)2𝑐𝑜𝑠𝜃} + 𝐺𝑆𝐼(𝑇) (2.11)

𝐺𝑇(𝑇) =
𝐺0𝐶𝑇

sin⁡(𝐶𝑇)
 (2.12)

 𝑃(𝑇) = 𝑃0(1 − 𝛼𝑇
3

2) (2.13)

where G is conductance, T is absolute temperature, P is spin polarization, and G0, C, P0 and 𝛼 are

fitting parameters. The theoretical basis for Eq. 2.11 is that the 1 + P2cos𝜃 factor comes from

Slonczewski’s model (Eq. 2.9), the GT factor accounts for thermal broadening of Fermi

distributions and GSI is polarization-independent conductance. Polarization is assumed to follow

the same temperature dependence as magnetization, which follows a 𝑇3/2dependence to account

for thermal excitation of spin waves. Due to excellent agreement of Shang’s model with

experimental data, the model has seen widespread use [66, 68] since its original publication.

2.1.5 Spin Hall Effect-based MTJs (SHE-MTJs)

 A key challenge facing MTJs is the high energy cost of STT switching. As a solution to this

challenge, researchers have investigated the Spin Hall Effect (SHE) as an alternative switching

mechanism, which brings dual benefits of lower switching energy and separate read and write

paths. The SHE-MTJ is a three-terminal device fabricated by connecting the free layer to a heavy

17

Figure 2.2: SHE-MRAM device in the P state (left) and AP state (right). The device switches states

based on charge current passing through the heavy metal strip.

metal strip [69], as shown in Figure 2.2. Common materials for the heavy metal strip include

−Tantalum, −Tungsten, and Platinum. Through the Spin Hall Effect, a bi-directional charge

current passing through the heavy metal strip generates a spin-polarized current through the device;

if magnitude and time duration are sufficient, this spin-polarized current then reverses the

magnetization orientation of the free layer [27, 55]. Interestingly, the induced spin current can be

larger in magnitude than the inducing charge current.

2.1.6 Probabilistic Spin Logic using Low-Barrier MTJs

 In addition to device resistance, the energy barrier, 𝐸𝐵, between the P and AP states of an MTJ

device can be tuned based on fabrication dimensions. The device is considered to be low-barrier

under the condition 𝐸𝐵 ≪ 40𝑘𝑇, in which case thermal fluctuations at room temperature are

sufficient to change the state of the device. This observation has led to construction of the

probabilistic bit (p-bit) device, as shown in Figure 2.3. A p-bit [70, 71] takes analog input and

yields a digital output whose probability of being logic 1 depends on the supplied input voltage.

18

This functionality is due to the p-bit’s structure as a voltage divider between a low-barrier MTJ

and NMOS transistor. A higher voltage applied to the gate of the transistor results in reduced drain-

source resistance, 𝑟𝑑𝑠, which increases the probability of delivering sufficient voltage to the input

of the inverter to yield a logic 1 output.

 The p-bit output is described by:

𝑉𝑜𝑢𝑡 ⁡= ⁡𝑉𝐷𝐷⁡sgn[tanh (
𝑉𝑏

𝑉0
) + ⁡rand(−1,1)] (2.14)

where sgn represents the sign function, rand(−1,1)⁡represents a random number in [-1,1], 𝑉𝑏 is

bias voltage and 𝑉0 is a model parameter [70]. Thus, the probability of obtaining a logic 1 output

from the p-bit device is given by:

 P(1) = ⁡
1

2
(1⁡ + ⁡⁡tanh (

𝑉𝑏

𝑉0
)). (2.15)

Averaging p-bit outputs yields the hyperbolic tangent function through Eq. 2.15.

Figure 2.3: Structure of a p-bit device consisting of a voltage divider between a low-barrier MTJ

device and NMOS transistor (a); probability of a logic 1 output value (b).

a b

19

2.2 Memristive Crossbar Arrays (MCAs)

2.2.1 MCA Fundamentals

 Memristive Crossbar Arrays (MCAs) are a class of in-memory computing architecture

consisting of word lines and bit lines, forming columns and rows, respectively, to realize a matrix

structure. The word lines and bit lines are interconnected via programmable and nonvolatile

memristive devices, such as MRAM or Resistive Random Access Memory (RRAM) [28]. Given

a set of input voltages, vj, applied along the MCA word lines, the current on the kth bit line, ik, is

given as 𝑖𝑘 = ∑ 𝐺𝑗𝑘𝑣𝑗𝑗 , where 𝐺𝑗𝑘 represents the conductance of the memristive device at the

intersection of the jth word line and kth bit line; this relationship is a direct result of Kirchhoff’s

Current Law. As a result of this relationship, MCAs are intrinsically well-suited for VMM

computations by setting conductance values to represent matrix elements and providing vector

inputs as voltages to the array. Since negative conductance values are not attainable, VMM is

commonly computed using a dual crossbar design to incorporate negative matrix elements. MCAs

may also be configured to solve systems of linear equations and the eigenvalue problem [72].

Figure 2.4: Spin-based MCA, consisting of 1) p-bit, 2) Memristive Device (MD) implemented via

MRAM or RRAM, 3) op-amp and 4) integrator.

Positive Weights Negative Weights

20

 MCAs deliver a variety of advantages in VMM computation, including single-cycle VMM if

the input data set is within the size limits of the array [28, 73]. Moreover, MCAs realize significant

reductions in area and energy by performing computations in analog based on intrinsic signal

transfer characteristics of embedded memristive devices. It was recently seen [27] that MCAs can

realize up to a 5× reduction in energy and a 26× device reduction compared to a CMOS equivalent

using SRAM cells together with multiply and accumulate units. Computation in the analog domain

is especially advantageous for signal sensing applications, where inputs are given in analog.

 As shown in Figure 2.4, MCAs are typically designed with transimpedance amplifiers at each

word line output for converting currents to voltages that can interface with other units. Moreover,

spin-based MCAs can include p-bit devices built into bit lines and word lines for stochastic

computing applications.

2.2.2 Sneak Currents and Parasitic Voltage Degradation

 One challenge to MCA functionality is the presence of sneak currents [74]. Sneak currents

arise due to the difficulty of targeting a single cell in the array: in order to pass a current through

a designated memristive device, either for reading or writing, the corresponding word line must be

brought to VDD while the bit line must be held at ground, or vice-versa. However, as seen in Figure

2.5, this configuration also introduces currents through non-targeted devices. To counteract this,

all word lines and bit lines other than the ones belonging to the target device are held at VDD/2.

While this reduces the voltage difference across non-target devices from VDD to VDD/2, a certain

amount of current still flows through the half-selected devices, i.e., devices sharing either a bit line

or word line with the targeted device These currents are referred to as sneak currents and can result

in significant energy overheads and performance degradation of the architecture.

21

Figure 2.5: Sneak currents, represented by red arrows, introduced in writing to the top-right device

in a 2×2 MCA. Also shown is the parasitic line resistance.

 One common method of mitigating sneak currents is through the use of bi-directional selector

diodes [75, 76]. These diodes are connected in series with the memristive device in each cell and

can block current from flowing through half-selected devices given a voltage bias within a certain

threshold. Another strategy is introducing a CMOS transistor in series with each device, which

allows control over which cells are active at a given time. These architectures are commonly

referred to as 1S1R and 1T1R, respectively [77].

 A second challenge pertaining to crossbar arrays is the presence of parasitic line resistance,

which results in reduced voltage drop across memristive devices due to IR loss within word lines

and bit lines comprising the array. The IR loss is amplified by sneak currents and can be

considerable in the absence of mitigation strategies.

22

 Voltage degradation arising from parasitic IR loss leads to reduced performance in devices

located far from the voltage sources in the array. During the write operation, this reduced voltage

drop can significantly increase the time taken for a device to switch, e.g., a 0.4 V reduction in

voltage drop across a device can increase switching delay by a factor of 10 [74]. The IR drop effect

can also lead to read and write failures. While write failure may be avoided by using increased

voltages, such an approach is not ideal since it entails increased power consumption and increases

the probability of write disturbance.

 A variety of approaches have been proposed to mitigate the challenges described above. Xu

[74] proposed splitting writes into the crossbar into two cycles, i.e., performing half of the writes

in one cycle and half in the next in order to limit the amount of current flow. Shevgoor [78]

proposed using a sample and hold circuit to store charges generated by the sneak currents on a

capacitor, and thus cancel out future sneak currents during the next write or read operation. Zhang

[79] proposed mapping hot data, i.e., frequently accessed data, to fast regions in the MCA while

mapping cold data into slower regions, having greater voltage degradation and thus greater

performance loss. Zhang [80] further proposed splitting bit lines using a separation transistor and

using this approach to differentially map data based on access frequency.

2.2.3 Multi-Bit Crossbar Arrays

 Multi-bit representation of matrix elements is often necessary for precise computations.

Previous works include a variety of methods for achieving this in hardware. One approach is

through the use of Multi-Level Cell (MLC) devices implemented using MRAM [47, 81] or RRAM

[82]. Authors in [47] discuss challenges facing MLC devices, i.e., frequent read errors, incomplete

writes, and write disturbance as a result of thermal fluctuations and process variation. This is

particularly true for technologies such as MRAM that are especially limited in read margin.

23

Despite their limited reliability, authors in [81] discuss the feasibility of incorporating MLCs for

approximate computing applications.

 In addition, authors in [83] discuss the use of SOT (Spin Orbit Torque)-MRAM devices for

construction of multi-bit arrays. Each SOT-MRAM device consists of a fixed number of magnetic

domains, which switch based on magnitude of current passing through the device. The device

exhibits intrinsic stochasticity, i.e., the number of magnetic domains that switch for a given current

is given by a sigmoidal probability distribution. However, SOT-MRAM devices also exhibit

significant area overhead as a result of holding values through a thermometer code and require

significant energy overheads for write operations.

 Multi-bit quantization can alternatively be achieved through a combination of single-bit devices,

either spread across columns of a single crossbar [84, 85], or across multiple crossbar arrays [86].

In both cases, intermediate results are combined using shift-and-add operations to yield the final

vector product. Zou et al. [86] discuss the idea of representing an n-bit weight, w, via 2n crossbar

arrays, containing the values 𝑔0
+, 𝑔0

−, …,⁡𝑔𝑛
+, 𝑔𝑛

−. During a read operation, the weight is computed

using the formula: (𝑔0
+ × 20 +⋯+ 𝑔𝑛

+ × 2𝑛) − (𝑔0
− × 20 +⋯+ 𝑔𝑛

− × 2𝑛). In addition to

simplicity, this method provides added security since an adversary is not able to infer information

from the memory, given access to only one crossbar array. Matrix splitting is commonly necessary

for physical mapping of matrices due to the size of the matrix exceeding currently manufacturable

crossbar arrays, as well as non-linear voltage degradation effects affecting computational accuracy

[87, 88].

 To reduce area in a multi-crossbar memory, Chen et al. [89] show that individual crossbars can

be stacked in a 3D architecture; by reversing the deposition order between layers, the authors

reduce hardware overheads by sharing electrodes and interconnection wires. Furthermore, for

24

further memory optimization, Khan et al. [90] demonstrate a technique for reading multiple bits

simultaneously in a single MRAM array by modifying the bias voltage applied to unselected cells

to maintain a feasible sensing margin. Furthermore, the authors achieve multi-bit write operations

by applying a pulsed bias voltage to unselected cells to prevent write disturbance.

 Multi-bit arrays allow for adaptive quantization techniques for optimal allocation of resources.

Proposed techniques have included dynamic reconfiguration of bit-widths in Analog to Digital

Converters (ADCs) at the outputs of the array [28]; this approach reduces computational power in

signal conversion, as well as reducing memory and bandwidth requirements for data storage and

transmission. Furthermore, Khan et al. [91] gave an MCA-based approach for dynamic layer-wise

weight quantization in neural networks by using multiple memristive devices spread across MCA

columns to hold a single weight; the authors used a power gating technique to switch off certain

columns for low-precision computations. Other approaches to MCA-based adaptive quantization

[92, 93] have targeted the weight mapping distribution for a fixed precision level, rather than

varying levels of precision.

2.3 Mixed-Signal Computing

2.3.1 Analog Computing: Motivation and Related Works

 Analog computation relies on intrinsic signal transfer characteristics of circuit components to

conduct computations. Analog computations tend to be approximate, but may be superior to digital

counterparts in latency, power consumption, and area albeit at times subject to significant

precision, noise, temperature, and operating voltage challenges.

 Implementation of analog computation has taken a wide variety of forms within AI

applications. A recent work [94] discusses analog computation in the context of one type of neural

network, i.e., the multilayer perceptron (MLP). The MLP hardware utilizes MOSFET-based

25

current mirrors along with operational transconductance amplifiers to perform VMM. Two

operations are performed: multiplication and addition utilizing Kirchhoff’s Current Law in order

to sum the current signals at a specific node. Authors in [95] propose a generalized non-linear

function synthesizer through Taylor series approximation. The hardware implementation relies on

successive application of a squaring unit (SU) based on a class AB current mirror architecture and

yields a maximum error of 10% for a 5th order polynomial. Meanwhile, authors in [96] show how

to construct a reliable nonlinear circuit to exploit nonideal properties within a cascaded array of

analog multipliers for simulation of mathematical chaos. In [97], a mixed analog and digital hybrid

solution is introduced that seeks to alleviate challenges, e.g., lack of programmability associated

with a fully analog nonlinear computation stack. The architecture developed by the authors is

applied to obtain solutions to non-linear ordinary differential equations. In [98], root and power

computations are implemented using time-mode circuits. Its hardware relies on the translinear

principle, i.e., exponential I-V characteristics of CMOS transistors, which allow computations by

cascading exponential and logarithmic units.

 Several authors have sought automated hardware synthesis and optimization through the use of

genetic algorithms. In [99], which is one of the pioneering works in this field, the authors present

a wide variety of analog circuits produced via genetic algorithms, including a cube root

implementation. Subsequently, [100] expands upon the work of [99] to synthesize a wider variety

of evolutionary computation circuits, with improved output error. Meanwhile, [101] conducts

iterative refinement on computational circuits including squaring, square root, and cubing circuits.

From this iterative process, certain circuits that are created through genetic programming are able

to be refined through the error produced from the previous best-of-run from the same circuit.

Authors in [102] extend this approach by combining analog and digital computation, whereby out-

26

Table 2.1: Summary of analog computation architectures, including hardware overhead.

puts are refined digitally to improve computational accuracy for less error-prone applications.

Finally, [103] explores synthesis of arbitrary functions through Puiseux series, using genetic

algorithms to minimize error. Table 2.1 summarizes a selection of these works, highlighting the

hardware overheads in comparison to an approximate digital multiplier requiring ~1000

components [37].

2.3.2 Mixed-Signal Field Programmable Array (MFPA)

 Due to the significant benefits offered by analog computation to certain use cases, there has

been a renewed interest in extending the scope of reconfigurable computing to the analog domain.

The Reconfigurable Analog Signal Processor (RASP) [41] introduced in 2012 was an attempt to

overcome two of the main challenges preventing widespread adaptation of analog processing: lack

of a programmable interface and lack of robust design tools. The RASP provided a set of high-

level design tools for system-level analog design.

Work Functionality Mode of operation
No. of

elements

Highlighted

Contributions

[95]
nth power via

Squaring Unit

Class AB current

mirror
22

Arbitrary nonlinear

functions in terms of

Taylor series expansion

[98]
Square, cube, 4th

power

Translinear time-to-

voltage and voltage-

to-time convertors

~100

Nonlinear operations

through the time-mode

translinear principle

[99] Cube root

Evolved

computational

circuit

48
Pioneer in evolutionary

circuit design

[100]
Square, square root,

cube, cube root

Evolved

computational

circuit

≤44

Genetic algorithms for

optimizing analog circuits

for non-conventional

applications

27

 Concurrently with the introduction of the RASP, researchers [40] developed a Field

Programmable Mixed-Signal Array (FPMA) consisting of both analog and digital elements

arranged in a Manhattan-style fabric. Their design consisted of Computational Logic Blocks

comprised of LUTs and D Flip-flops, and Computational Analog Blocks consisting of analog

elements such as op-amps, capacitors, and transistors. Their design used a global interconnect to

integrate transistors (FETs), capacitors, resistors and diodes into a reconfigurable fabric

architecture. Further innovations have included introduction of a 16-bit microprocessor into the

FPMA fabric [104], and Time-Domain Configurable Blocks for dynamic reconfigurability of

analog functions [105].

The Mixed-Signal Field Programmable Array (MFPA) [27] advances a device-level-to-

architecture-level approach to integrate front-end signal processing within a low-footprint

reconfigurable fabric that enables mixed-signal computing for high-throughput on-chip CS.

Mixed-signal techniques combined with in-memory computation geared to the demands of CS are

integrated in a field-programmable and run-time adaptable platform.

Figure 2.6: Hybrid spin/charge device realization as configurable blocks within the MFPA fabric.

28

As shown in Figure 2.6, the MFPA architecture entails a circuit and register-level design so

that an MFPA slice acquires analog signals and then performs CS sampling and reconstruction via

in-memory computing using reduced precision/dynamic range. In-memory computing approaches

extend related works, such as Rabah’s architecture [106] consisting of separate processing

elements (PEs) and memory elements (MEs). The architecture develops analog computable

memories, or analog computing arrays, where instead of storing the analog values to be used by

external computing elements, in-memory computing is utilized. This cross-cutting beyond-von-

Neumann architecture explores the use of dense MRAM-based crossbar arrays to perform VMM

necessary for execution of CS sampling and signal reconstruction algorithms.

MTJs having low energy barrier are used as compact True Random Number Generators

(TRNGs) for generation of the CS measurement matrix, as justified within previously-published

work [20]. The MFPA is composed of two types of Functional Blocks (FBs): Configurable Digital

Blocks (CDBs) and Configurable Analog Blocks (CABs), similar to CABs and CLBs used in

previous CMOS-based FPMAs [40, 104]. These FBs are connected via the embedded NVM

Crossbar Arrays which perform VMM. The recently-published MTJ-based Look-Up Table (LUT)

[107] is used within CDBs to implement Boolean functions via in-memory computing.

Additionally, hybrid spin-CMOS ADCs [55] are used within CABs.

Thus, MTJs are investigated for selected processing roles to simultaneously reduce area and

energy requirements while providing stochasticity and non-volatility needed for execution of CS.

MFPAs can advance a unified platform on a single die accommodating a continuum of information

conversion losses and costs targeting CS applications. Design of such a mixed-signal

reconfigurable fabric can enable feasible hardware approaches that execute CS algorithms more

efficiently than digital FPGA-based or CPU-based implementations, which can then be extended

29

to low-energy miniaturization for IoT sensing applications. The parallelism enabled by the fabric

is readily applicable to other applications relying on VMM, such as artificial intelligence.

2.4 Compressive Sensing (CS)

2.4.1 Sparse Representation of Signals

 The sparsity of a signal having length 𝑛 and 𝑘 non-zero coefficients is defined as 𝑆 = 𝑘/𝑛; a

signal is characterized as sparse if the value of 𝑆 is sufficiently smaller than 1. Many real-world

signals are comprised of only a small number of significant coefficients when expressed in the

frequency domain and can therefore be approximated using a sparse representation [108]. One way

of achieving this is through the Discrete Cosine Transform (DCT), which entails transforming an

image, I∈ ℝ𝑁×𝑁, to its frequency domain representation, X ∈ ℝ𝑁×𝑁, through the operation X =

DIDT, where D ∈ ℝ𝑁×𝑁 is the DCT matrix defined as [109]:

𝐷𝑖𝑗 = {

1

√𝑁
,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑖 = 0

√
2

𝑁
cos (

𝜋(2𝑗+1)𝑖

2𝑁
) ,⁡⁡⁡𝑖 > 0

 (2.16)

The original image can be recovered from X using the inverse operation, 𝐈̂ = DTXD.

 DCT is widely used as part of the JPEG standard. JPEG processing involves the following

steps: 1) subdivision of an image into blocks of 8×8 pixels, 2) application of DCT to each block,

3) quantization of the coefficients in each block to reduce magnitudes, 4) transmission of the

compressed image, and 5) application of the inverse transform to recover the original image [109].

Due to the wide disparity in significance levels of DCT coefficients, only a few coefficients require

a high-precision representation; thus, Step 3 is achieved by performing a Hadamard product

between the frequency-domain image, X, and a quantization table, Q, which results in less

significant coefficients being assigned a progressively coarser quantization [30]. The end result is

30

Figure 2.7: Bipartite graph representation of sampling phase of CS.

a sparse representation of the image that can be compressed to yield significant reduction in

computational resources with little impact on quality.

2.4.2 Undersampling Sparse Signals

 CS is an emerging signal processing technique which allows for undersampling, i.e., sampling

at a sub-Nyquist rate, of spectrally-sparse and wideband data. Applications of CS include reduction

of power consumption and complexity in 5G communication networks [21], and reduction of

sampling duration in time-critical applications such as MRI [43]. CS consists of a sampling phase,

followed by a reconstruction phase. In the sampling phase, a linear transformation is applied to a

sparse signal 𝒙𝜖ℝ𝑛 via the measurement matrix, 𝜱𝜖ℝ𝑚×𝑚, to obtain a compressed measurement

vector, 𝒚𝜖ℝ𝑚, with 𝑚 ≪ 𝑛. This mapping may be represented using a bipartite graph where each

signal coefficient, 𝑥𝑖, is connected to measurement 𝑦𝑗 via the edge 𝜑𝑗𝑖, as Figure 2.7 shows.

31

 After sampling and transmission of measurements, the receiver must then solve an

undetermined system of linear equations to reconstruct the original signal. It has been shown that

in order to exactly reconstruct the signal with a probability 1 − 𝛿, the minimum number of

measurements is given by:

𝑚 ≥ 𝐶𝜇2(𝜱,⁡)𝑘 log(𝑛/𝛿) (2.17)

where 𝐶 is a constant and 𝜇 is the coherence between the measurement matrix and the basis, ,

given by:

𝜇(𝜱,) = √𝑛 max
1≤𝑖,𝑗≤𝑛

|〈𝝋𝒊,𝒋
〉| (2.18)

where 𝝋𝒊 and 
𝒋
 are row and column vectors of 𝜱 and , respectively. It follows from Eq. 2.17

that 𝜇(𝜱,) should be minimized in order to minimize m. If rows of 𝜱 are normalized, then

∑ |〈𝝋𝒊,𝒋
〉|
2

𝑛
𝑗=1 = 1 for all i, since the change of basis is a unitary transformation. Thus,

max
1≤𝑖,𝑗≤𝑛

|〈𝝋𝒊,𝒋
〉| attains a minimum value of 1/√𝑛 if |〈𝝋𝒊,𝒋

〉| = 1/√𝑛 for all i and j. Hence, it is

desirable to have a dense measurement matrix in the same basis that gives a sparse signal [108].

 One possible approach to the CS reconstruction problem is to choose the solution with the

lowest sparsity. This translates directly to the minimization problem:

 𝐱̂ = argmin‖𝒙‖0 s.t. 𝒚 = 𝜱𝒙. (2.19)

Due to this problem being NP-hard [110], it is often reformulated as the basis pursuit problem:

𝐱̂ = argmin‖𝒙‖1 s.t. 𝒚 = 𝜱𝒙, (2.20)

32

which can be solved using convex optimization techniques. It is shown that 𝐱̂ is an accurate

reconstruction of the original signal vector if the measurement matrix satisfies the Restricted

Isometry Property (RIP) [108], i.e., that for any 2k-sparse vector x,

 ‖𝒙‖2
2(1 − 𝛿2𝑘) ≤ ‖𝜱𝒙‖2

2 ≤ ‖𝒙‖2
2(1 + 𝛿2𝑘), (2.21)

such that 𝛿2𝑘 < 1. RIP prevents any vector of sparsity 2𝑘 from being in the null space of 𝜱. Thus,

given two 𝑘-sparse vectors, 𝒙1 and 𝒙2, such that 𝜱𝒙1= 𝜱𝒙2, it follows that 𝒙1 − 𝒙2 = 0 since the

difference of 𝑘-sparse vectors must be 2𝑘 sparse. Thus, RIP ensures unique solutions to Eq. 2.19.

 Moreover, it has been shown [108] that if 𝛿2𝑘 < √2 − 1, then:

‖𝒙̂ − 𝒙‖1 ≤ 𝐶0‖𝒙 − 𝒙𝒌‖1 (2.22)

where 𝐶0 is a constant, 𝒙̂ is the solution to Eq. 2.20 and 𝒙𝒌 is equal to 𝒙 with all components,

except for the largest k components, set to zero. Thus, Eq. 2.22 guarantees a unique solution to the

basis pursuit problem if 𝒙 is k-sparse and RIP is satisfied with the given condition.

 In light of the above considerations, it has been seen [20, 108] that random measurement

matrices, e.g., having column vectors randomly chosen from the unit sphere in ℝ𝑚, or having

elements chosen from a Gaussian or Bernoulli distribution, are ideal in that they are largely

incoherent with any given basis while simultaneously obeying RIP.

 Figure 2.8 illustrates a common IoT image compression flow, which consists of the following

steps: 1) The image is partitioned into N×N blocks, 2) DCT is performed on each block, 3)

quantization is performed via a Hadamard product with quantization matrix, Q, 4) the image

matrix, X*, is mapped to a vector representation, x, and compressively sampled, 5) the compressed

measurement vector is transmitted to the receiver, which reconstructs the signal, and 6) the image

33

Figure 2.8: IoT signal compression flow, consisting of compressive sampling in the DCT domain,

transmission, and reconstruction by the receiver.

34

is recovered by converting each block back to spatial domain via inverse DCT and concatenating

the blocks. Due to space constraints, vectors in Steps 4 and 5 are represented as matrices in the

figure.

2.4.3 Non-uniform Sampling

 Real-world signals often exhibit Regions of Interest (RoIs), i.e., subsets of the signal that may

be more critical to accurately reconstruct than others. One approach is to partition the measurement

matrix into t sub-matrices, with each sub-matrix having dimensions 𝑚 × 𝑛𝛼𝑡 where 𝛼𝑡 is the

fraction of columns of 𝜱 occupied by sub-matrix t, as Figure 2.9 illustrates. The density of non-

zero elements in each sub-matrix is determined by the importance level of the subset of x that the

sub-matrix maps to through the VMM operation. A higher density of non-zero elements

corresponds to a higher sampling rate for more important signal coefficients. In the bipartite graph

model, there are more edges connected to nodes that represent these coefficients. This translates to

a disproportionate amount of sensing energy being allocated to the RoI [23].

 Key parameters characterizing 𝜱 are [23]: 1) the matrix dimensions, m and n, 2) the number of

non-zero elements per row, L, 3) the set of relative widths of the t sub-matrices, 𝛼1, … , 𝛼𝑡, and 4)

Figure 2.9: Measurement matrix partitioned into t sub-matrices, where sub-matrix densities are

determined by signal importance levels.

35

the set of values 𝑝1, … , 𝑝𝑡, where 𝑝𝑖 represents the probability that a randomly chosen nonzero

element in 𝜱 belongs to a particular column in sub-matrix i. These parameters are not all

independent: they must satisfy the constraints ∑ 𝛼𝑖
𝑡
𝑖=1 = 1 and ∑ 𝑝𝑖𝛼𝑖𝑛 = 1𝑡

𝑖=1 . In the latter

equation, the expression 𝑝𝑖𝛼𝑖𝑛 represents the fraction of non-zero elements occurring in sub-matrix

i, compared to the measurement matrix as a whole.

 Explorations in partitioned CS were first motivated by speed ups available through parallel

processing [111] and [112]. This same approach was quickly applied to non-uniform CS by authors

motivated by observations including varying pixel saliency levels in images [113] and

heterogeneity in WSNs [114]. Various methodologies have been proposed for RoI detection,

including Bayesian inference [115] and reinforcement learning [116].

2.4.4 An Overview of Reconstruction Algorithms

 Convex optimization using basis pursuit is one of several methods of reconstructing a signal

from its measurements. An alternate convex optimization approach is Least Absolute Shrinkage

and Selection Operator (LASSO), which solves the following optimization problem [117]:

 𝐱̂ = argmin (
1

2
‖𝒚 − 𝜱𝒙‖2

2 + ‖𝒙‖1) (2.23)

where  is a Lagrange multiplier which specifies the balance between low-error and low-sparsity

solutions. LASSO is useful for optimal recovery of signals transmitted over noisy channels.

 Approximate Message Passing (AMP) is a reconstruction algorithm with low complexity,

allowing for fast convergence. Derived from the Iterative Soft Thresholding (IST) technique, AMP

approximates the signal in Iteration i as [118]:

 𝐱̂𝒊 = (𝐱̂𝒊−𝟏 +𝜱𝑻𝒓𝒊−𝟏) (2.24)

where (𝑥) is a soft-thresholding function and the residual, 𝒓𝒊 is defined as:

36

 𝒓𝒊 = 𝒚 −𝜱𝐱̂𝒊 + 𝑏𝑖𝒓𝒊−𝟏 (2.25)

and 𝑏𝑖 =
1

𝑚
 ‖𝒙̂𝒊‖0. The key difference between IST and AMP is the last term in Eq. 2.25, which

allows for improvement in convergence rate without increasing complexity. A more complete

treatment of AMP is given in [119].

 Greedy algorithms provide an alternate class of reconstruction techniques which can provide

for computational benefits. Orthogonal Matching Pursuit (OMP) is one example of a greedy

reconstruction algorithm which selects the column of 𝜱 most correlated with the residual 𝒓𝑖−1 in

each iteration. The signal can then be approximated in Iteration i by solving the least squares

problem [110]:

 𝐱̂𝒊 = argmin(‖𝒚 − 𝜱𝒊𝒙̂‖2) (2.26)

where 𝜱𝒊 is initially set to zero and is augmented by the selected column of 𝜱 at each iteration.

 Regularized Orthogonal Matching Pursuit (ROMP) is similar to OMP but beneficial in noisy

applications [117]. ROMP also starts each iteration by computing correlations between columns

of 𝜱 and the residual. Instead of selecting a single column of 𝜱 at each iteration, ROMP selects

multiple columns to allow for the possibility of corruption due to noise.

 Finally, Compressive Sampling Matching Pursuit (CoSAMP) seeks to reconstruct 𝒙 by

identifying its support set, i.e., set of indices having non-zero coefficients [117]. CoSAMP begins

by computing the signal proxy given by 𝒄𝑖 = 𝜱𝑇𝒓𝑖−1 where 𝒓𝑖−1 is the residual of the previous

iteration. Next, the 2𝑘 coefficients of 𝒄𝑖 with highest magnitude are used, together with the

estimate from the previous iteration, to estimate the support set of 𝒙. As in OMP and ROMP, the

corresponding columns of 𝜱 are then combined to form 𝜱𝒊 and the least squares problem given in

37

Eq. 2.26 is solved to estimate the signal, 𝐱̂𝒊. At the conclusion of each iteration, the estimated

support set is pruned by keeping only indices of the k largest coefficients in 𝐱̂𝒊.

 While the above provides a brief overview of selected CS reconstruction algorithms that

commonly appear in literature, a more complete treatment of reconstruction algorithms can be

found in [117].

2.4.5 Hardware Implementation of CS

 Several challenges must be overcome in hardware implementation of CS sampling and

reconstruction. Sampling requires a random number generator for populating the measurement

matrix as well as computationally intensive operations such as VMM. Reconstruction requires

multiple iterations involving VMM and matrix inversion. Thus, hardware and software

optimizations are necessary to accommodate CS in resource-limited applications such as IoT.

 Hardware implementations of sampling have included Massoud’s crossbar design [24]

leveraging RRAM devices randomly programmed using Linear Feedback Shift Registers (LFSRs).

Qian [25] eliminated the need for LFSRs by achieving randomness through the intrinsic process

variation present within RRAM devices. Moreover, Salehi [20] proposed an MRAM-based crossbar

array consisting of SHE-MTJs for non-uniform sampling, as shown in Figure 2.10. In this approach,

stochastic properties of low-barrier MTJs are leveraged by using p-bit devices to populate the

matrix. P-bits are especially useful for non-uniform sampling since they allow for tunable

stochasticity, i.e., the capability to adjust the probability of non-zero outputs by means of an input

voltage. While the above approach using single-bit devices is useful for Bernoulli matrices, Salehi

extended this approach to accommodate for Gaussian matrices as well, by using SOT-MRAM

devices which exhibit multi-bit precision and intrinsic stochasticity at the cost of increased area.

38

 Hardware implementation of reconstruction algorithms has focused on maximization of

parallelism and minimization of complexity. Septimus and Steinberg [110] presented an FPGA

implementation of OMP, where the Moore-Penrose pseudoinverse, 𝜱𝒊
† = (𝜱

𝒊
𝑻𝜱𝒊)

−𝟏
𝜱𝒊

𝑻, was used

Figure 2.10: Salehi’s implementation of the non-uniform measurement matrix using an MRAM-

based crossbar populated by p-bit devices in each column [20].

39

to reduce the complexity of matrix inversion operations needed for least squares minimization.

The authors were able to reduce this computation to that of inverting the symmetric matrix, 𝑪 =

𝜱𝒊
𝑻𝜱𝒊, via the Alternate Cholesky Decomposition, i.e., 𝑪 = 𝑳𝑫𝑳𝑻 where 𝑳 is a lower triangular

matrix and 𝑫 is a diagonal matrix. Alternate FPGA implementations have been given for algorithms such

as OMP and AMP [120]. Liu [121] proposed an MCA-based approach to basis pursuit, and Le Gallo

presented a similar approach to AMP [122]. An implementation of OMP using the MFPA fabric was

presented in [27].

2.5 Deep Belief Network (DBN)

2.5.1 Restricted Boltzmann Machine (RBM)

 Restricted Boltzmann Machines (RBMs) are a class of recurrent stochastic neural network

[123] in which the energy of the network in state k is determined by:

⁡⁡𝐸(𝑘) = −∑ 𝑠𝑖
𝑘𝑏𝑖 − ∑ 𝑠𝑖

𝑘𝑠𝑗
𝑘𝑤𝑖𝑗𝑖<𝑗𝑖 (2.27)

where 𝑠𝑖
𝑘 refers to the state of node i while the network is in state k, and 𝑤𝑖𝑗 represents the weight

between nodes i and j. Each node in an RBM has a probability of being in state 1 given by:

 𝑃(𝑠𝑖 = 1) = 𝜎(𝑏𝑖 + ∑ 𝑤𝑖𝑗𝑠𝑗𝑗) (2.28)

where 𝜎 represents the sigmoid function. Over time, a Boltzmann distribution is reached where

the probability of finding the system in state k is defined as:

𝑃(𝑘) =
𝑒−𝐸(𝑘)

∑ 𝑒−𝐸(𝑢)𝑢
 (2.29)

where the summation in the denominator is taken over all possible states of the system. An RBM

is a two-layer neural network consisting of a visible layer and hidden layer which can be trained

using the Contrastive Divergence algorithm [123], consisting of the following steps:

40

 Figure 2.11: DBN structure consisting of one visible layer and two hidden layers [124].

1) Apply a training vector, 𝒗, to the visible layer and sample hidden layer outputs, 𝒉.

2) Feed back the hidden layer outputs and sample the resulting input, 𝒗’.

3) Apply 𝒗’ as an input to the visible layer and sample the resulting hidden layer outputs, 𝒉’.

4) Update the weights according to the equation, ∆𝑊 = (𝒗𝒉𝑇 − 𝒗′𝒉′𝑇) where  is the

learning rate.

Deep Belief Networks (DBNs) can be realized by stacking RBMs, as Figure 2.11 shows. Training

is achieved through an iterative application of the Contrastive Divergence algorithm.

 As shown in Figure 2.12, DBNs may be implemented using crossbar arrays for computationally

efficient VMM. Weights are represented by the state of memristive devices in the array; since

device conductance value cannot be negative, two devices are commonly used to represent a single

weight, using an architecture such as that shown in Figure 2.4. DBNs require a stochastic neuron

at each output for computation of the activation function, which can be achieved in MRAM via

embedded p-bit devices as illustrated in Figure 2.4.

41

Figure 2.12: 784 × 10 DBN implemented using crossbar for MNIST digit recognition [123].

2.5.2 Probabilistic Inference Network Simulator (Pin-Sim)

 DBN simulations on the MNIST dataset can be readily performed at both the software and

hardware level, using the Probabilistic Inference Network Simulator (PIN-Sim) [123]. PIN-Sim

consists of five modules: first, trainDBN reads the training images in MATLAB and outputs

weight and bias matrices using the Contrastive Divergence algorithm. A second MATLAB

module, mapWeight, converts the weight and bias data into device conductance values. First,

mapWeight splits weights and biases into positive and negative values, i.e.,

𝑤𝑖𝑗
+ = {

𝑤𝑖𝑗,⁡⁡⁡𝑤𝑖𝑗 ≥ 0

0, ⁡⁡⁡⁡⁡⁡⁡𝑤𝑖𝑗 < 0
 𝑤𝑖𝑗

− = {
0,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑤𝑖𝑗 ≥ 0

−𝑤𝑖𝑗 ,⁡⁡⁡𝑤𝑖𝑗 < 0
 (2.30)

𝑏𝑗
+ = {

𝑏𝑗 ,⁡⁡⁡𝑏𝑗 ≥ 0

0, ⁡⁡⁡⁡𝑏𝑗 < 0
 𝑏𝑗

− = {
0,⁡⁡⁡⁡⁡⁡⁡⁡𝑏𝑗 ≥ 0

−𝑏𝑗 ,⁡⁡⁡𝑏𝑗 < 0
 (2.31)

 Next, mapWeight uses the following equations to set conductance values based on weights and

biases:

 ∀𝑤𝑖𝑗⁡𝜖⁡(𝑊
+,𝑊−): 𝑔𝑤𝑖𝑗 =

(𝑔𝑚𝑎𝑥−𝑔𝑚𝑖𝑛)×(𝑤𝑖𝑗−𝑤𝑚𝑖𝑛)

𝑤𝑚𝑎𝑥⁡−⁡𝑤𝑚𝑖𝑛
+ 𝑔𝑚𝑖𝑛 (2.32)

 ∀𝑏𝑖𝑗⁡𝜖⁡(𝐵
+, 𝐵−): 𝑔𝑏𝑖𝑗 =

(𝑔𝑚𝑎𝑥−𝑔𝑚𝑖𝑛)×(𝑏𝑖𝑗−𝑏𝑚𝑖𝑛)

𝑏𝑚𝑎𝑥−𝑏𝑚𝑖𝑛
+ 𝑔𝑚𝑖𝑛 (2.33)

42

where 𝑊+,𝑊− represent weight matrices, 𝐵+, 𝐵− represent bias matrices, 𝑔𝑚𝑎𝑥 and 𝑔𝑚𝑖𝑛 are

maximum and minimum conductance values of all weighted connections in the array, 𝑤𝑚𝑎𝑥 and

𝑤𝑚𝑖𝑛 represent maximum and minimum elements in weight matrices, and 𝑏𝑚𝑎𝑥 and 𝑏𝑚𝑖𝑛 represent

maximum and minimum elements in bias matrices.

 Finally, mapWeight converts the conductance values to resistance values and quantizes these

values based on device capabilities of the hardware, using the following equation:

 ∀𝑔𝑖𝑗⁡𝜖⁡(𝐺𝑊
+, 𝐺𝑊−, 𝐺𝐵+, 𝐺𝐵−): 𝑟𝑖𝑗 =

round(𝑄×1/𝑔𝑖𝑗)

𝑄
 (2.34)

where 𝐺𝑊+, 𝐺𝑊−, 𝐺𝐵+, 𝐺𝐵− represent positive and negative weight and bias conductance

matrices, and 𝑄 is the quantization factor.

Figure 2.13: Logical flow of PIN-Sim, including the five main modules involved in DBN

simulation.

43

 The third PIN-Sim module is mapRBM, a Python script which generates SPICE representations

of multiple crossbar weighted arrays based on the outputs of mapWeight and the given network

topology. A final Python module, testDBN, executes a SPICE circuit simulation of the DBN to

determine classification error rate as well as power consumption. The inputs to the testDBN

module consist of the outputs of mapWeight and mapRBM as well as the module, neuron, which

is a SPICE representation of the circuit used for computing the activation function. A visual

description of PIN-Sim is given in Figure 2.13.

2.5.3 Probabilistic Interpolation Recoder (PIR)

 The stochastic analog outputs of probabilistic neurons in each DBN layer must be integrated

and converted to digital for a fully operational architecture. This is conventionally achieved using

a resistor-capacitor (RC) circuit followed by ADC, as shown in Figure 2.14a. However, such an

approach is not ideal for resource limited applications due to the power and area demands of the

ADC. The Probabilistic Interpolation Recoder (PIR) [124] provides an alternative approach to

stochastic output digitization with improved resource utilization.

 Sample and Count-based PIR (SC-PIR) integrates the neuron outputs using an RC circuit and

samples the resulting outputs, NeuronOUT, at each positive edge of the clock (CLK). A counter is

then used to accumulate the sampled outputs by incrementing by one whenever NeuronOUT is

greater than VDD/2. The final outputs are returned as an n-bit digital value, given by OUTn-

1…OUT0, which can be reset to zero through a CTRL signal, as shown in Figure 2.14b.

 Sample and Shift-based PIR (SS-PIR) is an alternative design which is further optimized for

energy consumption. SS-PIR also samples integrated neuron outputs at each positive edge of the

clock. SS-PIR outputs are stored using a bidirectional shift register which shifts right or left if the

44

Figure 2.14: Interpolation of neuron outputs using a) ADC, b) 3-bit SC-PIR circuit, and c) 3-bit

SS-PIR circuit [124].

integrated neuron outputs are less than or greater than VDD/2, respectively. The shift register can

be reset using a CTRL signal, as shown in Figure 2.14c.

45

 SC-PIR and SS-PIR both show slightly increased error, compared to a conventional ADC, when

set to 3-bit precision in MNIST digit classification applications. However, both variations of PIR

yield significant improvements in resource utilization as measured by the Energy-Error-Product

(EEP). PIR can be scaled to greater precision levels at reduced energy cost: 5-bit SS-PIR yields

lower error rate and significantly lower energy consumption than a 3-bit ADC [124].

46

CHAPTER 3: NON-UNIFORM CS VIA OHMIC VOLTAGE

ATTENUATION3

3.1 Voltage Degradation in MRAM-based Crossbars

 As seen in Section 2.2.2, voltage attenuation due to parasitic line resistance is a well-known

effect in crossbar array architectures. This effect is more significant in MRAM-based arrays due

to the comparatively low resistance of MRAM devices compared to alternatives such as RRAM.

In this chapter, simulation results are performed in MATLAB using the Modified Nodal Analysis

technique [125, 126] to determine the significance of the voltage attenuation in 64×64 and

128×128 arrays.

Figure 3.1: Voltage difference across elements of 128×128 MRAM-based crossbar with each

element set to a resistance of 5600.

3 ©IEEE. Part of this chapter is reprinted, with permission, from [132].

47

 Figure 3.1 is a heat map showing voltage drop across each element of an MRAM-based MCA

with each device set to a P-state resistance value of 5600 and 1V applied to each row from the

left side. The parasitic line resistance is 2.5 per cell and no mitigation strategies such as selector

diodes or pass transistors are used. The figure illustrates the severity of the voltage degradation

effect, which is >50% for the majority of the array and approaching a 90% loss in the top right

corner.

 Figure 3.2 shows the severity of voltage degradation along elements adjacent to the first 64

columns in the top row of an MCA having a full array of MRAM devices carrying a resistance of

5600 The figure demonstrates that even for relatively small array dimensions of 64×64, an

attenuation exceeding 50% can be attained past a certain threshold of line resistance.

Figure 3.2: Relative voltage attenuation along the top word line of an MCA, for a variety of array

sizes, n, and line resistance values, r.

48

3.2 Non-Uniform Measurement Matrix Implementation

 Previous work [20] has demonstrated the possibility of non-uniform CS matrix implementation

by MRAM-based MCAs. One approach to writing the matrix is by including a p-bit for each

column to generate m outputs over m clock cycles, writing the crossbar one row at a time through

a power-gated D flip-flop. Following Eq. 2.15, p-bits corresponding to columns requiring higher

densities of non-zero elements are simply given a higher input voltage.

 The proposed architecture supplies appropriate inputs for each p-bit device. A Stochastic

Bitstream Generator (SBG), shown in Figure 3.3, is connected to each column of an MCA. During

the control cycle, a voltage Vinput is applied to WL1 with every other word line and bit line in the

array held at ground. CTRL is high and CTRL̅̅ ̅̅ ̅̅ ̅ is low. Thus, capacitor C is charged to a voltage Vin

+ Vbias, where Vin is determined by a multiplexer output from t possible inputs, each one being

sourced from a different location along the first word line in the MCA. Vbias is a DC voltage offset

necessary to reach the p-bit operational range and is the same in every column. Thus, the proposed

architecture generates a spectrum of voltages from a single DC voltage source.

 After the control cycle ends, CTRL and CTRL̅̅ ̅̅ ̅̅ ̅ are switched low and high, respectively, to lock

in the capacitor voltage. At this time, the power-gated clock connected to the D flip-flop, DFF,

begins to count m clock cycles, with the output connected to the access transistors of the devices

in that column. During each clock cycle, a voltage Vw is applied to the corresponding word line in

the array with all other word lines and bit lines held at zero. Vw is chosen such that it is sufficient

to write to an SHE-MRAM device. Thus, in each column, the device in row i is written to if and

only if the ith output of that column’s D flip-flop is a logic 1.

 The proposed architecture makes use of the Ohmic voltage degradation effect in MCAs to

intrinsically realize non-uniform CS. The resistance along both the bit lines and word lines of the

49

MCA is modeled as r  per cell. Due to this resistance, the voltage along the word lines decays as

one proceeds away from the source.

Figure 3.3: a) Stochastic Bitstream Generator (SBG) providing m output bits, with the fraction of

1’s determined by the input voltage; one SBG is present per MCA column. b) Implementation of

a 2×2 MRAM-based MCA.

a

a

b

b

50

 Modified Nodal Analysis is implemented using MATLAB and verified in HSPICE to determine

MCA node voltages and power consumption, with MTJs being modeled as linear with resistance

R. SPICE and MATLAB are used to characterize the p-bit, after which results are fed into the p-

bit device model, which yields a probability of obtaining a logic 1 output given by:

P(1) ⁡= ⁡
1

2
(1⁡ + ⁡⁡tanh(

𝑉𝑖𝑛−𝑉𝑐

𝑉0
)) (3.1)

which is a horizontal translation of Eq. 2.15. In the presented research, model parameters of 𝑉𝑐 =

0.4V and 𝑉0 = 0.04V are used to attain agreement with experimental data [20].

 Simulations are performed using the 14nm HP-FinFET Predictive Technology Model (PTM)

library [127], with VDD = 0.8V. MCA dimensions of 64×64 and 128×128 are considered. The sizes

chosen in our simulations are representative of those commonly found in the literature [125], where

larger networks are often mapped onto a grid of smaller arrays such as the ones considered herein.

Moreover, since the severity of voltage degradation correlates with array size, it follows that the

proposed design is also applicable to larger-sized crossbar arrays.

 The case of two sub-matrices corresponding to a single RoI is considered. In this scenario, p-

bit inputs, Vin, are sourced from the first word line in the array: from Column 4 for columns within

the RoI, and from Column 48 for all other columns. To determine the robustness of the proposed

architecture, a variety of line resistance values, r, corresponding to values found in the literature

[125], [128, 129], are tested to determine the necessary voltage parameters to maintain the

measurement matrix characterizations listed in Table 3.1. Parameters of the embedded three-

terminal MTJs [56] are provided in Table 3.2.

3.3 Simulation Results

 Figure 3.4 shows that target measurement matrix parameters indicated in Table 3.1 are achieved

under feasible input and bias voltages for a variety of line resistances. The necessary input voltage

51

Figure 3.4: Input and bias voltage necessary to maintain constant measurement matrix parameters

for line resistance values in the range from 1 per cell to 5 per cell, for a 64×64 and 128×128

array.

decreases for larger line resistance values as well as larger array size to counteract a higher rate of

voltage degradation by reducing the current in the array. A higher bias voltage is then required to

compensate for the reduced input voltage.

 Figure 3.5a and Figure 3.5b show results for a 64×64 MCA and 128×128 MCA, respectively,

with on-state and off-state devices represented in yellow and blue, respectively. As expected, a

sharp reduction in densities is observed in both panels due to a change in multiplexer configuration,

yielding a reduced input voltage to the SBGs.

 Table 3.3 lists the delay for configuration of a 64×64 and 128×128 array. In this simulation, a

parasitic resistance of 2.5 is modeled as a series combination with the capacitor. A clock period

of 1.6ns is adequate for each capacitor to attain 99.9% of the target voltage. Figure 3.6 provides

timing diagrams to illustrate the transient response of the SBGs. The top two panels in Figure 3.6

52

Figure 3.5: CS measurement matrix mapped to MCA crossbar array for a) a 64×64 and b) a

128×128 array size, demonstrating achievement of target parameters given in Table 3.1. Yellow

and blue cells represent on-state and off-state devices, respectively.

show the inputs to the transmission gate within the SBG, indicating that the transmission gate is

activated at t = 1.0ns. The next panel shows the transient voltage on the SBG capacitor within

Column 1, which is inside the RoI and charged to a target voltage of around 0.39V. Finally, the

bottom panel shows the transient voltage on the SBG capacitor within Column 128, which is

outside of the RoI and hence charged to a reduced voltage of approximately 0.32V. These data

demonstrate the completion of the control cycle within the 1.6ns period listed in Table 3.3.

 Table 3.3 also gives energy results, giving the counterintuitive result that the maximum

configuration energy of 333fJ occurs in the case of the smaller 64×64 MCA. Further analysis on

this result is provided in Section 3.4. Table 3.4 provides a comparison between the presented

approach and the alternative of using a 4-bit lookup table (LUT) together with Digital to Analog

 Converter (DAC) for acquiring the configuration data. Based on prior work [107], a 6-input LUT

consumes 8.58fJ of read energy per bit, together with 1,547 transistors. Thus, supplying 4 bits to

each column of a 64×64 array would require 256 LUTs, each being read simultaneously; the cost

a b

53

Table 3.1: Simulation parameters for a crossbar representing two sub-matrices, including

measurement matrix parameters n, m, L,  p1; MTJ P- state resistance, R; line resistance, r;

capacitance, C; initial word line input voltage, Vinput; and bias voltage, Vbias.

Table 3.2: Parameters of the three-terminal MTJ device.

Table 3.3: Simulation results for writing a CS measurement matrix with RoI.

Table 3.4: Comparison of our presented architecture with the alternative of using a 4-bit lookup

table and digital-to-analog converter for signal acquisition in a 64×64 array.

 Case 1 Case 2

n×m 64×64 128×128

L/n 0.1 0.1

 0.15 0.15

p1 5/64 5/128

R 5600 5600

r 2.5/cell 2.5/cell

C 20fF 20fF

Vinput 0.16V 0.12V

Vbias 0.24V 0.28V

Parameters Value

MTJ area 60nm×30nm×

Heavy metal volume 100nm×60nm×3nm

Oxide thickness 0.85nm

P-state resistance 5600

Array size Power Time Total energy

64×64 208W 1.6ns 333fJ

128×128 W 1.6ns 270fJ

Architecture Energy Transistor

count

Herein 3fJ 17,088

LUT+DAC [28], [84] pJ >396,032

54

Figure 3.6: Timing diagram showing (from top to bottom): CTRL signal, CTRL̅̅ ̅̅ ̅̅ ̅ signal, voltage on

SBG capacitor in 1st column, and voltage on SBG capacitor in 128th column. Data shown is for a

128×128 array with 0.12V applied along the uppermost word line, and a bias voltage of 0.28V.

would be 2,196fJ of energy in addition to 396,032 transistors. Moreover, a 4-bit DAC consumes

3pJ per conversion [130]; the total energy would thus be 192pJ if one DAC were included for each

column of the array. This would bring the total overhead to 194pJ plus 396,032 transistors. In

contrast, our design consumes 333fJ in total energy for charging the capacitors in each of the 64

SBGs to the correct input voltage. Moreover, the hardware overhead is limited to 64, 6-input

multiplexers; at a cost of 267 transistors per multiplexer, this brings the total number of transistors

to 17,088. Thus, significant reductions in hardware and energy costs are attained by relying on the

array itself to store and supply the necessary configuration signals. Due to the simplicity of our

design, we obtain a 583-fold reduction in energy together with a 23-fold reduction in hardware

resources.

55

3.4 Analysis of Size Dependence of Energy Consumption

 Table 3.3 gives the unexpected result that greater energy consumption occurs for a smaller

crossbar array. This section gives a theoretical analysis of this result. First, we note the following

observations:

1) Our design uses a control cycle to set the capacitor voltage of each SBG, where SBGs

serving columns part of the Region of Interest require a higher voltage. Since SBGs acquire

voltages only from the uppermost word line in the array, only this specific word line

receives nonzero input voltage.

2) The 128×128 array receives a lower input voltage than the 64×64 array. Specifically, an

input of 0.12V is applied to the 128×128 array while an input of 0.16V is applied to the

64×64 array, as indicated in Table 3.1. This is necessary since both a higher input voltage,

and larger crossbar size, result in a greater rate of voltage degradation. Thus, a reduced

input voltage is applied to the larger array in order to compensate for the array size, as

illustrated in Figure 3.4.

3) The 128×128 array experiences continual degradation in voltage past the 64th column,

which can lead to a reduced average top-row voltage compared to the 64×64 array.

For simplicity, we consider the total power consumption of a 64×64 and 128×128 array under

steady-state conditions, i.e., treating capacitors as open circuits. The MRAM device resistance

within the array is assumed to be R = 5600 with a line resistance of r = 2.5  per cell, which are

the same conditions used in previous simulations. Since voltage is applied only to the uppermost

word line, roughly 98.6% of the power consumption occurs along the top word line and the devices

connected to this word line. Hence, the total power consumption can be approximated by:

56

Figure 3.7: Model of top row of an n×n crossbar array, with parasitic resistance along the top word

line labeled as r, and memristive devices labeled as R.

 𝑃 =
1

𝑅
∑ 𝑉𝑖

2𝑛
𝑖=1 +

1

𝑟
∑ 𝑣𝑖

2𝑛−1
𝑖=1 (3.2)

where 𝑉𝑖 refers to the voltage difference across the devices connected to the top word line, 𝑣𝑖 refers

to the voltage difference across the parasitic resistors in the top word line, and n refers to the

number of bit lines in the array, as illustrated in Figure 3.7. Eq. 3.2 can also be written as:

𝑃 =
𝑛

𝑅
𝑉2̅̅̅̅ +

(𝑛−1)

𝑟
𝑣2̅̅ ̅ (3.3)

where bars are used to denote average values. Table 3.5 lists the values of 𝑉2̅̅̅̅ and 𝑣2̅̅ ̅ for the 64×64

and 128×128 in steady-state conditions. Table 3.5 shows that 𝑣2̅̅ ̅, which is a reflection of the

average rate of voltage degradation along the uppermost word line, is reduced by 52% for the

128×128 array. This is largely due to a continual degradation in voltage past the 64th column, at a

reduced rate. 𝑉2̅̅̅̅ for the 128×128 array is reduced by 76% compared to the 64×64 array, which

makes sense in light of the second and third observations listed above. By substituting the data in

Table 3.5: Mean square voltage values for 64×64 and 128×128 arrays. Units are V2.

 𝑣2̅̅ ̅ 𝑉2̅̅̅̅

64×64 2.30⁡ × 10−6 0.0112

128×128 1.10 × 10−6 0.00273

Vinput

57

Table 3.5 into Eq. 3.3, we obtain P = 186W and P = 118W for the smaller and larger arrays,

respectively. These values are within 2% of the total steady-state power consumption for the arrays

and less than the transient average power data listed in Table 3.3. A similar albeit more complex

analysis could be performed to explain the differences in the transient data.

 In short, the power consumption for the 128×128 array is lower due to a reduced input voltage

and greater voltage degradation beyond the 64th column: a quadratic relationship between power

and voltage counteracts a linear increase in row size.

3.5 Summary

 It has been shown that parasitic voltage degradation in a crossbar array can be used to implement

control logic for applications in non-uniform CS, whereby a range of input signals is intrinsically

derived from a single bias voltage source. Target inputs are generated within a single clock cycle

at a maximum energy overhead of 333fJ. Moreover, the results are shown to be robust to array size

and magnitude of parasitic resistance. While the primary focus has been CS, there are a myriad of

additional applications requiring non-uniform voltage that could benefit from this approach.

58

CHAPTER 4: AREA-EFFICIENT IMAGE COMPRESSION VIA

MEMRISTIVE CROSSBARS LEVERAGING ADAPTIVE

QUANTIZATION

4.1 Crossbar Memory Allocation via Adaptive Quantization

 MCAs have been employed for image compression via DCT as well as CS. Li et al. [131]

demonstrated 2D DCT on a fabricated 64 × 128 array. The authors were able to represent each

matrix element to 6-bit precision via 64 levels of conductance in the memristors being used. Two

memristors were used to represent a single matrix element in order to accommodate both positive

and negative elements without having access to negative conductance values. Zhang [28]

demonstrated an optimized CAD approach to DCT using memristive crossbars, where the

computation was restructured to include only a single VMM operation. In addition to DCT,

crossbar approaches to image compression by CS sampling have been demonstrated by Le Gallo

[122] and Salehi [20], as discussed in Section 2.4.5.

 Due to the sparsity of images in the DCT domain, Adaptive Quantization (AQ) is a useful

memory allocation strategy for image processing applications. In the context of the research

presented herein, AQ consists of mapping data to memory at variable levels of precision, i.e.,

assigning a greater number of bits to certain subsets of data than others. While the benefits of AQ

have been previously demonstrated [30, 31], its implementation within a crossbar memory array

is challenging since conventional crossbar design approaches [84-86] do not readily allow for

mixed-precision elements within a single array. Previous MCA-based AQ techniques, including

reconfiguration of ADC bit-widths [28] and power gating parts of the array [91], reduce

computational energy costs but are still expensive in terms of memory area. To the best of the

author’s knowledge, there have not been any designs published thus far leveraging adaptive

precision levels for crossbar memory optimization.

59

4.2 AQ for Area-Optimized Image Compression

 Herein we propose the Area-Conserving Crossbar Leveraging Adaptive Information Mapping

(ACCLAIM). The objective of this architecture is to minimize the hardware resources necessary

to perform image compression without compromising reconstruction accuracy; this objective is

achieved through an AQ approach involving representation of matrix elements at variable

precision levels based on relative importance levels of corresponding input coefficients. In contrast

to the previous approach which performs non-uniform compression using variable sampling rates

[132], AQ allows for reduction in circuit area in addition to energy consumption. AQ is especially

effective when working with spectrally-sparse images in the DCT domain.

 ACCLAIM is similar to previous crossbar designs [84, 85] which use multiple memristive

devices across adjacent bit lines to represent a single matrix element. In these works, bit line

outputs are combined using shift and add operations to yield final dot product results. ACCLAIM

represents multi-bit elements using memristive devices spread across word lines in the array,

which allows for AQ by varying the number of word lines assigned to each input coefficient.

 Figure 4.1 illustrates the ACCLAIM architecture. The crossbar is shown with word lines

running vertically and bit lines running horizontally. Inputs are delivered via sequential voltage

pulses such that only a part of the array is active at any given time; memristive devices active

during each cycle are indicated in the figure using a grayscale coding. The analog input vector, x,

is passed to word lines of a crossbar array. In the example shown, x consists of four coefficients

and the array contains a total of 8 word lines: 4 word lines are allocated to coefficient x0, 2 to x1,

and 1 each to x2 and x3. The tradeoff to this approach is that dot products must be performed

sequentially rather than in parallel since precision levels are mapped to word lines rather than bit

lines. In the example shown, inputs are delivered in sequential voltage pulses such that dot products

60

Figure 4.1: ACCLAIM architecture, including transimedance amplifiers shown in green, ADCs

shown in blue and Shift and Add units shown in yellow.

are computed in four cycles; in Cycle k, only devices representing the kth most significant bit of

their respective matrix element are active. During each cycle, each intermediate dot product is

converted to digital, and progressively combined with the previous cycle’s result via shift and add.

Thus, ACCLAIM does not require duplication of peripheral circuits, regardless of computational

precision level.

4.3 Application to DCT

 Adaptive Quantization via ACCLAIM allows for enhanced DCT transmission and

reconstruction, given a specified bit budget. IoT sensors can significantly reduce image

transmission overheads by applying row-wise quantization to the frequency-domain image, X,

61

prior to transmission. The resulting matrix, X*, is used by the receiver to reconstruct the original

image, 𝐈, using the inverse DCT transform: 𝐈̂ = (DT)(X*)(D). The first matrix product, (DT)(X*),

is performed row-by-row by providing subsequent rows of DT as vector inputs to the mixed-

precision matrix X*; each operation serves as a mixed-precision vector-matrix multiplication

which is optimally performed by the receiver using ACCLAIM. Products involving the DCT

coefficient may result in an overflow, which is corrected through a scalar addition performed by

the Shift and Add unit.

 For purposes of evaluation, a 400×400 monochrome Lena image is partitioned into 8×8 blocks,

and DCT is applied to each block. Row-wise quantization is performed based on a bit budget, B,

which represents the number of bits available to each column of X*. Two methods of quantization

are compared: AQ, which intelligently allocates the available bit budget across rows of X* based

on a gradient descent optimization approach, and uniform quantization, which assigns a constant

number of bits to each row regardless of importance level. Each AQ configuration is specified by

a vector, b, of 8 integers, 𝑏𝑖, representing the number of bits allocated to each element of row i.

The objective is to minimize reconstruction error, defined as:

𝑒𝑟𝑟𝑜𝑟 = ⁡‖𝐈̂ − 𝐈‖/‖𝐈‖, (4.1)

under the constraint ∑𝑏𝑖 ≤ 𝐵.

 Simulations are conducted in MATLAB to assess reconstruction accuracies using both adaptive

and uniform image quantization. Table 4.1 lists results for a variety of bit budgets, showing

consistent and significant improvement as a result of AQ. Figure 4.2 shows the reconstructed Lena

image using both uniform and adaptive quantization, with a fixed bit budget

62

a b

Figure 4.2: DCT reconstruction of compressed Lena image attained using 24 bits per column

allocated a) uniformly, and b) adaptively among rows of 8×8 blocks in the frequency domain.

Table 4.1: Impact of AQ on DCT Reconstruction.

𝑩 Non-AQ Error (dB) AQ Error (dB) AQ Configuration

12 -7.2 -30.2 [5,1,1,1,1,1,1,1]

16 -12.2 -36.0 [6,4,1,1,1,1,1,1]

20 -12.2 -40.8 [7,5,3,1,1,1,1,1]

24 -24.8 -43.0 [8,5,4,3,1,1,1,1]

28 -24.8 -45.0 [8,6,5,5,1,1,1,1]

of B = 24, to illustrate the 18dB improvement resulting from AQ. For reference, uniform

quantization requires B = 56 to attain the same reconstruction accuracy.

4.4 Application to CS

 ACCLAIM is next evaluated for CS sampling and reconstruction. Following the procedure

outlined in Figure 1, the Lena image is partitioned into 10×10 blocks, which are then transformed

via DCT and compressed via CS sampling; the image is subsequently reconstructed using the

Approximate Message Passing (AMP) algorithm [122] and inverse DCT. For evaluation purposes,

63

a b

Figure 4.3: CS reconstruction of compressed Lena image partitioned into 10×10 blocks, each

sampled using a 40×100 measurement matrix with 200 bits per row allocated a) uniformly and b)

adaptively.

Table 4.2: Impact of AQ on CS Reconstruction.

𝑩 m Non-AQ Error (dB) AQ Error (dB) AQ Configuration

120 40 -15.2 -37.8 [3,1,3]

200 40 -31.3 -40.3 [5,1,5]

280 40 -31.3 -40.0 [6,1,6]

360 40 -35.2 -40.7 [8,1,6]

120 60 -10.3 -39.1 [3,1,3]

200 60 -31.8 -43.1 [5,1,5]

280 60 -31.8 -43.5 [6,1,6]

360 60 -39.1 -43.5 [6,1,7]

the measurement matrix, 𝑨 ∈ ℝ𝑚×100, is quantized based on the memory budget, B, representing

the available number of bits per row. AQ allocates a greater number of bits to critical columns of

𝑨, corresponding to more significant DCT coefficients. AQ configurations for CS are represented

by a vector, b, consisting of 3 integer elements: b1 is the number of bits assigned to elements of

critical columns within the measurement matrix, b2 is the number of bits assigned to elements of

64

non-critical columns, and the square of b3 is the number of columns considered critical; the number

of critical columns is chosen as the square of an integer due to the structure of the DCT matrix.

AQ seeks to minimize reconstruction error under the constraint 𝑏1𝑏3
2 + 𝑏2(100 − 𝑏3

2) ≤ 𝐵.

 Simulations are conducted in MATLAB to compare CS reconstruction accuracy between

adaptive and uniform quantization as a function of bit budget, B, and number of measurements, m.

Results listed in Table 4.2 demonstrate consistent improvement resulting from AQ in the case of

m = 40 as well as m = 60. Figure 4.3 shows the reconstructed Lena image sampled using 40

measurements and a bit budget of 200 bits per row, illustrating the 9dB improvement resulting

from AQ.

 In addition, hardware simulations in HSPICE are performed to assess per-block energy and

area requirements of ACCLAIM to achieve a set reconstruction error under CS sampling using 40

measurements. Energy is computed using the formula 𝐸 = ∑ 𝑃𝑖𝑡𝑠𝑖 where 𝑃𝑖 is average power per

cycle and 𝑡𝑠=100ns is the sampling time for one cycle. Simulations are performed on MRAM

crossbar arrays using SHE-MTJ technology [20] with parameters given in Table 4.3; the CS

measurement matrix is simulated by choosing random states for MRAM devices, and input

voltages represent a selection from the Lena image in the frequency domain. The size of the

crossbar is B×40, where B is the bit budget necessary to achieve a set reconstruction accuracy.

 Hardware simulation results, shown in Figure 4.4, confirm the consistent area benefits seen in

Table 4.3. For a minimum error of -35dB, AQ reduces the memory word line count from 400 to

118, thus achieving a 70.5% benefit in area. Moreover, AQ achieves reconstruction errors below

-40dB, which is never achieved by uniform quantization regardless of array size. This result is

consistent with prior works demonstrating outperformance of non-uniform CS [20, 23]. Energy

consumption is reduced for the AQ approach in all but two cases; the reason for the higher energy

65

Table 4.3: Hardware Simulation Parameters.

Tech Node 14nm

VDD 0.8V

Parallel MTJ Resistance (logic 0) 2800

Anti-parallel MTJ Resistance (logic 1) 5600

MTJ Polarization 0.52

MTJ Area 60nm×30nm×𝜋/4

despite reduced area is that the average voltage input to the array is higher in the case of AQ since

more significant components of the input are duplicated as per Figure 4.1. Energy consumption

for the array is reduced by 30.2% at an error threshold of -35dB.

 Herein, we define the Error-Energy-Area Product (EEAP) metric as:

𝐸𝐸𝐴𝑃 = ⁡𝐸𝑠 × 𝐴𝐶𝐵 × 𝑒𝑟𝑟𝑜𝑟 (4.2)

where 𝐸𝑠 is sampling energy per block, 𝐴𝐶𝐵 is crossbar memory area per block and 𝑒𝑟𝑟𝑜𝑟 refers

to the image reconstruction error as defined in Eq. 4.1. EEAP is a metric which measures the

efficacy of resource utilization in approximate computing, considering the tradeoff between

hardware costs and computational accuracy. As such, EEAP is a convenient metric for assessing

the efficacy of image compression hardware in resource-limited applications such as IoT.

ACCLAIM achieves a 79.4% reduction in EEAP compared to the conventional uniform

quantization approach.

 Finally, simulations are performed to assess the latency of a 164×40 array operating over 5

cycles, which is necessary to achieve a -40dB error using AQ. Results indicate a crossbar latency

within 100s per cycle, and latency of peripherals within 7ns. Thus, 40, 5-bit measurements are

produced within 535ns. This latency is equivalent to the delay of transmitting the data at 373Mbps,

and hence not a bottleneck due to the limited bandwidths of IoT sensors.

66

Figure 4.4: Sampling energy and area per block necessary to achieve a set CS reconstruction

accuracy for the Lena image, partitioned into 10×10 blocks and sampled using a 40×100 matrix.

4.5 Summary

 Herein, we have developed the Area Conserving Crossbar Leveraging Adaptive Information

Mapping (ACCLAIM), a novel memristive crossbar design which intelligently allocates crossbar

memory by assigning greater precision levels to matrix elements corresponding to more significant

subsets of the input space. Such an Adaptive Quantization (AQ) technique is particularly useful

for image compression applications such as Discrete Cosine Transform (DCT) and Compressive

Sensing (CS), where the input often consists of sparse signals with specific regions of interest.

67

ACCLAIM reduces storage and data transmission overheads by reducing the size of the image, in

the case of DCT, and the size of the measurement matrix, in the case of CS, without compromising

reconstruction accuracy. Moreover, given a fixed accuracy standard, ACCLAIM allows for a

70.5% reduction in area and 30.2% reduction in energy. We define the Energy-Error-Area Product

(EEAP) as a useful metric for expressing the efficacy of resource utilization in approximate

computing applications. AQ implemented via the presented architecture achieves a 79.4%

reduction in EEAP for CS sampling computations.

68

CHAPTER 5: EXPONENTIATION USING STT MAGNETIC TUNNEL

JUNCTIONS4

5.1 Analog Circuit Design

5.1.1 Op-Amp Design

 The proposed reconfigurable analog multiplier is based on the op-amp design presented in

Figure 5.1. The op-amp consists of two cascaded stages: an input stage consisting of a differential

amplifier, followed by a gain stage. A simple design consisting of only 10 CMOS transistors is

chosen to optimize for power consumption as well as area. The op-amp is simulated using models

from the PTM 14nm LSTP library [127], at VDD = 0.8V.

 Figure 5.2a then presents a layout of the proposed op-amp design. The layout indicates

dimensions of 43F×23F, for a total area of 989F2. This layout is contrasted with a CMOS NAND

gate in Figure 5.2b, which has dimensions of 18F×14.5F, for a total area of 261F2. The op-amp

and NAND gate form an interesting comparison as common building blocks of analog and digital

multipliers, respectively.

Figure 5.1: Op-amp comprised of 10 MOSFETs offering high speed and compact area.

4 ©IEEE. Part of this chapter is reprinted, with permission, from [136, 137].

69

Figure 5.2: a) Layout of op-amp used in this dissertation versus b) a CMOS NAND gate.

5.1.2 Three-Stage Analog Circuit

 Similarly to [98], the translinear principle is applied to attain exponentiation of the input signal.

We propose a reconfigurable design, embedded within the FPAA fabric shown in Figure 5.3. The

design consists of a three-stage circuit, shown in Figure 5.4, which accepts a single input for

performing exponentiation operations; the design can also be reconfigured to accept two inputs for

performing analog multiplication.

 The first stage, outlined in red in Figure 5.4, is a logarithmic amplifier with output given by:

𝑉1 = −𝐴𝑂𝐿𝑉0 (5.1)

−
𝑉0−𝑉𝑖𝑛

𝑅1
= 𝐼𝑆1 [exp (

𝑉0−𝑉1

𝑉𝑇
) − 1] (5.2)

where 𝐴𝑂𝐿 represents open-loop gain and 𝐼𝑆1 represents the saturation current of diode D1. Eq. 5.1

is from general op-amp theory and Eq. 5.2 results from applying Kirchhoff’s Current Law at the

negative input terminal. Thus, solving Eq. 5.1 and Eq. 5.2 simultaneously yields:

a

a

a

a

b

b

b

b

70

Figure 5.3: FPAA fabric comprised of active and passive analog devices such as NMOS/PMOS

transistors, capacitors and diodes, along with spin-based Magnetic Tunnel Junction (MTJ) devices.

𝑉1(1 +
1

𝐴𝑂𝐿
) = −𝑉𝑇𝑙𝑛 (

𝑉𝑖𝑛+
𝑉1
𝐴𝑂𝐿

𝑅1𝐼𝑠1
+ 1) (5.3)

In the limit of infinite open-loop gain and high input voltage, Eq. 5.3 is approximated as:

⁡⁡𝑉1 = −𝑉𝑇𝑙𝑛 (
𝑉𝑖𝑛

𝑅1𝐼𝑠1
). (5.4)

71

Figure 5.4: Analog circuit for generalized exponentiation. The first, second, and third stages are

outlined in red, blue, and green, respectively.

 The second stage is an analog adder, whereby a similar analysis yields 𝑉2 = −
2𝑉1𝑅3

𝑅2
. Finally,

the third stage is an anti-log amplifier with output approximately given by:

 𝑉𝑜𝑢𝑡 = −𝑅4𝐼𝑠2𝑒
𝑉2
𝑉𝑇. (5.5)

Overall, it is seen that the output of this circuit is given by:

 𝑉𝑜𝑢𝑡 = −
𝑅4𝐼𝑠2

(𝑅1𝐼𝑠1)𝑎
(𝑉𝑖𝑛)

𝑎 (5.6)

72

where 𝑎 = 2𝑅3/𝑅2.

 The above analysis indicates the ability to implement any positive power function of the input

via the design shown in Figure 5.4. In addition, a dual-input stage consisting of two logarithmic

amplifiers can be inserted to attain an analog multiplier. Finally, an inverting amplifier can be

inserted between the second and third stages to realize inverse power functions as well. Each mode

can be implemented using the elements included in the fabric presented in Figure 5.3. To minimize

area, MTJs in the P state are used to implement the resistors shown in Figure 5.4; MTJs in the P

state have roughly linear I-V characteristics in accordance with experimental data [133].

 Eq. 5.4 – 5.6 hold precisely only for infinite open-loop gain, which is not attainable in practice.

Thus, the equations provide a starting point for the design, after which parameters must be adjusted

to minimize output errors. Final parameters are: R1 = 3500k, R2 = 50k, R3 = 150k, R4 = 75k,

Is1 = 50nA, and Is2 = 5.4nA. In addition, a load capacitance of 100fF and load resistance of 1000k

are included at the output stage of each op-amp.

5.2 Analog Multiplication

 First, the performance of the analog circuit is evaluated as a multiplier. In this mode, two

separate logarithmic amplifiers serve as the input stage, receiving inputs 𝑉𝑖𝑛1 and 𝑉𝑖𝑛2. The circuit

is evaluated in terms of DC transfer characteristics, frequency response, and Total Harmonic

Distortion (THD), for various DC amplitudes of 𝑉𝑖𝑛2
 within the operational range between 0.3V

and 0.7V.

 DC transfer characteristics are presented in Figure 5.5. In each trial, 𝑉𝑖𝑛1
 is swept across the

operational range and the average non-linearity error is determined based on the percentage

73

deviation from a linear regression line. As listed in Table 5.1, the maximum non-linearity error of

0.55% occurs at 𝑉𝑖𝑛2 = 0.7V.

 Figure 5.6 shows the frequency response of the multiplier, evaluated in the range from 100MHz

to 1GHz. In this case, Vin1 is a sinusoidal signal with offset of 0.45V and amplitude of 0.25V and

Vin2 is fixed. The -3-dB bandwidth, listed in Table 5.1, is in the 100MHz range in each case. While

this bandwidth may be high for applications with limited signal-to-noise ratio, the circuit can be

reconfigured to attain various bandwidths depending on the RC time constant at the op-amp output.

 Table 5.1 also lists the delay in reaching 90% of the target voltage in the case when 𝑉𝑖𝑛1 =

𝑉𝑖𝑛2; the delays are in the nanosecond range, consistent with the circuit bandwidth.

 Next, Table 5.2 provides THD in the case where one input is 0.45V DC, and the second input

is sinusoidal with amplitudes of 0.05V and 0.25V. THD is within 1% up to a frequency of

approximately 1MHz, indicating practical functionality of the system.

5.3 Generalized Exponentiation

5.3.1 Circuit Performance

 The circuit is next evaluated in its ability to compute square and square root functions.

Simulation results demonstrate high-accuracy implementation of nth-root functions; power

functions beyond squaring introduce challenges related to voltage saturation. It is, however,

possible to obtain these functions via a squaring unit by iteratively applying the mathematical

identity: (𝐴 + 𝐵)2 − (𝐴 − 𝐵)2 = 4𝐴𝐵. For example, in the case of the cubing function, x2 is

substituted for 𝐴 and x for 𝐵; any nth power function, n ≥ 2, can thus be computed [95]. The authors

of [95] were hence able to compute a 5th order polynomial function within 10% error.

74

Figure 5.5: DC transfer characteristics for the proposed multiplier, with one input fixed and the

second input varying across the operational range.

Figure 5.6: Frequency response, with one input fixed and the other input sinusoidal with offset of

0.45V and amplitude of 0.25V.

108 109

Frequency (Hz)

-30

-25

-20

-15

-10

-5

0

V
o
u

t
(d

B
)

Frequency Response

Vin2 = 0.3V

Vin2 = 0.4V

Vin2 = 0.5V

Vin2 = 0.6V

Vin2 = 0.7V

75

Table 5.1: Error, bandwidth, and delay data.

Table 5.2: THD with one DC and one sinusoidal input.

Performance of cube root, square root, and squaring circuits implemented using the proposed

design are given in Table 5.3, including technology node, supply voltage, total number of

elementary components, power dissipation, and mean error over an input range of 0.2V – 0.6V.

 Comparing to the approximate digital multiplier described in [37], at the design point giving

nearly identical power consumption, the analog circuit described herein yields slightly improved

mean error across the operational range. Furthermore, the approximate digital design requires an

area equivalent to 245 CMOS NAND gates, i.e., 980 CMOS transistors. Thus, our design achieves

Vin2 Error -3-dB bandwidth Delay

0.3V 0.48% 195MHz 3.8ns

0.4V 0.11% 191MHz 3.9ns

0.5V 0.25% 186MHz 4.1ns

0.6V 0.43% 178MHz 4.4ns

0.7V 0.55% 174MHz 5.0ns

Frequency THD@Amplitude = 0.25V THD@Amplitude = 0.05V

10KHz 0.80% 0.76%

100KHz 0.81% 0.77%

1MHz 0.81% 0.75%

2MHz 1.08% 1.10%

3MHz 1.82% 1.61%

76

Table 5.3: Comparison of area, power, and accuracy of STT-MTJ based generalized

exponentiation with alternate recent approaches.

*RMS noise vs. max. output

**At 𝑉𝑖𝑛 = 0.4V

a 97% reduction in transistor count. In addition, the layout presented in Figure 5.2 indicates that

the area of an op-amp is approximately 3.79× the area of a NAND gate; this indicates an

approximately 95% reduction in area if three op-amps are used for squaring.

 The design in [39] demonstrates reduced power consumption but significantly higher error, and

a relatively limited bandwidth of 51.2KHz. The approach developed in [98] introduces a similar

design to the one described herein, relying on the translinear principle to implement nth power

functions by combining hardware with logarithmic and exponential output characteristics; a

limitation of this design is that its reliance on time-mode circuitry intrinsically leads to significant

time delays, on the order of microseconds.

5.3.2 Process Variation of MTJ Devices

 A Monte Carlo simulation is performed to determine the effects of process variation in MTJ

devices. For this simulation, 100 trials are conducted considering a 1.5% standard deviation in

 Herein Herein Herein [37] [39] [95] [98]

Mode Analog Analog Analog Digital Analog Analog Analog

Operation Cube root Sq. root Square Multiplier Multiplier Square Square

Tech node 14nm 14nm 14nm 28nm 130nm 500nm 180nm

VDD 0.8V 0.8V 0.8V 1V 0.6V 1.5V 1.3V

No. comp. 43 43 43 ~1000 35 12 ~100

Power 123W 122W 126W 126W 23W 600W 149W

Mean Error 0.50% 0.66% 1.30% 1.87% 9.1%* N/A 0.24%**

77

Table 5.4: Error rate due to MTJ process variation.

the resistance of each MTJ device; this value is consistent with the variation seen in a 4-Mb

MRAM array [134]. The resulting standard deviations in the circuit outputs are listed in Table 5.4.

While the maximum standard deviation due to PV is 6.36%, the presence of only 16 high-barrier

MTJ devices in the reconfigurable fabric may allow for improved device tolerances and thus

improved computational accuracy in the fabricated design.

5.3.3 Variation in Diode Saturation Voltage

 A further analysis is performed in this section to assess the impact of diode characteristics on

DC transfer characteristics and frequency response of the presented design. Since inputs are

delivered via voltages, the saturation current of the diodes is not a significant limitation on the

input range. The diodes are necessary to regulate the voltage at each stage to attain an

approximation for the desired computational function. According to the theory presented in

Section 5.1.2, the performance of the circuit depends on the product R1Is1, where R1 is the

resistance of the first-stage resistance and Is1 is the saturation current of the diode in the first stage.

Thus, variation of Is1 should not make a difference if R1 is adjusted to compensate. An analysis of

DC transfer characteristics and frequency response is performed for the input combinations (R1,

Is1) = (3500kW, 50nA), (35,000kW, 5nA) and (350,000kW, 0.5nA).

Vin Square Square root

0.3V 5.96% 3.81%

0.4V 6.36% 3.88%

0.5V 6.13% 3.92%

0.6V 5.72% 3.95%

0.7V 5.30% 3.96%

78

Figure 5.7: DC transfer characteristics for analog squaring circuit, considering three different

parameters for the first-stage diode saturation current, Is.

Figure 5.8: Frequency response for analog squaring circuit, considering three different parameters

for the first-stage diode saturation current, Is, with an input voltage magnitude of 0.4V.

79

Table 5.5: Effect of diode saturation current on error and bandwidth of analog squaring circuit.

 Figure 5.7 and Figure 5.8 show results of the analysis which are summarized in Table 5.5. The

results demonstrate a negligible variation in error and bandwidth, in agreement with the theory. It

may be noted that since both inputs are treated as sinusoidal, a smaller bandwidth is attained than

that presented in Section 5.3.1, which treats only one input as sinusoidal. An average power

consumption of 126W is attained for all three cases.

5.3.4 Temperature Dependence

 Given the temperature dependence of diodes as well as MTJ devices, a brief temperature

analysis of the circuit performance is conducted to complement the previous data attained at a

temperature of 25oC. This analysis focuses on the temperature dependency of mean error of analog

squaring using the presented design. While HSPICE includes temperature dependent models for

diodes, MTJ temperature dependence is modeled using Eq. 2.11 – 2.13. The following

substitutions may be made into Eq. 2.11 – 2.13:

 ⁡𝑃0 = √
𝑇𝑀𝑅0

2−𝑇𝑀𝑅0
 (5.7)

 𝐺𝑆𝐼(𝑇)=𝑆𝑇
4/3 (5.8)

where Eq. 5.7 follows from Julliere’s model (Eq. 2.8) and Eq. 5.8 is taken from [66].

Is Error -3-dB bandwidth

50nA 1.30% 19.50MHz

5nA 1.36% 19.50MHz

0.5nA 1.37% 19.95MHz

80

 In these equations, 𝐺𝑆𝐼 is a component of MTJ device conductance as defined in Eq. 2.11, 𝑆 is

a constant, T represents absolute temperature, P represents polarization and TMR represents

tunneling magnetoresistance. The following parameters are substituted into the temperature model

consisting of Eq. 2.11 – 2.13 together with Eq. 5.7 – 5.8: 𝑇𝑀𝑅0 = 1, 𝛼 = 2 × 10−5 K-3/2, C =

0.0015 K-1 and 𝑆 = ⁡10−12 -1 K-4/3 are used; 𝐺0 is chosen based on the target MTJ conductance

value. Furthermore, the presented design uses P-state MTJs so 𝜃 = 0 is chosen. 𝑇𝑀𝑅0 is consistent

with [55]; moreover, 𝛼 and 𝑆 are consistent in order of magnitude with [66]. C is obtained using

[67]:

𝐶 = 1.387 × 10−4𝑡/√𝜑 (5.9)

where t represents oxide barrier height in Angstroms and 𝜑 is the oxide barrier potential in

electron-volts. C = 0.0015 K-1 is derived assuming an oxide barrier thickness of 10 Angstroms [55]

and a barrier potential on the order of 1eV [66].

 Based on the above model, the mean computational error of the squaring unit across an input

voltage range between 0.2V and 0.6V is determined, for temperatures ranging from -20oC to 70oC,

with results summarized in Table 5.6. An error below 10% is observed between temperatures of -

10oC and 40oC. This operational interval includes common environmental temperatures as well as

physiological temperature but does not fully cover the commercial temperature range. Thus,

further work is necessary to improve the resilience of the design in more extreme environments.

Table 5.6: Mean error of analog squaring circuit as a function of temperature, T.

T -20oC -10oC 0oC 10oC 20oC 30oC 40oC 50oC 60oC 70oC

err 14.1% 3.17% 0.748% 0.352% 0.551% 1.70% 5.71% 14.2% 22.9% 27.3%

81

5.4 Generalized Functions

 The proposed hardware may also be used to implement generalized functions. For one, the

analog circuit can function in a third mode where inverse power and root functions are computed

by adding an inverting amplifier before the final stage; a 1/√𝑥 function yields an average error of

0.4%. Furthermore, exponential and logarithmic functions can be computed using only one op-

amp stage. Other generalized functions can be implemented using a Taylor series approximation.

 Figure 5.9 shows an approximation of the function 𝑓(𝑥) = 𝑥 −⁡𝑥2 − 𝑥3 −⁡𝑥4 −⁡𝑥5 based on

the proposed analog squaring unit. This simulation includes squaring errors, but neglects errors in

Figure 5.9: Approximation of a 5th order polynomial function using the proposed hardware,

showing agreement with an error-free implementation.

0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6

x

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

y

Approximation of f(x) = x - x
2
 - x

3
 - x

4
 - x

5

Approximate

Exact

82

addition, subtraction, and voltage rescaling; the resulting output is a fair approximation of the

target function, with an average error of 4.83% over the tested range. This demonstrates the

feasibility of generating generalized functions through Taylor series using our analog approach.

5.5 Summary

 Herein, we have presented an analog circuit capable of multiplication and general

exponentiation operations. The circuit is based on a reconfigurable fabric which allows for

versatility in the mode of operation as well as tunability in bandwidth, allowing for adaptation to

diverse signal processing and machine learning applications. Simulation results on circuit

performance indicate reduction in error and 95% reduction in area when compared to a state-of-

the-art approximate digital multiplier. Furthermore, a significant reduction in execution time in

addition to reduction in complexity is attained in comparison to a time-mode analog exponentiation

circuit operating on similar principles. The presented circuit may be used for computation of

generalized functions via Taylor series approximation: simulation results indicate less than 5%

error in computation of a fifth-order polynomial.

83

CHAPTER 6: APPLICATIONS OF SPIN-BASED ANALOG

COMPUTATION5

6.1 Spintronically Configurable Adaptive in-memory Processing Environment (SCAPE)

 The Spintronically-Configurable Adaptive in-memory Processing Environment (SCAPE) [135]

is designed to reduce overheads at the cost of precision by performing computations intrinsically

in the analog domain. As such, SCAPE is well-suited for error-tolerant applications such as CS

and image classification. SCAPE consists of three stages: a Vector Matrix Multiplication Stage

(VMMS) consisting of a SHE-MRAM crossbar, an Analog Activation Stage (AAS) consisting of

the analog computation circuit described previously [136, 137] and finally an Analog to Digital

Conversion (ADC) stage. The ADC stage uses the SS-PIR design, as shown in Figure 2.14, to

reduce area and energy costs of data conversion.

 In contrast to the generally reconfigurable fabric shown in Figure 5.3, AAS provides a partially

reconfigurable fabric consisting of 1) the analog computational circuit shown in Figure 5.4, having

a reconfigurable resistance, R3, 2) p-bit devices for stochastic computation, and 3) an op-amp and

digital inverters for threshold computations. The switch to partial reconfigurability reduces area

overheads while still maintaining the necessary functionality for target applications.

6.2 Application to CS Signal Reconstruction

6.2.1 Implementation of AMP

 Approximate Message Passing (AMP), as introduced in Section 2.4.4 and provided below as

Algorithm 1, is a CS reconstruction algorithm designed for fast convergence [120]. As an error

tolerant application requiring VMM together with square and square root computations in each

iteration, AMP is a viable target for SCAPE. AMP begins by initializing the residual vector, r0, to

5 ©IEEE. Part of this chapter is reprinted, with permission, from [135, 137].

84

the measurement vector y, as well as initializing the estimate of the signal vector x to zero and the

counter to 1 (Lines 1 - 3). Next, the threshold  is computed as the root mean square error of the

residual (Line 5). Lines 6 and 7 provide an estimation of the reconstructed signal vector as a

function of the thresholding parameter, in accordance with the Iterative Soft Thresholding

technique. In the notation, sign(a)max(|a|-, 0) refers to element-wise vector operations. The

function sign(x) is defined to be +1 for x > 0 and -1 for x < 0. Finally, Lines 8 and 9 update the

residual similarly as in Iterative Soft Thresholding, with the key difference being the last term in

Line 9. The counter is then incremented in Line 10 before the loop repeats.

 The AMP algorithm is implemented using the SCAPE hardware architecture. VMM is executed

using the VMMS and scalar operations, including multiplication, square, square root, and inverse

square root, are executed on the AAS. The AAS is also used to compute the thresholding functions

85

Figure 6.1: An analog design for thresholding operations. The functions y = sign(x), y = sign1(x,0)

and y = sign2(x,0) are illustrated in the top panel by the leftmost, middle and rightmost graphs,

respectively.

Figure 6.2: Hardware implementation of AMP algorithm.

necessary for AMP via the simple analog design shown in Figure 6.1. In this design, an analog

comparator circuit with Vref = 0 computes the function y = sign(x). A three-stage design based on

a chain of inverters is used for the computation of two-additional functions: y = sign1(x,ref),

86

defined as 1 when x < ref and as 0 when x > ref, and y = sign2(x,ref), defined as 1 when x > ref and

as 0 when x < ref. Based on this hardware, the remaining three functions necessary for AMP may

be computed. First, y = |x| is rewritten as y = xsign(x). Next, y = max(x,0) is equivalent to y =

xsign2(x,0). Finally, y = ‖𝒙‖0 is roughly equivalent to 𝑦 = ∑(sign1(𝑥,−0.05) + sign2(𝑥, 0.05)),

assuming any input with an absolute value greater than 0.05 is considered as “nonzero.”

 Figure 6.2 demonstrates a hardware implementation of one loop of the AMP algorithm, based

on the architecture presented herein. Reconstruction based on a signal size n = 256 and m = 64

requires a 256 × 64 VMMS array to execute the VMM in Line 6 and Line 9 and 256 AAS

functional units for scalar operations.

6.2.2 Performance of AMP

 The performance of AMP is evaluated in MATLAB based on signals of length n=1000, with

sparsity rate k/n = 0.1. The number of measurements, m, is varied from 200 to 500 to determine

the magnitude of the reconstruction error in decibels, defined as:

 𝑒𝑟𝑟𝑜𝑟(𝑑𝐵) = 20𝑙𝑜𝑔 (
‖𝒙̂−𝒙‖

‖𝒙‖
). (6.1)

Figure 6.3 shows AMP performance considering an exact implementation (blue circles),

approximation errors intrinsic to the analog hardware as detailed in Table 5.3 (red circles) and

finally approximation errors considering process variation errors detailed in Table 5.4 (yellow

circles).

 The results demonstrate a negligible impact of the intrinsic circuit error on AMP performance;

certain data points such as m=500 demonstrate a lower error with the approximate approach,

indicating statistical insignificance of the error. Even the increased computational error resulting

87

Figure 6.3: Signal reconstruction error of the AMP algorithm as a function of number of

measurements, where square and square root operations are performed exactly (blue circles), with

approximation error of the presented hardware (red circles), and with approximation error

including process variation (yellow circles).

from process variation amounts to only a slight degradation in performance and consistently

requires less than 50 additional measurements to regain the reconstruction accuracy of the AMP

algorithm.

 To determine the total energy cost of AMP, SPICE simulations are performed to determine the

per-cell energy cost of the VMMS, as well as the energy cost per operation of the scalar functions

performed by the AAS; the results are aggregated to determine the total computational energy cost

88

 Table 6.1: Breakdown of AMP Circuit Energy Consumption.

 Table 6.2: Comparison of AMP Energy Consumption.

of running one cycle of AMP. The VMMS consumes a total of 3.15nJ while total energy

consumption by the AAS is 2.02nJ, for a total computational energy consumption of 5.17nJ. For

50 iterations, this gives an energy overhead equal to 258nJ for running AMP. Analysis of signal

reconstruction error associated with approximations in the AAS units was performed for a signal

of size n = 1000, and sparsity k = 100, where n is the total number of elements in each frame of

the signal, and k is just the total number of elements per frame that are non-zero. The average

Operation Hardware Units Energy Cost

‖𝒓𝑖−1‖. AAS 47.6pJ

 = ‖𝒓𝑖−1‖/√𝑚 AAS 1.1pJ

𝒂 = 𝒙̂𝑖−1 + 𝜱𝑻𝒓𝑖−1 VMMS + AAS 1.654nJ

𝒙̂𝑖 = sign(𝒂) max(abs(𝒂) – , 0) AAS 1.24nJ

𝑏𝑖 = ‖𝒙̂𝑖‖0/𝑚 AAS 0.58nJ

𝒓𝑖 = 𝒚⁡– ⁡𝜱𝒙̂𝑖 + 𝑏𝑖𝒓𝑖−1 VMMS + AAS 1.65nJ

Total 5.17nJ

 Herein Herein [138] [118]

Tech. node 14nm 14nm 65nm 65nm
VDD 0.8V 0.8V N/A 1.2V

Array size 256x64 1024x512 256x64 1024x512
Array precision 8 bits 8 bits 1 bit 26 bits

#Iterations 50 20 50 20
Energy/sample 1.0nJ 2.1nJ 27nJ 61nJ

89

accuracy degradation resulting from computational error was found to be 1.1dB, which is

negligible.

 Table 6.1 lists the breakdown of energy per computation in execution of a single AMP cycle

using the proposed design. A total energy cost of 5.17nJ per cycle yields a total energy

consumption of 1.0nJ per sample, assuming 50 iteration cycles and a reconstructed signal

consisting of 256 samples. Table 6.2 displays an energy comparison to two recent ASIC

implementations for AMP [118, 138]; hardware running the Enhanced AMP algorithm (EAMP)

[138] over 50 iterations under the same CS parameters of (n,m) = (256,64) consumes 315mW of

power and executes in 8900 clock cycles on a 400MHz system. Thus, the energy consumption is

roughly 7J, and roughly 27nJ per sample. EAMP is roughly in line with the standard AMP

algorithm in terms of mean square error, up to 100 iterations. Thus, the full-analog approach to

AMP presented herein provides significant benefits in energy while having a minimal impact on

reconstruction accuracy.

6.3 Application to MNIST Digit Recognition

6.3.1 Gradient Decay Problem

 Deep neural networks (DNNs) have been gaining popularity in the context of diverse

applications including computer vision [139] and speech recognition [140]. At each layer, the

DNN takes a vector input, x, and outputs a linear transformation of the input, z, according to the

equation z = Wx where W is the weight matrix. To facilitate learning non-linear relationships, the

output z is multiplied by an activation function to yield a final layer output, h = f(x). The choice

of activation function has recently been a subject of research interest due to its significant impact

on the training accuracy of a neural network [35]. While hyperbolic tangent has been used

frequently, this function suffers drawbacks including the gradient decay problem, i.e., the gradient

90

becomes diminished in multi-layer networks due to repeated multiplication of values having

absolute value less than 1 [141].

 The gradient decay problem has been addressed by choice of alternative activation functions,

e.g., the Rectified Linear Unit (ReLU) which is defined as fReLU(x) = max(0, x) and has a gradient

of 1 for all x > 0. Another alternative is the square root function, which experiences significantly

slower gradient decay compared with hyperbolic tangent. It has been observed that the derivative

of the hyperbolic tangent function at x = 10 is less than the derivative of the square root function

at x = 1016. Previous research has demonstrated that replacing hyperbolic tangent with a square

root activation function can allow for a 5% improvement in classification accuracy on the CIFAR-

10 dataset [34].

 Given the robust capabilities of the analog circuit presented herein, we next evaluate its ability

to generate improved activation functions for DNN performance. The evaluation is performed in

the context of a Deep Belief Network (DBN) used to classify samples from the MNIST dataset.

6.3.2 Impact of Activation Function

 Leveraging the capabilities of the analog circuit presented herein, we investigate the impact of

three separate activation functions on DBN performance: 𝑓1(𝑥) =
1

2
(1 + tanh⁡(𝑥)), 𝑓2(𝑥) =

√𝑓1(𝑥), and 𝑓3(𝑥) = (1 + 𝑒−𝑥)−1. Since 𝑓2
′(𝑥) > 𝑓1′(𝑥) for 𝑥 < −0.55 and 𝑓3

′(𝑥) > 𝑓1′(𝑥) for

|𝑥| > 1.06, substitution of these functions may potentially alleviate the rate of gradient decay for

certain inputs. Moreover, each function may be implemented using the FPAA fabric shown in

Figure 5.3; the presence of low-barrier MTJ devices allows for construction of p-bit devices, at

which point 𝑓1 is computed via an op-amp integrator at the output. Computation of 𝑓2 requires an

91

additional 3 op-amps to execute the square root function in analog; finally, 𝑓3 requires a total of 6

op-amps to implement.

 A DBN software simulation is performed in MATLAB for each activation function to evaluate

the classification accuracy for the MNIST dataset, based on 3000 training samples and 1000 test

samples. Figure 6.4 shows the results based on various network topologies. Over the network

topologies tested, both 𝑓2 and 𝑓3 demonstrate a consistent improvement in error rate over 𝑓1; the

average improvement is 6.4% for 𝑓2 and 8.7% for 𝑓3. Moreover, in certain cases, selection of 𝑓3

versus 𝑓1 as an activation function allows for reduction in error rate while decreasing the size of

the array, e.g., from 784×500×10 to 784×200×10, and from 784×200×200×200×10 to

784×100×100×100×10.

 A PIN-Sim simulation is conducted, based on the MTJ parameters listed in Table 6.3, for

average RBM power consumption in select network topologies using the 𝑓1 and 𝑓2 activation

functions. For simulations implementing 𝑓2, the neuron.sp file in the PIN-Sim framework is

modified by adding an analog square root unit to the output, using the circuit shown in Figure 5.4.

 Simulation results are listed in Table 6.4, including average power consumption and

corresponding software error rates; the Power-Error-Product (PEP) is computed as a product of

these data points and listed in the table as well. Similar to the previously used Energy-Error-

Product [124], PEP is a useful metric for attaining an overall evaluation of each design. Based on

the results, the f2 activation function yields an improvement in PEP for each of the tested

topologies; the average improvement is 17.4%.

92

Table 6.3: MTJ simulation parameters.

Parameter Value

Saturation Magnetization 1100 emu/cc

Free layer diameter, thickness 22nm, 2nm

Polarization 0.59

TMR 110%

MTJ RA-product 9mW-cm2

Damping coefficient 0.01

Temperature 300K

Figure 6.4: Normalized error rate for image classification, based on various DBN topologies and

activation functions.

93

Figure 6.5: Technique for splitting a VMM operation, y = Ax, between smaller crossbar arrays. In

this case, an 8×2 VMM operation is split between 4×2 crossbars.

Table 6.4: Error rate, average DBN power consumption and Power-Error-Product (PEP) for

various network topologies and activation functions.

Network topology Act. function Error rate Power (mW) PEP

784×200×10 𝑓1 0.1239 72.4 8.97

784×200×10 𝑓2 0.1152 76.1 8.77

784×200×200×10 𝑓1 0.1030 106.3 10.95

784×200×200×10 𝑓2 0.0922 88.5 8.16

784×200×200×200×10 𝑓1 0.0945 153.7 14.52

784×200×200×200×10 𝑓2 0.0919 119.2 10.95

94

6.3.3 Mapping Larger Networks

 This section provides a brief analysis of the scalability of the presented architecture to larger-

sized networks. While the scope of this research has been limited to MNIST benchmarks, larger

data sets can be processed by splitting matrices present in software between multiple crossbar

arrays. This is similar to the technique given in [142]. Figure 6.5 shows a representative example

of 8×2 VMM, performed via matrix splitting. Mathematically, this operation is given as y = Ax,

where 𝒙𝜖ℝ8, 𝑨𝜖ℝ2×8 and 𝒚𝜖ℝ2. By leveraging the linear properties of dot product, the input

vector, x, can be split between two 4×2 crossbar arrays to yield intermediate outputs. The

intermediate outputs are then added to produce the final output, y, using a third crossbar consisting

of 1 and 0 elements. Transimpedance amplifiers, which convert current to analog voltage at the

output of each array, act to ensure that the output from each array is within the operational input

range of the next array. Generally, the accumulated current does not scale with input size. If the

crossbar size is limited to 128×64, then the maximum output current is 9.4mA, under a line

resistance of 2.5 per cell.

6.4 DBN Accuracy Enhancement via Triple Modular Redundancy

6.4.1 Redundant Computing

 Redundancy is a useful strategy for improving recognition accuracy of a DBN classifier without

incurring the overheads of a more complex network. One implementation is Spatial Triple Modular

Redundancy (STMR), as Figure 6.6 shows. In the STMR approach, the image classification is

performed three times in parallel and each input is converted to a digital representation using SS-

PIR. The majority of these outputs then determines the final result of the circuit. It is advantageous

to use a distinct activation function in each cycle to avoid common-mode misrecognition resulting

from model similarity.

95

Figure 6.6 Spatial Triple Modular Redundancy (STMR) architecture.

Figure 6.7: Progressive Triple Modular Redundancy (PTMR) architecture.

 An alternative approach is provided by Progressive Temporal Modular Redundancy (PTMR),

as Figure 6.7 shows. In contrast to STMR, PTMR does not physically duplicate the network.

Instead, computations are done sequentially and results are stored in registers, each having a clock

input shifted by one cycle. As in STMR, the majority of outputs is used to determine the final

96

result of the circuit. However, PTMR determines the majority using a multiplexer with the XOR

result of the first two PIR outputs as the selector. If the first two outputs match, then the XOR

result is a 0, in which case the second PIR output is selected as the final result. Otherwise, if there

is a mismatch between the first two outputs, the XOR result is a 1 and the third PIR output is used

as the final result. The advantage to the multiplexer approach is that the computation can be halted

after two cycles when the first two outputs match, which occurs in the majority of cases. STMR

and PTMR deliver separate tradeoffs: while STMR is faster, PTMR is more area efficient, and also

more energy efficient due to the intermediate halting capability.

6.4.2 Performance of STMR and PTMR

 We evaluate the application-level performance of a DBN running on the SCAPE platform and

employing the STMR and PTMR redundancy techniques for 784×100×10 DBNs, against a

baseline 784×500×500×10 DBN trained on sigmoid activation without redundancy. Hybrid spin-

based majority and XOR gates are utilized in STMR and PTMR, respectively. Activation functions

are computed in analog using the AAS of the SCAPE platform. Simulations are performed using

HSPICE, with SHE-MTJ model and device parameters similar to those used in [135] and listed in

Table 6.5. Registers, multiplexers and other control peripherals are designed using the CMOS

PTM 14nm HP library [127], at VDD = 0.8V.

 Majority and XOR gates implemented based on the designs in [143] and [144] consume

0.0273mW and 0.0375mW, respectively. The power consumption of the overall peripherals

consisting of majority gates in STMR, as well as XOR gates, registers and multiplexers in PTMR,

are evaluated as 0.819mW and 1.13mW, respectively. The 3 DBN stages in STMR and PTMR are

trained with 3000 images from the MNIST data set and tested using 100 images.

97

Table 6.5: SHE-MTJ and CMOS Device Simulation Parameters.

Symbol Parameter Value

RP Parallel MTJ Resistance 2.8kΩ

RAP Anti-Parallel MTJ Resistance 5.6kΩ

TMR Tunnel Magnetic Ratio 100%

α Damping Coefficient 0.007

T Temperature 300K

P Polarization 0.52

Vth_pmos Threshold Voltage (PMOS) 460mV

Wpmos Width (PMOS) 44nm

Vth_nmos Threshold Voltage (NMOS) 500mV

Wnmos Width (NMOS) 22nm

MTJ Area MTJ Length × MTJ Width × 𝜋/4 60nm×30nm×𝜋/4

HM Volume L × W × T 100 nm×60 nm×3 nm

Table 6.6: Evaluation of STMR and PTMR based on error, power, delay and area.

Network Avg. Error Avg. Power Delay Norm. X-bar Area PEP

A 30% 316.7mW 17ns 647,000x 95.01

B 45% 43mW 13ns 79,400x 19.35

B (PTMR) 27% 44.02mW 45ns 79,400x 11.88

B (STMR) 27% 167.2mW 13ns 238,200x 45.14

 For the PTMR approach, the sampling time is 45 ns, i.e., 3 times the delay of the STMR

architecture, plus additional delay to rewrite weights before each trial. There are no overheads

associated with training the networks since trained weights and biases are pre-loaded into the input

buffers. Results are listed in Table 6.6 for a large 784×500×500×10 network architecture (labeled

as A) and a significantly smaller 784×100×10 network (labeled as B). Both of these baseline

networks are trained using the sigmoidal activation function. Also considered is B (PTMR), which

consists of executing PTMR over 3 cycles using Network B trained with sigmoidal, sigmoidal

square root and sigmoidal square activation functions, respectively. In this context, the sigmoidal

activation function is defined as 𝑓(𝑥) =
1

2
(1 + tanh⁡(𝑥)) and sigmoidal square root and square

98

are defined as √𝑓(𝑥) and [𝑓(𝑥)]2, respectively. B (STMR) uses the STMR approach with the

same network and activation functions as B (PTMR). Error is based on the top-3 recognition

accuracy following analog to digital conversion using PIR, average power consumption and delay

include the entire circuit including peripherals, area is calculated only using the crossbar, and PEP

is the Power-Error-Product which gives a quantitative measure of digit-recognition efficiency of

spin-based DBNs.

 The results show that the accuracy of Network B is significantly lower, compared to Network

A. However, use of triple modular redundancy with different activation functions allows

comparable accuracy using Network B. Both B (PTMR) and B (STMR) show improvements in

terms of power, area and PEP, compared to the baseline, with the STMR approach trading off area

and power for speed. The PTMR allows for reduced power consumption as well as area, achieving

86.1% reduction in power, 87.7% reduction in area overhead and 87.5% reduction in PEP, at the

cost of a 2.6× increase throughput latency. B (PTMR) saves power by selectively using the third

computational cycle, which occurs only 35% of the time. However, the PTMR approach consumes

additional power due to peripherals, including use of the AAS for computation of enhanced

activation functions. Thus, the time-averaged power consumption of B (PTMR) is similar to that

of the Network B baseline.

 Further evaluation of PTMR is conducted using a more comprehensive set of network

architectures. Power (not including peripherals), error and PEP are provided for each network

topology in Figure 6.8, Figure 6.9 and Figure 6.10 respectively. The Mixed topology consists of

784×200×10 networks in the first two PTMR stages, followed by a 784×100×10 network in the

third stage. With the exception of the Mixed topology, the sigmoidal, sigmoidal square root and

sigmoidal square activation functions are used in the first, second and third stages, respectively.

99

Figure 6.8: PTMR power consumption for various DBN network topologies.

Figure 6.9: PTMR image classification error rate for various DBN network topologies.

100

Figure 6.10: PTMR Power-Error-Product for various DBN network topologies.

 The Mixed topology makes use of the advantages offered by enhanced activation functions by

using a sigmoidal square root activation function in the first stage, followed by a sigmoidal square

function in the second and third stages.

 Based on the data, the following observations may be made: 1) PTMR offers a lower error rate

than the 784×500×500×10 network, for every topology shown besides 784×50×10 and 2) PTMR

using the Mixed topology yields a 7% error rate, which is only 4% greater than the best

performance offered by the 784×500×500×10 network, achieved using sigmoidal square

activation. However, PTMR using the Mixed topology offers an 81.2% reduction in power and

56.2% reduction in PEP compared to a single run of the larger network. Furthermore, Figure 6.9

reinforces the observation that choice of activation function significantly impacts network

performance, since there is a 64.8% average reduction in error between the first stage using

101

sigmoidal activation and the third stage using sigmoidal square activation, among the four network

topologies tested. Finally, PTMR consistently yields an error rate between that achieved using

sigmoidal square and sigmoidal square root activation. Thus, PTMR is beneficial since it is

commonly not known which activation function will yield the best error rate.

6.5 Summary

 The analog computational circuit presented in Chapter 5 is combined with a spin-based crossbar

architecture to yield the Spintronically-Configurable Adaptive in-memory Processing

Environment (SCAPE) for signal processing and machine learning computations. The AMP signal

reconstruction algorithm implemented using SCAPE yields a 96% energy reduction compared to

a recent design, with negligible loss in accuracy. Furthermore, SCAPE allows efficient

computation of activation functions in analog for machine learning applications. Simulation results

demonstrate that varying the activation function of a neural network can allow for significant

improvements in accuracy without increasing network size.

 The ability to efficiently compute diverse activation functions enables construction of

architectures using triple modular redundancy, which incorporate multiple activation functions to

eliminate common-mode misrecognition of input data. Simulation results indicate a 64.8% average

reduction in error attained by replacing the sigmoidal activation function with a squared sigmoidal

function. Furthermore, it is seen that triple modular redundancy using a collection of smaller

networks operating under distinct activation functions yields error rate within 4% of that of a

significantly larger network, with 81.2% reduction in power.

102

CHAPTER 7: LAYER-WISE QUANTIZATION OF DEEP BELIEF

NETWORKS

7.1 DNN Precision Analysis

 Due to the evolving complexity of DNNs, management of resource utilization has become key

to their hardware implementation. State-of-the-art networks may require approximately 1 billion

multiply-and-accumulate operations and storage of 100 million parameters [145]. Compression

techniques such as pruning [146, 147] and quantization [145, 148] have been suggested as

approaches to mitigating these overheads.

 Recent research [145] has shown that the layers within a DNN have varying sensitivities to

quantization. Specifically,

𝑝𝑚 ≤ ∑ (∆𝐴,𝑙
2 𝐸𝐴,𝑙 + ∆𝑊,𝑙

2 𝐸𝑊,𝑙)
𝐿
𝑙=1 (7.1)

where 𝑝𝑚 is the probability that the predicted label of a fixed-point network is different from the

predicted label of a high-precision floating-point network. Furthermore, 𝐿 is the number of layers,

∆𝐴,𝑙 is the quantization step-size of the activation function at layer 𝑙 and ∆𝑊,𝑙 is the quantization

step-size of the weights at layer 𝑙. The quantization step-sizes can be expressed as ∆𝐴,𝑙 = 2−(𝐵𝐴,𝑙⁡⁡−⁡1)

and ∆𝑊,𝑙 = 2−(𝐵𝑊,𝑙⁡⁡−⁡1) where 𝐵𝐴,𝑙⁡ and 𝐵𝑊,𝑙⁡ refer to layer-wise bit-widths used to quantize the

activation function and weights, respectively, at layer 𝑙. Finally, 𝐸𝐴,𝑙 and 𝐸𝑊,𝑙 are defined as:

 𝐸𝐴,𝑙 = ⁡⁡E(∑
∑ |

𝜕(𝑍𝑖−𝑍𝑌𝑓𝑙
)

𝜕𝐴ℎ
|

2

ℎ∈𝐴𝑙

24|𝑍𝑖−𝑍𝑌𝑓𝑙|
2𝑖≠𝑌𝑓𝑙

), (7.2)

 𝐸𝑊,𝑙 = ⁡⁡E(∑
∑ |

𝜕(𝑍𝑖−𝑍𝑌𝑓𝑙
)

𝜕𝑤ℎ
|

2

ℎ∈𝑤𝑙

24|𝑍𝑖−𝑍𝑌𝑓𝑙|
2𝑖≠𝑌𝑓𝑙

), (7.3)

103

where 𝑌𝑓𝑙 is the predicted label of a floating-point network, 𝑍𝑖 refers to the soft outputs, and 𝐴𝑙

and 𝑤𝑙 are layer-wise indexing sets of activations and weights, respectively.

 Eq. 7.2 – 7.3 express the non-uniformity in sensitivity of DNN layers. For example, a layer

where the soft outputs vary more strongly with weight values produces a greater value of 𝐸𝑊,𝑙 as

a result of Eq. 7.3. Thus, the weights in this layer are more sensitive to noise and require greater

precision as a result of Eq. 7.1.

 An alternative layer-wise precision analysis is given by [148], which shows that, given a

maximum accuracy degradation ∆𝑎𝑐𝑐,

‖𝒓𝑍
𝑖 ‖

2
≤ 𝑡𝑖(∆𝑎𝑐𝑐)

(𝑧1−𝑧2)
2

2
 (7.4)

where 𝒓𝑍
𝑖 is the noise on the last feature map, Z, resulting from quantization of weights in layer i,

and is given by E (‖𝒓𝑍
𝑖 ‖

2
) = 𝐶𝑖𝑒

−𝛼𝑏𝑖 with 𝑏𝑖 representing bit-width in layer i. Moreover, 𝑡𝑖 is a

robustness parameter and 𝑧1 and 𝑧2 are the top two elements of Z. According to Eq. 7.4, a greater

separation between 𝑧1 and 𝑧2 allows for greater quantization noise in the network without affecting

accuracy; moreover, layers with a higher robustness parameter, 𝑡𝑖(∆𝑎𝑐𝑐), are more tolerant to noise

and may be assigned a coarser quantization without affecting accuracy.

7.2 Architecture for Layer-wise Quantization

 Herein an MRAM-based crossbar architecture is proposed for layer-wise quantization of DBNs.

The scope of the presented research is limited to quantization of weights since activation functions

are computed in analog. As Figure 7.1 shows, the input stage of the proposed architecture consists

of MRAM-based NVM crossbar arrays (labeled as NVM X-BAR in the figure). In PIN-Sim, the

weighted connections of the network are represented by devices with resistance values in the range

104

from 1k to 5k. Thus, in the proposed design, two classes of crossbars are included: Class A

crossbars, shown in orange, have MTJs with resistances of 1k and 5k in the P- and AP-states,

respectively. Moreover, Class B crossbars, shown in blue, have MTJs with resistances of 2k and

4k In the scope of the presented research, each layer is assigned either 1-bit or 2-bit quantization.

A single Class A crossbar is allocated to layers that are assigned a 1-bit quantization. Layers that

require 2-bit quantization are assigned a Class A crossbar together with a Class B crossbar. Thus,

Figure 7.1: Architecture for layer-wise quantization of DBNs.

105

weights in these layers may be mapped to 1-, 2-, 4- or 5-k resistances. When mapping is

performed, the crossbar that contains the device capable of reaching the target resistance value is

written; for 2-bit layers, the corresponding device in the second assigned crossbar is deactivated

by means of access transistors. For layers assigned a 2-bit quantization, the final outputs from the

two allocated crossbars are combined using an analog adder, as shown in Figure 7.1.

 Once dot product operations for a given layer are complete, the activation function is computed

using a three-stage pipeline consisting of a p-bit device and integrator combined with a

Computational Analog Block (CAB) for adaptive selection of enhanced activation functions as

described in Chapter 6.

7.3 Optimization using Genetic Algorithm

 A Genetic Algorithm (GA) approach is proposed for optimal allocation of crossbars to network

layers. GAs have previously been used for resource allocation problems; for example, to determine

optimal allocation of FPGA processing elements to DCT coefficients [29]. GAs are particularly

useful for larger networks, which may have over 1000 layers [145]. In the GA methodology,

hardware configurations are represented using chromosomes. Figure 7.2 gives an example of the

chromosome mapping methodology given a 4-layer DBN. The figure shows four crossbar groups,

such that assignment to Group 1 or 2 corresponds to a 2-bit quantization while assignment to Group

3 or Group 4 corresponds to 1-bit quantization. The chromosome consists of four elements, i.e.,

genes, such that the position of each element indicates the DBN layer, while the value of the

element indicates the number of bits allocated to that layer. In the figure, 2 bits are allocated to

weights in Layers 2 and 3 while 1 bit is allocated to weights in Layers 1 and 4. This configuration

is represented by the chromosome 1221.

106

Figure 7.2: Illustration of GA methodology.

 The GA, provided by Algorithm 2, commences by initializing the index, g, to zero and calling

the initialize() function to generate a random population of N chromosomes (Lines 1 – 2). Each

chromosome has a fitness value defined as 𝑓𝑖 = 1/𝐴𝐸𝑃𝑖 , where 𝐴𝐸𝑃𝑖 is the DBN area-error-

product. In Line 4, the GA computes the fitness of each individual in the population by calling the

evaluate() function. The algorithm then applies the standard evolutionary operators: selection,

crossover, mutation and elitism, as described in [102, 149]. In Line 5, select() chooses n individuals

Figure 7.3: Illustration of crossover.

107

from the initial population using the roulette wheel approach [149], where each individual’s share

of the wheel is defined as 𝑝𝑖 = 𝑓𝑖/∑ 𝑓𝑖𝑖 to give an advantage to more fit individuals. In Line 6,

crossover() selects pairs of individuals as the parents and crosses over their genes to generate a set

of N – 2 offspring. As illustrated in Figure 7.3, the genes of Offspring A are identical to those of

Parent A, up to a randomly chosen gene position. The remaining genes are then determined by

Parent B. Offspring B is determined in a similar way.

 Next, Line 7 applies mutation() to each offspring. The mutation function iterates through each

gene in the offspring chromosomes; in each iteration, the target gene is replaced with a randomly-

selected gene, with a probability of 1%. Line 8 then calls the elitism() function to select the two

108

most fit members of the current generation and Line 9 defines the next-generation population by

combining the N – 2 offspring chromosomes determined by crossover() and mutation() with the

two chromosomes determined by elitism(). The counter is updated in Line 10 and the loop repeats.

After gmax iterations, the GA performs a fitness evaluation of the final generation and returns the

single most fit chromosome, C.

7.4 Simulation Results

 Hardware DBN simulations are performed using PIN-Sim to evaluate various layer-wise

quantization configurations. A separate Python file, quantizer.py, is used to quantize DBN

resistance values generated by mapRBM. By default, mapRBM sets resistance values between 1

and 5k in intervals of 0.5k Quantizer modifies these values based on a user-defined input

configuration, specifying the number of bits allocated to each layer. A 1-bit layer changes all

resistances below 3k to 1k and all other resistances to 5k A 2-bit layer changes all

resistances in the range [1 k, 1.5 k] to 1k [2k, 3k] to 2k [3.5k, 4k] to 4k and

[4.5k, 5k] to 5k Hardware simulations are then performed on the modified DBN using PIN-

Sim via the testDBN module.

 Two network topologies are used: 784×200×200×10 (three-layer) and 784×200×200×200×10

(four-layer), both using a sigmoidal activation function. In each case, all possible configurations

using 1-bit and 2-bit layers are evaluated for area, MNIST image classification error and area-

error-product. Area is computed using two crossbars for 2-bit layers and a single crossbar for 1-

bit layers, in accordance with Figure 7.1. The Default configuration assumes 4 crossbars per layer

to implement the PIN-Sim default of 9 resistance levels [123]. Area, error and area-error-product

for the three-layer topology are shown by Figure 7.4, Figure 7.5 and Figure 7.6, respectively, and

for the four-layer topology by Figure 7.7, Figure 7.8 and Figure 7.9, respectively.

109

Figure 7.4: Relative area for various layer-wise bit configurations for three-layer topology.

Figure 7.5: Error for various layer-wise bit configurations for three-layer topology.

110

Figure 7.6: Area-error-product for various layer-wise bit configurations for three-layer topology.

Figure 7.7: Relative area for various layer-wise bit configurations for four-layer topology.

111

Figure 7.8: Error for various layer-wise bit configurations for four-layer topology.

Figure 7.9: Area-error-product for various layer-wise bit configurations for four-layer topology.

112

 In Figure 7.4 – Figure 7.9, configurations are represented in the same way as in the GA

approach, i.e., as four-digit strings where the digit in position i of the string represents the number

of bits allocated to Layer i. For example, a configuration of 2121 for the 784×200×200×200×10

(four-layer) topology indicates that 2 bits are allocated to weights in the 784×200 layer as well as

the second 200×200 layer, while 1 bit is allocated to each weight in the remaining two layers. Two

interesting and unexpected observations may be made based on the data. First, both topologies

reveal lower error, in certain cases, for smaller architectures. For both topologies, there are cases

where decreasing the precision level of a layer results in improved accuracy. Examples include the

112 vs. 212 configuration in the three-layer topology and the 1112 vs. 2222 configuration in the

four-layer topology. Moreover, assigning higher precision levels to deeper levels in the network is

generally more favorable than assigning the same precision level to an earlier layer. For the three-

layer network, the 122 and 112 configurations perform better than the 221 and 211 configurations,

respectively. Moreover, for the four-layer network, the 1222, 1212 and 1122 configurations

perform better than the 2221, 2121 and 2211 configurations, respectively. The 1112 and 2111

configurations show equal performance.

 Despite the unexpected nature of these observations, they are consistent with earlier DBN

results attained using PIN-Sim [123]. While the results in [123] only consider uniform

quantization, they confirm that in certain cases, the DBN accuracy can improve after a reduction

in weight precision levels. An explanation offered in the literature [150] is that quantization may

reduce the level of overfitting within the network parameters. These results demonstrate that the

default PIN-Sim precision level is not necessary to maintain accuracy. In the three-layer topology,

the 112 configuration offers a 74.7% reduction in area, compared to the Default configuration.

Similarly, for the four-layer topology, the 1112 configuration offers a 74.8% area reduction

113

compared to Default. In both cases, the smaller network delivers a 6% reduction in error.

Furthermore, the results demonstrate the need for layer-wise quantization since in the case of both

topologies, assigning a 2-bit quantization to only the last layer results in a significant reduction in

error at incremental area cost, compared to using a 1-bit uniform quantization.

 Results in Figure 7.6 and Figure 7.9 demonstrate significant variability in area-error-product

between quantization configurations for both network topologies. The GA approach introduced in

the previous section is employed to find the optimal configuration for the four-layer topology,

using the inverse of area-error-product as the fitness function. The GA is run using two sets of

inputs: N = 6, n = 4 and N = 4, n = 2. In both cases, gmax = 1 and 100 trials are conducted, with

results listed in Table 7.1.

 The objective of the GA is to select the optimal configuration, i.e., the 1112 configuration

having a fitness value of 0.3606. Results indicate that, using N = 6 and n = 4, the average fitness

of the configuration returned by the GA is 0.3008 and the optimal configuration is selected 68%

of the time. Using N = 4 and n = 2, the performance is lower due to the narrower scope of the

algorithm: the average fitness is reduced to 0.2264 and the optimal configuration is selected 45%

of the time. These data are in comparison with a total-population average fitness of 0.1381, with

only 6.25% of individuals having the optimal fitness value.

Table 7.1: GA Performance in selecting optimal bit configuration for four-layer DBN.

N n gmax Average fitness %Optimal

6 4 1 0.3008

68

4 2 1 0.2264 45

Total Population 0.1381 6.25

114

 7.5 Summary

 Herein, we have presented a spin-based analog architecture for adaptive layer-wise quantization

of Deep Belief Networks (DBNs). The presented architecture implements 2-bit weights by using

an analog adder to combine the outputs of two MRAM-based crossbar arrays. Moreover, weights

within layers that do not require the enhanced precision are represented with 1 bit using a single

crossbar. This architecture also embeds Computational Analog Blocks (CABs) for efficient

computation of enhanced activation functions, which may result in significant performance

improvement as demonstrated in Chapter 6. Finally, we have proposed a Genetic Algorithm (GA)

approach for optimizing the bit configuration.

 Simulation results demonstrate that quantization may yield significant area benefits without

diminishing accuracy and may even result in improved accuracy by eliminating errors due to

overfitting. Compared to the default PIN-Sim configuration, layer-wise quantization enables a

74.8% reduction in area while simultaneously achieving 6% reduction in error, using the optimal

configuration. The optimal configuration is identified by the GA in 68% of trials.

115

CHAPTER 8: CONCLUSION6

8.1 Technical Summary

 In this dissertation, a reconfigurable architecture is developed which harnesses intrinsic

properties of MRAM-based crossbar arrays together with analog computation for area and energy-

efficient implementation of Compressive Sensing (CS) and Deep Belief Networks (DBNs). The

proposed architecture is particularly beneficial in IoT sensing applications, where the challenge is

processing and transmitting vast quantities of data despite constraints in energy, processing area,

memory and bandwidth.

 First, we develop an approach to non-uniform CS sampling based on dynamically configured

sampling rates using naturally occurring voltage degradation in a crossbar array. This technique

embeds some required computations to be conducted intrinsically by the cross-points of the array,

thus bypassing overheads of conventional instruction execution and eliminating the need for costly

hardware components such as lookup tables and data converters. This architecture is shown to be

robust for various array sizes and parasitics and achieves a 583-fold reduction in energy and 23-

fold reduction in transistor count compared with the baseline design.

 We next demonstrate the Area Conserving Crossbar Leveraging Adaptive Information

Mapping (ACCLAIM) architecture as a further means of optimizing signal compression via

Discrete Cosine Transform (DCT) and non-uniform CS. ACCLAIM leverages the spectral sparsity

of real-world signals to implement an adaptive quantization approach by assigning a variable

number of word lines, and hence a variable weight precision, to each input coefficient. Simulation

6 ©IEEE. Part of this chapter is reprinted, with permission, from [132, 136, 137].

116

results indicate that at fixed area, ACCLAIM attains an 18dB improvement in reconstruction

accuracy for DCT and 9dB for CS, compared to a traditional crossbar approach using uniform

quantization. Moreover, at a fixed standard of error, ACCLAIM allows for 70.5% reduction in

area and 30.2% reduction in power in CS sampling.

 Next, we develop a reconfigurable analog circuit for performing generalized exponentiation

within a mixed-signal field programmable array architecture. The resulting analog module

consisting of MRAM devices along with FET-based sensing and amplification circuits are circuit-

switched-configurable with terminal-level programmable control. By leveraging intrinsic

properties of embedded devices, the design is configured to rapidly evaluate various arithmetic

operations within acceptable error tolerances for selected applications. When compared to a state-

of-the-art approximate digital multiplier, the presented design achieves roughly 95% reduction in

area while generating a stable output within a period comparable to single-cycle execution.

 This analog computational approach is used as a fundamental building block of the

Spintronically-Configurable Adaptive in-memory Processing Environment (SCAPE). SCAPE

combines a Vector Matrix Multiplication Stage (VMMS) consisting of MRAM-based crossbar

arrays with an Analog Activation Stage (AAS) based on the presented analog computational circuit

for applicability to generalized use cases involving dot products in addition to scalar operations.

The Approximate Message Passing (AMP) CS reconstruction algorithm is evaluated on SCAPE,

demonstrating a 96% reduction in energy with negligible accuracy loss, compared with a recent

state-of-the-art design. Moreover, SCAPE allows for efficient and versatile computation of

activation functions in DBNs: simulation results demonstrate the possibility of reducing network

size while retaining accuracy through such an approach. The benefits of enhanced activation

functions are amplified by a Progressive Temporal Modular Redundancy (PTMR) architecture,

117

which executes multiple DBN trials with varying activation functions and outputs the majority

result. PTMR allows for an 81.2% reduction in power at only 4% accuracy loss, compared to a

larger network.

 Finally, an architecture is presented allowing for layer-wise adaptive quantization in deep

neural networks. Similarly to SCAPE, the architecture leverages intrinsic computation by

combining MRAM-based crossbars with analog arithmetic. Together with the hardware design, a

Genetic Algorithm (GA) is given for determining the optimal layer-wise bit configuration.

Simulation results indicate that layer-wise quantization may be applied to significantly reduce the

size of a network while simultaneously increasing accuracy by reducing the level of overfitting.

Using the optimal bit configuration on a four-layer DBN, a 74.8% reduction in area is attained

with a simultaneous 6% accuracy improvement. Moreover, the GA is able to identify the optimal

configuration in two out of three trials.

8.2 Future Directions

 The key limitation of the PTMR approach is increased power overhead due to repeated

computations. PTMR reduces power consumption by stalling during the third computational cycle

if identical results are attained in the first two cycles. A further optimization could be realized by

predicting the outputs of the second and third cycles and interrupting the computation if the output

is predicted to match the previous cycle’s result. The problem is defined as follows: given two

DBNs having different model parameters but identical inputs, with the outputs after Layer i given

as 𝒚𝟏𝒊 and 𝒚𝟐𝒊 in the two networks, and with the final outputs of the two networks given as 𝒛𝟏 and

𝒛𝟐, what is the correlation between ‖𝒚𝟏𝒊 − 𝒚𝟐𝒊‖ and ‖𝒛𝟏 − 𝒛𝟐‖? If the correlation is strong enough,

then knowing the intermediate outputs of two networks and also the final output of one network

allows one to predict the final output of the second network. In that case, one can establish a

118

confidence level k and thresholds 𝜀 and 𝛿 such that ‖𝒛𝟏 − 𝒛𝟐‖ < 𝛿 with a probability of k

whenever ‖𝒚𝟏𝒊 − 𝒚𝟐𝒊‖ < 𝜀. Thus, redundant computations may be terminated at Layer i whenever

the threshold is met, which can save significant power and also reduce delay for larger networks.

Determining the parameters 𝛿 and k then represents a tradeoff between power consumption and

accuracy and is application dependent.

 Finally, security is an aspect of IoT sensor design that has been outside the scope of this

dissertation but may be addressed in future work. An attacker may significantly reduce the

accuracy of a neural network classifier by inserting adversarial noise into the input data [151, 152].

Such an attack may be carried out either during the inference phase or during the training phase;

in the latter case, model parameters within the network are modified such that the network

performs poorly whenever a backdoor trigger is present within the input. It has been shown that

quantization [151] as well as pruning [152] can be used as defenses against adversarial noise.

Moreover, it is seen [151] that the level of adversarial noise may significantly affect the network

accuracy for a given quantization level. Thus, it is interesting to extend the layer-wise quantization

approach introduced in Chapter 7 to a) consider the effect of adversarial noise and b) also

incorporate pruning for power reduction and adversarial defense.

119

APPENDIX: COPYRIGHT PERMISSIONS

120

121

122

123

124

LIST OF REFERENCES

[1] Y.-K. Chen, "Challenges and opportunities of internet of things," in 17th Asia and South

Pacific design automation conference, 2012: IEEE, pp. 383-388.

[2] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, "Internet of things: Vision,

applications and research challenges," Ad hoc networks, vol. 10, no. 7, pp. 1497-1516,

2012.

[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, "Internet of Things (IoT): A vision,

architectural elements, and future directions," Future generation computer systems, vol.

29, no. 7, pp. 1645-1660, 2013.

[4] M. A. Alsheikh, S. Lin, D. Niyato, and H.-P. Tan, "Machine learning in wireless sensor

networks: Algorithms, strategies, and applications," IEEE Communications Surveys &

Tutorials, vol. 16, no. 4, pp. 1996-2018, 2014.

[5] H. Tan and R. F. DeMara, "A multilayer framework supporting autonomous run-time

partial reconfiguration," IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 16, no. 5, pp. 504-516, 2008.

[6] J. Huang, M. Parris, J. Lee, and R. F. Demara, "Scalable FPGA-based architecture for DCT

computation using dynamic partial reconfiguration," ACM Transactions on Embedded

Computing Systems (TECS), vol. 9, no. 1, pp. 1-18, 2009.

[7] J. Lohn, G. Larchev, and R. DeMara, "A genetic representation for evolutionary fault

recovery in Virtex FPGAs," in Evolvable Systems: From Biology to Hardware: 5th

International Conference, ICES 2003 Trondheim, Norway, March 17–20, 2003

Proceedings 5, 2003: Springer, pp. 47-56.

125

[8] R. F. DeMara and K. Zhang, "Autonomous FPGA fault handling through competitive

runtime reconfiguration," in 2005 NASA/DoD Conference on Evolvable Hardware

(EH'05), 2005: IEEE, pp. 109-116.

[9] M. G. Parris, C. A. Sharma, and R. F. Demara, "Progress in autonomous fault recovery of

field programmable gate arrays," ACM Computing Surveys (CSUR), vol. 43, no. 4, pp. 1-

30, 2011.

[10] M. Lin, S. Chen, R. F. DeMara, and J. Wawrzynek, "ASTRO: Synthesizing application-

specific reconfigurable hardware traces to exploit memory-level parallelism,"

Microprocessors and Microsystems, vol. 39, no. 7, pp. 553-564, 2015.

[11] R. Al-Haddad, R. Oreifej, R. A. Ashraf, and R. F. DeMara, "Sustainable modular adaptive

redundancy technique emphasizing partial reconfiguration for reduced power

consumption," International Journal of Reconfigurable Computing, vol. 2011, 2011.

[12] N. Imran, R. F. DeMara, J. Lee, and J. Huang, "Self-adapting resource escalation for

resilient signal processing architectures," Journal of Signal Processing Systems, vol. 77,

pp. 257-280, 2014.

[13] R. S. Oreifej, R. N. Al-Haddad, H. Tan, and R. F. DeMara, "Layered approach to intrinsic

evolvable hardware using direct bitstream manipulation of Virtex II Pro devices," in 2007

International Conference on Field Programmable Logic and Applications, 2007: IEEE,

pp. 299-304.

[14] K. Zhang, G. Bedette, and R. F. DeMara, "Triple modular redundancy with standby

(TMRSB) supporting dynamic resource reconfiguration," in 2006 IEEE Autotestcon, 2006:

IEEE, pp. 690-696.

126

[15] R. A. Ashraf and R. F. DeMara, "Scalable FPGA refurbishment using netlist-driven

evolutionary algorithms," IEEE Transactions on Computers, vol. 62, no. 8, pp. 1526-1541,

2013.

[16] R. F. DeMara, K. Zhang, and C. A. Sharma, "Autonomic fault-handling and refurbishment

using throughput-driven assessment," Applied Soft Computing, vol. 11, no. 2, pp. 1588-

1599, 2011.

[17] K. Zhang, R. F. DeMara, and C. A. Sharma, "Consensus-based evaluation for fault

isolation and on-line evolutionary regeneration," in Evolvable Systems: From Biology to

Hardware: 6th International Conference, ICES 2005, Sitges, Spain, September 12-14,

2005. Proceedings 6, 2005: Springer, pp. 12-24.

[18] M. Shaban and A. Abdelgawad, "A study of distributed compressive sensing for the

Internet of Things (IoT)," in 2018 IEEE 4th World Forum on Internet of Things (WF-IoT),

2018: IEEE, pp. 173-178.

[19] A. Nisar, S. Dhull, S. Mittal, and B. K. Kaushik, "SOT and STT-based 4-bit MRAM cell

for high-density memory applications," IEEE Transactions on Electron Devices, vol. 68,

no. 9, pp. 4384-4390, 2021.

[20] S. Salehi, A. Zaeemzadeh, A. Tatulian, N. Rahnavard, and R. F. DeMara, "MRAM-based

stochastic oscillators for adaptive non-uniform sampling of sparse signals in IoT

applications," in 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2019:

IEEE, pp. 403-408.

[21] Z. Gao, L. Dai, S. Han, I. Chih-Lin, Z. Wang, and L. Hanzo, "Compressive sensing

techniques for next-generation wireless communications," IEEE Wireless

Communications, vol. 25, no. 3, pp. 144-153, 2018.

127

[22] Y. Zhang, Y. Xiang, L. Y. Zhang, Y. Rong, and S. Guo, "Secure wireless communications

based on compressive sensing: A survey," IEEE Communications Surveys & Tutorials, vol.

21, no. 2, pp. 1093-1111, 2018.

[23] N. Rahnavard, A. Talari, and B. Shahrasbi, "Non-uniform compressive sensing," in 2011

49th Annual Allerton Conference on Communication, Control, and Computing (Allerton),

2011: IEEE, pp. 212-219.

[24] Y. Massoud, F. Xiong, and S. Smaili, "A memristor-based random modulator for

compressive sensing systems," in 2012 IEEE International Symposium on Circuits and

Systems (ISCAS), 2012: IEEE, pp. 2445-2448.

[25] F. Qian, Y. Gong, G. Huang, M. Anwar, and L. Wang, "Exploiting memristors for

compressive sampling of sensory signals," IEEE Transactions on Very Large Scale

Integration (VLSI) Systems, vol. 26, no. 12, pp. 2737-2748, 2018.

[26] N. Khoshavi, R. A. Ashraf, and R. F. DeMara, "Applicability of power-gating strategies

for aging mitigation of CMOS logic paths," in 2014 IEEE 57th International Midwest

Symposium on Circuits and Systems (MWSCAS), 2014: IEEE, pp. 929-932.

[27] A. Tatulian, S. Salehi, and R. F. DeMara, "Mixed-signal spin/charge reconfigurable array

for energy-aware compressive signal processing," in 2019 International conference on

ReConFigurable computing and FPGAs (ReConFig), 2019: IEEE, pp. 1-8.

[28] B. Zhang, N. Uysal, and R. Ewetz, "Computational Restructuring: Rethinking Image

Compression Using Resistive Crossbar Arrays," IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 40, no. 5, pp. 836-849, 2020.

128

[29] N. Imran, R. A. Ashraf, and R. F. DeMara, "Power and quality-aware image processing

soft-resilience using online multi-objective GAs," International Journal of Computational

Vision and Robotics, vol. 5, no. 1, pp. 72-98, 2015.

[30] X. Yan, Y. Fan, K. Chen, X. Yu, and X. Zeng, "Qnet: an adaptive quantization table

generator based on convolutional neural network," IEEE Transactions on Image

Processing, vol. 29, pp. 9654-9664, 2020.

[31] F. Zhai, S. Xiao, and L. Quan, "A new non-uniform quantization method based on

distribution of compressive sensing measurements and coefficients discarding," in 2013

Asia-Pacific Signal and Information Processing Association Annual Summit and

Conference, 2013: IEEE, pp. 1-4.

[32] R. N. Strickland, T. Draelos, and Z. Mao, "Edge detection in machine vision using a simple

L1 norm template matching algorithm," Pattern recognition, vol. 23, no. 5, pp. 411-421,

1990.

[33] Y. Shi, S. Xia, Y. Zhou, and Y. Shi, "Sparse signal processing for massive device

connectivity via deep learning," in 2020 IEEE international conference on communications

workshops (ICC Workshops), 2020: IEEE, pp. 1-6.

[34] X. Yang, Y. Chen, and H. Liang, "Square root based activation function in neural

networks," in 2018 International conference on audio, language and image processing

(ICALIP), 2018: IEEE, pp. 84-89.

[35] M. Sipper, "Neural networks with à la carte selection of activation functions," SN Computer

Science, vol. 2, no. 6, p. 470, 2021.

129

[36] A. Hasnat, T. Bhattacharyya, A. Dey, S. Halder, and D. Bhattacharjee, "A fast FPGA based

architecture for computation of square root and Inverse Square Root," in 2017 Devices for

Integrated Circuit (DevIC), 2017: IEEE, pp. 383-387.

[37] H. Jiang, C. Liu, F. Lombardi, and J. Han, "Low-power approximate unsigned multipliers

with configurable error recovery," IEEE Transactions on Circuits and Systems I: Regular

Papers, vol. 66, no. 1, pp. 189-202, 2018.

[38] N. Arya, T. Soni, M. Pattanaik, and G. Sharma, "Area and energy efficient approximate

square rooters for error resilient applications," in 2020 33rd international conference on

VLSI design and 2020 19th international conference on embedded systems (VLSID), 2020:

IEEE, pp. 90-95.

[39] A. J. S. de Sousa et al., "A very compact CMOS analog multiplier for application in CNN

synapses," in 2019 IEEE 10th Latin American Symposium on Circuits & Systems

(LASCAS), 2019: IEEE, pp. 241-244.

[40] R. B. Wunderlich, F. Adil, and P. Hasler, "Floating gate-based field programmable mixed-

signal array," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21,

no. 8, pp. 1496-1505, 2012.

[41] C. Schlottmann and P. Hasler, "FPAA empowering cooperative analog-digital signal

processing," in 2012 IEEE international conference on acoustics, speech and signal

processing (ICASSP), 2012: IEEE, pp. 5301-5304.

[42] Y. Huang, Hybrid analog-digital co-processing for scientific computation. Columbia

University, 2018.

130

[43] B. Rumberg and D. W. Graham, "A low-power field-programmable analog array for

wireless sensing," in Sixteenth international symposium on quality electronic design, 2015:

IEEE, pp. 542-546.

[44] D. Moldovan, S. Cha, I. Urn, R. DeMara, and J. Kim, "pp" Direct Memory Access

Translation on SNAP,"" Technical Report PKPLab-90-9, Department of Electrical

Engineering-Systems …, 1990.

[45] R. F. DeMara and D. I. Moldovan, "The SNAP-1 parallel AI prototype," IEEE

Transactions on Parallel and Distributed Systems, vol. 4, no. 8, pp. 841-854, 1993.

[46] Y. Xu, B. Wu, Z. Wang, Y. Wang, Y. Zhang, and W. Zhao, "Write-efficient STT/SOT

hybrid triple-level cell for high-density MRAM," IEEE Transactions on Electron Devices,

vol. 67, no. 4, pp. 1460-1465, 2020.

[47] Y. Zhang, L. Zhang, W. Wen, G. Sun, and Y. Chen, "Multi-level cell STT-RAM: Is it

realistic or just a dream?," in Proceedings of the International Conference on Computer-

Aided Design, 2012, pp. 526-532.

[48] S. Miura et al., "Scalability of quad interface p-MTJ for 1X nm STT-MRAM With 10-ns

low power write operation, 10 years retention and endurance> 10¹¹," IEEE Transactions

on Electron Devices, vol. 67, no. 12, pp. 5368-5373, 2020.

[49] S. Verma and B. K. Kaushik, "Low-power high-density STT MRAMs on a 3-D vertical

silicon nanowire platform," IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 24, no. 4, pp. 1371-1376, 2015.

[50] S. Yuasa, A. Fukushima, T. Nagahama, K. Ando, and Y. Suzuki, "High tunnel

magnetoresistance at room temperature in fully epitaxial Fe/MgO/Fe tunnel junctions due

131

to coherent spin-polarized tunneling," Japanese Journal of Applied Physics, vol. 43, no.

4B, p. L588, 2004.

[51] S. Matsunaga et al., "Fabrication of a nonvolatile full adder based on logic-in-memory

architecture using magnetic tunnel junctions," Applied Physics Express, vol. 1, no. 9, p.

091301, 2008.

[52] V. K. Joshi, P. Barla, S. Bhat, and B. K. Kaushik, "From MTJ device to hybrid CMOS/MTJ

circuits: A review," IEEE Access, vol. 8, pp. 194105-194146, 2020.

[53] L. Zhu et al., "Heterogeneous 3D integration for a RISC-V system with STT-MRAM,"

IEEE Computer Architecture Letters, vol. 19, no. 1, pp. 51-54, 2020.

[54] K. C. Chun, H. Zhao, J. D. Harms, T.-H. Kim, J.-P. Wang, and C. H. Kim, "A scaling

roadmap and performance evaluation of in-plane and perpendicular MTJ based STT-

MRAMs for high-density cache memory," IEEE journal of solid-state circuits, vol. 48, no.

2, pp. 598-610, 2012.

[55] S. Salehi and R. F. DeMara, "SLIM-ADC: Spin-based logic-in-memory analog to digital

converter leveraging she-enabled domain wall motion devices," Microelectronics Journal,

vol. 81, pp. 137-143, 2018.

[56] R. Zand, A. Roohi, and R. F. DeMara, "Fundamentals, modeling, and application of

magnetic tunnel junctions," in Nanoscale Devices: CRC Press, 2018, pp. 337-368.

[57] S. Salehi, M. B. Mashhadi, A. Zaeemzadeh, N. Rahnavard, and R. F. DeMara, "Energy-

aware adaptive rate and resolution sampling of spectrally sparse signals leveraging VCMA-

MTJ devices," IEEE Journal on Emerging and Selected Topics in Circuits and Systems,

vol. 8, no. 4, pp. 679-692, 2018.

132

[58] W. Kang, Y. Ran, Y. Zhang, W. Lv, and W. Zhao, "Modeling and exploration of the

voltage-controlled magnetic anisotropy effect for the next-generation low-power and high-

speed MRAM applications," IEEE Transactions on Nanotechnology, vol. 16, no. 3, pp.

387-395, 2017.

[59] S. Salehi, D. Fan, and R. F. Demara, "Survey of STT-MRAM cell design strategies:

Taxonomy and sense amplifier tradeoffs for resiliency," ACM Journal on Emerging

Technologies in Computing Systems (JETC), vol. 13, no. 3, pp. 1-16, 2017.

[60] J. G. Simmons, "Electric tunnel effect between dissimilar electrodes separated by a thin

insulating film," Journal of applied physics, vol. 34, no. 9, pp. 2581-2590, 1963.

[61] W. Brinkman, R. Dynes, and J. Rowell, "Tunneling conductance of asymmetrical barriers,"

Journal of applied physics, vol. 41, no. 5, pp. 1915-1921, 1970.

[62] M. Julliere, "Tunneling between ferromagnetic films," Physics letters A, vol. 54, no. 3, pp.

225-226, 1975.

[63] J. C. Slonczewski, "Conductance and exchange coupling of two ferromagnets separated by

a tunneling barrier," Physical Review B, vol. 39, no. 10, p. 6995, 1989.

[64] J. C. Slonczewski, "Current-driven excitation of magnetic multilayers," Journal of

Magnetism and Magnetic Materials, vol. 159, no. 1-2, pp. L1-L7, 1996.

[65] Y. Zhang et al., "Compact modeling of perpendicular-anisotropy CoFeB/MgO magnetic

tunnel junctions," IEEE transactions on Electron devices, vol. 59, no. 3, pp. 819-826, 2012.

[66] L. Yuan, S.-H. Liou, and D. Wang, "Temperature dependence of magnetoresistance in

magnetic tunnel junctions with different free layer structures," Physical Review B, vol. 73,

no. 13, p. 134403, 2006.

133

[67] C. H. Shang, J. Nowak, R. Jansen, and J. S. Moodera, "Temperature dependence of

magnetoresistance and surface magnetization in ferromagnetic tunnel junctions," Physical

Review B, vol. 58, no. 6, p. R2917, 1998.

[68] T. Hagler, R. Kinder, and G. Bayreuther, "Temperature dependence of tunnel

magnetoresistance," Journal of Applied Physics, vol. 89, no. 11, pp. 7570-7572, 2001.

[69] R. Zand, A. Roohi, and R. F. DeMara, "Energy-efficient and process-variation-resilient

write circuit schemes for spin hall effect MRAM device," IEEE Transactions on Very

Large Scale Integration (VLSI) Systems, vol. 25, no. 9, pp. 2394-2401, 2017.

[70] K. Y. Camsari, S. Salahuddin, and S. Datta, "Implementing p-bits with embedded MTJ,"

IEEE Electron Device Letters, vol. 38, no. 12, pp. 1767-1770, 2017.

[71] S. Datta, "p-Bits for probabilistic computing," in 2019 Device Research Conference

(DRC), 2019: IEEE, pp. 35-36.

[72] Z. Sun, G. Pedretti, E. Ambrosi, A. Bricalli, W. Wang, and D. Ielmini, "Solving matrix

equations in one step with cross-point resistive arrays," Proceedings of the National

Academy of Sciences, vol. 116, no. 10, pp. 4123-4128, 2019.

[73] T. Cao, C. Liu, Y. Gao, and W. L. Goh, "Parasitic-aware modelling for neural networks

implemented with memristor crossbar array," in 2021 IEEE 14th International Symposium

on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), 2021: IEEE, pp. 122-126.

[74] C. Xu et al., "Overcoming the challenges of crossbar resistive memory architectures," in

2015 IEEE 21st international symposium on high performance computer architecture

(HPCA), 2015: IEEE, pp. 476-488.

134

[75] Y. Li, W. Chen, W. Lu, and R. Jha, "Read challenges in crossbar memories with nanoscale

bidirectional diodes and ReRAM devices," IEEE Transactions on Nanotechnology, vol.

14, no. 3, pp. 444-451, 2015.

[76] G. Papandroulidakis, I. Vourkas, A. Abusleme, G. C. Sirakoulis, and A. Rubio, "Crossbar-

based memristive logic-in-memory architecture," IEEE transactions on nanotechnology,

vol. 16, no. 3, pp. 491-501, 2017.

[77] P.-Y. Chen and S. Yu, "Compact modeling of RRAM devices and its applications in 1T1R

and 1S1R array design," IEEE Transactions on Electron Devices, vol. 62, no. 12, pp. 4022-

4028, 2015.

[78] M. Shevgoor, N. Muralimanohar, R. Balasubramonian, and Y. Jeon, "Improving

memristor memory with sneak current sharing," in 2015 33rd IEEE International

conference on computer design (ICCD), 2015: IEEE, pp. 549-556.

[79] Y. Zhang et al., "CACF: A novel circuit architecture co-optimization framework for

improving performance, reliability and energy of ReRAM-based main memory system,"

ACM Transactions on Architecture and Code Optimization (TACO), vol. 15, no. 2, pp. 1-

26, 2018.

[80] Y. Zhang, D. Feng, W. Tong, J. Liu, C. Wang, and J. Xu, "Tiered-ReRAM: A low latency

and energy efficient TLC crossbar ReRAM architecture," in 2019 35th Symposium on Mass

Storage Systems and Technologies (MSST), 2019: IEEE, pp. 92-102.

[81] F. Sampaio, M. Shafique, B. Zatt, S. Bampi, and J. Henkel, "Approximation-aware multi-

level cells STT-RAM cache architecture," in 2015 International Conference on Compilers,

Architecture and Synthesis for Embedded Systems (CASES), 2015: IEEE, pp. 79-88.

135

[82] C. Xu, D. Niu, N. Muralimanohar, N. P. Jouppi, and Y. Xie, "Understanding the trade-offs

in multi-level cell ReRAM memory design," in Proceedings of the 50th Annual Design

Automation Conference, 2013, pp. 1-6.

[83] S. Salehi and R. F. DeMara, "Adaptive non-uniform compressive sensing using SOT-

MRAM multi-bit precision crossbar arrays," IEEE Transactions on Nanotechnology, vol.

20, pp. 224-228, 2021.

[84] A. Shafiee et al., "ISAAC: A convolutional neural network accelerator with in-situ analog

arithmetic in crossbars," ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp.

14-26, 2016.

[85] P. Chi et al., "Prime: A novel processing-in-memory architecture for neural network

computation in reram-based main memory," ACM SIGARCH Computer Architecture

News, vol. 44, no. 3, pp. 27-39, 2016.

[86] M. Zou, Z. Zhu, Y. Cai, J. Zhou, C. Wang, and Y. Wang, "Security enhancement for rram

computing system through obfuscating crossbar row connections," in 2020 Design,

Automation & Test in Europe Conference & Exhibition (DATE), 2020: IEEE, pp. 466-471.

[87] Y. Cai, T. Tang, L. Xia, B. Li, Y. Wang, and H. Yang, "Low bit-width convolutional neural

network on RRAM," IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, vol. 39, no. 7, pp. 1414-1427, 2019.

[88] Z. Zhu et al., "A configurable multi-precision CNN computing framework based on single

bit RRAM," in Proceedings of the 56th Annual Design Automation Conference 2019, 2019,

pp. 1-6.

[89] Y.-C. Chen, H. Li, W. Zhang, and R. E. Pino, "The 3-D stacking bipolar RRAM for high

density," IEEE transactions on nanotechnology, vol. 11, no. 5, pp. 948-956, 2012.

136

[90] M. N. I. Khan and S. Ghosh, "Multi-bit read and write methodologies for diode-MTJ

crossbar array," in 2020 21st International Symposium on Quality Electronic Design

(ISQED), 2020: IEEE, pp. 93-98.

[91] M. F. F. Khan, N. A. Jao, C. Shuai, K. Qiu, M. Mahdavi, and V. Narayanan, "Mixed

precision Quantization scheme for re-configurable ReRAM crossbars targeting different

energy harvesting scenarios," in Internet of Things. A Confluence of Many Disciplines:

Second IFIP International Cross-Domain Conference, IFIPIoT 2019, Tampa, FL, USA,

October 31–November 1, 2019, Revised Selected Papers 2, 2020: Springer, pp. 197-216.

[92] Y. Shi, Z. Huang, S. Oh, N. Kaslan, J. Song, and D. Kuzum, "Adaptive quantization as a

device-algorithm co-design approach to improve the performance of in-memory

unsupervised learning with SNNs," IEEE Transactions on Electron Devices, vol. 66, no.

4, pp. 1722-1728, 2019.

[93] D. Kwon et al., "Adaptive weight quantization method for nonlinear synaptic devices,"

IEEE Transactions on Electron Devices, vol. 66, no. 1, pp. 395-401, 2018.

[94] S. Abden and E. Azab, "Multilayer perceptron analog hardware implementation using low

power operational transconductance amplifier," in 2020 32nd International Conference on

Microelectronics (ICM), 2020: IEEE, pp. 1-4.

[95] M. T. Abuelma'Atti and A. M. Abuelmaatti, "A new current-mode CMOS analog

programmable arbitrary nonlinear function synthesizer," Microelectronics Journal, vol.

43, no. 11, pp. 802-808, 2012.

[96] A. Buscarino, C. Corradino, L. Fortuna, M. Frasca, and J. C. Sprott, "Nonideal behavior of

analog multipliers for chaos generation," IEEE Transactions on Circuits and Systems II:

Express Briefs, vol. 63, no. 4, pp. 396-400, 2015.

137

[97] N. Guo et al., "Energy-efficient hybrid analog/digital approximate computation in

continuous time," IEEE Journal of Solid-State Circuits, vol. 51, no. 7, pp. 1514-1524,

2016.

[98] R. J. D'Angelo and S. R. Sonkusale, "A time-mode translinear principle for nonlinear

analog computation," IEEE Transactions on Circuits and Systems I: Regular Papers, vol.

62, no. 9, pp. 2187-2195, 2015.

[99] J. R. Koza, F. H. Bennett, D. Andre, M. A. Keane, and F. Dunlap, "Automated synthesis

of analog electrical circuits by means of genetic programming," IEEE Transactions on

evolutionary computation, vol. 1, no. 2, pp. 109-128, 1997.

[100] Y. A. Sapargaliyev and T. G. Kalganova, "Open-ended evolution to discover analogue

circuits for beyond conventional applications," Genetic Programming and Evolvable

Machines, vol. 13, pp. 411-443, 2012.

[101] M. J. Streeter, M. A. Keane, and J. R. Koza, "Iterative refinement of computational circuits

using genetic programming," in Proceedings of the 4th Annual Conference on Genetic and

Evolutionary Computation, 2002, pp. 877-884.

[102] S. D. Pyle, V. Thangavel, S. M. Williams, and R. F. DeMara, "Self-Scaling Evolution of

analog computation circuits with digital accuracy refinement," in 2015 NASA/ESA

Conference on Adaptive Hardware and Systems (AHS), 2015: IEEE, pp. 1-8.

[103] V. Thangavel, Z.-X. Song, and R. F. DeMara, "Intrinsic evolution of truncated Puiseux

series on a mixed-signal field-programmable soc," IEEE Access, vol. 4, pp. 2863-2872,

2016.

138

[104] S. George et al., "A programmable and configurable mixed-mode FPAA SoC," IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 6, pp. 2253-

2261, 2016.

[105] Y. Choi, Y. Lee, S.-H. Baek, S.-J. Lee, and J. Kim, "CHIMERA: A field-programmable

mixed-signal IC with time-domain configurable analog blocks," IEEE Journal of Solid-

State Circuits, vol. 53, no. 2, pp. 431-444, 2017.

[106] H. Rabah, A. Amira, B. K. Mohanty, S. Almaadeed, and P. K. Meher, "FPGA

implementation of orthogonal matching pursuit for compressive sensing reconstruction,"

IEEE Transactions on very large scale integration (VLSI) Systems, vol. 23, no. 10, pp.

2209-2220, 2014.

[107] S. Salehi, R. Zand, and R. F. DeMara, "Clockless spin-based look-up tables with wide read

margin," in Proceedings of the 2019 on Great Lakes Symposium on VLSI, 2019, pp. 363-

366.

[108] E. J. Candès and M. B. Wakin, "An introduction to compressive sampling," IEEE signal

processing magazine, vol. 25, no. 2, pp. 21-30, 2008.

[109] H. A. Almurib, T. N. Kumar, and F. Lombardi, "Approximate DCT image compression

using inexact computing," IEEE Transactions on computers, vol. 67, no. 2, pp. 149-159,

2017.

[110] A. Septimus and R. Steinberg, "Compressive sampling hardware reconstruction," in

Proceedings of 2010 IEEE international symposium on circuits and systems, 2010: IEEE,

pp. 3316-3319.

139

[111] H. Kung and S. J. Tarsa, "Partitioned compressive sensing with neighbor-weighted

decoding," in 2011-MILCOM 2011 Military Communications Conference, 2011: IEEE, pp.

149-156.

[112] L. Gan, "Block compressed sensing of natural images," in 2007 15th International

conference on digital signal processing, 2007: IEEE, pp. 403-406.

[113] Y. Yu, B. Wang, and L. Zhang, "Saliency-based compressive sampling for image signals,"

IEEE signal processing letters, vol. 17, no. 11, pp. 973-976, 2010.

[114] Y. Shen, W. Hu, R. Rana, and C. T. Chou, "Nonuniform compressive sensing for

heterogeneous wireless sensor networks," IEEE Sensors journal, vol. 13, no. 6, pp. 2120-

2128, 2013.

[115] A. Zaeemzadeh, M. Joneidi, and N. Rahnavard, "Adaptive non-uniform compressive

sampling for time-varying signals," in 2017 51st Annual conference on information

sciences and systems (CISS), 2017: IEEE, pp. 1-6.

[116] N. Karim, A. Zaeemzadeh, and N. Rahnavard, "RL-Ncs: Reinforcement learning based

data-driven approach for nonuniform compressed sensing," in 2019 IEEE 29th

International Workshop on Machine Learning for Signal Processing (MLSP), 2019: IEEE,

pp. 1-6.

[117] E. C. Marques, N. Maciel, L. Naviner, H. Cai, and J. Yang, "A review of sparse recovery

algorithms," IEEE access, vol. 7, pp. 1300-1322, 2018.

[118] P. Maechler et al., "VLSI design of approximate message passing for signal restoration and

compressive sensing," IEEE Journal on Emerging and Selected Topics in Circuits and

Systems, vol. 2, no. 3, pp. 579-590, 2012.

140

[119] A. Maleki, "Approximate message passing algorithms for compressed sensing," Stanford

University, 2010.

[120] L. Bai, P. Maechler, M. Muehlberghuber, and H. Kaeslin, "High-speed compressed

sensing reconstruction on FPGA using OMP and AMP," in 2012 19th IEEE international

conference on electronics, circuits, and systems (ICECS 2012), 2012: IEEE, pp. 53-56.

[121] S. Liu, A. Ren, Y. Wang, and P. K. Varshney, "Ultra-fast robust compressive sensing

based on memristor crossbars," in 2017 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2017: IEEE, pp. 1133-1137.

[122] M. Le Gallo, A. Sebastian, G. Cherubini, H. Giefers, and E. Eleftheriou, "Compressed

sensing with approximate message passing using in-memory computing," IEEE

Transactions on Electron Devices, vol. 65, no. 10, pp. 4304-4312, 2018.

[123] R. Zand, K. Y. Camsari, S. Datta, and R. F. DeMara, "Composable probabilistic inference

networks using MRAM-based stochastic neurons," ACM Journal on Emerging

Technologies in Computing Systems (JETC), vol. 15, no. 2, pp. 1-22, 2019.

[124] H. Pourmeidani, S. Sheikhfaal, R. Zand, and R. F. DeMara, "Probabilistic interpolation

recoder for energy-error-product efficient DBNs with p-bit devices," IEEE Transactions

on Emerging Topics in Computing, vol. 9, no. 4, pp. 2146-2157, 2020.

[125] B. Zhang, N. Uysal, D. Fan, and R. Ewetz, "Representable matrices: Enabling high

accuracy analog computation for inference of DNNs using memristors," in 2020 25th Asia

and South Pacific Design Automation Conference (ASP-DAC), 2020: IEEE, pp. 538-543.

[126] B. Liu et al., "Reduction and IR-drop compensations techniques for reliable neuromorphic

computing systems," in 2014 IEEE/ACM International Conference on Computer-Aided

Design (ICCAD), 2014: IEEE, pp. 63-70.

141

[127] Arizona State University, "Predictive Technology Model." Available at: http://ptm.asu.edu

[128] S. Shin et al., "Dynamic reference scheme with improved read voltage margin for

compensating cell-position and background-pattern dependencies in pure memristor

array," JSTS: Journal of Semiconductor Technology and Science, vol. 15, no. 6, pp. 685-

694, 2015.

[129] S. Kim, J. Zhou, and W. D. Lu, "Crossbar RRAM arrays: Selector device requirements

during write operation," IEEE Transactions on Electron Devices, vol. 61, no. 8, pp. 2820-

2826, 2014.

[130] F. Juanda, W. Shu, and J. S. Chang, "A 10-GS/s 4-bit single-core digital-to-analog

converter for cognitive ultrawidebands," IEEE Transactions on Circuits and Systems II:

Express Briefs, vol. 64, no. 1, pp. 16-20, 2016.

[131] C. Li et al., "Analogue signal and image processing with large memristor crossbars,"

Nature electronics, vol. 1, no. 1, pp. 52-59, 2018.

[132] A. Tatulian and R. F. DeMara, "Nonuniform Compressive Sensing via Ohmic Voltage

Attenuation: A Memristive Crossbar Design Approach Leveraging Intrinsic Computation,"

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41,

no. 9, pp. 3157-3161, 2021.

[133] H. Kubota et al., "Quantitative measurement of voltage dependence of spin-transfer torque

in MgO-based magnetic tunnel junctions," Nature Physics, vol. 4, no. 1, pp. 37-41, 2008.

[134] S. Wang, H. Lee, C. Grezes, P. Khalili, K. L. Wang, and P. Gupta, "MTJ variation monitor-

assisted adaptive MRAM write," in Proceedings of the 53rd Annual Design Automation

Conference, 2016, pp. 1-6.

http://ptm.asu.edu/

142

[135] M. Hossain, A. Tatulian, S. Sheikhfaal, H. Thummala, and R. DeMara, "Scalable

Reasoning and Sensing Using Processing-In-Memory With Hybrid Spin/CMOS-Based

Analog/Digital Blocks," IEEE Transactions on Emerging Topics in Computing, 2022.

[136] A. Tatulian and R. F. DeMara, "A Reconfigurable and Compact Spin-Based Analog Block

for Generalizable n th Power and Root Computation," in 2021 IEEE computer society

annual symposium on VLSI (ISVLSI), 2021: IEEE, pp. 302-307.

[137] A. Tatulian and R. F. DeMara, "Generalized Exponentiation Using STT Magnetic Tunnel

Junctions: Circuit Design, Performance, and Application to Neural Network Gradient

Decay," SN Computer Science, vol. 3, no. 2, p. 148, 2022.

[138] K. N. S. Batta and I. Chakrabarti, "VLSI Architecture for Enhanced Approximate Message

Passing Algorithm," IEEE Transactions on Circuits and Systems for Video Technology,

vol. 30, no. 9, pp. 3253-3267, 2019.

[139] E. Protas, J. D. Bratti, J. F. Gaya, P. Drews, and S. S. Botelho, "Visualization methods for

image transformation convolutional neural networks," IEEE Transactions on Neural

Networks and Learning Systems, vol. 30, no. 7, pp. 2231-2243, 2018.

[140] C.-F. Juang, C.-T. Chiou, and C.-L. Lai, "Hierarchical singleton-type recurrent neural

fuzzy networks for noisy speech recognition," IEEE Transactions on Neural Networks, vol.

18, no. 3, pp. 833-843, 2007.

[141] S. Basodi, C. Ji, H. Zhang, and Y. Pan, "Gradient amplification: An efficient way to train

deep neural networks," Big Data Mining and Analytics, vol. 3, no. 3, pp. 196-207, 2020.

[142] B. R. Fernando, Y. Qi, C. Yakopcic, and T. M. Taha, "3D memristor crossbar architecture

for a multicore neuromorphic system," in 2020 International Joint Conference on Neural

Networks (IJCNN), 2020: IEEE, pp. 1-8.

143

[143] A. Roohi, R. Zand, D. Fan, and R. F. DeMara, "Voltage-based concatenatable full adder

using spin hall effect switching," IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, vol. 36, no. 12, pp. 2134-2138, 2017.

[144] P. Barla, V. K. Joshi, and S. Bhat, "Design and analysis of SHE-assisted STT MTJ/CMOS

logic gates," Journal of Computational Electronics, vol. 20, no. 5, pp. 1964-1976, 2021.

[145] C. Sakr and N. Shanbhag, "An analytical method to determine minimum per-layer

precision of deep neural networks," in 2018 IEEE International Conference on Acoustics,

Speech and Signal Processing (ICASSP), 2018: IEEE, pp. 1090-1094.

[146] S.-K. Yeom et al., "Pruning by explaining: A novel criterion for deep neural network

pruning," Pattern Recognition, vol. 115, p. 107899, 2021.

[147] S. Jin, S. Di, X. Liang, J. Tian, D. Tao, and F. Cappello, "DeepSZ: A novel framework to

compress deep neural networks by using error-bounded lossy compression," in

Proceedings of the 28th international symposium on high-performance parallel and

distributed computing, 2019, pp. 159-170.

[148] Y. Zhou, S.-M. Moosavi-Dezfooli, N.-M. Cheung, and P. Frossard, "Adaptive

quantization for deep neural network," in Proceedings of the AAAI Conference on Artificial

Intelligence, 2018, vol. 32, no. 1.

[149] S. Mirjalili and S. Mirjalili, "Genetic algorithm," Evolutionary Algorithms and Neural

Networks: Theory and Applications, pp. 43-55, 2019.

[150] W. Chen et al., "Quantization of deep neural networks for accurate edge computing," ACM

Journal on Emerging Technologies in Computing Systems (JETC), vol. 17, no. 4, pp. 1-11,

2021.

144

[151] J. Lin, C. Gan, and S. Han, "Defensive quantization: When efficiency meets robustness,"

in International Conference on Learning Representations, 2019: International Conference

on Learning Representations, ICLR.

[152] K. Liu, B. Dolan-Gavitt, and S. Garg, "Fine-pruning: Defending against backdooring

attacks on deep neural networks," in Research in Attacks, Intrusions, and Defenses: 21st

International Symposium, RAID 2018, Heraklion, Crete, Greece, September 10-12, 2018,

Proceedings 21, 2018: Springer, pp. 273-294.

	Leveraging Signal Transfer Characteristics and Parasitics of Spintronic Circuits for Area and Energy-Optimized Hybrid Digital and Analog Arithmetic
	STARS Citation

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION AND MOTIVATION
	1.1 Research Motivation
	1.2 Need for Adaptive Mixed-Signal Computation
	1.3 Contributions of this Dissertation
	1.3.1 Region-of-Interest Implementation via Ohmic Voltage Degradation
	1.3.2 Area-Efficient Image Compression via Adaptive Quantization
	1.3.3 Spin-Based Computational Analog Block
	1.3.4 Layer-wise Adaptive Quantization

	CHAPTER 2: BACKGROUND AND RELATED WORK
	2.1 Spin-Based Devices
	2.1.1 Magnetic Tunnel Junction (MTJ) Fundamentals
	2.1.2 MTJ Switching Characteristics
	2.1.3 MTJ I-V Characteristics
	2.1.4 MTJ Temperature Dependence
	2.1.5 Spin Hall Effect-based MTJs (SHE-MTJs)
	2.1.6 Probabilistic Spin Logic using Low-Barrier MTJs

	2.2 Memristive Crossbar Arrays (MCAs)
	2.2.1 MCA Fundamentals
	2.2.2 Sneak Currents and Parasitic Voltage Degradation
	2.2.3 Multi-Bit Crossbar Arrays

	2.3 Mixed-Signal Computing
	2.3.1 Analog Computing: Motivation and Related Works
	2.3.2 Mixed-Signal Field Programmable Array (MFPA)

	2.4 Compressive Sensing (CS)
	2.4.1 Sparse Representation of Signals
	2.4.2 Undersampling Sparse Signals
	2.4.3 Non-uniform Sampling
	2.4.4 An Overview of Reconstruction Algorithms
	2.4.5 Hardware Implementation of CS

	2.5 Deep Belief Network (DBN)
	2.5.1 Restricted Boltzmann Machine (RBM)
	2.5.2 Probabilistic Inference Network Simulator (Pin-Sim)
	2.5.3 Probabilistic Interpolation Recoder (PIR)

	CHAPTER 3: NON-UNIFORM CS VIA OHMIC VOLTAGE ATTENUATION
	3.1 Voltage Degradation in MRAM-based Crossbars
	3.2 Non-Uniform Measurement Matrix Implementation
	3.3 Simulation Results
	3.4 Analysis of Size Dependence of Energy Consumption
	3.5 Summary

	CHAPTER 4: AREA-EFFICIENT IMAGE COMPRESSION VIA MEMRISTIVE CROSSBARS LEVERAGING ADAPTIVE QUANTIZATION
	4.1 Crossbar Memory Allocation via Adaptive Quantization
	4.2 AQ for Area-Optimized Image Compression
	4.3 Application to DCT
	4.4 Application to CS
	4.5 Summary

	CHAPTER 5: EXPONENTIATION USING STT MAGNETIC TUNNEL JUNCTIONS
	5.1 Analog Circuit Design
	5.1.1 Op-Amp Design
	5.1.2 Three-Stage Analog Circuit

	5.2 Analog Multiplication
	5.3 Generalized Exponentiation
	5.3.1 Circuit Performance
	5.3.2 Process Variation of MTJ Devices
	5.3.3 Variation in Diode Saturation Voltage
	5.3.4 Temperature Dependence

	5.4 Generalized Functions
	5.5 Summary

	CHAPTER 6: APPLICATIONS OF SPIN-BASED ANALOG COMPUTATION
	6.1 Spintronically Configurable Adaptive in-memory Processing Environment (SCAPE)
	6.2 Application to CS Signal Reconstruction
	6.2.1 Implementation of AMP
	6.2.2 Performance of AMP

	6.3 Application to MNIST Digit Recognition
	6.3.1 Gradient Decay Problem
	6.3.2 Impact of Activation Function
	6.3.3 Mapping Larger Networks

	6.4 DBN Accuracy Enhancement via Triple Modular Redundancy
	6.4.1 Redundant Computing
	6.4.2 Performance of STMR and PTMR

	6.5 Summary

	CHAPTER 7: LAYER-WISE QUANTIZATION OF DEEP BELIEF NETWORKS
	7.1 DNN Precision Analysis
	7.2 Architecture for Layer-wise Quantization
	7.3 Optimization using Genetic Algorithm
	7.4 Simulation Results
	7.5 Summary

	CHAPTER 8: CONCLUSION
	8.1 Technical Summary
	8.2 Future Directions

	APPENDIX: COPYRIGHT PERMISSIONS
	LIST OF REFERENCES

