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ABSTRACT 

While Internet of Things (IoT) sensors offer numerous benefits in diverse applications, they are 

limited by stringent constraints in energy, processing area and memory. These constraints are 

especially challenging within applications such as Compressive Sensing (CS) and Machine 

Learning (ML) via Deep Neural Networks (DNNs), which require dot product computations on 

large data sets. A solution to these challenges has been offered by the development of crossbar 

array architectures, enabled by recent advances in spintronic devices such as Magnetic Tunnel 

Junctions (MTJs). Crossbar arrays offer a compact, low-energy and in-memory approach to dot 

product computation in the analog domain by leveraging intrinsic signal-transfer characteristics of 

the embedded MTJ devices. The first phase of this dissertation research seeks to build on these 

benefits by optimizing resource allocation within spintronic crossbar arrays. A hardware approach 

to non-uniform CS is developed, which dynamically configures sampling rates by deriving 

necessary control signals using circuit parasitics. Next, an alternate approach to non-uniform CS 

based on adaptive quantization is developed, which reduces circuit area in addition to energy 

consumption. Adaptive quantization is then applied to DNNs by developing an architecture 

allowing for layer-wise quantization based on relative robustness levels. The second phase of this 

research focuses on extension of the analog computation paradigm by development of an 

operational amplifier-based arithmetic unit for generalized scalar operations. This approach allows 

for 95% area reduction in scalar multiplications, compared to the state-of-the-art digital alternative. 

Moreover, analog computation of enhanced activation functions allows for significant 

improvement in DNN accuracy, which can be harnessed through triple modular redundancy to 

yield 81.2% reduction in power at the cost of only 4% accuracy loss, compared to a larger network. 
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Together these results substantiate promising approaches to several challenges facing the design 

of future IoT sensors within the targeted applications of CS and ML. 
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CHAPTER 1: INTRODUCTION AND MOTIVATION1 

1.1 Research Motivation 

The growing ubiquity of satellite, cellular and WiFi communications networks has led to the 

emergence of Internet of Things (IoT), a new computing paradigm offering challenges as well as 

opportunities [1]. The IoT vision consists of a global network of interconnected objects [2], serving 

a wide range of functions, including smart home, traffic management, vehicle safety and 

autonomous driving, water quality management, and health monitoring [1, 3]. Communication 

between IoT devices is commonly established through Wireless Sensor Networks (WSNs); in this 

scheme, sensor nodes communicate with each other directly, and with a centralized base station, 

through a multi-hop path [3]. 

WSN sensor nodes typically consist of a sensing unit, processing unit, transceiver unit and 

power supply unit [1, 3]. Power supply units commonly consist of batteries which are costly to 

replace once a sensor is in the field; thus, energy-efficiency is a critical feature in IoT. Area 

efficiency of sensors is also critical [2] to maintain costs within a feasible range. Compressive 

Sensing (CS) is one possible solution to these challenges: given an input signal sparse in a certain 

basis, CS reduces the number of samples taken per frame to attain a reduced set of measurements 

that enable accurate reconstruction of the original signal [3]. By delegating signal reconstruction 

to the base station, CS achieves a reduction in energy, storage and data transmission overheads in 

the IoT sensors.  

 
1 ©IEEE. Part of this chapter is reprinted, with permission, from [132, 136, 137]. 
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A further challenge in IoT design is the need for adaptability: WSN sensors are often placed 

in dangerous, unreachable, unpredictable and dynamic environments where either no mathematical 

model to describe the system behavior is available, or manual re-calibration of the devices is not 

feasible [4]. Thus, WSNs often require smart sensors which use machine learning to adapt to 

changing conditions, e.g., a change in the signal’s region of interest in the context of CS sampling. 

It is thus desirable to have multi-functional sensors, simultaneously capable of signal sampling, 

machine learning, data conversion and data transmission. This challenging combination of 

requirements and constraints necessitates innovations in hardware design within IoT devices. 

1.2 Need for Adaptive Mixed-Signal Computation 

     While CS and machine intelligence offer logical solutions to fundamental constraints of IoT, 

their implementation in hardware presents additional challenges. First, both rely heavily on 

Vector-Matrix Multiplication (VMM), which requires memory for storing matrix elements, as well 

as power for writing memory and performing computations. In-memory computing approaches, 

such as crossbar arrays based on Non-Volatile Memory (NVM) devices, have shown promise as a 

potential solution to this problem. Crossbar arrays offer compact, single-cycle and energy-efficient 

VMM through an analog approach leveraging signal transfer characteristics of NVM circuits, 

allowing for parallel execution of multiply and accumulate operations. Moreover, NVM crossbar 

arrays allow for in-memory computing, thus eliminating significant overheads associated with data 

storage and transfer. Crossbar arrays can be further optimized through an adaptive approach, i.e., 

focusing resources on more critical subsets within the input space. Previous CMOS-only based 

approaches to autonomy and adaptability in FPGAs have concentrated on embedding or 

encapsulating the FPGA devices with a runtime reconfiguration management system [5-11], or 

self-aware throughput sustainment based on dynamic operating conditions [12-17].  
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    Vector output components of VMM operations are commonly post-processed via scalar, often 

non-linear transformations. While this can entail significant overheads within the digital domain, 

an analog approach can once again reduce costs and complexity by leveraging intrinsic properties 

of embedded devices to perform the necessary computations. A pure analog approach to both 

VMM and scalar post-processing is especially beneficial for signal processing applications, where 

the input signal itself is analog. 

     After processing, IoT sensors must transmit data to the receiver; energy efficiency is especially 

critical for data transmission, which can contribute to 80% of power consumption in a sensor node 

[18]. Thus, adaptability is essential for reducing the size of data sets that must be transferred. One 

way of achieving this is through an adaptive quantization program, whereby subsets of data are 

communicated at mixed resolutions depending on relative importance levels. 

      A final hardware challenge is limited read margin of NVM devices. Read margin is particularly 

problematic in the case of Multi-Level Cells (MLCs), i.e., devices holding multiple bits. MLCs 

suffer not only from reduced read margin, but also incur more power and area costs than single-

bit devices [19]. A layer-wise adaptive quantization approach can eliminate the need for MLCs by 

reducing the precision level necessary to represent a given model. 

     In this dissertation, we present a solution integrating these solutions by demonstrating a hybrid 

digital-analog, in-memory computing architecture for energy and area-efficient CS and machine 

learning. A Deep Neural Network (DNN) implementation of machine learning entails multiple 

crossbar arrays stacked in layers, with additional hardware for scalar computations at the output 

of each layer. The same hardware architecture can also be used for CS sampling; the approach 

taken in this research is to individually optimize various aspects of this architecture to reduce 

overheads and improve performance. The first objective is to reduce area and power costs of VMM  
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 Figure 1.1: Contributions of this dissertation as solutions to challenges in IoT sensor design. 

by adapting either density or precision of matrix elements to relative importance levels of 

corresponding input coefficients. The second objective focuses on reduction of costs associated 

with scalar computations by performing these computations exclusively in the analog domain. The 

final objective is cost reduction and performance improvement within DNNs through layer-wise 

adaptive quantization. These objectives and their context are illustrated in Figure 1.1 and explained 

in further detail in the following section. 

1.3 Contributions of this Dissertation 

1.3.1 Region-of-Interest Implementation via Ohmic Voltage Degradation 

 New data path designs that alleviate the von-Neumann bottleneck remain an intriguing and 

promising approach to embedded signal processing. For this design, we consider how the recent 

commercialization of spintronic devices such as Magnetic Tunnel Junctions (MTJs) can offer a 
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promising approach towards this goal. Specifically, a compact and energy-efficient architecture is 

sought for in-memory execution of non-uniform CS. 

 CS is a means of reducing the number of samples taken per frame in the transmission of 

spectrally-sparse and wideband data by sampling at the information rate rather than the Nyquist rate 

[20].  As such, CS provides a solution to unprecedented challenges associated with 5G 

communication, including complexity and power consumption associated with increased 

bandwidths [21]. In addition, CS is applicable to areas such as data collection, data recovery, 

distribution networks and channel estimation [22], among other fields. Through a linear 

transformation, CS limits the number of samples taken per frame to reduce power, storage and data 

transmission costs. Non-uniform CS is particularly advantageous for signals containing a Region 

of Interest (RoI), in which a subset of the signal may be more dense in information and thus more 

critical to reconstruct accurately. Besides having a single RoI, a signal of length n can consist of up 

to n distinct importance levels. Non-uniform CS reduces reconstruction error by differentially 

allocating sampling energy in accordance with the relative importance levels of the input signal 

[23]. 

 Implementing CS sampling in hardware presents unique challenges. One challenge is the need 

for VMM operations, which can be costly when the sample size is large. Previous work [24, 25] 

has sought to address these challenges by assigning VMM operations to a Memristive Crossbar 

Array (MCA). An MCA architecture consists of bit lines running vertically and word lines running 

horizontally to realize a grid structure, with a memristive device providing a connection between 

the corresponding bit line and word line in each cell. The memristive device is a variable resistor 

which changes its resistive state after a certain critical current passes through in either direction. 



6 

 

 MCAs are first programmed such that the conductance of each memristive device represents the 

matrix element at that location. Thus, as voltages representing the input vector components are 

applied to the rows of the array, currents representing the VMM resultant vector components are 

read along each column as a result of Kirchhoff’s Current Law. The output currents are then 

converted to voltage levels by Trans-Impedance Amplifiers (TIAs). The MCA allows for single-

cycle VMM using a dense and area-efficient architecture. 

 Recently, researchers have investigated methods for generating randomness without the use of 

Linear Feedback Shift Registers (LFSRs), e.g., through the use of probabilistic bit (p-bit) devices 

to write tunable random values into each column based on an analog input to the device. The ability 

to generate tunable randomness allows for non-uniform CS, whereby the signal sampling rate, 

determined by the frequency of non-zero elements in each column of the measurement matrix, is 

adapted to the relative importance levels present in the signal. In this approach, sampling rates are 

set via power gating [20], which not only reduces power but can also mitigate aging within CMOS 

transistors [26]. 

 Conventionally, a dedicated hardware unit [27] would be utilized for: a) storing the mapping 

between signal importance levels and the corresponding configuration flow, and b) converting the 

output data to analog for subsequent voltage-to-frequency conversion by the p-bit devices. We 

reduce these hardware overheads by acquiring the necessary circuit-switched configuration settings 

directly from the MCA word lines. 

1.3.2 Area-Efficient Image Compression via Adaptive Quantization 

 Image compression techniques such as Discrete Cosine Transform (DCT) and CS are feasible 

solutions to area and energy challenges of IoT: DCT compresses data through a change of basis to 

the frequency domain; given sparse and wideband data, CS reduces the number of samples taken 
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per frame via a linear transformation. DCT and CS can be used in conjunction to reduce data storage 

and transmission overheads within IoT systems; hardware solutions to such techniques have 

recently been a subject of active research [20, 28]. 

     The wide disparity in significance levels between coefficients in the frequency domain allows 

for optimized hardware approaches concentrating resources to more important coefficients. For 

example, Imran et al. [29] proposed a dynamic mapping approach, assigning more significant 

coefficients to healthier processing elements within an FPGA. Moreover, Salehi et al. [20] 

demonstrated improvements using a crossbar design approach whereby more important coefficients 

are sampled at a higher rate. Finally, Adaptive Quantization (AQ) techniques have shown benefits 

for both DCT [30] and CS [31]. While implementation of AQ in hardware is intriguing considering 

the area constraints of IoT devices, conventional crossbar architectures are not well-suited for such 

an approach. 

     Herein, a novel Magnetoresistive Random Access Memory (MRAM)-based crossbar design [20] 

is presented to implement AQ in hardware by allowing for mixed-precision representation of matrix 

elements. Furthermore, we extend the AQ approach to CS sampling, by dynamically varying 

quantization levels across matrix elements to sample more important signal coefficients at a higher 

precision. Hardware implementations of CS as well as DCT are given on the proposed hardware.  

1.3.3 Spin-Based Computational Analog Block 

     Multiplication and exponentiation operations are critical for a variety of applications, including 

computer vision [32], signal processing [27, 33] and machine learning [34, 35]. Square and square 

root, for example, are commonly used for normalizing vectors in signal processing applications, 

and square root may serve as an activation function for neural networks [34]. Despite their 

ubiquity, a traditional digital implementation of such functions can incur significant area and delay 
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overheads in the digital domain, requiring 12 or more clock cycles to execute [36] and hundreds 

of logic gates [37]. As a result, there has recently been renewed interest in pursuing an analog 

approach to operations such as multiplication, square and square root [38, 39]. 

     Analog circuits trade off computational accuracy for reduction in overheads such as power and 

area; this is an attractive tradeoff for error-tolerant applications where power and area are 

constrained, e.g., IoT devices. The benefits offered by analog computation are magnified when 

used with vector-valued data, since the output data can be transferred to a crossbar array for further 

processing without the need for digital-to-analog conversion [27]. One example of an ideal use 

case is CS. CS entails compression and transmission of a spectrally-sparse signal, and then 

reconstruction of the signal at the receiving end. Machine learning via neural networks is another 

relevant application. 

     In recent years, Field Programmable Analog Arrays (FPAAs) have been proposed as a 

counterpart to traditional digital-only FPGAs, particularly for computations involving sensor 

interfacing and signal processing [40]. FPAAs consist of a set of analog components, such as Field-

Effect Transistors (FETs), capacitors, resistors and diodes integrated into a reconfigurable fabric 

architecture. While a lack of software for FPAA programmability has been a challenge, recent 

developments including the RASP and associated high-level tools have provided a pathway for 

system-level analog design [41]. 

     Analog computation can provide vast energy improvements, up to a 1000-fold improvement in 

computational energy efficiency [42] and thus FPAA technology has already been implemented 

in ultra-low power IoT sensing applications, including temperature sensors and heart rate alarms 

[43]. 

     Herein, we present an analog design for performing generalized nth root and power operations. 
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The use of Taylor series allows for computation of generalized functions as well. Area overhead 

is minimized by a) performing computations in the analog domain based on intrinsic properties of 

the embedded op-amps, and b) a reconfigurable architecture allowing for the realization of 

multiple functionalities within a single fabric. Our design is ideal for area and energy-limited 

applications and allows for computations which may not be efficient in the digital domain for such 

applications, such as computation of DNN activation functions for machine learning. In addition 

to common analog components, our fabric embeds state-of-the-art MTJ devices for added area 

benefits and intrinsic stochasticity. 

1.3.4 Layer-wise Adaptive Quantization 

     A crossbar-based hardware architecture can be readily applied to Artificial Intelligence (AI) 

through DNNs. DNNs consist of multiple crossbar layers which perform a series of linear 

transformations on the input data, with a scalar activation function applied at the output of each 

layer. A simple use case of DNNs is classification of handwritten digits, while more complex tasks 

can include generalized image recognition. These use cases are applicable for IoT sensors, for 

example, in determination of RoI. Previous approaches to scaling up AI processing include 

Marker-Passing wherein the processing activity migrates to where the data resides rather than vice-

versa [44] as realized on the SNAP-1 Parallel AI Prototype [45]. 

     DNNs are first trained on a set of sample inputs to determine a model for further recognition 

tasks. The model consists of matrix elements, i.e., weights, assigned to each layer. Weights are 

commonly stored using a multi-bit representation implemented through MLC devices. Due to the 

increased costs and reduced reliability of MLCs [19, 46, 47], this architecture can be optimized 

through a layer-wise adaptive quantization program, whereby a genetic algorithm is used to 

optimize the bit configuration such that high precision is only assigned to layers which require it. 
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Moreover, the high-precision layers are implemented using a combination of single-bit MRAM 

devices to eliminate the need for MLCs. 

     Herein, we investigate the efficacy of such an approach in terms of improvements in area. 

Layer-wise adaptive quantization is explored as a pathway for decreasing overheads within 

machine learning architectures without degrading accuracy.
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CHAPTER 2: BACKGROUND AND RELATED WORK2 

2.1 Spin-Based Devices 

2.1.1 Magnetic Tunnel Junction (MTJ) Fundamentals 

     Magnetoresistive Random Access Memory (MRAM) based on Magnetic Tunnel Junctions 

(MTJs) has recently been researched as a class of Non-Volatile Memory (NVM) device delivering 

numerous advantages, including near-zero standby power dissipation [27], high endurance [48] 

and vertical integration capabilities resulting in high density [49]. MTJs are composed of two 

ferromagnetic layers: a fixed layer and free layer, separated by a thin oxide barrier, as Figure 2.1. 

shows. The two stable states of the MTJ, the Parallel (P) state and Anti-Parallel (AP) state, are 

determined by the relative orientation of the free-layer magnetization with respect to the fixed 

layer. Device resistance is significantly higher in the AP state. 

     While various materials may be chosen for MTJ fabrication, one common choice is the use of 

Fe for ferromagnetic layers and MgO for the oxide barrier. This structure may be achieved using  

Figure 2.1: Simplified structure of two-terminal MTJ operating under STT switching. 

 
2 ©IEEE. Part of this chapter is reprinted, with permission, from [27, 132, 136, 137]. 
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existing fabrication methods, e.g., molecular beam epitaxy for preparation of the Fe layer, followed 

by growth of the MgO layer using e-beam evaporation and patterning using photolithography [50]. 

The fabricated device is then placed on chip at the fourth metal line, in a CMOS backend process 

[51]. MTJs are commonly vertically integrated with CMOS technology using through-silicon vias 

in a 3D architecture, thus maximizing area efficiency and simultaneously minimizing data transfer 

overheads [52, 53]. As the building block of MRAM technology, MTJs have been proposed as an 

alternative to SRAM in cache memory [54]. Further applications benefiting from a hybrid 

CMOS/MRAM approach include full adders [51] and analog-to-digital converters [55]. 

     MTJ resistance is commonly modeled [56-58] using the following equations: 

          𝑅𝑝 =
𝑡

𝐹𝑎𝑐𝑡𝑜𝑟×𝐴𝑟𝑒𝑎×√𝜑
exp(1.025𝑡√𝜑)                   (2.1) 

                           𝑅𝑎𝑝 = 𝑅𝑝(1 + 𝑇𝑀𝑅)                               (2.2) 

                   𝑇𝑀𝑅 =
𝑇𝑀𝑅0

1+(
𝑉

𝑉ℎ
)2

                     (2.3) 

where Rp is P-state resistance, Rap is AP-state resistance, t is the oxide thickness, 𝜑 is the oxide 

potential, Factor is a material-dependent constant, Area is the device surface area, TMR is the 

tunnel magnetoresistance ratio, V is bias voltage and Vh is the empirically-determined bias voltage 

at which the TMR is half of its initial value. This model is an approximation which neither 

considers voltage dependence of P-state resistance nor temperature dependence of resistance. 

2.1.2 MTJ Switching Characteristics 

     MTJ switching can occur through the Spin Transfer Torque (STT) mechanism, whereby a spin-

polarized current passing through the device reverses the magnetization orientation of the free 

layer [59]. The MTJ is a two-terminal device when configured for STT switching, as Figure 2.1 
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shows. The free-layer magnetization in an MTJ is governed by the Landau-Lifshitz Gilbert (LLG) 

equation [58]: 

𝑑𝒎

𝑑𝑡
= −𝛾𝒎×𝑯𝒆𝒇𝒇 + 𝛼𝒎×

𝑑𝒎

𝑑𝑡
− 𝜌𝑠𝑡𝑡𝒎× (𝒎 ×𝒎𝑟)                  (2.4) 

where Heff is the effective magnetic field,  is gyromagnetic ratio,  is a damping coefficient, m 

and mr are magnetizations of the free and fixed layers respectively, and stt is the spin transfer 

torque coefficient and is directly proportional to the current passing through the device. MTJs are 

commonly composed of uniaxial ferromagnets, i.e., there is only one easy axis, and thus two 

directions, along which the magnetization is stable, though an energy barrier must be overcome in 

order to switch between the two states. The time it takes the free layer to switch between these two 

stable states is determined by solving the LLG equation. In spintronic circuit design, switching is 

typically driven by the last term in Eq. 2.4, which is directly proportional to the spin-polarized 

current density passing through the device.  

2.1.3 MTJ I-V Characteristics 

     In 1963, Simmons [60] examined the problem of electron tunneling between two metals 

separated by an insulating film. Simmons considered linear variation of potential through the film 

and conducted his analysis for different ranges of bias voltage. Brinkman’s 1970 publication [61] 

extended this work by also accounting for electronic band structure. Brinkman determined the rate 

of electrons tunneling through the film by integrating the density of states in the metals comprising 

the two electrodes, the Fermi distribution function and the tunneling probability. He thereby 

determined the tunneling current density, and then the conductance through the film, which he 

expanded to second order in voltage to get: 
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𝐺(𝑉) = 𝐺0[1 − (
𝐴0∆𝜑

16𝜑
3
2

)𝑒𝑉 + (
9

128

𝐴0
2

𝜑
)(𝑒𝑉)2]                   (2.5) 

  𝐺0 = (3.16 × 1010
√𝜑

𝑡
) exp(−1.025𝑡√𝜑)                   (2.6) 

                            𝐴0 =
4√2𝑚𝑡

3ħ
                     (2.7) 

where G is conductance, V is bias voltage, ∆𝜑 is the potential barrier through the film, 𝜑 is average 

potential in the film, e is electron charge, t is film thickness, m is the electron mass and ħ is the 

reduced Planck constant. According to Brinkman’s analysis, Eq. 2.5 is accurate to within 10% 

when the film thickness is at least 1 nm and 
∆𝜑

𝜑
 is less than 1. 

     While Brinkman’s model treated film conductance as a function of bias voltage, he did not 

consider any magnetic properties of the metals sandwiching the film and hence did not give any 

analysis of conductance as a function of relative magnetization orientation. The first MTJ was 

considered in 1975 by Julliere [62] who considered a junction composed of Fe-Ge-Co. Julliere 

determined that the conductance variation through the germanium layer separating the two 

ferromagnets was given by the relation: 

𝐺𝑝−𝐺𝑎𝑝

𝐺𝑝
=

2𝑃𝑃′

1+𝑃𝑃′
                    (2.8)  

where 𝐺 is conductance and P and P’ are spin polarization factors for the two ferromagnetic layers 

given by P = 2a – 1 and P’ = 2a’ – 1, where a and a’ are the fractions of tunneling electrons 

entering iron and cobalt, respectively, whose magnetic moments are parallel to the magnetization. 

     Further analysis by Slonczewski in 1989 yielded the following equation for conductance [63]: 

     𝐺(𝜃) = �̅�(1 + 𝑃𝑃′𝑐𝑜𝑠𝜃).                   (2.9) 
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where �̅� =
𝐺𝑝+𝐺𝑎𝑝

2
 and 𝜃 is the angle between magnetization vectors in the two ferromagnetic 

layers. 

     Slonczewski’s 1996 publication [64] went further to propose the STT switching mechanism for 

MTJs, wherein he predicted a critical current that must be reached in order for the device to switch 

from the P state to the AP state and vice-versa. This current, Ic, can be expressed as [65]: 

𝐼𝑐 =
2𝛼𝛾𝑒𝐸

𝜇𝐵𝑔
                  (2.10) 

where 𝛼 is the same damping constant that appears in the LLG equation, 𝛾 is the gyromagnetic 

ratio, e is the electron charge, 𝐸 is the energy barrier between P and AP states, 𝜇𝐵 is the Bohr 

magneton, and g is the spin polarization efficiency factor. In general, the device will switch when 

a positive current equal to Ic+ passes through it; when the current is removed, the device will retain 

its state and only switch back when a negative current Ic- passes through it. Thus, the state of the 

device follows a hysteresis curve. The presence of the hysteresis curve gives the device its memory 

properties.  

While Ic+ and Ic- are both given by Eq. 2.10, their value may be different due to the state-

dependence of the g parameter in that equation. Furthermore, both critical current values may be 

lowered at the cost of higher switching delay, giving a tradeoff between power and performance. 

     Since Slonczewski’s 1996 publication, many MTJ resistance models, both physical and 

empirical, have been explored. One common approach [56-58] is to express the P state resistance 

as a zero-order Brinkman model, i.e., using just the first term of Eq. 2.5 and then defining the 

tunnel magnetoresistance ratio as 𝑇𝑀𝑅 =
𝑅𝑎𝑝−𝑅𝑝

𝑅𝑝
 so that the AP state resistance may be expressed 
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as: 𝑅𝑎𝑝 = 𝑅𝑝(1 + 𝑇𝑀𝑅). This is the same model which was presented earlier through Eq. 2.1 – 

2.3; since the only parameter in this model is the TMR, it may be referred to as the TMR model. 

2.1.4 MTJ Temperature Dependence 

     Experimental evidence [66] has shown that MTJ conductance varies with temperature. Thus, 

temperature dependence is a characteristic shared between electronics and spintronics. A 

temperature-dependent model for MTJs, proposed by Shang [67], is: 

𝐺(𝑇, 𝜃) = 𝐺𝑇(𝑇){1 + 𝑃(𝑇)2𝑐𝑜𝑠𝜃} + 𝐺𝑆𝐼(𝑇)               (2.11) 

𝐺𝑇(𝑇) =
𝐺0𝐶𝑇

sin(𝐶𝑇)
                   (2.12)

 𝑃(𝑇) = 𝑃0(1 − 𝛼𝑇
3

2)                   (2.13) 

where G is conductance, T is absolute temperature, P is spin polarization, and G0, C, P0 and 𝛼 are 

fitting parameters. The theoretical basis for Eq. 2.11 is that the 1 + P2cos𝜃 factor comes from 

Slonczewski’s model (Eq. 2.9), the GT factor accounts for thermal broadening of Fermi 

distributions and GSI is polarization-independent conductance. Polarization is assumed to follow 

the same temperature dependence as magnetization, which follows a 𝑇3/2dependence to account 

for thermal excitation of spin waves. Due to excellent agreement of Shang’s model with 

experimental data, the model has seen widespread use [66, 68] since its original publication. 

2.1.5 Spin Hall Effect-based MTJs (SHE-MTJs) 

     A key challenge facing MTJs is the high energy cost of STT switching. As a solution to this 

challenge, researchers have investigated the Spin Hall Effect (SHE) as an alternative switching 

mechanism, which brings dual benefits of lower switching energy and separate read and write 

paths. The SHE-MTJ is a three-terminal device fabricated by connecting the free layer to a heavy  
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Figure 2.2: SHE-MRAM device in the P state (left) and AP state (right). The device switches states 

based on charge current passing through the heavy metal strip. 

 

metal strip [69], as shown in Figure 2.2. Common materials for the heavy metal strip include 

−Tantalum, −Tungsten, and Platinum. Through the Spin Hall Effect, a bi-directional charge 

current passing through the heavy metal strip generates a spin-polarized current through the device; 

if magnitude and time duration are sufficient, this spin-polarized current then reverses the 

magnetization orientation of the free layer [27, 55]. Interestingly, the induced spin current can be 

larger in magnitude than the inducing charge current.   

2.1.6 Probabilistic Spin Logic using Low-Barrier MTJs 

     In addition to device resistance, the energy barrier, 𝐸𝐵, between the P and AP states of an MTJ 

device can be tuned based on fabrication dimensions. The device is considered to be low-barrier 

under the condition 𝐸𝐵 ≪ 40𝑘𝑇, in which case thermal fluctuations at room temperature are 

sufficient to change the state of the device. This observation has led to construction of the 

probabilistic bit (p-bit) device, as shown in Figure 2.3. A p-bit [70, 71] takes analog input and 

yields a digital output whose probability of being logic 1 depends on the supplied input voltage. 
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This functionality is due to the p-bit’s structure as a voltage divider between a low-barrier MTJ 

and NMOS transistor. A higher voltage applied to the gate of the transistor results in reduced drain-

source resistance, 𝑟𝑑𝑠, which increases the probability of delivering sufficient voltage to the input 

of the inverter to yield a logic 1 output. 

      The p-bit output is described by: 

𝑉𝑜𝑢𝑡 = 𝑉𝐷𝐷sgn[tanh (
𝑉𝑏

𝑉0
) + rand(−1,1)]                 (2.14) 

where sgn represents the sign function, rand(−1,1)represents a random number in [-1,1], 𝑉𝑏 is 

bias voltage and 𝑉0 is a model parameter [70]. Thus, the probability of obtaining a logic 1 output 

from the p-bit device is given by: 

            P(1) = 
1

2
(1 + tanh (

𝑉𝑏

𝑉0
)).                                        (2.15) 

Averaging p-bit outputs yields the hyperbolic tangent function through Eq. 2.15. 

Figure 2.3: Structure of a p-bit device consisting of a voltage divider between a low-barrier MTJ 

device and NMOS transistor (a); probability of a logic 1 output value (b). 

                

 

 

 

a b 
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2.2 Memristive Crossbar Arrays (MCAs) 

 

2.2.1 MCA Fundamentals 

     Memristive Crossbar Arrays (MCAs) are a class of in-memory computing architecture 

consisting of word lines and bit lines, forming columns and rows, respectively, to realize a matrix 

structure. The word lines and bit lines are interconnected via programmable and nonvolatile 

memristive devices, such as MRAM or Resistive Random Access Memory (RRAM) [28]. Given 

a set of input voltages, vj, applied along the MCA word lines, the current on the kth bit line, ik, is 

given as 𝑖𝑘 = ∑ 𝐺𝑗𝑘𝑣𝑗𝑗 , where 𝐺𝑗𝑘 represents the conductance of the memristive device at the 

intersection of the jth word line and kth bit line; this relationship is a direct result of Kirchhoff’s 

Current Law. As a result of this relationship, MCAs are intrinsically well-suited for VMM 

computations by setting conductance values to represent matrix elements and providing vector 

inputs as voltages to the array. Since negative conductance values are not attainable, VMM is 

commonly computed using a dual crossbar design to incorporate negative matrix elements. MCAs 

may also be configured to solve systems of linear equations and the eigenvalue problem [72]. 

Figure 2.4: Spin-based MCA, consisting of 1) p-bit, 2) Memristive Device (MD) implemented via 

MRAM or RRAM, 3) op-amp and 4) integrator. 

                                                 

 

Positive Weights      Negative Weights 
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      MCAs deliver a variety of advantages in VMM computation, including single-cycle VMM if 

the input data set is within the size limits of the array [28, 73]. Moreover, MCAs realize significant 

reductions in area and energy by performing computations in analog based on intrinsic signal 

transfer characteristics of embedded memristive devices. It was recently seen [27] that MCAs can 

realize up to a 5× reduction in energy and a 26× device reduction compared to a CMOS equivalent 

using SRAM cells together with multiply and accumulate units. Computation in the analog domain 

is especially advantageous for signal sensing applications, where inputs are given in analog. 

     As shown in Figure 2.4, MCAs are typically designed with transimpedance amplifiers at each 

word line output for converting currents to voltages that can interface with other units. Moreover, 

spin-based MCAs can include p-bit devices built into bit lines and word lines for stochastic 

computing applications.  

2.2.2 Sneak Currents and Parasitic Voltage Degradation 

 

       One challenge to MCA functionality is the presence of sneak currents [74]. Sneak currents 

arise due to the difficulty of targeting a single cell in the array: in order to pass a current through 

a designated memristive device, either for reading or writing, the corresponding word line must be 

brought to VDD while the bit line must be held at ground, or vice-versa. However, as seen in Figure 

2.5, this configuration also introduces currents through non-targeted devices. To counteract this, 

all word lines and bit lines other than the ones belonging to the target device are held at VDD/2. 

While this reduces the voltage difference across non-target devices from VDD to VDD/2, a certain 

amount of current still flows through the half-selected devices, i.e., devices sharing either a bit line 

or word line with the targeted device These currents are referred to as sneak currents and can result 

in significant energy overheads and performance degradation of the architecture. 
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Figure 2.5: Sneak currents, represented by red arrows, introduced in writing to the top-right device 

in a 2×2 MCA. Also shown is the parasitic line resistance. 

 

    One common method of mitigating sneak currents is through the use of bi-directional selector 

diodes [75, 76]. These diodes are connected in series with the memristive device in each cell and 

can block current from flowing through half-selected devices given a voltage bias within a certain 

threshold. Another strategy is introducing a CMOS transistor in series with each device, which 

allows control over which cells are active at a given time. These architectures are commonly 

referred to as 1S1R and 1T1R, respectively [77]. 

    A second challenge pertaining to crossbar arrays is the presence of parasitic line resistance, 

which results in reduced voltage drop across memristive devices due to IR loss within word lines 

and bit lines comprising the array. The IR loss is amplified by sneak currents and can be 

considerable in the absence of mitigation strategies. 
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     Voltage degradation arising from parasitic IR loss leads to reduced performance in devices 

located far from the voltage sources in the array. During the write operation, this reduced voltage 

drop can significantly increase the time taken for a device to switch, e.g., a 0.4 V reduction in 

voltage drop across a device can increase switching delay by a factor of 10 [74]. The IR drop effect 

can also lead to read and write failures. While write failure may be avoided by using increased 

voltages, such an approach is not ideal since it entails increased power consumption and increases 

the probability of write disturbance. 

     A variety of approaches have been proposed to mitigate the challenges described above. Xu 

[74] proposed splitting writes into the crossbar into two cycles, i.e., performing half of the writes 

in one cycle and half in the next in order to limit the amount of current flow. Shevgoor [78] 

proposed using a sample and hold circuit to store charges generated by the sneak currents on a 

capacitor, and thus cancel out future sneak currents during the next write or read operation. Zhang 

[79] proposed mapping hot data, i.e., frequently accessed data, to fast regions in the MCA while 

mapping cold data into slower regions, having greater voltage degradation and thus greater 

performance loss. Zhang [80] further proposed splitting bit lines using a separation transistor and 

using this approach to differentially map data based on access frequency.  

2.2.3 Multi-Bit Crossbar Arrays 

     Multi-bit representation of matrix elements is often necessary for precise computations. 

Previous works include a variety of methods for achieving this in hardware. One approach is 

through the use of Multi-Level Cell (MLC) devices implemented using MRAM [47, 81] or RRAM 

[82]. Authors in [47] discuss challenges facing MLC devices, i.e., frequent read errors, incomplete 

writes, and write disturbance as a result of thermal fluctuations and process variation. This is 

particularly true for technologies such as MRAM that are especially limited in read margin. 
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Despite their limited reliability, authors in [81] discuss the feasibility of incorporating MLCs for 

approximate computing applications. 

    In addition, authors in [83] discuss the use of SOT (Spin Orbit Torque)-MRAM devices for 

construction of multi-bit arrays. Each SOT-MRAM device consists of a fixed number of magnetic 

domains, which switch based on magnitude of current passing through the device. The device 

exhibits intrinsic stochasticity, i.e., the number of magnetic domains that switch for a given current 

is given by a sigmoidal probability distribution. However, SOT-MRAM devices also exhibit 

significant area overhead as a result of holding values through a thermometer code and require 

significant energy overheads for write operations. 

    Multi-bit quantization can alternatively be achieved through a combination of single-bit devices, 

either spread across columns of a single crossbar [84, 85], or across multiple crossbar arrays [86]. 

In both cases, intermediate results are combined using shift-and-add operations to yield the final 

vector product. Zou et al. [86] discuss the idea of representing an n-bit weight, w, via 2n crossbar 

arrays, containing the values 𝑔0
+, 𝑔0

−, …,𝑔𝑛
+, 𝑔𝑛

−. During a read operation, the weight is computed 

using the formula: (𝑔0
+ × 20 +⋯+ 𝑔𝑛

+ × 2𝑛) − (𝑔0
− × 20 +⋯+ 𝑔𝑛

− × 2𝑛). In addition to 

simplicity, this method provides added security since an adversary is not able to infer information 

from the memory, given access to only one crossbar array. Matrix splitting is commonly necessary 

for physical mapping of matrices due to the size of the matrix exceeding currently manufacturable 

crossbar arrays, as well as non-linear voltage degradation effects affecting computational accuracy 

[87, 88].  

    To reduce area in a multi-crossbar memory, Chen et al. [89] show that individual crossbars can 

be stacked in a 3D architecture; by reversing the deposition order between layers, the authors 

reduce hardware overheads by sharing electrodes and interconnection wires. Furthermore, for 
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further memory optimization, Khan et al. [90] demonstrate a technique for reading multiple bits 

simultaneously in a single MRAM array by modifying the bias voltage applied to unselected cells 

to maintain a feasible sensing margin. Furthermore, the authors achieve multi-bit write operations 

by applying a pulsed bias voltage to unselected cells to prevent write disturbance.  

     Multi-bit arrays allow for adaptive quantization techniques for optimal allocation of resources. 

Proposed techniques have included dynamic reconfiguration of bit-widths in Analog to Digital 

Converters (ADCs) at the outputs of the array [28]; this approach reduces computational power in 

signal conversion, as well as reducing memory and bandwidth requirements for data storage and 

transmission. Furthermore, Khan et al. [91] gave an MCA-based approach for dynamic layer-wise 

weight quantization in neural networks by using multiple memristive devices spread across MCA 

columns to hold a single weight; the authors used a power gating technique to switch off certain 

columns for low-precision computations. Other approaches to MCA-based adaptive quantization 

[92, 93] have targeted the weight mapping distribution for a fixed precision level, rather than 

varying levels of precision. 

2.3 Mixed-Signal Computing 

 

2.3.1 Analog Computing: Motivation and Related Works 

     Analog computation relies on intrinsic signal transfer characteristics of circuit components to 

conduct computations. Analog computations tend to be approximate, but may be superior to digital 

counterparts in latency, power consumption, and area albeit at times subject to significant 

precision, noise, temperature, and operating voltage challenges. 

     Implementation of analog computation has taken a wide variety of forms within AI 

applications. A recent work [94] discusses analog computation in the context of one type of neural 

network, i.e., the multilayer perceptron (MLP). The MLP hardware utilizes MOSFET-based 
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current mirrors along with operational transconductance amplifiers to perform VMM. Two 

operations are performed: multiplication and addition utilizing Kirchhoff’s Current Law in order 

to sum the current signals at a specific node. Authors in [95] propose a generalized non-linear 

function synthesizer through Taylor series approximation. The hardware implementation relies on 

successive application of a squaring unit (SU) based on a class AB current mirror architecture and 

yields a maximum error of 10% for a 5th order polynomial. Meanwhile, authors in [96] show how 

to construct a reliable nonlinear circuit to exploit nonideal properties within a cascaded array of 

analog multipliers for simulation of mathematical chaos. In [97], a mixed analog and digital hybrid 

solution is introduced that seeks to alleviate challenges, e.g., lack of programmability associated 

with a fully analog nonlinear computation stack. The architecture developed by the authors is 

applied to obtain solutions to non-linear ordinary differential equations. In [98], root and power 

computations are implemented using time-mode circuits. Its hardware relies on the translinear 

principle, i.e., exponential I-V characteristics of CMOS transistors, which allow computations by 

cascading exponential and logarithmic units. 

     Several authors have sought automated hardware synthesis and optimization through the use of 

genetic algorithms. In [99], which is one of the pioneering works in this field, the authors present 

a wide variety of analog circuits produced via genetic algorithms, including a cube root 

implementation. Subsequently, [100] expands upon the work of [99] to synthesize a wider variety 

of evolutionary computation circuits, with improved output error. Meanwhile, [101] conducts 

iterative refinement on computational circuits including squaring, square root, and cubing circuits. 

From this iterative process, certain circuits that are created through genetic programming are able 

to be refined through the error produced from the previous best-of-run from the same circuit. 

Authors in [102] extend this approach by combining analog and digital computation, whereby out- 
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Table 2.1: Summary of analog computation architectures, including hardware overhead. 

 

puts are refined digitally to improve computational accuracy for less error-prone applications. 

Finally, [103] explores synthesis of arbitrary functions through Puiseux series, using genetic 

algorithms to minimize error. Table 2.1 summarizes a selection of these works, highlighting the 

hardware overheads in comparison to an approximate digital multiplier requiring ~1000 

components [37]. 

2.3.2 Mixed-Signal Field Programmable Array (MFPA) 

     Due to the significant benefits offered by analog computation to certain use cases, there has 

been a renewed interest in extending the scope of reconfigurable computing to the analog domain. 

The Reconfigurable Analog Signal Processor (RASP) [41] introduced in 2012 was an attempt to 

overcome two of the main challenges preventing widespread adaptation of analog processing: lack 

of a programmable interface and lack of robust design tools. The RASP provided a set of high-

level design tools for system-level analog design.  

Work Functionality Mode of operation 
No. of 

elements 

Highlighted 

Contributions 

[95] 
nth power via 

Squaring Unit 

Class AB current 

mirror 
22  

Arbitrary nonlinear 

functions in terms of 

Taylor series expansion 

[98] 
Square, cube, 4th 

power 

Translinear time-to-

voltage and voltage-

to-time convertors 

~100 

Nonlinear operations 

through the time-mode 

translinear principle 

[99] Cube root 

Evolved 

computational 

circuit 

48 
Pioneer in evolutionary 

circuit design 

[100] 
Square, square root, 

cube, cube root 

Evolved 

computational 

circuit 

≤44 

Genetic algorithms for 

optimizing analog circuits 

for non-conventional 

applications 
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     Concurrently with the introduction of the RASP, researchers [40] developed a Field 

Programmable Mixed-Signal Array (FPMA) consisting of both analog and digital elements 

arranged in a Manhattan-style fabric. Their design consisted of Computational Logic Blocks 

comprised of LUTs and D Flip-flops, and Computational Analog Blocks consisting of analog 

elements such as op-amps, capacitors, and transistors. Their design used a global interconnect to 

integrate transistors (FETs), capacitors, resistors and diodes into a reconfigurable fabric 

architecture. Further innovations have included introduction of a 16-bit microprocessor into the 

FPMA fabric [104], and Time-Domain Configurable Blocks for dynamic reconfigurability of 

analog functions [105].  

The Mixed-Signal Field Programmable Array (MFPA) [27] advances a device-level-to-

architecture-level approach to integrate front-end signal processing within a low-footprint 

reconfigurable fabric that enables mixed-signal computing for high-throughput on-chip CS. 

Mixed-signal techniques combined with in-memory computation geared to the demands of CS are 

integrated in a field-programmable and run-time adaptable platform.      

Figure 2.6: Hybrid spin/charge device realization as configurable blocks within the MFPA fabric. 
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As shown in Figure 2.6, the MFPA architecture entails a circuit and register-level design so 

that an MFPA slice acquires analog signals and then performs CS sampling and reconstruction via 

in-memory computing using reduced precision/dynamic range. In-memory computing approaches 

extend related works, such as Rabah’s architecture [106] consisting of separate processing 

elements (PEs) and memory elements (MEs). The architecture develops analog computable 

memories, or analog computing arrays, where instead of storing the analog values to be used by 

external computing elements, in-memory computing is utilized. This cross-cutting beyond-von-

Neumann architecture explores the use of dense MRAM-based crossbar arrays to perform VMM 

necessary for execution of CS sampling and signal reconstruction algorithms.  

MTJs having low energy barrier are used as compact True Random Number Generators 

(TRNGs) for generation of the CS measurement matrix, as justified within previously-published 

work [20]. The MFPA is composed of two types of Functional Blocks (FBs): Configurable Digital 

Blocks (CDBs) and Configurable Analog Blocks (CABs), similar to CABs and CLBs used in 

previous CMOS-based FPMAs [40, 104]. These FBs are connected via the embedded NVM 

Crossbar Arrays which perform VMM. The recently-published MTJ-based Look-Up Table (LUT) 

[107] is used within CDBs to implement Boolean functions via in-memory computing. 

Additionally, hybrid spin-CMOS ADCs [55] are used within CABs. 

Thus, MTJs are investigated for selected processing roles to simultaneously reduce area and 

energy requirements while providing stochasticity and non-volatility needed for execution of CS. 

MFPAs can advance a unified platform on a single die accommodating a continuum of information 

conversion losses and costs targeting CS applications. Design of such a mixed-signal 

reconfigurable fabric can enable feasible hardware approaches that execute CS algorithms more 

efficiently than digital FPGA-based or CPU-based implementations, which can then be extended 
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to low-energy miniaturization for IoT sensing applications. The parallelism enabled by the fabric 

is readily applicable to other applications relying on VMM, such as artificial intelligence. 

2.4 Compressive Sensing (CS) 

 

2.4.1 Sparse Representation of Signals 

     The sparsity of a signal having length 𝑛 and 𝑘 non-zero coefficients is defined as 𝑆 = 𝑘/𝑛; a 

signal is characterized as sparse if the value of 𝑆 is sufficiently smaller than 1. Many real-world 

signals are comprised of only a small number of significant coefficients when expressed in the 

frequency domain and can therefore be approximated using a sparse representation [108]. One way 

of achieving this is through the Discrete Cosine Transform (DCT), which entails transforming an 

image, I∈ ℝ𝑁×𝑁, to its frequency domain representation, X ∈ ℝ𝑁×𝑁, through the operation X = 

DIDT, where D ∈ ℝ𝑁×𝑁 is the DCT matrix defined as [109]: 

𝐷𝑖𝑗 = {

1

√𝑁
,𝑖 = 0

√
2

𝑁
cos (

𝜋(2𝑗+1)𝑖

2𝑁
) ,𝑖 > 0

                                       (2.16) 

The original image can be recovered from X using the inverse operation, �̂� = DTXD. 

     DCT is widely used as part of the JPEG standard. JPEG processing involves the following 

steps: 1) subdivision of an image into blocks of 8×8 pixels, 2) application of DCT to each block, 

3) quantization of the coefficients in each block to reduce magnitudes, 4) transmission of the 

compressed image, and 5) application of the inverse transform to recover the original image [109]. 

Due to the wide disparity in significance levels of DCT coefficients, only a few coefficients require 

a high-precision representation; thus, Step 3 is achieved by performing a Hadamard product 

between the frequency-domain image, X, and a quantization table, Q, which results in less 

significant coefficients being assigned a progressively coarser quantization [30]. The end result is 
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Figure 2.7: Bipartite graph representation of sampling phase of CS. 

a sparse representation of the image that can be compressed to yield significant reduction in 

computational resources with little impact on quality. 

2.4.2 Undersampling Sparse Signals 

 

     CS is an emerging signal processing technique which allows for undersampling, i.e., sampling 

at a sub-Nyquist rate, of spectrally-sparse and wideband data. Applications of CS include reduction 

of power consumption and complexity in 5G communication networks [21], and reduction of 

sampling duration in time-critical applications such as MRI [43]. CS consists of a sampling phase, 

followed by a reconstruction phase. In the sampling phase, a linear transformation is applied to a 

sparse signal 𝒙𝜖ℝ𝑛 via the measurement matrix, 𝜱𝜖ℝ𝑚×𝑚, to obtain a compressed measurement 

vector, 𝒚𝜖ℝ𝑚, with 𝑚 ≪ 𝑛. This mapping may be represented using a bipartite graph where each 

signal coefficient, 𝑥𝑖, is connected to measurement 𝑦𝑗 via the edge 𝜑𝑗𝑖, as Figure 2.7 shows. 
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     After sampling and transmission of measurements, the receiver must then solve an 

undetermined system of linear equations to reconstruct the original signal. It has been shown that 

in order to exactly reconstruct the signal with a probability 1 − 𝛿, the minimum number of 

measurements is given by: 

𝑚 ≥ 𝐶𝜇2(𝜱,)𝑘 log(𝑛/𝛿)                   (2.17) 

where 𝐶 is a constant and 𝜇 is the coherence between the measurement matrix and the basis, , 

given by: 

𝜇(𝜱, ) = √𝑛 max
1≤𝑖,𝑗≤𝑛

|〈𝝋𝒊,𝒋
〉|                 (2.18) 

where 𝝋𝒊 and 
𝒋
 are row and column vectors of 𝜱 and , respectively. It follows from Eq. 2.17 

that 𝜇(𝜱, ) should be minimized in order to minimize m. If rows of 𝜱 are normalized, then 

∑ |〈𝝋𝒊,𝒋
〉|
2

𝑛
𝑗=1 = 1 for all i, since the change of basis is a unitary transformation. Thus, 

max
1≤𝑖,𝑗≤𝑛

|〈𝝋𝒊,𝒋
〉| attains a minimum value of 1/√𝑛 if |〈𝝋𝒊,𝒋

〉| = 1/√𝑛 for all i and j. Hence, it is 

desirable to have a dense measurement matrix in the same basis that gives a sparse signal [108].  

     One possible approach to the CS reconstruction problem is to choose the solution with the 

lowest sparsity. This translates directly to the minimization problem: 

 �̂� = argmin‖𝒙‖0 s.t. 𝒚 = 𝜱𝒙.                 (2.19) 

Due to this problem being NP-hard [110], it is often reformulated as the basis pursuit problem:  

�̂� = argmin‖𝒙‖1 s.t. 𝒚 = 𝜱𝒙,                  (2.20) 
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which can be solved using convex optimization techniques. It is shown that �̂� is an accurate 

reconstruction of the original signal vector if the measurement matrix satisfies the Restricted 

Isometry Property (RIP) [108], i.e., that for any 2k-sparse vector x,  

                                                       ‖𝒙‖2
2(1 − 𝛿2𝑘) ≤ ‖𝜱𝒙‖2

2 ≤ ‖𝒙‖2
2(1 + 𝛿2𝑘),                (2.21) 

such that 𝛿2𝑘 < 1. RIP prevents any vector of sparsity 2𝑘 from being in the null space of  𝜱. Thus, 

given two 𝑘-sparse vectors, 𝒙1 and 𝒙2, such that 𝜱𝒙1= 𝜱𝒙2, it follows that 𝒙1 − 𝒙2 = 0 since the 

difference of 𝑘-sparse vectors must be 2𝑘 sparse. Thus, RIP ensures unique solutions to Eq. 2.19.  

     Moreover, it has been shown [108] that if 𝛿2𝑘 < √2 − 1, then: 

‖�̂� − 𝒙‖1 ≤ 𝐶0‖𝒙 − 𝒙𝒌‖1                (2.22) 

where 𝐶0 is a constant, �̂� is the solution to Eq. 2.20 and 𝒙𝒌 is equal to 𝒙 with all components, 

except for the largest k components, set to zero. Thus, Eq. 2.22 guarantees a unique solution to the 

basis pursuit problem if 𝒙 is k-sparse and RIP is satisfied with the given condition. 

     In light of the above considerations, it has been seen [20, 108] that random measurement 

matrices, e.g., having column vectors randomly chosen from the unit sphere in ℝ𝑚, or having 

elements chosen from a Gaussian or Bernoulli distribution, are ideal in that they are largely 

incoherent with any given basis while simultaneously obeying RIP. 

     Figure 2.8 illustrates a common IoT image compression flow, which consists of the following 

steps: 1) The image is partitioned into N×N blocks, 2) DCT is performed on each block, 3) 

quantization is performed via a Hadamard product with quantization matrix, Q, 4) the image 

matrix, X*, is mapped to a vector representation, x, and compressively sampled, 5) the compressed 

measurement vector is transmitted to the receiver, which reconstructs the signal, and 6) the image  
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Figure 2.8: IoT signal compression flow, consisting of compressive sampling in the DCT domain, 

transmission, and reconstruction by the receiver. 
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is recovered by converting each block back to spatial domain via inverse DCT and concatenating 

the blocks. Due to space constraints, vectors in Steps 4 and 5 are represented as matrices in the 

figure. 

2.4.3 Non-uniform Sampling 

 

     Real-world signals often exhibit Regions of Interest (RoIs), i.e., subsets of the signal that may 

be more critical to accurately reconstruct than others. One approach is to partition the measurement 

matrix into t sub-matrices, with each sub-matrix having dimensions 𝑚 × 𝑛𝛼𝑡 where 𝛼𝑡 is the 

fraction of columns of 𝜱 occupied by sub-matrix t, as Figure 2.9 illustrates. The density of non-

zero elements in each sub-matrix is determined by the importance level of the subset of x that the 

sub-matrix maps to through the VMM operation. A higher density of non-zero elements 

corresponds to a higher sampling rate for more important signal coefficients. In the bipartite graph 

model, there are more edges connected to nodes that represent these coefficients. This translates to 

a disproportionate amount of sensing energy being allocated to the RoI [23]. 

     Key parameters characterizing 𝜱 are [23]: 1) the matrix dimensions, m and n, 2) the number of 

non-zero elements per row, L, 3) the set of relative widths of the t sub-matrices, 𝛼1, … , 𝛼𝑡, and 4)  

Figure 2.9: Measurement matrix partitioned into t sub-matrices, where sub-matrix densities are 

determined by signal importance levels. 
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the set of values 𝑝1, … , 𝑝𝑡, where 𝑝𝑖 represents the probability that a randomly chosen nonzero 

element in 𝜱 belongs to a particular column in sub-matrix i. These parameters are not all 

independent: they must satisfy the constraints ∑ 𝛼𝑖
𝑡
𝑖=1 = 1 and ∑ 𝑝𝑖𝛼𝑖𝑛 = 1𝑡

𝑖=1 . In the latter 

equation, the expression 𝑝𝑖𝛼𝑖𝑛 represents the fraction of non-zero elements occurring in sub-matrix 

i, compared to the measurement matrix as a whole. 

     Explorations in partitioned CS were first motivated by speed ups available through parallel 

processing [111] and [112]. This same approach was quickly applied to non-uniform CS by authors 

motivated by observations including varying pixel saliency levels in images [113] and 

heterogeneity in WSNs [114]. Various methodologies have been proposed for RoI detection, 

including Bayesian inference [115] and reinforcement learning [116]. 

2.4.4 An Overview of Reconstruction Algorithms 

 

     Convex optimization using basis pursuit is one of several methods of reconstructing a signal 

from its measurements. An alternate convex optimization approach is Least Absolute Shrinkage 

and Selection Operator (LASSO), which solves the following optimization problem [117]: 

     �̂� = argmin (
1

2
‖𝒚 − 𝜱𝒙‖2

2 +  ‖𝒙‖1)                 (2.23) 

where  is a Lagrange multiplier which specifies the balance between low-error and low-sparsity 

solutions. LASSO is useful for optimal recovery of signals transmitted over noisy channels.  

     Approximate Message Passing (AMP) is a reconstruction algorithm with low complexity, 

allowing for fast convergence. Derived from the Iterative Soft Thresholding (IST) technique, AMP 

approximates the signal in Iteration i as [118]: 

     �̂�𝒊 =  (�̂�𝒊−𝟏 +𝜱𝑻𝒓𝒊−𝟏)                  (2.24) 

where (𝑥) is a soft-thresholding function and the residual, 𝒓𝒊 is defined as: 
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     𝒓𝒊 =  𝒚 −𝜱�̂�𝒊 + 𝑏𝑖𝒓𝒊−𝟏                  (2.25) 

and 𝑏𝑖 =
1

𝑚
 ‖�̂�𝒊‖0. The key difference between IST and AMP is the last term in Eq. 2.25, which 

allows for improvement in convergence rate without increasing complexity. A more complete 

treatment of AMP is given in [119]. 

     Greedy algorithms provide an alternate class of reconstruction techniques which can provide 

for computational benefits. Orthogonal Matching Pursuit (OMP) is one example of a greedy 

reconstruction algorithm which selects the column of 𝜱 most correlated with the residual 𝒓𝑖−1 in 

each iteration. The signal can then be approximated in Iteration i by solving the least squares 

problem [110]: 

     �̂�𝒊 = argmin(‖𝒚 − 𝜱𝒊�̂�‖2)                    (2.26) 

where 𝜱𝒊 is initially set to zero and is augmented by the selected column of 𝜱 at each iteration. 

     Regularized Orthogonal Matching Pursuit (ROMP) is similar to OMP but beneficial in noisy 

applications [117]. ROMP also starts each iteration by computing correlations between columns 

of 𝜱 and the residual. Instead of selecting a single column of 𝜱 at each iteration, ROMP selects 

multiple columns to allow for the possibility of corruption due to noise. 

     Finally, Compressive Sampling Matching Pursuit (CoSAMP) seeks to reconstruct 𝒙 by 

identifying its support set, i.e., set of indices having non-zero coefficients [117]. CoSAMP begins 

by computing the signal proxy given by 𝒄𝑖 = 𝜱𝑇𝒓𝑖−1 where 𝒓𝑖−1 is the residual of the previous 

iteration. Next, the 2𝑘 coefficients of 𝒄𝑖 with highest magnitude are used, together with the 

estimate from the previous iteration, to estimate the support set of 𝒙. As in OMP and ROMP, the 

corresponding columns of 𝜱 are then combined to form 𝜱𝒊 and the least squares problem given in 
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Eq. 2.26 is solved to estimate the signal, �̂�𝒊. At the conclusion of each iteration, the estimated 

support set is pruned by keeping only indices of the k largest coefficients in �̂�𝒊.  

     While the above provides a brief overview of selected CS reconstruction algorithms that 

commonly appear in literature, a more complete treatment of reconstruction algorithms can be 

found in [117]. 

2.4.5 Hardware Implementation of CS 

 

     Several challenges must be overcome in hardware implementation of CS sampling and 

reconstruction. Sampling requires a random number generator for populating the measurement 

matrix as well as computationally intensive operations such as VMM. Reconstruction requires 

multiple iterations involving VMM and matrix inversion. Thus, hardware and software 

optimizations are necessary to accommodate CS in resource-limited applications such as IoT. 

     Hardware implementations of sampling have included Massoud’s crossbar design [24] 

leveraging RRAM devices randomly programmed using Linear Feedback Shift Registers (LFSRs). 

Qian [25] eliminated the need for LFSRs by achieving randomness through the intrinsic process 

variation present within RRAM devices. Moreover, Salehi [20] proposed an MRAM-based crossbar 

array consisting of SHE-MTJs for non-uniform sampling, as shown in Figure 2.10. In this approach, 

stochastic properties of low-barrier MTJs are leveraged by using p-bit devices to populate the 

matrix. P-bits are especially useful for non-uniform sampling since they allow for tunable 

stochasticity, i.e., the capability to adjust the probability of non-zero outputs by means of an input 

voltage. While the above approach using single-bit devices is useful for Bernoulli matrices, Salehi 

extended this approach to accommodate for Gaussian matrices as well, by using SOT-MRAM 

devices which exhibit multi-bit precision and intrinsic stochasticity at the cost of increased area.  
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     Hardware implementation of reconstruction algorithms has focused on maximization of 

parallelism and minimization of complexity. Septimus and Steinberg [110] presented an FPGA 

implementation of OMP, where the Moore-Penrose pseudoinverse, 𝜱𝒊
† = (𝜱

𝒊
𝑻𝜱𝒊)

−𝟏
𝜱𝒊

𝑻, was used  

Figure 2.10: Salehi’s implementation of the non-uniform measurement matrix using an MRAM-

based crossbar populated by p-bit devices in each column [20]. 
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to reduce the complexity of matrix inversion operations needed for least squares minimization. 

The authors were able to reduce this computation to that of inverting the symmetric matrix, 𝑪 =

𝜱𝒊
𝑻𝜱𝒊, via the Alternate Cholesky Decomposition, i.e., 𝑪 = 𝑳𝑫𝑳𝑻 where 𝑳 is a lower triangular 

matrix and 𝑫 is a diagonal matrix. Alternate FPGA implementations have been given for algorithms such 

as OMP and AMP [120]. Liu [121] proposed an MCA-based approach to basis pursuit, and Le Gallo 

presented a similar approach to AMP [122]. An implementation of OMP using the MFPA fabric was 

presented in [27]. 

2.5 Deep Belief Network (DBN) 

2.5.1 Restricted Boltzmann Machine (RBM) 

     Restricted Boltzmann Machines (RBMs) are a class of recurrent stochastic neural network 

[123] in which the energy of the network in state k is determined by: 

𝐸(𝑘) = −∑ 𝑠𝑖
𝑘𝑏𝑖 − ∑ 𝑠𝑖

𝑘𝑠𝑗
𝑘𝑤𝑖𝑗𝑖<𝑗𝑖                 (2.27) 

where 𝑠𝑖
𝑘 refers to the state of node i while the network is in state k, and 𝑤𝑖𝑗 represents the weight 

between nodes i and j. Each node in an RBM has a probability of being in state 1 given by: 

             𝑃(𝑠𝑖 = 1) = 𝜎(𝑏𝑖 + ∑ 𝑤𝑖𝑗𝑠𝑗𝑗 )                   (2.28) 

where 𝜎 represents the sigmoid function. Over time, a Boltzmann distribution is reached where 

the probability of finding the system in state k is defined as: 

𝑃(𝑘) =
𝑒−𝐸(𝑘)

∑ 𝑒−𝐸(𝑢)𝑢
                    (2.29) 

where the summation in the denominator is taken over all possible states of the system. An RBM 

is a two-layer neural network consisting of a visible layer and hidden layer which can be trained 

using the Contrastive Divergence algorithm [123], consisting of the following steps: 
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 Figure 2.11: DBN structure consisting of one visible layer and two hidden layers [124]. 

1) Apply a training vector, 𝒗, to the visible layer and sample hidden layer outputs, 𝒉. 

2) Feed back the hidden layer outputs and sample the resulting input, 𝒗’. 

3) Apply 𝒗’ as an input to the visible layer and sample the resulting hidden layer outputs, 𝒉’. 

4) Update the weights according to the equation, ∆𝑊 = (𝒗𝒉𝑇 − 𝒗′𝒉′𝑇) where  is the 

learning rate. 

Deep Belief Networks (DBNs) can be realized by stacking RBMs, as Figure 2.11 shows. Training 

is achieved through an iterative application of the Contrastive Divergence algorithm. 

     As shown in Figure 2.12, DBNs may be implemented using crossbar arrays for computationally 

efficient VMM. Weights are represented by the state of memristive devices in the array; since 

device conductance value cannot be negative, two devices are commonly used to represent a single 

weight, using an architecture such as that shown in Figure 2.4. DBNs require a stochastic neuron 

at each output for computation of the activation function, which can be achieved in MRAM via 

embedded p-bit devices as illustrated in Figure 2.4. 
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Figure 2.12: 784 × 10 DBN implemented using crossbar for MNIST digit recognition [123].  

2.5.2 Probabilistic Inference Network Simulator (Pin-Sim) 

     DBN simulations on the MNIST dataset can be readily performed at both the software and 

hardware level, using the Probabilistic Inference Network Simulator (PIN-Sim) [123]. PIN-Sim 

consists of five modules: first, trainDBN reads the training images in MATLAB and outputs 

weight and bias matrices using the Contrastive Divergence algorithm. A second MATLAB 

module, mapWeight, converts the weight and bias data into device conductance values. First, 

mapWeight splits weights and biases into positive and negative values, i.e., 

𝑤𝑖𝑗
+ = {

𝑤𝑖𝑗,𝑤𝑖𝑗 ≥ 0

0, 𝑤𝑖𝑗 < 0
   𝑤𝑖𝑗

− = {
0,𝑤𝑖𝑗 ≥ 0

−𝑤𝑖𝑗 ,𝑤𝑖𝑗 < 0
               (2.30) 

𝑏𝑗
+ = {

𝑏𝑗 ,𝑏𝑗 ≥ 0

0, 𝑏𝑗 < 0
   𝑏𝑗

− = {
0,𝑏𝑗 ≥ 0

−𝑏𝑗 ,𝑏𝑗 < 0
                           (2.31) 

     Next, mapWeight uses the following equations to set conductance values based on weights and 

biases: 

  ∀𝑤𝑖𝑗𝜖(𝑊
+,𝑊−): 𝑔𝑤𝑖𝑗 =

(𝑔𝑚𝑎𝑥−𝑔𝑚𝑖𝑛)×(𝑤𝑖𝑗−𝑤𝑚𝑖𝑛)

𝑤𝑚𝑎𝑥−𝑤𝑚𝑖𝑛
+ 𝑔𝑚𝑖𝑛                (2.32) 

       ∀𝑏𝑖𝑗𝜖(𝐵
+, 𝐵−): 𝑔𝑏𝑖𝑗 =

(𝑔𝑚𝑎𝑥−𝑔𝑚𝑖𝑛)×(𝑏𝑖𝑗−𝑏𝑚𝑖𝑛)

𝑏𝑚𝑎𝑥−𝑏𝑚𝑖𝑛
+ 𝑔𝑚𝑖𝑛                           (2.33) 
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where 𝑊+,𝑊− represent weight matrices, 𝐵+, 𝐵− represent bias matrices, 𝑔𝑚𝑎𝑥 and 𝑔𝑚𝑖𝑛 are 

maximum and minimum conductance values of all weighted connections in the array, 𝑤𝑚𝑎𝑥 and 

𝑤𝑚𝑖𝑛 represent maximum and minimum elements in weight matrices, and 𝑏𝑚𝑎𝑥 and 𝑏𝑚𝑖𝑛 represent 

maximum and minimum elements in bias matrices.      

     Finally, mapWeight converts the conductance values to resistance values and quantizes these 

values based on device capabilities of the hardware, using the following equation: 

         ∀𝑔𝑖𝑗𝜖(𝐺𝑊
+, 𝐺𝑊−, 𝐺𝐵+, 𝐺𝐵−): 𝑟𝑖𝑗 =

round(𝑄×1/𝑔𝑖𝑗)

𝑄
                (2.34) 

where 𝐺𝑊+, 𝐺𝑊−, 𝐺𝐵+, 𝐺𝐵− represent positive and negative weight and bias conductance 

matrices, and 𝑄 is the quantization factor. 

Figure 2.13: Logical flow of PIN-Sim, including the five main modules involved in DBN 

simulation. 
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     The third PIN-Sim module is mapRBM, a Python script which generates SPICE representations 

of multiple crossbar weighted arrays based on the outputs of mapWeight and the given network 

topology. A final Python module, testDBN, executes a SPICE circuit simulation of the DBN to 

determine classification error rate as well as power consumption. The inputs to the testDBN 

module consist of the outputs of mapWeight and mapRBM as well as the module, neuron, which 

is a SPICE representation of the circuit used for computing the activation function. A visual 

description of PIN-Sim is given in Figure 2.13. 

2.5.3 Probabilistic Interpolation Recoder (PIR) 

     The stochastic analog outputs of probabilistic neurons in each DBN layer must be integrated 

and converted to digital for a fully operational architecture. This is conventionally achieved using 

a resistor-capacitor (RC) circuit followed by ADC, as shown in Figure 2.14a. However, such an 

approach is not ideal for resource limited applications due to the power and area demands of the 

ADC. The Probabilistic Interpolation Recoder (PIR) [124] provides an alternative approach to 

stochastic output digitization with improved resource utilization.  

     Sample and Count-based PIR (SC-PIR) integrates the neuron outputs using an RC circuit and 

samples the resulting outputs, NeuronOUT, at each positive edge of the clock (CLK). A counter is 

then used to accumulate the sampled outputs by incrementing by one whenever NeuronOUT is 

greater than VDD/2. The final outputs are returned as an n-bit digital value, given by OUTn-

1…OUT0, which can be reset to zero through a CTRL signal, as shown in Figure 2.14b.  

     Sample and Shift-based PIR (SS-PIR) is an alternative design which is further optimized for 

energy consumption. SS-PIR also samples integrated neuron outputs at each positive edge of the 

clock. SS-PIR outputs are stored using a bidirectional shift register which shifts right or left if the  
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Figure 2.14: Interpolation of neuron outputs using a) ADC, b) 3-bit SC-PIR circuit, and c) 3-bit 

SS-PIR circuit [124]. 

 

integrated neuron outputs are less than or greater than VDD/2, respectively. The shift register can 

be reset using a CTRL signal, as shown in Figure 2.14c. 
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     SC-PIR and SS-PIR both show slightly increased error, compared to a conventional ADC, when 

set to 3-bit precision in MNIST digit classification applications. However, both variations of PIR 

yield significant improvements in resource utilization as measured by the Energy-Error-Product 

(EEP). PIR can be scaled to greater precision levels at reduced energy cost: 5-bit SS-PIR yields 

lower error rate and significantly lower energy consumption than a 3-bit ADC [124]. 
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CHAPTER 3: NON-UNIFORM CS VIA OHMIC VOLTAGE 

ATTENUATION3 

3.1 Voltage Degradation in MRAM-based Crossbars 

     As seen in Section 2.2.2, voltage attenuation due to parasitic line resistance is a well-known 

effect in crossbar array architectures. This effect is more significant in MRAM-based arrays due 

to the comparatively low resistance of MRAM devices compared to alternatives such as RRAM. 

In this chapter, simulation results are performed in MATLAB using the Modified Nodal Analysis 

technique [125, 126] to determine the significance of the voltage attenuation in 64×64 and 

128×128 arrays. 

Figure 3.1: Voltage difference across elements of 128×128 MRAM-based crossbar with each 

element set to a resistance of 5600.   

 
3 ©IEEE. Part of this chapter is reprinted, with permission, from [132]. 
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     Figure 3.1 is a heat map showing voltage drop across each element of an MRAM-based MCA 

with each device set to a P-state resistance value of 5600 and 1V applied to each row from the 

left side. The parasitic line resistance is 2.5 per cell and no mitigation strategies such as selector 

diodes or pass transistors are used. The figure illustrates the severity of the voltage degradation 

effect, which is >50% for the majority of the array and approaching a 90% loss in the top right 

corner. 

    Figure 3.2 shows the severity of voltage degradation along elements adjacent to the first 64 

columns in the top row of an MCA having a full array of MRAM devices carrying a resistance of 

5600 The figure demonstrates that even for relatively small array dimensions of 64×64, an 

attenuation exceeding 50% can be attained past a certain threshold of line resistance. 

Figure 3.2: Relative voltage attenuation along the top word line of an MCA, for a variety of array 

sizes, n, and line resistance values, r. 
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3.2 Non-Uniform Measurement Matrix Implementation 

     Previous work [20] has demonstrated the possibility of non-uniform CS matrix implementation 

by MRAM-based MCAs. One approach to writing the matrix is by including a p-bit for each 

column to generate m outputs over m clock cycles, writing the crossbar one row at a time through 

a power-gated D flip-flop. Following Eq. 2.15, p-bits corresponding to columns requiring higher 

densities of non-zero elements are simply given a higher input voltage. 

     The proposed architecture supplies appropriate inputs for each p-bit device. A Stochastic 

Bitstream Generator (SBG), shown in Figure 3.3, is connected to each column of an MCA. During 

the control cycle, a voltage Vinput is applied to WL1 with every other word line and bit line in the 

array held at ground. CTRL is high and CTRL̅̅ ̅̅ ̅̅ ̅ is low. Thus, capacitor C is charged to a voltage Vin 

+ Vbias, where Vin is determined by a multiplexer output from t possible inputs, each one being 

sourced from a different location along the first word line in the MCA. Vbias is a DC voltage offset 

necessary to reach the p-bit operational range and is the same in every column. Thus, the proposed 

architecture generates a spectrum of voltages from a single DC voltage source. 

       After the control cycle ends, CTRL and CTRL̅̅ ̅̅ ̅̅ ̅ are switched low and high, respectively, to lock 

in the capacitor voltage. At this time, the power-gated clock connected to the D flip-flop, DFF, 

begins to count m clock cycles, with the output connected to the access transistors of the devices 

in that column. During each clock cycle, a voltage Vw is applied to the corresponding word line in 

the array with all other word lines and bit lines held at zero. Vw is chosen such that it is sufficient 

to write to an SHE-MRAM device. Thus, in each column, the device in row i is written to if and 

only if the ith output of that column’s D flip-flop is a logic 1. 

    The proposed architecture makes use of the Ohmic voltage degradation effect in MCAs to 

intrinsically realize non-uniform CS. The resistance along both the bit lines and word lines of the 
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MCA is modeled as r  per cell. Due to this resistance, the voltage along the word lines decays as 

one proceeds away from the source.      

 

Figure 3.3: a) Stochastic Bitstream Generator (SBG) providing m output bits, with the fraction of 

1’s determined by the input voltage; one SBG is present per MCA column. b) Implementation of 

a 2×2 MRAM-based MCA. 

a 

 

a 

b 

 

b 
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     Modified Nodal Analysis is implemented using MATLAB and verified in HSPICE to determine 

MCA node voltages and power consumption, with MTJs being modeled as linear with resistance 

R. SPICE and MATLAB are used to characterize the p-bit, after which results are fed into the p-

bit device model, which yields a probability of obtaining a logic 1 output given by: 

P(1) = 
1

2
(1 + tanh(

𝑉𝑖𝑛−𝑉𝑐

𝑉0
))                                  (3.1) 

which is a horizontal translation of Eq. 2.15. In the presented research, model parameters of 𝑉𝑐 = 

0.4V and 𝑉0 = 0.04V are used to attain agreement with experimental data [20].     

     Simulations are performed using the 14nm HP-FinFET Predictive Technology Model (PTM) 

library [127], with VDD = 0.8V. MCA dimensions of 64×64 and 128×128 are considered. The sizes 

chosen in our simulations are representative of those commonly found in the literature [125], where 

larger networks are often mapped onto a grid of smaller arrays such as the ones considered herein. 

Moreover, since the severity of voltage degradation correlates with array size, it follows that the 

proposed design is also applicable to larger-sized crossbar arrays.  

     The case of two sub-matrices corresponding to a single RoI is considered. In this scenario, p-

bit inputs, Vin, are sourced from the first word line in the array: from Column 4 for columns within 

the RoI, and from Column 48 for all other columns. To determine the robustness of the proposed 

architecture, a variety of line resistance values, r, corresponding to values found in the literature 

[125], [128, 129], are tested to determine the necessary voltage parameters to maintain the 

measurement matrix characterizations listed in Table 3.1. Parameters of the embedded three-

terminal MTJs [56] are provided in Table 3.2. 

3.3 Simulation Results 

     Figure 3.4 shows that target measurement matrix parameters indicated in Table 3.1 are achieved 

under feasible input and bias voltages for a variety of line resistances. The necessary input voltage 
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Figure 3.4: Input and bias voltage necessary to maintain constant measurement matrix parameters 

for line resistance values in the range from 1 per cell to 5 per cell, for a 64×64 and 128×128 

array. 
 
 
decreases for larger line resistance values as well as larger array size to counteract a higher rate of 

voltage degradation by reducing the current in the array. A higher bias voltage is then required to 

compensate for the reduced input voltage. 

     Figure 3.5a and Figure 3.5b show results for a 64×64 MCA and 128×128 MCA, respectively, 

with on-state and off-state devices represented in yellow and blue, respectively. As expected, a 

sharp reduction in densities is observed in both panels due to a change in multiplexer configuration, 

yielding a reduced input voltage to the SBGs. 

     Table 3.3 lists the delay for configuration of a 64×64 and 128×128 array. In this simulation, a 

parasitic resistance of 2.5 is modeled as a series combination with the capacitor. A clock period 

of 1.6ns is adequate for each capacitor to attain 99.9% of the target voltage. Figure 3.6 provides 

timing diagrams to illustrate the transient response of the SBGs. The top two panels in Figure 3.6  
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Figure 3.5: CS measurement matrix mapped to MCA crossbar array for a) a 64×64 and b) a 

128×128 array size, demonstrating achievement of target parameters given in Table 3.1. Yellow 

and blue cells represent on-state and off-state devices, respectively. 

 

 

show the inputs to the transmission gate within the SBG, indicating that the transmission gate is 

activated at t = 1.0ns. The next panel shows the transient voltage on the SBG capacitor within 

Column 1, which is inside the RoI and charged to a target voltage of around 0.39V. Finally, the 

bottom panel shows the transient voltage on the SBG capacitor within Column 128, which is 

outside of the RoI and hence charged to a reduced voltage of approximately 0.32V. These data 

demonstrate the completion of the control cycle within the 1.6ns period listed in Table 3.3. 

     Table 3.3 also gives energy results, giving the counterintuitive result that the maximum 

configuration energy of 333fJ occurs in the case of the smaller 64×64 MCA. Further analysis on 

this result is provided in Section 3.4. Table 3.4 provides a comparison between the presented 

approach and the alternative of using a 4-bit lookup table (LUT) together with Digital to Analog 

 Converter (DAC) for acquiring the configuration data. Based on prior work [107], a 6-input LUT 

consumes 8.58fJ of read energy per bit, together with 1,547 transistors. Thus, supplying 4 bits to 

each column of a 64×64 array would require 256 LUTs, each being read simultaneously; the cost 

 

  

a b 
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Table 3.1: Simulation parameters for a crossbar representing two sub-matrices, including 

measurement matrix parameters n, m, L,  p1; MTJ P- state resistance, R; line resistance, r; 

capacitance, C; initial word line input voltage, Vinput; and bias voltage, Vbias. 

                                            

 

 

 

 

 

 

Table 3.2: Parameters of the three-terminal MTJ device. 

                                           

                                  

  

 

 

Table 3.3: Simulation results for writing a CS measurement matrix with RoI. 

 

 

 

Table 3.4: Comparison of our presented architecture with the alternative of using a 4-bit lookup 

table and digital-to-analog converter for signal acquisition in a 64×64 array. 

 

 Case 1 Case 2 

n×m 64×64 128×128 

L/n 0.1 0.1 

 0.15 0.15 

p1 5/64 5/128 

R 5600 5600 

r 2.5/cell 2.5/cell 

C 20fF 20fF 

Vinput 0.16V 0.12V 

Vbias 0.24V 0.28V 

Parameters Value 

MTJ area 60nm×30nm× 

Heavy metal volume  100nm×60nm×3nm 

Oxide thickness 0.85nm 

P-state resistance 5600 

Array size Power Time  Total energy 

64×64 208W 1.6ns 333fJ 

128×128 W 1.6ns 270fJ 

Architecture Energy Transistor 

count 

Herein 3fJ 17,088 

LUT+DAC [28], [84] pJ >396,032 
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Figure 3.6: Timing diagram showing (from top to bottom): CTRL signal, CTRL̅̅ ̅̅ ̅̅ ̅ signal, voltage on 

SBG capacitor in 1st column, and voltage on SBG capacitor in 128th column. Data shown is for a 

128×128 array with 0.12V applied along the uppermost word line, and a bias voltage of 0.28V. 

  

would be 2,196fJ of energy in addition to 396,032 transistors. Moreover, a 4-bit DAC consumes 

3pJ per conversion [130]; the total energy would thus be 192pJ if one DAC were included for each 

column of the array. This would bring the total overhead to 194pJ plus 396,032 transistors. In 

contrast, our design consumes 333fJ in total energy for charging the capacitors in each of the 64 

SBGs to the correct input voltage. Moreover, the hardware overhead is limited to 64, 6-input 

multiplexers; at a cost of 267 transistors per multiplexer, this brings the total number of transistors 

to 17,088. Thus, significant reductions in hardware and energy costs are attained by relying on the 

array itself to store and supply the necessary configuration signals. Due to the simplicity of our 

design, we obtain a 583-fold reduction in energy together with a 23-fold reduction in hardware 

resources. 
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3.4 Analysis of Size Dependence of Energy Consumption 

     Table 3.3 gives the unexpected result that greater energy consumption occurs for a smaller 

crossbar array. This section gives a theoretical analysis of this result. First, we note the following 

observations: 

1) Our design uses a control cycle to set the capacitor voltage of each SBG, where SBGs 

serving columns part of the Region of Interest require a higher voltage. Since SBGs acquire 

voltages only from the uppermost word line in the array, only this specific word line 

receives nonzero input voltage. 

2) The 128×128 array receives a lower input voltage than the 64×64 array. Specifically, an 

input of 0.12V is applied to the 128×128 array while an input of 0.16V is applied to the 

64×64 array, as indicated in Table 3.1. This is necessary since both a higher input voltage, 

and larger crossbar size, result in a greater rate of voltage degradation. Thus, a reduced 

input voltage is applied to the larger array in order to compensate for the array size, as 

illustrated in Figure 3.4.  

3) The 128×128 array experiences continual degradation in voltage past the 64th column, 

which can lead to a reduced average top-row voltage compared to the 64×64 array. 

For simplicity, we consider the total power consumption of a 64×64 and 128×128 array under 

steady-state conditions, i.e., treating capacitors as open circuits. The MRAM device resistance 

within the array is assumed to be R = 5600 with a line resistance of r = 2.5  per cell, which are 

the same conditions used in previous simulations. Since voltage is applied only to the uppermost 

word line, roughly 98.6% of the power consumption occurs along the top word line and the devices 

connected to this word line. Hence, the total power consumption can be approximated by: 
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Figure 3.7: Model of top row of an n×n crossbar array, with parasitic resistance along the top word 

line labeled as r, and memristive devices labeled as R. 

 

 𝑃 =
1

𝑅
∑ 𝑉𝑖

2𝑛
𝑖=1 +

1

𝑟
∑ 𝑣𝑖

2𝑛−1
𝑖=1                     (3.2) 

where 𝑉𝑖 refers to the voltage difference across the devices connected to the top word line, 𝑣𝑖 refers 

to the voltage difference across the parasitic resistors in the top word line, and n refers to the 

number of bit lines in the array, as illustrated in Figure 3.7. Eq. 3.2 can also be written as: 

𝑃 =
𝑛

𝑅
𝑉2̅̅̅̅ +

(𝑛−1)

𝑟
𝑣2̅̅ ̅                    (3.3) 

where bars are used to denote average values. Table 3.5 lists the values of 𝑉2̅̅̅̅  and 𝑣2̅̅ ̅ for the 64×64 

and 128×128 in steady-state conditions. Table 3.5 shows that 𝑣2̅̅ ̅, which is a reflection of the 

average rate of voltage degradation along the uppermost word line, is reduced by 52% for the 

128×128 array. This is largely due to a continual degradation in voltage past the 64th column, at a 

reduced rate. 𝑉2̅̅̅̅  for the 128×128 array is reduced by 76% compared to the 64×64 array, which 

makes sense in light of the second and third observations listed above. By substituting the data in  

Table 3.5: Mean square voltage values for 64×64 and 128×128 arrays. Units are V2. 

 𝑣2̅̅ ̅ 𝑉2̅̅̅̅  

64×64 2.30 × 10−6 0.0112 

128×128 1.10 × 10−6 0.00273 

 

 

Vinput 
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Table 3.5 into Eq. 3.3, we obtain P = 186W and P = 118W for the smaller and larger arrays, 

respectively. These values are within 2% of the total steady-state power consumption for the arrays 

and less than the transient average power data listed in Table 3.3. A similar albeit more complex 

analysis could be performed to explain the differences in the transient data. 

     In short, the power consumption for the 128×128 array is lower due to a reduced input voltage 

and greater voltage degradation beyond the 64th column: a quadratic relationship between power 

and voltage counteracts a linear increase in row size. 

3.5 Summary 

    It has been shown that parasitic voltage degradation in a crossbar array can be used to implement 

control logic for applications in non-uniform CS, whereby a range of input signals is intrinsically 

derived from a single bias voltage source. Target inputs are generated within a single clock cycle 

at a maximum energy overhead of 333fJ. Moreover, the results are shown to be robust to array size 

and magnitude of parasitic resistance. While the primary focus has been CS, there are a myriad of 

additional applications requiring non-uniform voltage that could benefit from this approach. 
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CHAPTER 4: AREA-EFFICIENT IMAGE COMPRESSION VIA 

MEMRISTIVE CROSSBARS LEVERAGING ADAPTIVE 

QUANTIZATION 

4.1 Crossbar Memory Allocation via Adaptive Quantization 

     MCAs have been employed for image compression via DCT as well as CS. Li et al. [131] 

demonstrated 2D DCT on a fabricated 64 × 128 array. The authors were able to represent each 

matrix element to 6-bit precision via 64 levels of conductance in the memristors being used. Two 

memristors were used to represent a single matrix element in order to accommodate both positive 

and negative elements without having access to negative conductance values. Zhang [28] 

demonstrated an optimized CAD approach to DCT using memristive crossbars, where the 

computation was restructured to include only a single VMM operation. In addition to DCT, 

crossbar approaches to image compression by CS sampling have been demonstrated by Le Gallo 

[122] and Salehi [20], as discussed in Section 2.4.5. 

     Due to the sparsity of images in the DCT domain, Adaptive Quantization (AQ) is a useful 

memory allocation strategy for image processing applications. In the context of the research 

presented herein, AQ consists of mapping data to memory at variable levels of precision, i.e., 

assigning a greater number of bits to certain subsets of data than others. While the benefits of AQ 

have been previously demonstrated [30, 31], its implementation within a crossbar memory array 

is challenging since conventional crossbar design approaches [84-86] do not readily allow for 

mixed-precision elements within a single array. Previous MCA-based AQ techniques, including 

reconfiguration of ADC bit-widths [28] and power gating parts of the array [91], reduce 

computational energy costs but are still expensive in terms of memory area. To the best of the 

author’s knowledge, there have not been any designs published thus far leveraging adaptive 

precision levels for crossbar memory optimization. 
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4.2 AQ for Area-Optimized Image Compression 

     Herein we propose the Area-Conserving Crossbar Leveraging Adaptive Information Mapping 

(ACCLAIM). The objective of this architecture is to minimize the hardware resources necessary 

to perform image compression without compromising reconstruction accuracy; this objective is 

achieved through an AQ approach involving representation of matrix elements at variable 

precision levels based on relative importance levels of corresponding input coefficients. In contrast 

to the previous approach which performs non-uniform compression using variable sampling rates 

[132], AQ allows for reduction in circuit area in addition to energy consumption. AQ is especially 

effective when working with spectrally-sparse images in the DCT domain. 

     ACCLAIM is similar to previous crossbar designs [84, 85] which use multiple memristive 

devices across adjacent bit lines to represent a single matrix element. In these works, bit line 

outputs are combined using shift and add operations to yield final dot product results. ACCLAIM 

represents multi-bit elements using memristive devices spread across word lines in the array, 

which allows for AQ by varying the number of word lines assigned to each input coefficient.  

     Figure 4.1 illustrates the ACCLAIM architecture. The crossbar is shown with word lines 

running vertically and bit lines running horizontally. Inputs are delivered via sequential voltage 

pulses such that only a part of the array is active at any given time; memristive devices active 

during each cycle are indicated in the figure using a grayscale coding. The analog input vector, x, 

is passed to word lines of a crossbar array. In the example shown, x consists of four coefficients 

and the array contains a total of 8 word lines: 4 word lines are allocated to coefficient x0, 2 to x1, 

and 1 each to x2 and x3. The tradeoff to this approach is that dot products must be performed 

sequentially rather than in parallel since precision levels are mapped to word lines rather than bit 

lines. In the example shown, inputs are delivered in sequential voltage pulses such that dot products 
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Figure 4.1: ACCLAIM architecture, including transimedance amplifiers shown in green, ADCs 

shown in blue and Shift and Add units shown in yellow.  
 

 

are computed in four cycles; in Cycle k, only devices representing the kth most significant bit of 

their respective matrix element are active. During each cycle, each intermediate dot product is 

converted to digital, and progressively combined with the previous cycle’s result via shift and add. 

Thus, ACCLAIM does not require duplication of peripheral circuits, regardless of computational 

precision level. 

4.3 Application to DCT 

     Adaptive Quantization via ACCLAIM allows for enhanced DCT transmission and 

reconstruction, given a specified bit budget. IoT sensors can significantly reduce image 

transmission overheads by applying row-wise quantization to the frequency-domain image, X, 
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prior to transmission. The resulting matrix, X*, is used by the receiver to reconstruct the original 

image, 𝐈, using the inverse DCT transform: �̂� = (DT)(X*)(D). The first matrix product, (DT)(X*), 

is performed row-by-row by providing subsequent rows of DT as vector inputs to the mixed-

precision matrix X*; each operation serves as a mixed-precision vector-matrix multiplication 

which is optimally performed by the receiver using ACCLAIM. Products involving the DCT 

coefficient may result in an overflow, which is corrected through a scalar addition performed by 

the Shift and Add unit. 

     For purposes of evaluation, a 400×400 monochrome Lena image is partitioned into 8×8 blocks, 

and DCT is applied to each block. Row-wise quantization is performed based on a bit budget, B, 

which represents the number of bits available to each column of X*. Two methods of quantization 

are compared: AQ, which intelligently allocates the available bit budget across rows of X* based 

on a gradient descent optimization approach, and uniform quantization, which assigns a constant 

number of bits to each row regardless of importance level. Each AQ configuration is specified by 

a vector, b, of 8 integers, 𝑏𝑖, representing the number of bits allocated to each element of row i. 

The objective is to minimize reconstruction error, defined as: 

𝑒𝑟𝑟𝑜𝑟 = ‖�̂� − 𝐈‖/‖𝐈‖,                    (4.1) 

under the constraint ∑𝑏𝑖 ≤ 𝐵. 

     Simulations are conducted in MATLAB to assess reconstruction accuracies using both adaptive 

and uniform image quantization. Table 4.1 lists results for a variety of bit budgets, showing 

consistent and significant improvement as a result of AQ. Figure 4.2 shows the reconstructed Lena 

image using both uniform and adaptive quantization, with a fixed bit budget  
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a     b   

Figure 4.2: DCT reconstruction of compressed Lena image attained using 24 bits per column 

allocated a) uniformly, and b) adaptively among rows of 8×8 blocks in the frequency domain. 

 

Table 4.1: Impact of AQ on DCT Reconstruction. 

𝑩 Non-AQ Error (dB) AQ Error (dB) AQ Configuration 

12 -7.2 -30.2 [5,1,1,1,1,1,1,1] 

16 -12.2 -36.0 [6,4,1,1,1,1,1,1] 

20 -12.2 -40.8 [7,5,3,1,1,1,1,1] 

24 -24.8 -43.0 [8,5,4,3,1,1,1,1] 

28 -24.8 -45.0 [8,6,5,5,1,1,1,1] 

 

of B  = 24, to illustrate the 18dB improvement resulting from AQ. For reference, uniform 

quantization requires B = 56 to attain the same reconstruction accuracy. 

4.4 Application to CS 

     ACCLAIM is next evaluated for CS sampling and reconstruction. Following the procedure 

outlined in Figure 1, the Lena image is partitioned into 10×10 blocks, which are then transformed 

via DCT and compressed via CS sampling; the image is subsequently reconstructed using the 

Approximate Message Passing (AMP) algorithm [122] and inverse DCT. For evaluation purposes, 
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a b  

Figure 4.3:  CS reconstruction of compressed Lena image partitioned into 10×10 blocks, each 

sampled using a 40×100 measurement matrix with 200 bits per row allocated a) uniformly and b) 

adaptively. 

 

Table 4.2: Impact of AQ on CS Reconstruction. 

𝑩 m Non-AQ Error (dB) AQ Error (dB) AQ Configuration 

120 40 -15.2 -37.8 [3,1,3] 

200 40 -31.3 -40.3 [5,1,5] 

280 40 -31.3 -40.0 [6,1,6] 

360 40 -35.2 -40.7 [8,1,6] 

120 60 -10.3 -39.1 [3,1,3] 

200 60 -31.8 -43.1 [5,1,5] 

280 60 -31.8 -43.5 [6,1,6] 

360 60 -39.1 -43.5 [6,1,7] 

 

the measurement matrix, 𝑨 ∈ ℝ𝑚×100, is quantized based on the memory budget, B, representing 

the available number of bits per row. AQ allocates a greater number of bits to critical columns of 

𝑨, corresponding to more significant DCT coefficients. AQ configurations for CS are represented 

by a vector, b, consisting of 3 integer elements: b1 is the number of bits assigned to elements of 

critical columns within the measurement matrix, b2 is the number of bits assigned to elements of 
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non-critical columns, and the square of b3 is the number of columns considered critical; the number 

of critical columns is chosen as the square of an integer due to the structure of the DCT matrix. 

AQ seeks to minimize reconstruction error under the constraint 𝑏1𝑏3
2 + 𝑏2(100 − 𝑏3

2) ≤ 𝐵. 

     Simulations are conducted in MATLAB to compare CS reconstruction accuracy between 

adaptive and uniform quantization as a function of bit budget, B, and number of measurements, m. 

Results listed in Table 4.2 demonstrate consistent improvement resulting from AQ in the case of 

m = 40 as well as m = 60. Figure 4.3 shows the reconstructed Lena image sampled using 40 

measurements and a bit budget of 200 bits per row, illustrating the 9dB improvement resulting 

from AQ. 

     In addition, hardware simulations in HSPICE are performed to assess per-block energy and 

area requirements of ACCLAIM to achieve a set reconstruction error under CS sampling using 40 

measurements. Energy is computed using the formula 𝐸 = ∑ 𝑃𝑖𝑡𝑠𝑖  where 𝑃𝑖 is average power per 

cycle and 𝑡𝑠=100ns is the sampling time for one cycle. Simulations are performed on MRAM 

crossbar arrays using SHE-MTJ technology [20] with parameters given in Table 4.3; the CS 

measurement matrix is simulated by choosing random states for MRAM devices, and input 

voltages represent a selection from the Lena image in the frequency domain. The size of the 

crossbar is B×40, where B is the bit budget necessary to achieve a set reconstruction accuracy. 

     Hardware simulation results, shown in Figure 4.4, confirm the consistent area benefits seen in 

Table 4.3. For a minimum error of -35dB, AQ reduces the memory word line count from 400 to 

118, thus achieving a 70.5% benefit in area. Moreover, AQ achieves reconstruction errors below 

-40dB, which is never achieved by uniform quantization regardless of array size. This result is 

consistent with prior works demonstrating outperformance of non-uniform CS [20, 23]. Energy 

consumption is reduced for the AQ approach in all but two cases; the reason for the higher energy 
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Table 4.3: Hardware Simulation Parameters. 

Tech Node 14nm 

VDD 0.8V 

Parallel MTJ Resistance (logic 0) 2800 

Anti-parallel MTJ Resistance (logic 1) 5600 

MTJ Polarization 0.52 

MTJ Area 60nm×30nm×𝜋/4 

 

despite reduced area is that the average voltage input to the array is higher in the case of AQ since 

more significant components of the input are duplicated as per Figure 4.1. Energy consumption 

for the array is reduced by 30.2% at an error threshold of -35dB.  

     Herein, we define the Error-Energy-Area Product (EEAP) metric as: 

𝐸𝐸𝐴𝑃 = 𝐸𝑠 × 𝐴𝐶𝐵 × 𝑒𝑟𝑟𝑜𝑟                   (4.2) 

where 𝐸𝑠 is sampling energy per block, 𝐴𝐶𝐵 is crossbar memory area per block and 𝑒𝑟𝑟𝑜𝑟 refers 

to the image reconstruction error as defined in Eq. 4.1. EEAP is a metric which measures the 

efficacy of resource utilization in approximate computing, considering the tradeoff between 

hardware costs and computational accuracy. As such, EEAP is a convenient metric for assessing 

the efficacy of image compression hardware in resource-limited applications such as IoT. 

ACCLAIM achieves a 79.4% reduction in EEAP compared to the conventional uniform 

quantization approach. 

     Finally, simulations are performed to assess the latency of a 164×40 array operating over 5 

cycles, which is necessary to achieve a -40dB error using AQ. Results indicate a crossbar latency 

within 100s per cycle, and latency of peripherals within 7ns. Thus, 40, 5-bit measurements are 

produced within 535ns. This latency is equivalent to the delay of transmitting the data at 373Mbps, 

and hence not a bottleneck due to the limited bandwidths of IoT sensors. 
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Figure 4.4: Sampling energy and area per block necessary to achieve a set CS reconstruction 

accuracy for the Lena image, partitioned into 10×10 blocks and sampled using a 40×100 matrix. 

 

4.5 Summary 

     Herein, we have developed the Area Conserving Crossbar Leveraging Adaptive Information 

Mapping (ACCLAIM), a novel memristive crossbar design which intelligently allocates crossbar 

memory by assigning greater precision levels to matrix elements corresponding to more significant 

subsets of the input space. Such an Adaptive Quantization (AQ) technique is particularly useful 

for image compression applications such as Discrete Cosine Transform (DCT) and Compressive 

Sensing (CS), where the input often consists of sparse signals with specific regions of interest. 
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ACCLAIM reduces storage and data transmission overheads by reducing the size of the image, in 

the case of DCT, and the size of the measurement matrix, in the case of CS, without compromising 

reconstruction accuracy. Moreover, given a fixed accuracy standard, ACCLAIM allows for a 

70.5% reduction in area and 30.2% reduction in energy. We define the Energy-Error-Area Product 

(EEAP) as a useful metric for expressing the efficacy of resource utilization in approximate 

computing applications. AQ implemented via the presented architecture achieves a 79.4% 

reduction in EEAP for CS sampling computations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



68 

 

CHAPTER 5: EXPONENTIATION USING STT MAGNETIC TUNNEL 

JUNCTIONS4 

5.1 Analog Circuit Design 

5.1.1 Op-Amp Design 

     The proposed reconfigurable analog multiplier is based on the op-amp design presented in 

Figure 5.1. The op-amp consists of two cascaded stages: an input stage consisting of a differential 

amplifier, followed by a gain stage. A simple design consisting of only 10 CMOS transistors is 

chosen to optimize for power consumption as well as area. The op-amp is simulated using models 

from the PTM 14nm LSTP library [127], at VDD = 0.8V.  

     Figure 5.2a then presents a layout of the proposed op-amp design. The layout indicates 

dimensions of 43F×23F, for a total area of 989F2. This layout is contrasted with a CMOS NAND 

gate in Figure 5.2b, which has dimensions of 18F×14.5F, for a total area of 261F2. The op-amp 

and NAND gate form an interesting comparison as common building blocks of analog and digital 

multipliers, respectively.  

Figure 5.1: Op-amp comprised of 10 MOSFETs offering high speed and compact area. 

 
4 ©IEEE. Part of this chapter is reprinted, with permission, from [136, 137]. 
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Figure 5.2: a) Layout of op-amp used in this dissertation versus b) a CMOS NAND gate. 

 

5.1.2 Three-Stage Analog Circuit 

     Similarly to [98], the translinear principle is applied to attain exponentiation of the input signal. 

We propose a reconfigurable design, embedded within the FPAA fabric shown in Figure 5.3. The 

design consists of a three-stage circuit, shown in Figure 5.4, which accepts a single input for 

performing exponentiation operations; the design can also be reconfigured to accept two inputs for 

performing analog multiplication.    

     The first stage, outlined in red in Figure 5.4, is a logarithmic amplifier with output given by: 

 

𝑉1 = −𝐴𝑂𝐿𝑉0                            (5.1) 

 

−
𝑉0−𝑉𝑖𝑛

𝑅1
= 𝐼𝑆1 [exp (

𝑉0−𝑉1

𝑉𝑇
) − 1]                           (5.2) 

 

where 𝐴𝑂𝐿 represents open-loop gain and 𝐼𝑆1 represents the saturation current of diode D1. Eq. 5.1 

is from general op-amp theory and Eq. 5.2 results from applying Kirchhoff’s Current Law at the 

negative input terminal. Thus, solving Eq. 5.1 and Eq. 5.2 simultaneously yields: 
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Figure 5.3: FPAA fabric comprised of active and passive analog devices such as NMOS/PMOS 

transistors, capacitors and diodes, along with spin-based Magnetic Tunnel Junction (MTJ) devices. 

 

𝑉1(1 +
1

𝐴𝑂𝐿
) = −𝑉𝑇𝑙𝑛 (

𝑉𝑖𝑛+
𝑉1
𝐴𝑂𝐿

𝑅1𝐼𝑠1
+ 1)                                  (5.3) 

In the limit of infinite open-loop gain and high input voltage, Eq. 5.3 is approximated as: 

𝑉1 = −𝑉𝑇𝑙𝑛 (
𝑉𝑖𝑛

𝑅1𝐼𝑠1
).                                    (5.4) 
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Figure 5.4: Analog circuit for generalized exponentiation. The first, second, and third stages are 

outlined in red, blue, and green, respectively. 

 

     The second stage is an analog adder, whereby a similar analysis yields 𝑉2 = −
2𝑉1𝑅3

𝑅2
. Finally, 

the third stage is an anti-log amplifier with output approximately given by: 

                              𝑉𝑜𝑢𝑡 = −𝑅4𝐼𝑠2𝑒
𝑉2
𝑉𝑇.                                     (5.5) 

Overall, it is seen that the output of this circuit is given by: 

                𝑉𝑜𝑢𝑡 = −
𝑅4𝐼𝑠2

(𝑅1𝐼𝑠1)𝑎
(𝑉𝑖𝑛)

𝑎                                        (5.6) 
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where 𝑎 = 2𝑅3/𝑅2. 

     The above analysis indicates the ability to implement any positive power function of the input 

via the design shown in Figure 5.4. In addition, a dual-input stage consisting of two logarithmic 

amplifiers can be inserted to attain an analog multiplier. Finally, an inverting amplifier can be 

inserted between the second and third stages to realize inverse power functions as well. Each mode 

can be implemented using the elements included in the fabric presented in Figure 5.3. To minimize 

area, MTJs in the P state are used to implement the resistors shown in Figure 5.4; MTJs in the P 

state have roughly linear I-V characteristics in accordance with experimental data [133]. 

    Eq. 5.4 – 5.6 hold precisely only for infinite open-loop gain, which is not attainable in practice. 

Thus, the equations provide a starting point for the design, after which parameters must be adjusted 

to minimize output errors. Final parameters are: R1 = 3500k, R2 = 50k, R3 = 150k, R4 = 75k, 

Is1 = 50nA, and Is2 = 5.4nA. In addition, a load capacitance of 100fF and load resistance of 1000k 

are included at the output stage of each op-amp. 

5.2 Analog Multiplication 

     First, the performance of the analog circuit is evaluated as a multiplier. In this mode, two 

separate logarithmic amplifiers serve as the input stage, receiving inputs 𝑉𝑖𝑛1 and 𝑉𝑖𝑛2. The circuit 

is evaluated in terms of DC transfer characteristics, frequency response, and Total Harmonic 

Distortion (THD), for various DC amplitudes of 𝑉𝑖𝑛2
 within the operational range between 0.3V 

and 0.7V. 

     DC transfer characteristics are presented in Figure 5.5. In each trial, 𝑉𝑖𝑛1
 is swept across the 

operational range and the average non-linearity error is determined based on the percentage 
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deviation from a linear regression line. As listed in Table 5.1, the maximum non-linearity error of 

0.55% occurs at 𝑉𝑖𝑛2 = 0.7V. 

     Figure 5.6 shows the frequency response of the multiplier, evaluated in the range from 100MHz 

to 1GHz. In this case, Vin1 is a sinusoidal signal with offset of 0.45V and amplitude of 0.25V and 

Vin2 is fixed. The -3-dB bandwidth, listed in Table 5.1, is in the 100MHz range in each case. While 

this bandwidth may be high for applications with limited signal-to-noise ratio, the circuit can be 

reconfigured to attain various bandwidths depending on the RC time constant at the op-amp output. 

     Table 5.1 also lists the delay in reaching 90% of the target voltage in the case when  𝑉𝑖𝑛1 =

𝑉𝑖𝑛2; the delays are in the nanosecond range, consistent with the circuit bandwidth. 

     Next, Table 5.2 provides THD in the case where one input is 0.45V DC, and the second input 

is sinusoidal with amplitudes of 0.05V and 0.25V. THD is within 1% up to a frequency of 

approximately 1MHz, indicating practical functionality of the system. 

5.3 Generalized Exponentiation 

5.3.1 Circuit Performance 

     The circuit is next evaluated in its ability to compute square and square root functions. 

Simulation results demonstrate high-accuracy implementation of nth-root functions; power 

functions beyond squaring introduce challenges related to voltage saturation. It is, however,  

possible to obtain these functions via a squaring unit by iteratively applying the mathematical 

identity: (𝐴 + 𝐵)2 − (𝐴 − 𝐵)2 = 4𝐴𝐵. For example, in the case of the cubing function, x2 is 

substituted for 𝐴 and x for 𝐵; any nth power function, n ≥ 2, can thus be computed [95]. The authors 

of [95] were hence able to compute a 5th order polynomial function within 10% error. 
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Figure 5.5: DC transfer characteristics for the proposed multiplier, with one input fixed and the 

second input varying across the operational range. 

Figure 5.6: Frequency response, with one input fixed and the other input sinusoidal with offset of 

0.45V and amplitude of 0.25V. 
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Table 5.1: Error, bandwidth, and delay data. 

 

 

 

 

 

Table 5.2: THD with one DC and one sinusoidal input. 

 

      

 

 

 

Performance of cube root, square root, and squaring circuits implemented using the proposed 

design are given in Table 5.3, including technology node, supply voltage, total number of 

elementary components, power dissipation, and mean error over an input range of 0.2V – 0.6V.  

     Comparing to the approximate digital multiplier described in [37], at the design point giving 

nearly identical power consumption, the analog circuit described herein yields slightly improved 

mean error across the operational range. Furthermore, the approximate digital design requires an 

area equivalent to 245 CMOS NAND gates, i.e., 980 CMOS transistors. Thus, our design achieves  

Vin2 Error -3-dB bandwidth Delay 

0.3V 0.48% 195MHz 3.8ns 

0.4V 0.11% 191MHz 3.9ns 

0.5V 0.25% 186MHz 4.1ns 

0.6V 0.43% 178MHz 4.4ns 

0.7V 0.55% 174MHz 5.0ns 

Frequency THD@Amplitude = 0.25V THD@Amplitude = 0.05V 

10KHz 0.80% 0.76% 

100KHz 0.81% 0.77% 

1MHz 0.81% 0.75% 

2MHz 1.08% 1.10% 

3MHz 1.82% 1.61% 
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Table 5.3: Comparison of area, power, and accuracy of STT-MTJ based generalized 

exponentiation with alternate recent approaches. 

*RMS noise vs. max. output 

**At 𝑉𝑖𝑛 = 0.4V 

 

a 97% reduction in transistor count. In addition, the layout presented in Figure 5.2 indicates that 

the area of an op-amp is approximately 3.79× the area of a NAND gate; this indicates an 

approximately 95% reduction in area if three op-amps are used for squaring. 

     The design in [39] demonstrates reduced power consumption but significantly higher error, and 

a relatively limited bandwidth of 51.2KHz. The approach developed in [98] introduces a similar 

design to the one described herein, relying on the translinear principle to implement nth power 

functions by combining hardware with logarithmic and exponential output characteristics; a 

limitation of this design is that its reliance on time-mode circuitry intrinsically leads to significant 

time delays, on the order of microseconds. 

5.3.2 Process Variation of MTJ Devices 

     A Monte Carlo simulation is performed to determine the effects of process variation in MTJ 

devices. For this simulation, 100 trials are conducted considering a 1.5% standard deviation in  

 Herein Herein Herein [37] [39] [95] [98] 

Mode Analog Analog Analog Digital Analog Analog Analog 

Operation Cube root Sq. root Square Multiplier Multiplier Square Square 

Tech node 14nm 14nm 14nm 28nm 130nm 500nm 180nm 

VDD 0.8V 0.8V 0.8V 1V 0.6V 1.5V 1.3V 

No. comp. 43 43 43 ~1000 35 12 ~100 

Power 123W 122W 126W 126W 23W 600W 149W 

Mean Error 0.50% 0.66% 1.30% 1.87% 9.1%* N/A 0.24%** 
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Table 5.4: Error rate due to MTJ process variation. 

 

 

 

 

 

the resistance of each MTJ device; this value is consistent with the variation seen in a 4-Mb 

MRAM array [134]. The resulting standard deviations in the circuit outputs are listed in Table 5.4. 

While the maximum standard deviation due to PV is 6.36%, the presence of only 16 high-barrier 

MTJ devices in the reconfigurable fabric may allow for improved device tolerances and thus 

improved computational accuracy in the fabricated design. 

5.3.3 Variation in Diode Saturation Voltage 

     A further analysis is performed in this section to assess the impact of diode characteristics on 

DC transfer characteristics and frequency response of the presented design. Since inputs are 

delivered via voltages, the saturation current of the diodes is not a significant limitation on the 

input range. The diodes are necessary to regulate the voltage at each stage to attain an 

approximation for the desired computational function. According to the theory presented in 

Section 5.1.2, the performance of the circuit depends on the product R1Is1, where R1 is the 

resistance of the first-stage resistance and Is1 is the saturation current of the diode in the first stage. 

Thus, variation of Is1 should not make a difference if R1 is adjusted to compensate. An analysis of 

DC transfer characteristics and frequency response is performed for the input combinations (R1, 

Is1) = (3500kW, 50nA), (35,000kW, 5nA) and (350,000kW, 0.5nA).  

Vin Square Square root 

0.3V 5.96% 3.81% 

0.4V 6.36% 3.88% 

0.5V 6.13% 3.92% 

0.6V 5.72% 3.95% 

0.7V 5.30% 3.96% 
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Figure 5.7: DC transfer characteristics for analog squaring circuit, considering three different 

parameters for the first-stage diode saturation current, Is. 

 

Figure 5.8: Frequency response for analog squaring circuit, considering three different parameters 

for the first-stage diode saturation current, Is, with an input voltage magnitude of 0.4V. 
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Table 5.5: Effect of diode saturation current on error and bandwidth of analog squaring circuit. 

 

 

 

 

     Figure 5.7 and Figure 5.8 show results of the analysis which are summarized in Table 5.5. The 

results demonstrate a negligible variation in error and bandwidth, in agreement with the theory. It 

may be noted that since both inputs are treated as sinusoidal, a smaller bandwidth is attained than 

that presented in Section 5.3.1, which treats only one input as sinusoidal. An average power 

consumption of 126W is attained for all three cases. 

5.3.4 Temperature Dependence 

     Given the temperature dependence of diodes as well as MTJ devices, a brief temperature 

analysis of the circuit performance is conducted to complement the previous data attained at a 

temperature of 25oC. This analysis focuses on the temperature dependency of mean error of analog 

squaring using the presented design. While HSPICE includes temperature dependent models for 

diodes, MTJ temperature dependence is modeled using Eq. 2.11 – 2.13. The following 

substitutions may be made into Eq. 2.11 – 2.13: 

           𝑃0 = √
𝑇𝑀𝑅0

2−𝑇𝑀𝑅0
                                                (5.7) 

                                            𝐺𝑆𝐼(𝑇)=𝑆𝑇
4/3                                  (5.8) 

where Eq. 5.7 follows from Julliere’s model (Eq. 2.8) and Eq. 5.8 is taken from [66]. 

Is Error -3-dB bandwidth 

50nA 1.30% 19.50MHz 

5nA 1.36% 19.50MHz 

0.5nA 1.37% 19.95MHz 
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     In these equations, 𝐺𝑆𝐼 is a component of MTJ device conductance as defined in Eq. 2.11, 𝑆 is 

a constant, T represents absolute temperature, P represents polarization and TMR represents 

tunneling magnetoresistance. The following parameters are substituted into the temperature model 

consisting of Eq. 2.11 – 2.13 together with Eq. 5.7 – 5.8: 𝑇𝑀𝑅0 = 1, 𝛼 = 2 × 10−5 K-3/2, C = 

0.0015 K-1 and 𝑆 = 10−12 -1 K-4/3 are used; 𝐺0 is chosen based on the target MTJ conductance 

value. Furthermore, the presented design uses P-state MTJs so 𝜃 = 0 is chosen. 𝑇𝑀𝑅0 is consistent 

with [55]; moreover, 𝛼 and 𝑆 are consistent in order of magnitude with [66]. C is obtained using 

[67]: 

𝐶 = 1.387 × 10−4𝑡/√𝜑                              (5.9) 

where t represents oxide barrier height in Angstroms and 𝜑 is the oxide barrier potential in 

electron-volts. C = 0.0015 K-1 is derived assuming an oxide barrier thickness of 10 Angstroms [55] 

and a barrier potential on the order of 1eV [66]. 

     Based on the above model, the mean computational error of the squaring unit across an input 

voltage range between 0.2V and 0.6V is determined, for temperatures ranging from -20oC to 70oC, 

with results summarized in Table 5.6. An error below 10% is observed between temperatures of -

10oC and 40oC. This operational interval includes common environmental temperatures as well as 

physiological temperature but does not fully cover the commercial temperature range. Thus, 

further work is necessary to improve the resilience of the design in more extreme environments. 

Table 5.6: Mean error of analog squaring circuit as a function of temperature, T. 

T -20oC -10oC 0oC 10oC 20oC 30oC 40oC 50oC 60oC 70oC 

err 14.1% 3.17% 0.748% 0.352% 0.551% 1.70% 5.71% 14.2% 22.9% 27.3% 
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5.4 Generalized Functions 

 

     The proposed hardware may also be used to implement generalized functions. For one, the 

analog circuit can function in a third mode where inverse power and root functions are computed 

by adding an inverting amplifier before the final stage; a 1/√𝑥 function yields an average error of 

0.4%. Furthermore, exponential and logarithmic functions can be computed using only one op-

amp stage. Other generalized functions can be implemented using a Taylor series approximation. 

     Figure 5.9 shows an approximation of the function 𝑓(𝑥) = 𝑥 −𝑥2 − 𝑥3 −𝑥4 −𝑥5 based on 

the proposed analog squaring unit. This simulation includes squaring errors, but neglects errors in 

Figure 5.9: Approximation of a 5th order polynomial function using the proposed hardware, 

showing agreement with an error-free implementation. 
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addition, subtraction, and voltage rescaling; the resulting output is a fair approximation of the 

target function, with an average error of 4.83% over the tested range. This demonstrates the 

feasibility of generating generalized functions through Taylor series using our analog approach. 

5.5 Summary 

     Herein, we have presented an analog circuit capable of multiplication and general 

exponentiation operations. The circuit is based on a reconfigurable fabric which allows for 

versatility in the mode of operation as well as tunability in bandwidth, allowing for adaptation to 

diverse signal processing and machine learning applications. Simulation results on circuit 

performance indicate reduction in error and 95% reduction in area when compared to a state-of-

the-art approximate digital multiplier. Furthermore, a significant reduction in execution time in 

addition to reduction in complexity is attained in comparison to a time-mode analog exponentiation 

circuit operating on similar principles. The presented circuit may be used for computation of 

generalized functions via Taylor series approximation: simulation results indicate less than 5% 

error in computation of a fifth-order polynomial. 
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CHAPTER 6: APPLICATIONS OF SPIN-BASED ANALOG 

COMPUTATION5 

6.1 Spintronically Configurable Adaptive in-memory Processing Environment (SCAPE)      

     The Spintronically-Configurable Adaptive in-memory Processing Environment (SCAPE) [135] 

is designed to reduce overheads at the cost of precision by performing computations intrinsically 

in the analog domain. As such, SCAPE is well-suited for error-tolerant applications such as CS 

and image classification. SCAPE consists of three stages: a Vector Matrix Multiplication Stage 

(VMMS) consisting of a SHE-MRAM crossbar, an Analog Activation Stage (AAS) consisting of 

the analog computation circuit described previously [136, 137] and finally an Analog to Digital 

Conversion (ADC) stage. The ADC stage uses the SS-PIR design, as shown in Figure 2.14, to 

reduce area and energy costs of data conversion. 

     In contrast to the generally reconfigurable fabric shown in Figure 5.3, AAS provides a partially 

reconfigurable fabric consisting of 1) the analog computational circuit shown in Figure 5.4, having 

a reconfigurable resistance, R3, 2) p-bit devices for stochastic computation, and 3) an op-amp and 

digital inverters for threshold computations. The switch to partial reconfigurability reduces area 

overheads while still maintaining the necessary functionality for target applications. 

6.2 Application to CS Signal Reconstruction 

6.2.1 Implementation of AMP 

    Approximate Message Passing (AMP), as introduced in Section 2.4.4 and provided below as 

Algorithm 1, is a CS reconstruction algorithm designed for fast convergence [120]. As an error 

tolerant application requiring VMM together with square and square root computations in each 

iteration, AMP is a viable target for SCAPE. AMP begins by initializing the residual vector, r0, to 

 
5 ©IEEE. Part of this chapter is reprinted, with permission, from [135, 137]. 
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the measurement vector y, as well as initializing the estimate of the signal vector x to zero and the 

counter to 1 (Lines 1 - 3). Next, the threshold  is computed as the root mean square error of the 

residual (Line 5). Lines 6 and 7 provide an estimation of the reconstructed signal vector as a 

function of the thresholding parameter, in accordance with the Iterative Soft Thresholding 

technique. In the notation, sign(a)max(|a|-, 0) refers to element-wise vector operations. The 

function sign(x) is defined to be +1 for x > 0 and -1 for x < 0. Finally, Lines 8 and 9 update the 

residual similarly as in Iterative Soft Thresholding, with the key difference being the last term in 

Line 9. The counter is then incremented in Line 10 before the loop repeats. 

     The AMP algorithm is implemented using the SCAPE hardware architecture. VMM is executed 

using the VMMS and scalar operations, including multiplication, square, square root, and inverse 

square root, are executed on the AAS. The AAS is also used to compute the thresholding functions 
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Figure 6.1: An analog design for thresholding operations. The functions y = sign(x), y = sign1(x,0) 

and y = sign2(x,0) are illustrated in the top panel by the leftmost, middle and rightmost graphs, 

respectively. 

 

 

Figure 6.2: Hardware implementation of AMP algorithm. 

necessary for AMP via the simple analog design shown in Figure 6.1. In this design, an analog 

comparator circuit with Vref = 0 computes the function y = sign(x). A three-stage design based on 

a chain of inverters is used for the computation of two-additional functions: y = sign1(x,ref), 



86 

 

defined as 1 when x < ref and as 0 when x > ref, and y = sign2(x,ref), defined as 1 when x > ref and 

as 0 when x < ref. Based on this hardware, the remaining three functions necessary for AMP may 

be computed. First, y = |x| is rewritten as y = xsign(x). Next, y = max(x,0) is equivalent to y = 

xsign2(x,0). Finally, y = ‖𝒙‖0 is roughly equivalent to 𝑦 = ∑(sign1(𝑥,−0.05) + sign2(𝑥, 0.05)), 

assuming any input with an absolute value greater than 0.05 is considered as “nonzero.”  

     Figure 6.2 demonstrates a hardware implementation of one loop of the AMP algorithm, based 

on the architecture presented herein. Reconstruction based on a signal size n = 256 and m = 64 

requires a 256 × 64 VMMS array to execute the VMM in Line 6 and Line 9 and 256 AAS 

functional units for scalar operations. 

6.2.2 Performance of AMP 

     The performance of AMP is evaluated in MATLAB based on signals of length n=1000, with 

sparsity rate k/n = 0.1. The number of measurements, m, is varied from 200 to 500 to determine 

the magnitude of the reconstruction error in decibels, defined as: 

              𝑒𝑟𝑟𝑜𝑟(𝑑𝐵) = 20𝑙𝑜𝑔 (
‖�̂�−𝒙‖

‖𝒙‖
).                  (6.1) 

Figure 6.3 shows AMP performance considering an exact implementation (blue circles), 

approximation errors intrinsic to the analog hardware as detailed in Table 5.3 (red circles) and 

finally approximation errors considering process variation errors detailed in Table 5.4 (yellow 

circles). 

     The results demonstrate a negligible impact of the intrinsic circuit error on AMP performance; 

certain data points such as m=500 demonstrate a lower error with the approximate approach, 

indicating statistical insignificance of the error. Even the increased computational error resulting 
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Figure 6.3: Signal reconstruction error of the AMP algorithm as a function of number of 

measurements, where square and square root operations are performed exactly (blue circles), with 

approximation error of the presented hardware (red circles), and with approximation error 

including process variation (yellow circles). 

 

 

from process variation amounts to only a slight degradation in performance and consistently 

requires less than 50 additional measurements to regain the reconstruction accuracy of the AMP 

algorithm. 

     To determine the total energy cost of AMP, SPICE simulations are performed to determine the 

per-cell energy cost of the VMMS, as well as the energy cost per operation of the scalar functions 

performed by the AAS; the results are aggregated to determine the total computational energy cost 
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 Table 6.1: Breakdown of AMP Circuit Energy Consumption. 

 

 

 

 

 

 

 Table 6.2: Comparison of AMP Energy Consumption. 

 

 

 

 

of running one cycle of AMP. The VMMS consumes a total of 3.15nJ while total energy 

consumption by the AAS is 2.02nJ, for a total computational energy consumption of 5.17nJ. For 

50 iterations, this gives an energy overhead equal to 258nJ for running AMP. Analysis of signal 

reconstruction error associated with approximations in the AAS units was performed for a signal 

of size n = 1000, and sparsity k = 100, where n is the total number of elements in each frame of 

the signal, and k is just the total number of elements per frame that are non-zero. The average 

Operation Hardware Units Energy Cost 

‖𝒓𝑖−1‖. AAS 47.6pJ 

 = ‖𝒓𝑖−1‖/√𝑚 AAS 1.1pJ 

𝒂 = �̂�𝑖−1 + 𝜱𝑻𝒓𝑖−1 VMMS + AAS 1.654nJ 

�̂�𝑖 = sign(𝒂) max(abs(𝒂) – , 0) AAS 1.24nJ 

𝑏𝑖 = ‖�̂�𝑖‖0/𝑚 AAS 0.58nJ 

𝒓𝑖 = 𝒚– 𝜱�̂�𝑖 + 𝑏𝑖𝒓𝑖−1 VMMS + AAS 1.65nJ 

Total  5.17nJ 

 Herein Herein [138] [118] 

Tech. node 14nm 14nm 65nm 65nm 
VDD 0.8V 0.8V N/A 1.2V 

Array size 256x64 1024x512 256x64 1024x512 
Array precision 8 bits 8 bits 1 bit 26 bits 

#Iterations 50 20 50 20 
Energy/sample 1.0nJ 2.1nJ 27nJ 61nJ 
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accuracy degradation resulting from computational error was found to be 1.1dB, which is 

negligible.   

     Table 6.1 lists the breakdown of energy per computation in execution of a single AMP cycle 

using the proposed design. A total energy cost of 5.17nJ per cycle yields a total energy 

consumption of 1.0nJ per sample, assuming 50 iteration cycles and a reconstructed signal 

consisting of 256 samples. Table 6.2 displays an energy comparison to two recent ASIC 

implementations for AMP [118, 138]; hardware running the Enhanced AMP algorithm (EAMP) 

[138] over 50 iterations under the same CS parameters of (n,m) = (256,64) consumes 315mW of 

power and executes in 8900 clock cycles on a 400MHz system. Thus, the energy consumption is 

roughly 7J, and roughly 27nJ per sample. EAMP is roughly in line with the standard AMP 

algorithm in terms of mean square error, up to 100 iterations. Thus, the full-analog approach to 

AMP presented herein provides significant benefits in energy while having a minimal impact on 

reconstruction accuracy. 

6.3 Application to MNIST Digit Recognition 

6.3.1 Gradient Decay Problem 

     Deep neural networks (DNNs) have been gaining popularity in the context of diverse 

applications including computer vision [139] and speech recognition [140]. At each layer, the 

DNN takes a vector input, x, and outputs a linear transformation of the input, z, according to the 

equation z = Wx where W is the weight matrix. To facilitate learning non-linear relationships, the 

output z is multiplied by an activation function to yield a final layer output, h = f(x). The choice 

of activation function has recently been a subject of research interest due to its significant impact 

on the training accuracy of a neural network [35]. While hyperbolic tangent has been used 

frequently, this function suffers drawbacks including the gradient decay problem, i.e., the gradient 
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becomes diminished in multi-layer networks due to repeated multiplication of values having 

absolute value less than 1 [141]. 

     The gradient decay problem has been addressed by choice of alternative activation functions, 

e.g., the Rectified Linear Unit (ReLU) which is defined as fReLU(x) = max(0, x) and has a gradient 

of 1 for all x > 0. Another alternative is the square root function, which experiences significantly 

slower gradient decay compared with hyperbolic tangent. It has been observed that the derivative 

of the hyperbolic tangent function at x = 10 is less than the derivative of the square root function 

at x = 1016. Previous research has demonstrated that replacing hyperbolic tangent with a square 

root activation function can allow for a 5% improvement in classification accuracy on the CIFAR-

10 dataset [34]. 

     Given the robust capabilities of the analog circuit presented herein, we next evaluate its ability 

to generate improved activation functions for DNN performance. The evaluation is performed in 

the context of a Deep Belief Network (DBN) used to classify samples from the MNIST dataset. 

6.3.2 Impact of Activation Function 

    Leveraging the capabilities of the analog circuit presented herein, we investigate the impact of 

three separate activation functions on DBN performance: 𝑓1(𝑥) =
1

2
(1 + tanh(𝑥)), 𝑓2(𝑥) =

√𝑓1(𝑥), and 𝑓3(𝑥) = (1 + 𝑒−𝑥)−1. Since 𝑓2
′(𝑥) > 𝑓1′(𝑥) for 𝑥 < −0.55 and 𝑓3

′(𝑥) > 𝑓1′(𝑥) for 

|𝑥| > 1.06, substitution of these functions may potentially alleviate the rate of gradient decay for 

certain inputs. Moreover, each function may be implemented using the FPAA fabric shown in 

Figure 5.3; the presence of low-barrier MTJ devices allows for construction of p-bit devices, at 

which point 𝑓1 is computed via an op-amp integrator at the output. Computation of 𝑓2 requires an 
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additional 3 op-amps to execute the square root function in analog; finally, 𝑓3 requires a total of 6 

op-amps to implement. 

     A DBN software simulation is performed in MATLAB for each activation function to evaluate 

the classification accuracy for the MNIST dataset, based on 3000 training samples and 1000 test 

samples. Figure 6.4 shows the results based on various network topologies. Over the network 

topologies tested, both 𝑓2 and 𝑓3 demonstrate a consistent improvement in error rate over 𝑓1; the 

average improvement is 6.4% for 𝑓2 and 8.7% for 𝑓3. Moreover, in certain cases, selection of 𝑓3 

versus 𝑓1 as an activation function allows for reduction in error rate while decreasing the size of 

the array, e.g., from 784×500×10 to 784×200×10, and from 784×200×200×200×10 to 

784×100×100×100×10. 

     A PIN-Sim simulation is conducted, based on the MTJ parameters listed in Table 6.3, for 

average RBM power consumption in select network topologies using the 𝑓1 and 𝑓2 activation 

functions. For simulations implementing 𝑓2, the neuron.sp file in the PIN-Sim framework is 

modified by adding an analog square root unit to the output, using the circuit shown in Figure 5.4. 

     Simulation results are listed in Table 6.4, including average power consumption and 

corresponding software error rates; the Power-Error-Product (PEP) is computed as a product of 

these data points and listed in the table as well. Similar to the previously used Energy-Error-

Product [124], PEP is a useful metric for attaining an overall evaluation of each design. Based on 

the results, the f2 activation function yields an improvement in PEP for each of the tested 

topologies; the average improvement is 17.4%. 
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Table 6.3: MTJ simulation parameters. 

Parameter Value 

Saturation Magnetization 1100 emu/cc 

Free layer diameter, thickness 22nm, 2nm 

Polarization 0.59 

TMR 110% 

MTJ RA-product 9mW-cm2 

Damping coefficient 0.01 

Temperature 300K 

 

  

Figure 6.4: Normalized error rate for image classification, based on various DBN topologies and 

activation functions. 
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Figure 6.5: Technique for splitting a VMM operation, y = Ax, between smaller crossbar arrays. In 

this case, an 8×2 VMM operation is split between 4×2 crossbars. 

 

Table 6.4:  Error rate, average DBN power consumption and Power-Error-Product (PEP) for 

various network topologies and activation functions. 
 

Network topology Act. function Error rate Power (mW) PEP 

784×200×10 𝑓1 0.1239 72.4 8.97 

784×200×10 𝑓2 0.1152 76.1 8.77 

784×200×200×10 𝑓1 0.1030 106.3 10.95 

784×200×200×10 𝑓2 0.0922 88.5 8.16 

784×200×200×200×10 𝑓1 0.0945 153.7 14.52 

784×200×200×200×10 𝑓2 0.0919 119.2 10.95 
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6.3.3 Mapping Larger Networks 

     This section provides a brief analysis of the scalability of the presented architecture to larger-

sized networks. While the scope of this research has been limited to MNIST benchmarks, larger 

data sets can be processed by splitting matrices present in software between multiple crossbar 

arrays. This is similar to the technique given in [142]. Figure 6.5 shows a representative example 

of 8×2 VMM, performed via matrix splitting. Mathematically, this operation is given as y = Ax, 

where 𝒙𝜖ℝ8, 𝑨𝜖ℝ2×8 and 𝒚𝜖ℝ2. By leveraging the linear properties of dot product, the input 

vector, x, can be split between two 4×2 crossbar arrays to yield intermediate outputs. The 

intermediate outputs are then added to produce the final output, y, using a third crossbar consisting 

of 1 and 0 elements. Transimpedance amplifiers, which convert current to analog voltage at the 

output of each array, act to ensure that the output from each array is within the operational input 

range of the next array. Generally, the accumulated current does not scale with input size. If the 

crossbar size is limited to 128×64, then the maximum output current is 9.4mA, under a line 

resistance of 2.5 per cell. 

6.4 DBN Accuracy Enhancement via Triple Modular Redundancy 

6.4.1 Redundant Computing 

     Redundancy is a useful strategy for improving recognition accuracy of a DBN classifier without 

incurring the overheads of a more complex network. One implementation is Spatial Triple Modular 

Redundancy (STMR), as Figure 6.6 shows. In the STMR approach, the image classification is 

performed three times in parallel and each input is converted to a digital representation using SS-

PIR. The majority of these outputs then determines the final result of the circuit. It is advantageous 

to use a distinct activation function in each cycle to avoid common-mode misrecognition resulting 

from model similarity. 
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Figure 6.6 Spatial Triple Modular Redundancy (STMR) architecture. 

 

 

Figure 6.7: Progressive Triple Modular Redundancy (PTMR) architecture. 

     An alternative approach is provided by Progressive Temporal Modular Redundancy (PTMR), 

as Figure 6.7 shows. In contrast to STMR, PTMR does not physically duplicate the network. 

Instead, computations are done sequentially and results are stored in registers, each having a clock 

input shifted by one cycle. As in STMR, the majority of outputs is used to determine the final 
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result of the circuit. However, PTMR determines the majority using a multiplexer with the XOR 

result of the first two PIR outputs as the selector. If the first two outputs match, then the XOR 

result is a 0, in which case the second PIR output is selected as the final result. Otherwise, if there 

is a mismatch between the first two outputs, the XOR result is a 1 and the third PIR output is used 

as the final result. The advantage to the multiplexer approach is that the computation can be halted 

after two cycles when the first two outputs match, which occurs in the majority of cases. STMR 

and PTMR deliver separate tradeoffs: while STMR is faster, PTMR is more area efficient, and also 

more energy efficient due to the intermediate halting capability. 

6.4.2 Performance of STMR and PTMR 

     We evaluate the application-level performance of a DBN running on the SCAPE platform and 

employing the STMR and PTMR redundancy techniques for 784×100×10 DBNs, against a 

baseline 784×500×500×10 DBN trained on sigmoid activation without redundancy. Hybrid spin-

based majority and XOR gates are utilized in STMR and PTMR, respectively. Activation functions 

are computed in analog using the AAS of the SCAPE platform. Simulations are performed using 

HSPICE, with SHE-MTJ model and device parameters similar to those used in [135] and listed in 

Table 6.5. Registers, multiplexers and other control peripherals are designed using the CMOS 

PTM 14nm HP library [127], at VDD = 0.8V.  

     Majority and XOR gates implemented based on the designs in [143] and [144] consume 

0.0273mW and 0.0375mW, respectively. The power consumption of the overall peripherals 

consisting of majority gates in STMR, as well as XOR gates, registers and multiplexers in PTMR, 

are evaluated as 0.819mW and 1.13mW, respectively. The 3 DBN stages in STMR and PTMR are 

trained with 3000 images from the MNIST data set and tested using 100 images.  
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Table 6.5: SHE-MTJ and CMOS Device Simulation Parameters. 

Symbol Parameter Value 

RP Parallel MTJ Resistance 2.8kΩ 

RAP Anti-Parallel MTJ Resistance 5.6kΩ 

TMR Tunnel Magnetic Ratio 100% 

α Damping Coefficient 0.007 

T Temperature 300K 

P Polarization 0.52 

Vth_pmos Threshold Voltage (PMOS) 460mV 

Wpmos Width (PMOS) 44nm 

Vth_nmos Threshold Voltage (NMOS) 500mV 

Wnmos Width (NMOS) 22nm 

MTJ Area MTJ Length × MTJ Width × 𝜋/4 60nm×30nm×𝜋/4 

HM Volume L × W × T 100 nm×60 nm×3 nm 

 

Table 6.6: Evaluation of STMR and PTMR based on error, power, delay and area. 

Network Avg. Error Avg.  Power Delay Norm. X-bar Area PEP 

A 30% 316.7mW 17ns 647,000x 95.01 

B 45% 43mW 13ns 79,400x 19.35 

B (PTMR) 27% 44.02mW 45ns 79,400x 11.88 

B (STMR) 27% 167.2mW 13ns 238,200x 45.14 

 

    For the PTMR approach, the sampling time is 45 ns, i.e., 3 times the delay of the STMR 

architecture, plus additional delay to rewrite weights before each trial. There are no overheads 

associated with training the networks since trained weights and biases are pre-loaded into the input 

buffers. Results are listed in Table 6.6 for a large 784×500×500×10 network architecture (labeled 

as A) and a significantly smaller 784×100×10 network (labeled as B). Both of these baseline 

networks are trained using the sigmoidal activation function. Also considered is B (PTMR), which 

consists of executing PTMR over 3 cycles using Network B trained with sigmoidal, sigmoidal 

square root and sigmoidal square activation functions, respectively.  In this context, the sigmoidal 

activation function is defined as 𝑓(𝑥) =
1

2
(1 + tanh(𝑥)) and sigmoidal square root and square 
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are defined as √𝑓(𝑥) and [𝑓(𝑥)]2, respectively. B (STMR) uses the STMR approach with the 

same network and activation functions as B (PTMR). Error is based on the top-3 recognition 

accuracy following analog to digital conversion using PIR, average power consumption and delay 

include the entire circuit including peripherals, area is calculated only using the crossbar, and PEP 

is the Power-Error-Product which gives a quantitative measure of digit-recognition efficiency of 

spin-based DBNs.  

     The results show that the accuracy of Network B is significantly lower, compared to Network 

A. However, use of triple modular redundancy with different activation functions allows 

comparable accuracy using Network B. Both B (PTMR) and B (STMR) show improvements in 

terms of power, area and PEP, compared to the baseline, with the STMR approach trading off area 

and power for speed. The PTMR allows for reduced power consumption as well as area, achieving 

86.1% reduction in power, 87.7% reduction in area overhead and 87.5% reduction in PEP, at the 

cost of a 2.6× increase throughput latency. B (PTMR) saves power by selectively using the third 

computational cycle, which occurs only 35% of the time. However, the PTMR approach consumes 

additional power due to peripherals, including use of the AAS for computation of enhanced 

activation functions. Thus, the time-averaged power consumption of B (PTMR) is similar to that 

of the Network B baseline. 

     Further evaluation of PTMR is conducted using a more comprehensive set of network 

architectures. Power (not including peripherals), error and PEP are provided for each network 

topology in Figure 6.8, Figure 6.9 and Figure 6.10 respectively. The Mixed topology consists of 

784×200×10 networks in the first two PTMR stages, followed by a 784×100×10 network in the 

third stage. With the exception of the Mixed topology, the sigmoidal, sigmoidal square root and 

sigmoidal square activation functions are used in the first, second and third stages, respectively.  
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Figure 6.8: PTMR power consumption for various DBN network topologies. 

 

Figure 6.9: PTMR image classification error rate for various DBN network topologies. 
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Figure 6.10: PTMR Power-Error-Product for various DBN network topologies. 

     The Mixed topology makes use of the advantages offered by enhanced activation functions by 

using a sigmoidal square root activation function in the first stage, followed by a sigmoidal square 

function in the second and third stages. 

     Based on the data, the following observations may be made: 1) PTMR offers a lower error rate 

than the 784×500×500×10 network, for every topology shown besides 784×50×10 and 2) PTMR 

using the Mixed topology yields a 7% error rate, which is only 4% greater than the best 

performance offered by the 784×500×500×10 network, achieved using sigmoidal square 

activation. However, PTMR using the Mixed topology offers an 81.2% reduction in power and 

56.2% reduction in PEP compared to a single run of the larger network. Furthermore, Figure 6.9 

reinforces the observation that choice of activation function significantly impacts network 

performance, since there is a 64.8% average reduction in error between the first stage using 
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sigmoidal activation and the third stage using sigmoidal square activation, among the four network 

topologies tested. Finally, PTMR consistently yields an error rate between that achieved using 

sigmoidal square and sigmoidal square root activation. Thus, PTMR is beneficial since it is 

commonly not known which activation function will yield the best error rate. 

6.5 Summary 

     The analog computational circuit presented in Chapter 5 is combined with a spin-based crossbar 

architecture to yield the Spintronically-Configurable Adaptive in-memory Processing 

Environment (SCAPE) for signal processing and machine learning computations. The AMP signal 

reconstruction algorithm implemented using SCAPE yields a 96% energy reduction compared to 

a recent design, with negligible loss in accuracy. Furthermore, SCAPE allows efficient 

computation of activation functions in analog for machine learning applications. Simulation results 

demonstrate that varying the activation function of a neural network can allow for significant 

improvements in accuracy without increasing network size.  

     The ability to efficiently compute diverse activation functions enables construction of 

architectures using triple modular redundancy, which incorporate multiple activation functions to 

eliminate common-mode misrecognition of input data. Simulation results indicate a 64.8% average 

reduction in error attained by replacing the sigmoidal activation function with a squared sigmoidal 

function. Furthermore, it is seen that triple modular redundancy using a collection of smaller 

networks operating under distinct activation functions yields error rate within 4% of that of a 

significantly larger network, with 81.2% reduction in power. 
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CHAPTER 7: LAYER-WISE QUANTIZATION OF DEEP BELIEF 

NETWORKS 

7.1 DNN Precision Analysis 

     Due to the evolving complexity of DNNs, management of resource utilization has become key 

to their hardware implementation. State-of-the-art networks may require approximately 1 billion 

multiply-and-accumulate operations and storage of 100 million parameters [145]. Compression 

techniques such as pruning [146, 147] and quantization [145, 148] have been suggested as 

approaches to mitigating these overheads. 

     Recent research [145] has shown that the layers within a DNN have varying sensitivities to 

quantization. Specifically, 

𝑝𝑚 ≤ ∑ (∆𝐴,𝑙
2 𝐸𝐴,𝑙 + ∆𝑊,𝑙

2 𝐸𝑊,𝑙)
𝐿
𝑙=1                   (7.1) 

where 𝑝𝑚 is the probability that the predicted label of a fixed-point network is different from the 

predicted label of a high-precision floating-point network. Furthermore, 𝐿 is the number of layers, 

∆𝐴,𝑙 is the quantization step-size of the activation function at layer 𝑙 and ∆𝑊,𝑙 is the quantization 

step-size of the weights at layer 𝑙. The quantization step-sizes can be expressed as ∆𝐴,𝑙 = 2−(𝐵𝐴,𝑙−1) 

and ∆𝑊,𝑙 = 2−(𝐵𝑊,𝑙−1) where 𝐵𝐴,𝑙 and 𝐵𝑊,𝑙 refer to layer-wise bit-widths used to quantize the 

activation function and weights, respectively, at layer 𝑙. Finally, 𝐸𝐴,𝑙 and 𝐸𝑊,𝑙 are defined as: 

           𝐸𝐴,𝑙 = E(∑
∑ |

𝜕(𝑍𝑖−𝑍𝑌𝑓𝑙
)

𝜕𝐴ℎ
|

2

ℎ∈𝐴𝑙

24|𝑍𝑖−𝑍𝑌𝑓𝑙|
2𝑖≠𝑌𝑓𝑙

),                   (7.2) 

                                               𝐸𝑊,𝑙 = E(∑
∑ |

𝜕(𝑍𝑖−𝑍𝑌𝑓𝑙
)

𝜕𝑤ℎ
|

2

ℎ∈𝑤𝑙

24|𝑍𝑖−𝑍𝑌𝑓𝑙|
2𝑖≠𝑌𝑓𝑙

),                     (7.3) 
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where 𝑌𝑓𝑙 is the predicted label of a floating-point network, 𝑍𝑖 refers to the soft outputs, and 𝐴𝑙 

and 𝑤𝑙 are layer-wise indexing sets of activations and weights, respectively. 

     Eq. 7.2 – 7.3 express the non-uniformity in sensitivity of DNN layers. For example, a layer 

where the soft outputs vary more strongly with weight values produces a greater value of 𝐸𝑊,𝑙 as 

a result of Eq. 7.3. Thus, the weights in this layer are more sensitive to noise and require greater 

precision as a result of Eq. 7.1. 

     An alternative layer-wise precision analysis is given by [148], which shows that, given a 

maximum accuracy degradation ∆𝑎𝑐𝑐,  

‖𝒓𝑍
𝑖 ‖

2
≤ 𝑡𝑖(∆𝑎𝑐𝑐)

(𝑧1−𝑧2)
2

2
                   (7.4) 

where 𝒓𝑍
𝑖  is the noise on the last feature map, Z, resulting from quantization of weights in layer i, 

and is given by E (‖𝒓𝑍
𝑖 ‖

2
) = 𝐶𝑖𝑒

−𝛼𝑏𝑖 with 𝑏𝑖 representing bit-width in layer i. Moreover, 𝑡𝑖 is a 

robustness parameter and 𝑧1 and 𝑧2 are the top two elements of Z. According to Eq. 7.4, a greater 

separation between 𝑧1 and 𝑧2 allows for greater quantization noise in the network without affecting 

accuracy; moreover, layers with a higher robustness parameter, 𝑡𝑖(∆𝑎𝑐𝑐), are more tolerant to noise 

and may be assigned a coarser quantization without affecting accuracy. 

7.2 Architecture for Layer-wise Quantization 

     Herein an MRAM-based crossbar architecture is proposed for layer-wise quantization of DBNs. 

The scope of the presented research is limited to quantization of weights since activation functions 

are computed in analog. As Figure 7.1 shows, the input stage of the proposed architecture consists 

of MRAM-based NVM crossbar arrays (labeled as NVM X-BAR in the figure). In PIN-Sim, the 

weighted connections of the network are represented by devices with resistance values in the range 
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from 1k to 5k. Thus, in the proposed design, two classes of crossbars are included: Class A 

crossbars, shown in orange, have MTJs with resistances of 1k and 5k in the P- and AP-states, 

respectively. Moreover, Class B crossbars, shown in blue, have MTJs with resistances of 2k and 

4k In the scope of the presented research, each layer is assigned either 1-bit or 2-bit quantization. 

A single Class A crossbar is allocated to layers that are assigned a 1-bit quantization. Layers that 

require 2-bit quantization are assigned a Class A crossbar together with a Class B crossbar. Thus,  

Figure 7.1: Architecture for layer-wise quantization of DBNs.  
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weights in these layers may be mapped to 1-, 2-, 4- or 5-k resistances. When mapping is 

performed, the crossbar that contains the device capable of reaching the target resistance value is 

written; for 2-bit layers, the corresponding device in the second assigned crossbar is deactivated 

by means of access transistors. For layers assigned a 2-bit quantization, the final outputs from the 

two allocated crossbars are combined using an analog adder, as shown in Figure 7.1. 

     Once dot product operations for a given layer are complete, the activation function is computed 

using a three-stage pipeline consisting of a p-bit device and integrator combined with a 

Computational Analog Block (CAB) for adaptive selection of enhanced activation functions as 

described in Chapter 6. 

7.3 Optimization using Genetic Algorithm 

     A Genetic Algorithm (GA) approach is proposed for optimal allocation of crossbars to network 

layers. GAs have previously been used for resource allocation problems; for example, to determine 

optimal allocation of FPGA processing elements to DCT coefficients [29]. GAs are particularly 

useful for larger networks, which may have over 1000 layers [145]. In the GA methodology, 

hardware configurations are represented using chromosomes. Figure 7.2 gives an example of the 

chromosome mapping methodology given a 4-layer DBN. The figure shows four crossbar groups, 

such that assignment to Group 1 or 2 corresponds to a 2-bit quantization while assignment to Group 

3 or Group 4 corresponds to 1-bit quantization. The chromosome consists of four elements, i.e., 

genes, such that the position of each element indicates the DBN layer, while the value of the 

element indicates the number of bits allocated to that layer. In the figure, 2 bits are allocated to 

weights in Layers 2 and 3 while 1 bit is allocated to weights in Layers 1 and 4. This configuration 

is represented by the chromosome 1221. 
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Figure 7.2: Illustration of GA methodology. 

 

     The GA, provided by Algorithm 2, commences by initializing the index, g, to zero and calling 

the initialize() function to generate a random population of N chromosomes (Lines 1 – 2). Each 

chromosome has a fitness value defined as 𝑓𝑖 = 1/𝐴𝐸𝑃𝑖 , where 𝐴𝐸𝑃𝑖 is the DBN area-error-

product. In Line 4, the GA computes the fitness of each individual in the population by calling the 

evaluate() function. The algorithm then applies the standard evolutionary operators: selection, 

crossover, mutation and elitism, as described in [102, 149]. In Line 5, select() chooses n individuals 

Figure 7.3: Illustration of crossover. 
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from the initial population using the roulette wheel approach [149], where each individual’s share 

of the wheel is defined as 𝑝𝑖 = 𝑓𝑖/∑ 𝑓𝑖𝑖  to give an advantage to more fit individuals. In Line 6, 

crossover() selects pairs of individuals as the parents and crosses over their genes to generate a set 

of N – 2 offspring. As illustrated in Figure 7.3, the genes of Offspring A are identical to those of 

Parent A, up to a randomly chosen gene position. The remaining genes are then determined by 

Parent B. Offspring B is determined in a similar way.  

     Next, Line 7 applies mutation() to each offspring. The mutation function iterates through each 

gene in the offspring chromosomes; in each iteration, the target gene is replaced with a randomly-

selected gene, with a probability of 1%. Line 8 then calls the elitism() function to select the two 
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most fit members of the current generation and Line 9 defines the next-generation population by 

combining the N – 2 offspring chromosomes determined by crossover() and mutation() with the 

two chromosomes determined by elitism(). The counter is updated in Line 10 and the loop repeats. 

After gmax iterations, the GA performs a fitness evaluation of the final generation and returns the 

single most fit chromosome, C. 

7.4 Simulation Results 

     Hardware DBN simulations are performed using PIN-Sim to evaluate various layer-wise 

quantization configurations. A separate Python file, quantizer.py, is used to quantize DBN 

resistance values generated by mapRBM. By default, mapRBM sets resistance values between 1 

and 5k in intervals of 0.5k Quantizer modifies these values based on a user-defined input 

configuration, specifying the number of bits allocated to each layer. A 1-bit layer changes all 

resistances below 3k to 1k and all other resistances to 5k A 2-bit layer changes all 

resistances in the range [1 k, 1.5 k] to 1k [2k, 3k] to 2k [3.5k, 4k] to 4k and 

[4.5k, 5k] to 5k Hardware simulations are then performed on the modified DBN using PIN-

Sim via the testDBN module.  

     Two network topologies are used: 784×200×200×10 (three-layer) and 784×200×200×200×10 

(four-layer), both using a sigmoidal activation function. In each case, all possible configurations 

using 1-bit and 2-bit layers are evaluated for area, MNIST image classification error and area-

error-product. Area is computed using two crossbars for 2-bit layers and a single crossbar for 1-

bit layers, in accordance with Figure 7.1. The Default configuration assumes 4 crossbars per layer 

to implement the PIN-Sim default of 9 resistance levels [123]. Area, error and area-error-product 

for the three-layer topology are shown by Figure 7.4, Figure 7.5 and Figure 7.6, respectively, and 

for the four-layer topology by Figure 7.7, Figure 7.8 and Figure 7.9, respectively. 
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Figure 7.4: Relative area for various layer-wise bit configurations for three-layer topology. 

 

Figure 7.5: Error for various layer-wise bit configurations for three-layer topology. 
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Figure 7.6: Area-error-product for various layer-wise bit configurations for three-layer topology. 

 

Figure 7.7: Relative area for various layer-wise bit configurations for four-layer topology. 
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Figure 7.8: Error for various layer-wise bit configurations for four-layer topology. 

 

Figure 7.9: Area-error-product for various layer-wise bit configurations for four-layer topology. 
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     In Figure 7.4 – Figure 7.9, configurations are represented in the same way as in the GA 

approach, i.e., as four-digit strings where the digit in position i of the string represents the number 

of bits allocated to Layer i. For example, a configuration of 2121 for the 784×200×200×200×10 

(four-layer) topology indicates that 2 bits are allocated to weights in the 784×200 layer as well as 

the second 200×200 layer, while 1 bit is allocated to each weight in the remaining two layers. Two 

interesting and unexpected observations may be made based on the data. First, both topologies 

reveal lower error, in certain cases, for smaller architectures. For both topologies, there are cases 

where decreasing the precision level of a layer results in improved accuracy. Examples include the 

112 vs. 212 configuration in the three-layer topology and the 1112 vs. 2222 configuration in the 

four-layer topology. Moreover, assigning higher precision levels to deeper levels in the network is 

generally more favorable than assigning the same precision level to an earlier layer. For the three-

layer network, the 122 and 112 configurations perform better than the 221 and 211 configurations, 

respectively. Moreover, for the four-layer network, the 1222, 1212 and 1122 configurations 

perform better than the 2221, 2121 and 2211 configurations, respectively. The 1112 and 2111 

configurations show equal performance. 

     Despite the unexpected nature of these observations, they are consistent with earlier DBN 

results attained using PIN-Sim [123]. While the results in [123] only consider uniform 

quantization, they confirm that in certain cases, the DBN accuracy can improve after a reduction 

in weight precision levels. An explanation offered in the literature [150] is that quantization may 

reduce the level of overfitting within the network parameters. These results demonstrate that the 

default PIN-Sim precision level is not necessary to maintain accuracy. In the three-layer topology, 

the 112 configuration offers a 74.7% reduction in area, compared to the Default configuration. 

Similarly, for the four-layer topology, the 1112 configuration offers a 74.8% area reduction 
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compared to Default. In both cases, the smaller network delivers a 6% reduction in error. 

Furthermore, the results demonstrate the need for layer-wise quantization since in the case of both 

topologies, assigning a 2-bit quantization to only the last layer results in a significant reduction in 

error at incremental area cost, compared to using a 1-bit uniform quantization. 

     Results in Figure 7.6 and Figure 7.9 demonstrate significant variability in area-error-product 

between quantization configurations for both network topologies. The GA approach introduced in 

the previous section is employed to find the optimal configuration for the four-layer topology, 

using the inverse of area-error-product as the fitness function. The GA is run using two sets of 

inputs: N = 6, n = 4 and N = 4, n = 2. In both cases, gmax = 1 and 100 trials are conducted, with 

results listed in Table 7.1. 

     The objective of the GA is to select the optimal configuration, i.e., the 1112 configuration 

having a fitness value of 0.3606. Results indicate that, using N = 6 and n = 4, the average fitness 

of the configuration returned by the GA is 0.3008 and the optimal configuration is selected 68% 

of the time. Using N = 4 and n = 2, the performance is lower due to the narrower scope of the 

algorithm: the average fitness is reduced to 0.2264 and the optimal configuration is selected 45% 

of the time. These data are in comparison with a total-population average fitness of 0.1381, with 

only 6.25% of individuals having the optimal fitness value. 

Table 7.1: GA Performance in selecting optimal bit configuration for four-layer DBN. 

N n gmax Average fitness %Optimal 

6 4 1 0.3008 

 

68 

 

4 2 1 0.2264 45 

Total Population 0.1381 6.25 
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 7.5 Summary 

     Herein, we have presented a spin-based analog architecture for adaptive layer-wise quantization 

of Deep Belief Networks (DBNs). The presented architecture implements 2-bit weights by using 

an analog adder to combine the outputs of two MRAM-based crossbar arrays. Moreover, weights 

within layers that do not require the enhanced precision are represented with 1 bit using a single 

crossbar. This architecture also embeds Computational Analog Blocks (CABs) for efficient 

computation of enhanced activation functions, which may result in significant performance 

improvement as demonstrated in Chapter 6. Finally, we have proposed a Genetic Algorithm (GA) 

approach for optimizing the bit configuration. 

     Simulation results demonstrate that quantization may yield significant area benefits without 

diminishing accuracy and may even result in improved accuracy by eliminating errors due to 

overfitting. Compared to the default PIN-Sim configuration, layer-wise quantization enables a 

74.8% reduction in area while simultaneously achieving 6% reduction in error, using the optimal 

configuration. The optimal configuration is identified by the GA in 68% of trials.  
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CHAPTER 8: CONCLUSION6 

8.1 Technical Summary 

     In this dissertation, a reconfigurable architecture is developed which harnesses intrinsic 

properties of MRAM-based crossbar arrays together with analog computation for area and energy-

efficient implementation of Compressive Sensing (CS) and Deep Belief Networks (DBNs). The 

proposed architecture is particularly beneficial in IoT sensing applications, where the challenge is 

processing and transmitting vast quantities of data despite constraints in energy, processing area, 

memory and bandwidth. 

     First, we develop an approach to non-uniform CS sampling based on dynamically configured 

sampling rates using naturally occurring voltage degradation in a crossbar array. This technique 

embeds some required computations to be conducted intrinsically by the cross-points of the array, 

thus bypassing overheads of conventional instruction execution and eliminating the need for costly 

hardware components such as lookup tables and data converters. This architecture is shown to be 

robust for various array sizes and parasitics and achieves a 583-fold reduction in energy and 23-

fold reduction in transistor count compared with the baseline design. 

     We next demonstrate the Area Conserving Crossbar Leveraging Adaptive Information 

Mapping (ACCLAIM) architecture as a further means of optimizing signal compression via 

Discrete Cosine Transform (DCT) and non-uniform CS. ACCLAIM leverages the spectral sparsity 

of real-world signals to implement an adaptive quantization approach by assigning a variable 

number of word lines, and hence a variable weight precision, to each input coefficient. Simulation 

 
6 ©IEEE. Part of this chapter is reprinted, with permission, from [132, 136, 137]. 
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results indicate that at fixed area, ACCLAIM attains an 18dB improvement in reconstruction 

accuracy for DCT and 9dB for CS, compared to a traditional crossbar approach using uniform 

quantization. Moreover, at a fixed standard of error, ACCLAIM allows for 70.5% reduction in 

area and 30.2% reduction in power in CS sampling. 

     Next, we develop a reconfigurable analog circuit for performing generalized exponentiation 

within a mixed-signal field programmable array architecture. The resulting analog module 

consisting of MRAM devices along with FET-based sensing and amplification circuits are circuit-

switched-configurable with terminal-level programmable control. By leveraging intrinsic 

properties of embedded devices, the design is configured to rapidly evaluate various arithmetic 

operations within acceptable error tolerances for selected applications. When compared to a state-

of-the-art approximate digital multiplier, the presented design achieves roughly 95% reduction in 

area while generating a stable output within a period comparable to single-cycle execution. 

     This analog computational approach is used as a fundamental building block of the 

Spintronically-Configurable Adaptive in-memory Processing Environment (SCAPE). SCAPE 

combines a Vector Matrix Multiplication Stage (VMMS) consisting of MRAM-based crossbar 

arrays with an Analog Activation Stage (AAS) based on the presented analog computational circuit 

for applicability to generalized use cases involving dot products in addition to scalar operations. 

The Approximate Message Passing (AMP) CS reconstruction algorithm is evaluated on SCAPE, 

demonstrating a 96% reduction in energy with negligible accuracy loss, compared with a recent 

state-of-the-art design. Moreover, SCAPE allows for efficient and versatile computation of 

activation functions in DBNs: simulation results demonstrate the possibility of reducing network 

size while retaining accuracy through such an approach. The benefits of enhanced activation 

functions are amplified by a Progressive Temporal Modular Redundancy (PTMR) architecture, 
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which executes multiple DBN trials with varying activation functions and outputs the majority 

result. PTMR allows for an 81.2% reduction in power at only 4% accuracy loss, compared to a 

larger network. 

     Finally, an architecture is presented allowing for layer-wise adaptive quantization in deep 

neural networks. Similarly to SCAPE, the architecture leverages intrinsic computation by 

combining MRAM-based crossbars with analog arithmetic. Together with the hardware design, a 

Genetic Algorithm (GA) is given for determining the optimal layer-wise bit configuration. 

Simulation results indicate that layer-wise quantization may be applied to significantly reduce the 

size of a network while simultaneously increasing accuracy by reducing the level of overfitting. 

Using the optimal bit configuration on a four-layer DBN, a 74.8% reduction in area is attained 

with a simultaneous 6% accuracy improvement. Moreover, the GA is able to identify the optimal 

configuration in two out of three trials. 

8.2 Future Directions 

     The key limitation of the PTMR approach is increased power overhead due to repeated 

computations. PTMR reduces power consumption by stalling during the third computational cycle 

if identical results are attained in the first two cycles. A further optimization could be realized by 

predicting the outputs of the second and third cycles and interrupting the computation if the output 

is predicted to match the previous cycle’s result. The problem is defined as follows: given two 

DBNs having different model parameters but identical inputs, with the outputs after Layer i given 

as 𝒚𝟏𝒊 and 𝒚𝟐𝒊 in the two networks, and with the final outputs of the two networks given as 𝒛𝟏 and 

𝒛𝟐, what is the correlation between ‖𝒚𝟏𝒊 − 𝒚𝟐𝒊‖ and ‖𝒛𝟏 − 𝒛𝟐‖? If the correlation is strong enough, 

then knowing the intermediate outputs of two networks and also the final output of one network 

allows one to predict the final output of the second network. In that case, one can establish a 



118 

 

confidence level k and thresholds 휀 and 𝛿 such that ‖𝒛𝟏 − 𝒛𝟐‖ < 𝛿 with a probability of k 

whenever ‖𝒚𝟏𝒊 − 𝒚𝟐𝒊‖ < 휀. Thus, redundant computations may be terminated at Layer i whenever 

the threshold is met, which can save significant power and also reduce delay for larger networks. 

Determining the parameters 𝛿 and k then represents a tradeoff between power consumption and 

accuracy and is application dependent. 

     Finally, security is an aspect of IoT sensor design that has been outside the scope of this 

dissertation but may be addressed in future work. An attacker may significantly reduce the 

accuracy of a neural network classifier by inserting adversarial noise into the input data [151, 152]. 

Such an attack may be carried out either during the inference phase or during the training phase; 

in the latter case, model parameters within the network are modified such that the network 

performs poorly whenever a backdoor trigger is present within the input. It has been shown that 

quantization [151] as well as pruning [152] can be used as defenses against adversarial noise. 

Moreover, it is seen [151] that the level of adversarial noise may significantly affect the network 

accuracy for a given quantization level. Thus, it is interesting to extend the layer-wise quantization 

approach introduced in Chapter 7 to a) consider the effect of adversarial noise and b) also 

incorporate pruning for power reduction and adversarial defense. 

 

      

 

 

 



119 

 

APPENDIX: COPYRIGHT PERMISSIONS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



120 

 

 

 

 

 

 

 



121 

 

 

 

 

 

 

 



122 

 

 

 

 

 



123 

 

 

 

 

 



124 

 

LIST OF REFERENCES 

[1]  Y.-K. Chen, "Challenges and opportunities of internet of things," in 17th Asia and South 

Pacific design automation conference, 2012: IEEE, pp. 383-388.  

[2] D. Miorandi, S. Sicari, F. De Pellegrini, and I. Chlamtac, "Internet of things: Vision, 

applications and research challenges," Ad hoc networks, vol. 10, no. 7, pp. 1497-1516, 

2012. 

[3] J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, "Internet of Things (IoT): A vision, 

architectural elements, and future directions," Future generation computer systems, vol. 

29, no. 7, pp. 1645-1660, 2013. 

[4] M. A. Alsheikh, S. Lin, D. Niyato, and H.-P. Tan, "Machine learning in wireless sensor 

networks: Algorithms, strategies, and applications," IEEE Communications Surveys & 

Tutorials, vol. 16, no. 4, pp. 1996-2018, 2014. 

[5] H. Tan and R. F. DeMara, "A multilayer framework supporting autonomous run-time 

partial reconfiguration," IEEE Transactions on Very Large Scale Integration (VLSI) 

Systems, vol. 16, no. 5, pp. 504-516, 2008. 

[6] J. Huang, M. Parris, J. Lee, and R. F. Demara, "Scalable FPGA-based architecture for DCT 

computation using dynamic partial reconfiguration," ACM Transactions on Embedded 

Computing Systems (TECS), vol. 9, no. 1, pp. 1-18, 2009. 

[7]  J. Lohn, G. Larchev, and R. DeMara, "A genetic representation for evolutionary fault 

recovery in Virtex FPGAs," in Evolvable Systems: From Biology to Hardware: 5th 

International Conference, ICES 2003 Trondheim, Norway, March 17–20, 2003 

Proceedings 5, 2003: Springer, pp. 47-56.  



125 

 

[8]  R. F. DeMara and K. Zhang, "Autonomous FPGA fault handling through competitive 

runtime reconfiguration," in 2005 NASA/DoD Conference on Evolvable Hardware 

(EH'05), 2005: IEEE, pp. 109-116.  

[9] M. G. Parris, C. A. Sharma, and R. F. Demara, "Progress in autonomous fault recovery of 

field programmable gate arrays," ACM Computing Surveys (CSUR), vol. 43, no. 4, pp. 1-

30, 2011. 

[10] M. Lin, S. Chen, R. F. DeMara, and J. Wawrzynek, "ASTRO: Synthesizing application-

specific reconfigurable hardware traces to exploit memory-level parallelism," 

Microprocessors and Microsystems, vol. 39, no. 7, pp. 553-564, 2015. 

[11] R. Al-Haddad, R. Oreifej, R. A. Ashraf, and R. F. DeMara, "Sustainable modular adaptive 

redundancy technique emphasizing partial reconfiguration for reduced power 

consumption," International Journal of Reconfigurable Computing, vol. 2011, 2011. 

[12] N. Imran, R. F. DeMara, J. Lee, and J. Huang, "Self-adapting resource escalation for 

resilient signal processing architectures," Journal of Signal Processing Systems, vol. 77, 

pp. 257-280, 2014. 

[13]  R. S. Oreifej, R. N. Al-Haddad, H. Tan, and R. F. DeMara, "Layered approach to intrinsic 

evolvable hardware using direct bitstream manipulation of Virtex II Pro devices," in 2007 

International Conference on Field Programmable Logic and Applications, 2007: IEEE, 

pp. 299-304.  

[14]  K. Zhang, G. Bedette, and R. F. DeMara, "Triple modular redundancy with standby 

(TMRSB) supporting dynamic resource reconfiguration," in 2006 IEEE Autotestcon, 2006: 

IEEE, pp. 690-696.  



126 

 

[15] R. A. Ashraf and R. F. DeMara, "Scalable FPGA refurbishment using netlist-driven 

evolutionary algorithms," IEEE Transactions on Computers, vol. 62, no. 8, pp. 1526-1541, 

2013. 

[16] R. F. DeMara, K. Zhang, and C. A. Sharma, "Autonomic fault-handling and refurbishment 

using throughput-driven assessment," Applied Soft Computing, vol. 11, no. 2, pp. 1588-

1599, 2011. 

[17]  K. Zhang, R. F. DeMara, and C. A. Sharma, "Consensus-based evaluation for fault 

isolation and on-line evolutionary regeneration," in Evolvable Systems: From Biology to 

Hardware: 6th International Conference, ICES 2005, Sitges, Spain, September 12-14, 

2005. Proceedings 6, 2005: Springer, pp. 12-24.  

[18]  M. Shaban and A. Abdelgawad, "A study of distributed compressive sensing for the 

Internet of Things (IoT)," in 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), 

2018: IEEE, pp. 173-178.  

[19] A. Nisar, S. Dhull, S. Mittal, and B. K. Kaushik, "SOT and STT-based 4-bit MRAM cell 

for high-density memory applications," IEEE Transactions on Electron Devices, vol. 68, 

no. 9, pp. 4384-4390, 2021. 

[20]  S. Salehi, A. Zaeemzadeh, A. Tatulian, N. Rahnavard, and R. F. DeMara, "MRAM-based 

stochastic oscillators for adaptive non-uniform sampling of sparse signals in IoT 

applications," in 2019 IEEE Computer Society Annual Symposium on VLSI (ISVLSI), 2019: 

IEEE, pp. 403-408.  

[21] Z. Gao, L. Dai, S. Han, I. Chih-Lin, Z. Wang, and L. Hanzo, "Compressive sensing 

techniques for next-generation wireless communications," IEEE Wireless 

Communications, vol. 25, no. 3, pp. 144-153, 2018. 



127 

 

[22] Y. Zhang, Y. Xiang, L. Y. Zhang, Y. Rong, and S. Guo, "Secure wireless communications 

based on compressive sensing: A survey," IEEE Communications Surveys & Tutorials, vol. 

21, no. 2, pp. 1093-1111, 2018. 

[23]  N. Rahnavard, A. Talari, and B. Shahrasbi, "Non-uniform compressive sensing," in 2011 

49th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 

2011: IEEE, pp. 212-219.  

[24]  Y. Massoud, F. Xiong, and S. Smaili, "A memristor-based random modulator for 

compressive sensing systems," in 2012 IEEE International Symposium on Circuits and 

Systems (ISCAS), 2012: IEEE, pp. 2445-2448.  

[25] F. Qian, Y. Gong, G. Huang, M. Anwar, and L. Wang, "Exploiting memristors for 

compressive sampling of sensory signals," IEEE Transactions on Very Large Scale 

Integration (VLSI) Systems, vol. 26, no. 12, pp. 2737-2748, 2018. 

[26]  N. Khoshavi, R. A. Ashraf, and R. F. DeMara, "Applicability of power-gating strategies 

for aging mitigation of CMOS logic paths," in 2014 IEEE 57th International Midwest 

Symposium on Circuits and Systems (MWSCAS), 2014: IEEE, pp. 929-932.  

[27]  A. Tatulian, S. Salehi, and R. F. DeMara, "Mixed-signal spin/charge reconfigurable array 

for energy-aware compressive signal processing," in 2019 International conference on 

ReConFigurable computing and FPGAs (ReConFig), 2019: IEEE, pp. 1-8.  

[28] B. Zhang, N. Uysal, and R. Ewetz, "Computational Restructuring: Rethinking Image 

Compression Using Resistive Crossbar Arrays," IEEE Transactions on Computer-Aided 

Design of Integrated Circuits and Systems, vol. 40, no. 5, pp. 836-849, 2020. 



128 

 

[29] N. Imran, R. A. Ashraf, and R. F. DeMara, "Power and quality-aware image processing 

soft-resilience using online multi-objective GAs," International Journal of Computational 

Vision and Robotics, vol. 5, no. 1, pp. 72-98, 2015. 

[30] X. Yan, Y. Fan, K. Chen, X. Yu, and X. Zeng, "Qnet: an adaptive quantization table 

generator based on convolutional neural network," IEEE Transactions on Image 

Processing, vol. 29, pp. 9654-9664, 2020. 

[31]  F. Zhai, S. Xiao, and L. Quan, "A new non-uniform quantization method based on 

distribution of compressive sensing measurements and coefficients discarding," in 2013 

Asia-Pacific Signal and Information Processing Association Annual Summit and 

Conference, 2013: IEEE, pp. 1-4.  

[32] R. N. Strickland, T. Draelos, and Z. Mao, "Edge detection in machine vision using a simple 

L1 norm template matching algorithm," Pattern recognition, vol. 23, no. 5, pp. 411-421, 

1990. 

[33]  Y. Shi, S. Xia, Y. Zhou, and Y. Shi, "Sparse signal processing for massive device 

connectivity via deep learning," in 2020 IEEE international conference on communications 

workshops (ICC Workshops), 2020: IEEE, pp. 1-6.  

[34]  X. Yang, Y. Chen, and H. Liang, "Square root based activation function in neural 

networks," in 2018 International conference on audio, language and image processing 

(ICALIP), 2018: IEEE, pp. 84-89.  

[35] M. Sipper, "Neural networks with à la carte selection of activation functions," SN Computer 

Science, vol. 2, no. 6, p. 470, 2021. 



129 

 

[36]  A. Hasnat, T. Bhattacharyya, A. Dey, S. Halder, and D. Bhattacharjee, "A fast FPGA based 

architecture for computation of square root and Inverse Square Root," in 2017 Devices for 

Integrated Circuit (DevIC), 2017: IEEE, pp. 383-387.  

[37] H. Jiang, C. Liu, F. Lombardi, and J. Han, "Low-power approximate unsigned multipliers 

with configurable error recovery," IEEE Transactions on Circuits and Systems I: Regular 

Papers, vol. 66, no. 1, pp. 189-202, 2018. 

[38]  N. Arya, T. Soni, M. Pattanaik, and G. Sharma, "Area and energy efficient approximate 

square rooters for error resilient applications," in 2020 33rd international conference on 

VLSI design and 2020 19th international conference on embedded systems (VLSID), 2020: 

IEEE, pp. 90-95.  

[39]  A. J. S. de Sousa et al., "A very compact CMOS analog multiplier for application in CNN 

synapses," in 2019 IEEE 10th Latin American Symposium on Circuits & Systems 

(LASCAS), 2019: IEEE, pp. 241-244.  

[40] R. B. Wunderlich, F. Adil, and P. Hasler, "Floating gate-based field programmable mixed-

signal array," IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 21, 

no. 8, pp. 1496-1505, 2012. 

[41]  C. Schlottmann and P. Hasler, "FPAA empowering cooperative analog-digital signal 

processing," in 2012 IEEE international conference on acoustics, speech and signal 

processing (ICASSP), 2012: IEEE, pp. 5301-5304.  

[42] Y. Huang, Hybrid analog-digital co-processing for scientific computation. Columbia 

University, 2018. 



130 

 

[43]  B. Rumberg and D. W. Graham, "A low-power field-programmable analog array for 

wireless sensing," in Sixteenth international symposium on quality electronic design, 2015: 

IEEE, pp. 542-546.  

[44] D. Moldovan, S. Cha, I. Urn, R. DeMara, and J. Kim, "pp" Direct Memory Access 

Translation on SNAP,"" Technical Report PKPLab-90-9, Department of Electrical 

Engineering-Systems …, 1990.  

[45] R. F. DeMara and D. I. Moldovan, "The SNAP-1 parallel AI prototype," IEEE 

Transactions on Parallel and Distributed Systems, vol. 4, no. 8, pp. 841-854, 1993. 

[46] Y. Xu, B. Wu, Z. Wang, Y. Wang, Y. Zhang, and W. Zhao, "Write-efficient STT/SOT 

hybrid triple-level cell for high-density MRAM," IEEE Transactions on Electron Devices, 

vol. 67, no. 4, pp. 1460-1465, 2020. 

[47]  Y. Zhang, L. Zhang, W. Wen, G. Sun, and Y. Chen, "Multi-level cell STT-RAM: Is it 

realistic or just a dream?," in Proceedings of the International Conference on Computer-

Aided Design, 2012, pp. 526-532.  

[48] S. Miura et al., "Scalability of quad interface p-MTJ for 1X nm STT-MRAM With 10-ns 

low power write operation, 10 years retention and endurance> 10¹¹," IEEE Transactions 

on Electron Devices, vol. 67, no. 12, pp. 5368-5373, 2020. 

[49] S. Verma and B. K. Kaushik, "Low-power high-density STT MRAMs on a 3-D vertical 

silicon nanowire platform," IEEE Transactions on Very Large Scale Integration (VLSI) 

Systems, vol. 24, no. 4, pp. 1371-1376, 2015. 

[50] S. Yuasa, A. Fukushima, T. Nagahama, K. Ando, and Y. Suzuki, "High tunnel 

magnetoresistance at room temperature in fully epitaxial Fe/MgO/Fe tunnel junctions due 



131 

 

to coherent spin-polarized tunneling," Japanese Journal of Applied Physics, vol. 43, no. 

4B, p. L588, 2004. 

[51] S. Matsunaga et al., "Fabrication of a nonvolatile full adder based on logic-in-memory 

architecture using magnetic tunnel junctions," Applied Physics Express, vol. 1, no. 9, p. 

091301, 2008. 

[52] V. K. Joshi, P. Barla, S. Bhat, and B. K. Kaushik, "From MTJ device to hybrid CMOS/MTJ 

circuits: A review," IEEE Access, vol. 8, pp. 194105-194146, 2020. 

[53] L. Zhu et al., "Heterogeneous 3D integration for a RISC-V system with STT-MRAM," 

IEEE Computer Architecture Letters, vol. 19, no. 1, pp. 51-54, 2020. 

[54] K. C. Chun, H. Zhao, J. D. Harms, T.-H. Kim, J.-P. Wang, and C. H. Kim, "A scaling 

roadmap and performance evaluation of in-plane and perpendicular MTJ based STT-

MRAMs for high-density cache memory," IEEE journal of solid-state circuits, vol. 48, no. 

2, pp. 598-610, 2012. 

[55] S. Salehi and R. F. DeMara, "SLIM-ADC: Spin-based logic-in-memory analog to digital 

converter leveraging she-enabled domain wall motion devices," Microelectronics Journal, 

vol. 81, pp. 137-143, 2018. 

[56] R. Zand, A. Roohi, and R. F. DeMara, "Fundamentals, modeling, and application of 

magnetic tunnel junctions," in Nanoscale Devices: CRC Press, 2018, pp. 337-368. 

[57] S. Salehi, M. B. Mashhadi, A. Zaeemzadeh, N. Rahnavard, and R. F. DeMara, "Energy-

aware adaptive rate and resolution sampling of spectrally sparse signals leveraging VCMA-

MTJ devices," IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 

vol. 8, no. 4, pp. 679-692, 2018. 



132 

 

[58] W. Kang, Y. Ran, Y. Zhang, W. Lv, and W. Zhao, "Modeling and exploration of the 

voltage-controlled magnetic anisotropy effect for the next-generation low-power and high-

speed MRAM applications," IEEE Transactions on Nanotechnology, vol. 16, no. 3, pp. 

387-395, 2017. 

[59] S. Salehi, D. Fan, and R. F. Demara, "Survey of STT-MRAM cell design strategies: 

Taxonomy and sense amplifier tradeoffs for resiliency," ACM Journal on Emerging 

Technologies in Computing Systems (JETC), vol. 13, no. 3, pp. 1-16, 2017. 

[60] J. G. Simmons, "Electric tunnel effect between dissimilar electrodes separated by a thin 

insulating film," Journal of applied physics, vol. 34, no. 9, pp. 2581-2590, 1963. 

[61] W. Brinkman, R. Dynes, and J. Rowell, "Tunneling conductance of asymmetrical barriers," 

Journal of applied physics, vol. 41, no. 5, pp. 1915-1921, 1970. 

[62] M. Julliere, "Tunneling between ferromagnetic films," Physics letters A, vol. 54, no. 3, pp. 

225-226, 1975. 

[63] J. C. Slonczewski, "Conductance and exchange coupling of two ferromagnets separated by 

a tunneling barrier," Physical Review B, vol. 39, no. 10, p. 6995, 1989. 

[64] J. C. Slonczewski, "Current-driven excitation of magnetic multilayers," Journal of 

Magnetism and Magnetic Materials, vol. 159, no. 1-2, pp. L1-L7, 1996. 

[65] Y. Zhang et al., "Compact modeling of perpendicular-anisotropy CoFeB/MgO magnetic 

tunnel junctions," IEEE transactions on Electron devices, vol. 59, no. 3, pp. 819-826, 2012. 

[66] L. Yuan, S.-H. Liou, and D. Wang, "Temperature dependence of magnetoresistance in 

magnetic tunnel junctions with different free layer structures," Physical Review B, vol. 73, 

no. 13, p. 134403, 2006. 



133 

 

[67] C. H. Shang, J. Nowak, R. Jansen, and J. S. Moodera, "Temperature dependence of 

magnetoresistance and surface magnetization in ferromagnetic tunnel junctions," Physical 

Review B, vol. 58, no. 6, p. R2917, 1998. 

[68] T. Hagler, R. Kinder, and G. Bayreuther, "Temperature dependence of tunnel 

magnetoresistance," Journal of Applied Physics, vol. 89, no. 11, pp. 7570-7572, 2001. 

[69] R. Zand, A. Roohi, and R. F. DeMara, "Energy-efficient and process-variation-resilient 

write circuit schemes for spin hall effect MRAM device," IEEE Transactions on Very 

Large Scale Integration (VLSI) Systems, vol. 25, no. 9, pp. 2394-2401, 2017. 

[70] K. Y. Camsari, S. Salahuddin, and S. Datta, "Implementing p-bits with embedded MTJ," 

IEEE Electron Device Letters, vol. 38, no. 12, pp. 1767-1770, 2017. 

[71]  S. Datta, "p-Bits for probabilistic computing," in 2019 Device Research Conference 

(DRC), 2019: IEEE, pp. 35-36.  

[72] Z. Sun, G. Pedretti, E. Ambrosi, A. Bricalli, W. Wang, and D. Ielmini, "Solving matrix 

equations in one step with cross-point resistive arrays," Proceedings of the National 

Academy of Sciences, vol. 116, no. 10, pp. 4123-4128, 2019. 

[73]  T. Cao, C. Liu, Y. Gao, and W. L. Goh, "Parasitic-aware modelling for neural networks 

implemented with memristor crossbar array," in 2021 IEEE 14th International Symposium 

on Embedded Multicore/Many-core Systems-on-Chip (MCSoC), 2021: IEEE, pp. 122-126.  

[74]  C. Xu et al., "Overcoming the challenges of crossbar resistive memory architectures," in 

2015 IEEE 21st international symposium on high performance computer architecture 

(HPCA), 2015: IEEE, pp. 476-488.  



134 

 

[75] Y. Li, W. Chen, W. Lu, and R. Jha, "Read challenges in crossbar memories with nanoscale 

bidirectional diodes and ReRAM devices," IEEE Transactions on Nanotechnology, vol. 

14, no. 3, pp. 444-451, 2015. 

[76] G. Papandroulidakis, I. Vourkas, A. Abusleme, G. C. Sirakoulis, and A. Rubio, "Crossbar-

based memristive logic-in-memory architecture," IEEE transactions on nanotechnology, 

vol. 16, no. 3, pp. 491-501, 2017. 

[77] P.-Y. Chen and S. Yu, "Compact modeling of RRAM devices and its applications in 1T1R 

and 1S1R array design," IEEE Transactions on Electron Devices, vol. 62, no. 12, pp. 4022-

4028, 2015. 

[78]  M. Shevgoor, N. Muralimanohar, R. Balasubramonian, and Y. Jeon, "Improving 

memristor memory with sneak current sharing," in 2015 33rd IEEE International 

conference on computer design (ICCD), 2015: IEEE, pp. 549-556.  

[79] Y. Zhang et al., "CACF: A novel circuit architecture co-optimization framework for 

improving performance, reliability and energy of ReRAM-based main memory system," 

ACM Transactions on Architecture and Code Optimization (TACO), vol. 15, no. 2, pp. 1-

26, 2018. 

[80]  Y. Zhang, D. Feng, W. Tong, J. Liu, C. Wang, and J. Xu, "Tiered-ReRAM: A low latency 

and energy efficient TLC crossbar ReRAM architecture," in 2019 35th Symposium on Mass 

Storage Systems and Technologies (MSST), 2019: IEEE, pp. 92-102.  

[81]  F. Sampaio, M. Shafique, B. Zatt, S. Bampi, and J. Henkel, "Approximation-aware multi-

level cells STT-RAM cache architecture," in 2015 International Conference on Compilers, 

Architecture and Synthesis for Embedded Systems (CASES), 2015: IEEE, pp. 79-88.  



135 

 

[82]  C. Xu, D. Niu, N. Muralimanohar, N. P. Jouppi, and Y. Xie, "Understanding the trade-offs 

in multi-level cell ReRAM memory design," in Proceedings of the 50th Annual Design 

Automation Conference, 2013, pp. 1-6.  

[83] S. Salehi and R. F. DeMara, "Adaptive non-uniform compressive sensing using SOT-

MRAM multi-bit precision crossbar arrays," IEEE Transactions on Nanotechnology, vol. 

20, pp. 224-228, 2021. 

[84] A. Shafiee et al., "ISAAC: A convolutional neural network accelerator with in-situ analog 

arithmetic in crossbars," ACM SIGARCH Computer Architecture News, vol. 44, no. 3, pp. 

14-26, 2016. 

[85] P. Chi et al., "Prime: A novel processing-in-memory architecture for neural network 

computation in reram-based main memory," ACM SIGARCH Computer Architecture 

News, vol. 44, no. 3, pp. 27-39, 2016. 

[86]  M. Zou, Z. Zhu, Y. Cai, J. Zhou, C. Wang, and Y. Wang, "Security enhancement for rram 

computing system through obfuscating crossbar row connections," in 2020 Design, 

Automation & Test in Europe Conference & Exhibition (DATE), 2020: IEEE, pp. 466-471.  

[87] Y. Cai, T. Tang, L. Xia, B. Li, Y. Wang, and H. Yang, "Low bit-width convolutional neural 

network on RRAM," IEEE Transactions on Computer-Aided Design of Integrated Circuits 

and Systems, vol. 39, no. 7, pp. 1414-1427, 2019. 

[88]  Z. Zhu et al., "A configurable multi-precision CNN computing framework based on single 

bit RRAM," in Proceedings of the 56th Annual Design Automation Conference 2019, 2019, 

pp. 1-6.  

[89] Y.-C. Chen, H. Li, W. Zhang, and R. E. Pino, "The 3-D stacking bipolar RRAM for high 

density," IEEE transactions on nanotechnology, vol. 11, no. 5, pp. 948-956, 2012. 



136 

 

[90]  M. N. I. Khan and S. Ghosh, "Multi-bit read and write methodologies for diode-MTJ 

crossbar array," in 2020 21st International Symposium on Quality Electronic Design 

(ISQED), 2020: IEEE, pp. 93-98.  

[91]  M. F. F. Khan, N. A. Jao, C. Shuai, K. Qiu, M. Mahdavi, and V. Narayanan, "Mixed 

precision Quantization scheme for re-configurable ReRAM crossbars targeting different 

energy harvesting scenarios," in Internet of Things. A Confluence of Many Disciplines: 

Second IFIP International Cross-Domain Conference, IFIPIoT 2019, Tampa, FL, USA, 

October 31–November 1, 2019, Revised Selected Papers 2, 2020: Springer, pp. 197-216.  

[92] Y. Shi, Z. Huang, S. Oh, N. Kaslan, J. Song, and D. Kuzum, "Adaptive quantization as a 

device-algorithm co-design approach to improve the performance of in-memory 

unsupervised learning with SNNs," IEEE Transactions on Electron Devices, vol. 66, no. 

4, pp. 1722-1728, 2019. 

[93] D. Kwon et al., "Adaptive weight quantization method for nonlinear synaptic devices," 

IEEE Transactions on Electron Devices, vol. 66, no. 1, pp. 395-401, 2018. 

[94]  S. Abden and E. Azab, "Multilayer perceptron analog hardware implementation using low 

power operational transconductance amplifier," in 2020 32nd International Conference on 

Microelectronics (ICM), 2020: IEEE, pp. 1-4.  

[95] M. T. Abuelma'Atti and A. M. Abuelmaatti, "A new current-mode CMOS analog 

programmable arbitrary nonlinear function synthesizer," Microelectronics Journal, vol. 

43, no. 11, pp. 802-808, 2012. 

[96] A. Buscarino, C. Corradino, L. Fortuna, M. Frasca, and J. C. Sprott, "Nonideal behavior of 

analog multipliers for chaos generation," IEEE Transactions on Circuits and Systems II: 

Express Briefs, vol. 63, no. 4, pp. 396-400, 2015. 



137 

 

[97] N. Guo et al., "Energy-efficient hybrid analog/digital approximate computation in 

continuous time," IEEE Journal of Solid-State Circuits, vol. 51, no. 7, pp. 1514-1524, 

2016. 

[98] R. J. D'Angelo and S. R. Sonkusale, "A time-mode translinear principle for nonlinear 

analog computation," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 

62, no. 9, pp. 2187-2195, 2015. 

[99] J. R. Koza, F. H. Bennett, D. Andre, M. A. Keane, and F. Dunlap, "Automated synthesis 

of analog electrical circuits by means of genetic programming," IEEE Transactions on 

evolutionary computation, vol. 1, no. 2, pp. 109-128, 1997. 

[100] Y. A. Sapargaliyev and T. G. Kalganova, "Open-ended evolution to discover analogue 

circuits for beyond conventional applications," Genetic Programming and Evolvable 

Machines, vol. 13, pp. 411-443, 2012. 

[101]  M. J. Streeter, M. A. Keane, and J. R. Koza, "Iterative refinement of computational circuits 

using genetic programming," in Proceedings of the 4th Annual Conference on Genetic and 

Evolutionary Computation, 2002, pp. 877-884.  

[102]  S. D. Pyle, V. Thangavel, S. M. Williams, and R. F. DeMara, "Self-Scaling Evolution of 

analog computation circuits with digital accuracy refinement," in 2015 NASA/ESA 

Conference on Adaptive Hardware and Systems (AHS), 2015: IEEE, pp. 1-8.  

[103] V. Thangavel, Z.-X. Song, and R. F. DeMara, "Intrinsic evolution of truncated Puiseux 

series on a mixed-signal field-programmable soc," IEEE Access, vol. 4, pp. 2863-2872, 

2016. 



138 

 

[104] S. George et al., "A programmable and configurable mixed-mode FPAA SoC," IEEE 

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 24, no. 6, pp. 2253-

2261, 2016. 

[105] Y. Choi, Y. Lee, S.-H. Baek, S.-J. Lee, and J. Kim, "CHIMERA: A field-programmable 

mixed-signal IC with time-domain configurable analog blocks," IEEE Journal of Solid-

State Circuits, vol. 53, no. 2, pp. 431-444, 2017. 

[106] H. Rabah, A. Amira, B. K. Mohanty, S. Almaadeed, and P. K. Meher, "FPGA 

implementation of orthogonal matching pursuit for compressive sensing reconstruction," 

IEEE Transactions on very large scale integration (VLSI) Systems, vol. 23, no. 10, pp. 

2209-2220, 2014. 

[107]  S. Salehi, R. Zand, and R. F. DeMara, "Clockless spin-based look-up tables with wide read 

margin," in Proceedings of the 2019 on Great Lakes Symposium on VLSI, 2019, pp. 363-

366.  

[108] E. J. Candès and M. B. Wakin, "An introduction to compressive sampling," IEEE signal 

processing magazine, vol. 25, no. 2, pp. 21-30, 2008. 

[109] H. A. Almurib, T. N. Kumar, and F. Lombardi, "Approximate DCT image compression 

using inexact computing," IEEE Transactions on computers, vol. 67, no. 2, pp. 149-159, 

2017. 

[110]  A. Septimus and R. Steinberg, "Compressive sampling hardware reconstruction," in 

Proceedings of 2010 IEEE international symposium on circuits and systems, 2010: IEEE, 

pp. 3316-3319.  



139 

 

[111]  H. Kung and S. J. Tarsa, "Partitioned compressive sensing with neighbor-weighted 

decoding," in 2011-MILCOM 2011 Military Communications Conference, 2011: IEEE, pp. 

149-156.  

[112]  L. Gan, "Block compressed sensing of natural images," in 2007 15th International 

conference on digital signal processing, 2007: IEEE, pp. 403-406.  

[113] Y. Yu, B. Wang, and L. Zhang, "Saliency-based compressive sampling for image signals," 

IEEE signal processing letters, vol. 17, no. 11, pp. 973-976, 2010. 

[114] Y. Shen, W. Hu, R. Rana, and C. T. Chou, "Nonuniform compressive sensing for 

heterogeneous wireless sensor networks," IEEE Sensors journal, vol. 13, no. 6, pp. 2120-

2128, 2013. 

[115]  A. Zaeemzadeh, M. Joneidi, and N. Rahnavard, "Adaptive non-uniform compressive 

sampling for time-varying signals," in 2017 51st Annual conference on information 

sciences and systems (CISS), 2017: IEEE, pp. 1-6.  

[116]  N. Karim, A. Zaeemzadeh, and N. Rahnavard, "RL-Ncs: Reinforcement learning based 

data-driven approach for nonuniform compressed sensing," in 2019 IEEE 29th 

International Workshop on Machine Learning for Signal Processing (MLSP), 2019: IEEE, 

pp. 1-6.  

[117] E. C. Marques, N. Maciel, L. Naviner, H. Cai, and J. Yang, "A review of sparse recovery 

algorithms," IEEE access, vol. 7, pp. 1300-1322, 2018. 

[118] P. Maechler et al., "VLSI design of approximate message passing for signal restoration and 

compressive sensing," IEEE Journal on Emerging and Selected Topics in Circuits and 

Systems, vol. 2, no. 3, pp. 579-590, 2012. 



140 

 

[119] A. Maleki, "Approximate message passing algorithms for compressed sensing," Stanford 

University, 2010.  

[120]  L. Bai, P. Maechler, M. Muehlberghuber, and H. Kaeslin, "High-speed compressed 

sensing reconstruction on FPGA using OMP and AMP," in 2012 19th IEEE international 

conference on electronics, circuits, and systems (ICECS 2012), 2012: IEEE, pp. 53-56.  

[121]  S. Liu, A. Ren, Y. Wang, and P. K. Varshney, "Ultra-fast robust compressive sensing 

based on memristor crossbars," in 2017 IEEE International Conference on Acoustics, 

Speech and Signal Processing (ICASSP), 2017: IEEE, pp. 1133-1137.  

[122] M. Le Gallo, A. Sebastian, G. Cherubini, H. Giefers, and E. Eleftheriou, "Compressed 

sensing with approximate message passing using in-memory computing," IEEE 

Transactions on Electron Devices, vol. 65, no. 10, pp. 4304-4312, 2018. 

[123] R. Zand, K. Y. Camsari, S. Datta, and R. F. DeMara, "Composable probabilistic inference 

networks using MRAM-based stochastic neurons," ACM Journal on Emerging 

Technologies in Computing Systems (JETC), vol. 15, no. 2, pp. 1-22, 2019. 

[124] H. Pourmeidani, S. Sheikhfaal, R. Zand, and R. F. DeMara, "Probabilistic interpolation 

recoder for energy-error-product efficient DBNs with p-bit devices," IEEE Transactions 

on Emerging Topics in Computing, vol. 9, no. 4, pp. 2146-2157, 2020. 

[125]  B. Zhang, N. Uysal, D. Fan, and R. Ewetz, "Representable matrices: Enabling high 

accuracy analog computation for inference of DNNs using memristors," in 2020 25th Asia 

and South Pacific Design Automation Conference (ASP-DAC), 2020: IEEE, pp. 538-543.  

[126]  B. Liu et al., "Reduction and IR-drop compensations techniques for reliable neuromorphic 

computing systems," in 2014 IEEE/ACM International Conference on Computer-Aided 

Design (ICCAD), 2014: IEEE, pp. 63-70.  



141 

 

[127] Arizona State University, "Predictive Technology Model." Available at: http://ptm.asu.edu 

[128] S. Shin et al., "Dynamic reference scheme with improved read voltage margin for 

compensating cell-position and background-pattern dependencies in pure memristor 

array," JSTS: Journal of Semiconductor Technology and Science, vol. 15, no. 6, pp. 685-

694, 2015. 

[129] S. Kim, J. Zhou, and W. D. Lu, "Crossbar RRAM arrays: Selector device requirements 

during write operation," IEEE Transactions on Electron Devices, vol. 61, no. 8, pp. 2820-

2826, 2014. 

[130] F. Juanda, W. Shu, and J. S. Chang, "A 10-GS/s 4-bit single-core digital-to-analog 

converter for cognitive ultrawidebands," IEEE Transactions on Circuits and Systems II: 

Express Briefs, vol. 64, no. 1, pp. 16-20, 2016. 

[131] C. Li et al., "Analogue signal and image processing with large memristor crossbars," 

Nature electronics, vol. 1, no. 1, pp. 52-59, 2018. 

[132] A. Tatulian and R. F. DeMara, "Nonuniform Compressive Sensing via Ohmic Voltage 

Attenuation: A Memristive Crossbar Design Approach Leveraging Intrinsic Computation," 

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 41, 

no. 9, pp. 3157-3161, 2021. 

[133] H. Kubota et al., "Quantitative measurement of voltage dependence of spin-transfer torque 

in MgO-based magnetic tunnel junctions," Nature Physics, vol. 4, no. 1, pp. 37-41, 2008. 

[134]  S. Wang, H. Lee, C. Grezes, P. Khalili, K. L. Wang, and P. Gupta, "MTJ variation monitor-

assisted adaptive MRAM write," in Proceedings of the 53rd Annual Design Automation 

Conference, 2016, pp. 1-6.  

http://ptm.asu.edu/


142 

 

[135] M. Hossain, A. Tatulian, S. Sheikhfaal, H. Thummala, and R. DeMara, "Scalable 

Reasoning and Sensing Using Processing-In-Memory With Hybrid Spin/CMOS-Based 

Analog/Digital Blocks," IEEE Transactions on Emerging Topics in Computing, 2022. 

[136]  A. Tatulian and R. F. DeMara, "A Reconfigurable and Compact Spin-Based Analog Block 

for Generalizable n th Power and Root Computation," in 2021 IEEE computer society 

annual symposium on VLSI (ISVLSI), 2021: IEEE, pp. 302-307.  

[137] A. Tatulian and R. F. DeMara, "Generalized Exponentiation Using STT Magnetic Tunnel 

Junctions: Circuit Design, Performance, and Application to Neural Network Gradient 

Decay," SN Computer Science, vol. 3, no. 2, p. 148, 2022. 

[138] K. N. S. Batta and I. Chakrabarti, "VLSI Architecture for Enhanced Approximate Message 

Passing Algorithm," IEEE Transactions on Circuits and Systems for Video Technology, 

vol. 30, no. 9, pp. 3253-3267, 2019. 

[139] E. Protas, J. D. Bratti, J. F. Gaya, P. Drews, and S. S. Botelho, "Visualization methods for 

image transformation convolutional neural networks," IEEE Transactions on Neural 

Networks and Learning Systems, vol. 30, no. 7, pp. 2231-2243, 2018. 

[140] C.-F. Juang, C.-T. Chiou, and C.-L. Lai, "Hierarchical singleton-type recurrent neural 

fuzzy networks for noisy speech recognition," IEEE Transactions on Neural Networks, vol. 

18, no. 3, pp. 833-843, 2007. 

[141] S. Basodi, C. Ji, H. Zhang, and Y. Pan, "Gradient amplification: An efficient way to train 

deep neural networks," Big Data Mining and Analytics, vol. 3, no. 3, pp. 196-207, 2020. 

[142]  B. R. Fernando, Y. Qi, C. Yakopcic, and T. M. Taha, "3D memristor crossbar architecture 

for a multicore neuromorphic system," in 2020 International Joint Conference on Neural 

Networks (IJCNN), 2020: IEEE, pp. 1-8.  



143 

 

[143] A. Roohi, R. Zand, D. Fan, and R. F. DeMara, "Voltage-based concatenatable full adder 

using spin hall effect switching," IEEE Transactions on Computer-Aided Design of 

Integrated Circuits and Systems, vol. 36, no. 12, pp. 2134-2138, 2017. 

[144] P. Barla, V. K. Joshi, and S. Bhat, "Design and analysis of SHE-assisted STT MTJ/CMOS 

logic gates," Journal of Computational Electronics, vol. 20, no. 5, pp. 1964-1976, 2021. 

[145]  C. Sakr and N. Shanbhag, "An analytical method to determine minimum per-layer 

precision of deep neural networks," in 2018 IEEE International Conference on Acoustics, 

Speech and Signal Processing (ICASSP), 2018: IEEE, pp. 1090-1094.  

[146] S.-K. Yeom et al., "Pruning by explaining: A novel criterion for deep neural network 

pruning," Pattern Recognition, vol. 115, p. 107899, 2021. 

[147]  S. Jin, S. Di, X. Liang, J. Tian, D. Tao, and F. Cappello, "DeepSZ: A novel framework to 

compress deep neural networks by using error-bounded lossy compression," in 

Proceedings of the 28th international symposium on high-performance parallel and 

distributed computing, 2019, pp. 159-170.  

[148]  Y. Zhou, S.-M. Moosavi-Dezfooli, N.-M. Cheung, and P. Frossard, "Adaptive 

quantization for deep neural network," in Proceedings of the AAAI Conference on Artificial 

Intelligence, 2018, vol. 32, no. 1.  

[149] S. Mirjalili and S. Mirjalili, "Genetic algorithm," Evolutionary Algorithms and Neural 

Networks: Theory and Applications, pp. 43-55, 2019. 

[150] W. Chen et al., "Quantization of deep neural networks for accurate edge computing," ACM 

Journal on Emerging Technologies in Computing Systems (JETC), vol. 17, no. 4, pp. 1-11, 

2021. 



144 

 

[151]  J. Lin, C. Gan, and S. Han, "Defensive quantization: When efficiency meets robustness," 

in International Conference on Learning Representations, 2019: International Conference 

on Learning Representations, ICLR.  

[152]  K. Liu, B. Dolan-Gavitt, and S. Garg, "Fine-pruning: Defending against backdooring 

attacks on deep neural networks," in Research in Attacks, Intrusions, and Defenses: 21st 

International Symposium, RAID 2018, Heraklion, Crete, Greece, September 10-12, 2018, 

Proceedings 21, 2018: Springer, pp. 273-294.  

 

 


	Leveraging Signal Transfer Characteristics and Parasitics of Spintronic Circuits for Area and Energy-Optimized Hybrid Digital and Analog Arithmetic
	STARS Citation

	ABSTRACT
	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	CHAPTER 1: INTRODUCTION AND MOTIVATION
	1.1 Research Motivation
	1.2 Need for Adaptive Mixed-Signal Computation
	1.3 Contributions of this Dissertation
	1.3.1 Region-of-Interest Implementation via Ohmic Voltage Degradation
	1.3.2 Area-Efficient Image Compression via Adaptive Quantization
	1.3.3 Spin-Based Computational Analog Block
	1.3.4 Layer-wise Adaptive Quantization


	CHAPTER 2: BACKGROUND AND RELATED WORK
	2.1 Spin-Based Devices
	2.1.1 Magnetic Tunnel Junction (MTJ) Fundamentals
	2.1.2 MTJ Switching Characteristics
	2.1.3 MTJ I-V Characteristics
	2.1.4 MTJ Temperature Dependence
	2.1.5 Spin Hall Effect-based MTJs (SHE-MTJs)
	2.1.6 Probabilistic Spin Logic using Low-Barrier MTJs

	2.2 Memristive Crossbar Arrays (MCAs)
	2.2.1 MCA Fundamentals
	2.2.2 Sneak Currents and Parasitic Voltage Degradation
	2.2.3 Multi-Bit Crossbar Arrays

	2.3 Mixed-Signal Computing
	2.3.1 Analog Computing: Motivation and Related Works
	2.3.2 Mixed-Signal Field Programmable Array (MFPA)

	2.4 Compressive Sensing (CS)
	2.4.1 Sparse Representation of Signals
	2.4.2 Undersampling Sparse Signals
	2.4.3 Non-uniform Sampling
	2.4.4 An Overview of Reconstruction Algorithms
	2.4.5 Hardware Implementation of CS

	2.5 Deep Belief Network (DBN)
	2.5.1 Restricted Boltzmann Machine (RBM)
	2.5.2 Probabilistic Inference Network Simulator (Pin-Sim)
	2.5.3 Probabilistic Interpolation Recoder (PIR)


	CHAPTER 3: NON-UNIFORM CS VIA OHMIC VOLTAGE ATTENUATION
	3.1 Voltage Degradation in MRAM-based Crossbars
	3.2 Non-Uniform Measurement Matrix Implementation
	3.3 Simulation Results
	3.4 Analysis of Size Dependence of Energy Consumption
	3.5 Summary

	CHAPTER 4: AREA-EFFICIENT IMAGE COMPRESSION VIA MEMRISTIVE CROSSBARS LEVERAGING ADAPTIVE QUANTIZATION
	4.1 Crossbar Memory Allocation via Adaptive Quantization
	4.2 AQ for Area-Optimized Image Compression
	4.3 Application to DCT
	4.4 Application to CS
	4.5 Summary

	CHAPTER 5: EXPONENTIATION USING STT MAGNETIC TUNNEL JUNCTIONS
	5.1 Analog Circuit Design
	5.1.1 Op-Amp Design
	5.1.2 Three-Stage Analog Circuit

	5.2 Analog Multiplication
	5.3 Generalized Exponentiation
	5.3.1 Circuit Performance
	5.3.2 Process Variation of MTJ Devices
	5.3.3 Variation in Diode Saturation Voltage
	5.3.4 Temperature Dependence

	5.4 Generalized Functions
	5.5 Summary

	CHAPTER 6: APPLICATIONS OF SPIN-BASED ANALOG COMPUTATION
	6.1 Spintronically Configurable Adaptive in-memory Processing Environment (SCAPE)
	6.2 Application to CS Signal Reconstruction
	6.2.1 Implementation of AMP
	6.2.2 Performance of AMP

	6.3 Application to MNIST Digit Recognition
	6.3.1 Gradient Decay Problem
	6.3.2 Impact of Activation Function
	6.3.3 Mapping Larger Networks

	6.4 DBN Accuracy Enhancement via Triple Modular Redundancy
	6.4.1 Redundant Computing
	6.4.2 Performance of STMR and PTMR

	6.5 Summary

	CHAPTER 7: LAYER-WISE QUANTIZATION OF DEEP BELIEF NETWORKS
	7.1 DNN Precision Analysis
	7.2 Architecture for Layer-wise Quantization
	7.3 Optimization using Genetic Algorithm
	7.4 Simulation Results
	7.5 Summary

	CHAPTER 8: CONCLUSION
	8.1 Technical Summary
	8.2 Future Directions

	APPENDIX: COPYRIGHT PERMISSIONS
	LIST OF REFERENCES

